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Abstract— A fully integrated hardware design of the universal
maximum likelihood Guessing Random Additive Noise Decoding
(GRAND) algorithm implemented in 40 nm CMOS is presented.
It is shown how this integrated hard-detection decoder, which
is designed to process component codes of up to 128 bits in
length, can be extended to efficiently decode product codes
as long as 16,384 bits using the Iterative GRAND (IGRAND)
algorithm. Pipelined stages provide throughput gain and dynamic
energy savings when channel noise conditions improve. The chip
allows for decoding product codes with two distinct component
codes due to its ability to interleave between two codebooks
without any switch-over time. Measurements demonstrate the
decoder’s accuracy and efficiency in decoding a broad selection
of product codes, including the capacity-achieving random linear
product codes. The chip consumes an average energy of 30.6 pJ/b
with a latency of 1.04 µs when decoding the BCH(127, 106, 7)
component code at 68 MHz from 1.1 V at a bit flip probability
of 10-5. Using a single chip to decode a BCH(127, 106, 7)2 prod-
uct code which results in 16,129-bit code of rate 0.68,
we demonstrate an average energy consumption of 61.2 pJ/b with
an average latency of 265 µs for the same operating conditions.

Index Terms— Hard-input decoding, GRAND, IGRAND,
product-codes, universal.

I. INTRODUCTION

ERROR correction codes (ECCs) identify and correct the
corrupted bits of information conveyed over an imperfect,

noisy channel for applications such as data storage and data
communication. To do this, ECC algorithms add redundancy
to the transmitted message, which poses an overhead to
the channel bandwidth, but in return, enables the correction
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of errors. Since the field of channel coding was launched
in 1948 [1], ECCs have typically been designed in tandem
with a decoding algorithm as the problem of decoding an
arbitrary ECC is algorithmically hard [2]. In exchange for
being restricted to a certain class of ECC, a decoder can
leverage the algebraic structure of that class to achieve algo-
rithmically efficient decoding. For this reason, many different
ECCs and corresponding decoding algorithms have emerged,
such as Bose-Chaudhuri-Hocquenghem (BCH) codes and the
Berlekamp-Massey decoder [3], Reed-Muller (RM) codes [4]
with Majority Logic Decoding, and Reed-Solomon codes [5].
Some of these codes such as cyclic redundancy check (CRC)
[6], [7] are typically only used for error detection. The
hardware implementation of these decoders is tightly coupled
to a specific algorithm and a specific code, which reduces flex-
ibility in the design of coding schemes. This requires distinct
pieces of hardware for different levels of redundancy leading
to high resource utilization and lower energy efficiency.

Guessing Random Additive Noise Decoding (GRAND)
is a recently introduced decoding algorithm with a distinc-
tive perspective that challenges the limitations of traditional
ECCs [8]. Instead of extracting the correct codeword based on
a specific codebook structure, GRAND focuses on identifying
the effect that the noise had on the transmitted message
by guessing error patterns in order of decreasing likelihood.
This noise-centric approach allows GRAND to decode any
moderate redundancy code establishing itself as a universal
decoder that yields a maximum-likelihood (ML) decoding [8].
This feature of GRAND enables the error correction for CRCs
and the decoding of Random Linear Codes. Unlike many tra-
ditional ECC decoders, both hard-detection and soft-detection
variants of GRAND have been developed [9], [10], [11], [12],
[13], [14], [15].

The simplicity, parallelizability, and low complexity of the
GRAND algorithm make it appealing for high-throughput
and energy-efficient hardware implementations. Previously,
we implemented the first integrated chip for the hard-input
variant of the GRAND algorithm [16], designed to support
code lengths up to 128 bits and corrects errors up to a
Hamming weight of 3 bits. Effective operation in a more
challenging channel, where the signal-to-noise ratio (SNR) is
low, requires the use of longer codes with higher redundancy.
In [17], we introduced the Iterative GRAND (IGRAND)
algorithm for decoding a class of long, high-redundancy codes
known as product codes [18], which are used in modern
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applications such as optical transport networks [19], [20], [21]
and data storage [22], [23]. Through simulations, we demon-
strated the decoding performance for product codes up to a
length of 961 bits. In this work, we implement the IGRAND
algorithm in hardware by combining our custom-designed
GRAND chip with an FPGA to evaluate the measured decod-
ing performance for product codes up to 16,384 bits in length.
We also architected and synthesized the IGRAND algorithm in
40 nm CMOS as a fully integrated product code decoder with
the GRAND chip to provide an area and power estimation
of the IGRAND implementation. Additionally, we describe
the architectural features of the GRAND chip that support
an efficient implementation of IGRAND and various design
trade-offs, including the use of an SRAM-based syndrome
multiplier, parallelization factor, number of pipeline stages,
and FIFO sizing for error generators, to obtain optimal perfor-
mance for the component code decoding. We present measured
decoding performance, energy efficiency, and latency for a
wide range of codebooks for both component and prod-
uct codes, including CA-Polar codes, CRC codes, BCH
and extended BCH codes, and random linear product codes
(RLPCs), a class of codes that was proven to be capacity-
achieving in [17]. Finally, we use the reconfigurability of the
decoder to decode only the columns of a product code instead
of both columns and rows decoding to save energy and latency
at higher SNR and analyze the trade-off between decoding
accuracy and efficiency.

While product codes with any component code can
be decoded with GRAND following Elias’s decoding
algorithm [18], here we will show that enhanced decoding
performance with reduced decoding complexity is possible
through the use of IGRAND that leverages the inherent
features of GRAND. As the component code decoder of these
algorithms, the GRAND chip can decode product codes of up
to 1282

= 16384 bits in length and with thousands of redun-
dant bits, expanding its range of possible applications. Fig. 1
illustrates the expansion of the achievable code lengths and
rates when the GRAND chip is used to decode product codes.
This exemplifies the architecture’s adaptability, demonstrating
its application across various use cases. In addition to expand-
ing the code length by using the GRAND chip as a component
code decoder of product codes, we also demonstrate that the
maximum error-correcting capability of the decoder increases
when bounded distance iterative decoding is employed. The
GRAND chip decodes the component code errors up to a
maximum Hamming weight of 3 bits, however by employing
it iteratively as a row and column decoder of a product code,
component codes experiencing substantially more than 3-bit
errors can also be decoded. This capability allows the GRAND
chip to continue operating effectively under more challenging,
high-noise channel conditions.

In section II, preliminaries are detailed on the GRAND
decoding theory, product codes, and the IGRAND algorithm.
In section III, we describe the architecture and design choice of
the GRAND chip. In section IV, we present the performance
results of the GRAND chip when used for the component
codes and iterative decoding of product codes. In section V,
we present concluding remarks.

Fig. 1. The coding space of the GRAND chip with respect to code length
and rate available supported by the GRAND chip, using linear codes. The
area in red indicates the component code space for the GRAND chip with a
code length of up to n = 128, while the blue area depicts the expansion of
the coding space when product codes of up to n2

= 16384 bits are used with
linear component codes.

II. BACKGROUND

A. GRAND Algorithm

Consider a binary linear codebook C with a code length of n
and k information bits, consisting of 2k strings in {0, 1}n . For
each member of the codebook Xn

∈ C, the following holds:

H · Xn
= 0, ∀Xn

∈ C, (1)

where H is the parity check matrix of the code. During
transmission, Xn is altered by an additive random binary noise
sequence N n , resulting in the received sequence

Y n
= Xn

⊕ N n , (2)

where ⊕ represents element-wise binary addition. To guess
the most likely transmitted Xn from Y n , GRAND initially
performs a membership check for Y n

∈ C. The membership
check for a linear codebook can be performed by computing
the product of its parity check matrix H with the received
sequence:

H · Y n
=✘✘✘✘✿0

H · Xn
⊕ H · N n

= H · N n , (3)

where the second equality follows from (1). The product H ·Y n

is zero if and only if the sequence is a codeword belonging to
that codebook. If H · Y n is 0, then either N n is zero, which
means the transmission was not affected by errors, or Y n maps
to another valid codeword in C, which can be considered as a
false positive. If H ·Y n is non-zero, GRAND generates binary
noise guesses En from most to least likely, according to the
channel model. For each guess, GRAND calculates the product
H · En and compares it to H · Y n . The first sequence En

that satisfies the membership check H · Y n
= H · En is the

maximum-likelihood estimate of the true noise effect. Y n
⊖En

is then the maximum-likelihood decoded output.
In a binary symmetric channel (BSC), GRAND generates

noise sequences in order of increasing Hamming weight,
breaking ties arbitrarily. As the Hamming weight increases,
so does the decoding complexity, as there are

(n
i

)
potential

error patterns for each Hamming weight i . However, in gen-
eral, after 2n−k noise guesses have been made, it becomes
more likely that the decoder finds a sequence that satisfies the
false positive membership check [8]. Therefore the search can
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Fig. 2. A product code with a [5, 3] row code and a [3, 2] column code,
where [n, k] denotes a binary linear code of length n with k information bits.
The information bits ui are arranged as a 2 × 3 array. The rows of this array
are extended by encoding them with the [5, 3] code, producing parity bits
p j for 1 ≤ j ≤ 4. Then the columns are encoded with the [3, 2] code to
produce the remaining parity bits. The resulting product code has a code rate
of 2/5, making it lower-rate and having more error-correcting capability than
its rate-3/5 and rate-2/3 component codes [17].

be abandoned after 2n−k guesses. In such cases, the decoder
can report a decoding failure and request that the codeword be
re-transmitted. This reduces complexity in terms of the number
of guesses made and avoids erroneous decodings.

The GRAND decoder chip [16] presented in this work is
capable of decoding codewords up to a length of 128 bits
with code rates between 0.66-1. It can correct error patterns
up to a Hamming weight of 3 bits, after which it abandons
the search if the codeword is not found. In a BSC with a bit
error rate of 10−3, the probability of more than 3-bit errors
affecting a 128-bit codeword is only 9.66 × 10−6. Therefore,
we choose the threshold of flipping up to only 3 bits at
maximum. The GRAND decoder has previously demonstrated
high decoding accuracy for various codebook families [16],
including Reed-Muller (RM), BCH, CRC, Polar, CRC-Aided
Polar (CA-Polar), and RLCs. It will be shown that the GRAND
chip can also efficiently and accurately decode product codes
as demonstrated in Section IV.

B. Product Codes and Their Construction

Product codes are encoded by arranging information bits in
a 2-dimensional array. The rows of the array are extended by
encoding each of them with a systematic, binary linear code.
The columns are then extended by encoding each of them
with another, possibly distinct, systematic code. The resulting
matrix is a codeword of the product code. The codebook used
for encoding rows or columns is called the component code.
All rows and columns of the matrix are codewords of their
respective component codes. See Fig. 2 for an example. We use
C(n, k, dmin)

2 to denote a product code whose row and column
codes are of type C , length n, have k information bits, and
have a minimum Hamming distance of dmin between two valid
codewords. The code rate of the component code is given as
R = k/n. This product code has length n2 and code rate of R2.

C. Decoding Algorithms for Product Codes

There has been continuing interest in decoding algorithms
for product codes since Elias’s work [24], [25], [26], [27].
Though product codes are longer than their component codes
and can correct more errors, they can still be decoded effi-
ciently due to their structure. Elias proposed decoding each of
the columns individually and then decoding each of the rows
individually. Multiple iterations of this process, or iterative
decoding, lead to better decoding accuracy than a single
iteration [28].

A significant cause of error in iterative decoding is mis-
correction, where new errors are introduced due to incorrect
decoding of a row or column. Bounded Distance Decoding
(BDD) [25], [26] avoids miscorrection by rejecting a com-
ponent code decoding if the number of corrected errors is
greater than some distance bound. Distance bound is defined
as the maximum number of bits that can be flipped in the
component code. Flipping a higher number of bits has a
higher chance of a miscorrection [8]. BDD improves accuracy
because decodings that correct fewer errors are more likely to
be correct. Recently, Häger and Pfister [27] introduced anchor
decoding, a complementary decoding technique to BDD that
avoids miscorrection by declining to modify already-decoded
components until they have been contradicted sufficiently
many times. Al-Dweik and Sharif [25] proposed to apply BDD
with a fixed bound of t − 1 in the first iteration, where t is
the number of errors that the component code can correct, and
then discard the bound in following iterations. This reduces the
chance of miscorrections as only few bits are changed in the
first iteration. Capacity-approaching soft-input decoders have
been developed for product codes [24], but here we consider
hard-input decoding only for applications where either the
soft information is unavailable or cannot be processed due
to system limitations. For instance, in data storage systems,
there is no source of soft information from memory cells.
Similarly, several optical communication standards also use
codes designed for hard detection decoding only due to
latency constraints. Consequently, hard-detection decoding is
employed in these scenarios to meet application requirements.

D. IGRAND Algorithm

Iterative decoding algorithms for product codes assume the
availability of a decoder for each of the component codes.
GRAND, being a universal decoder, can be used as the sole
decoder for any combination of component codes, reducing
hardware footprint. Iterative GRAND (IGRAND) [17] is an
iterative BDD algorithm that adapts GRAND for the efficient
and accurate decoding of product codes. IGRAND improves
decoding accuracy by enforcing BDD on GRAND, while also
reducing search complexity. IGRAND distinguishes itself from
other iterative BDD algorithms by not using a fixed distance
bound. Instead, it starts with the lowest possible bound and
increases it dynamically only when doing so is necessary to
advance the decoding. For efficient decoding, IGRAND tracks
the status of each row and column of the product code to
avoid redundantly decoding an already-decoded component
code. The status flag is initialized with a value of 0 for each
row and column that needs to be decoded. The flag changes
to 1 if the component code is successfully decoded and takes a
value of 2 upon failure to decode for the given distance bound.
If the decoding of one component changes a bit in another
component, the status flag of the latter is changed to 0 as the
decoding is no longer valid, and it must be decoded again.
Upon increasing the distance bound, all the status flags with
a value of 2 are changed to 0 since it might be possible to
decode them with a higher distance bound. Fig. 3 illustrates
an example of iterative BDD with a distance bound of one
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Fig. 3. This figure illustrates the iterative BDD of a product code of a
16-bit length with a distance bound of 1, indicating only a single error can
be corrected at a time. The red crosses indicate an error, the dotted grey lines
indicate whether columns or rows are being decoded, and a green background
indicates an error is about to be corrected in the current iteration. The column
and row flag values are shown on the top and left of each block. One-by-one
all errors are eventually corrected by correcting one bit at a time in a row or
a column [17].

bit. Reference [17] explains the IGRAND algorithm in more
detail.

In addition to efficient decoding of product codes that use
the same codebook for both row and column encoding, the
GRAND chip also enables the decoding of product codes that
may have row and column codebooks of unequal length or
rate, as used in [29] and [30]. This will further increase the
coding space and hence the system’s flexibility for a wide
range of applications.

III. GRAND HARDWARE ARCHITECTURE

The GRAND chip architectural flow diagram is shown in
Fig. 4. It receives the demodulated channel output Y n and
checks for codebook membership. This is done by computing
the syndrome H · Y n . Thus, the first system block is the
syndrome block for checking codebook membership. If the
syndrome check fails, it passes the product H ·Y n to the error
generator. The error generator produces putative noise patterns
En in order of increasing Hamming weight and checks if the
product H · En is equal to H · Y n . If the equality holds, then
the noise pattern En is subtracted from Y n to produce the
maximum likelihood decoded output.

A. Syndrome

The syndrome product H · Y n can be computed by parallel
register file computation where n × (n − k) registers hold the
H-matrix. The vector Y n is multiplied with H using n×(n−k)

AND gates, and the resulting bits for each row multiplication
are XORed together to get the syndrome of length n− k. This
operation takes a single cycle to perform, but requires a large
number of gates and register files that consume high power
and area. With a trade-off in latency, we can use SRAM cells
to store the H matrix and perform the multiplication serially.
By using n × (n − k) bits of SRAM, we take one column
of n − k bits and multiply it with one bit of Y n using only
n − k AND gates. The output is XORed in a cyclic fashion
to produce the partial product. This process is repeated until
all the columns of SRAM are exhausted. In this case, the
latency in cycles, will be equal to the number of columns
of H matrix. The latency can be halved by using a dual-port
SRAM that will provide two columns of the H matrix at a time
as shown in Fig. 5. The comparison for latency, power, and

energy consumption for syndrome computation using single-
port SRAM, dual-port SRAM, and register file computation is
shown in Fig. 5 for synthesized results at 68 MHz using 40 nm
low-power CMOS technology with a nominal supply voltage
of 1.1 V. The register file computation provides the lowest
energy consumption but comes with a trade-off in power and
area that is 10× and 47.4× higher than dual-port SRAM
implementation, respectively. Although it incurs a latency
trade-off, the dual-port SRAM implementation significantly
reduces area and power consumption compared to register file
computation, making it ideal for low-power IoT devices. It has
a similar power consumption but lower latency and higher
energy efficiency than the single-port SRAM implementation.
Thus, we use the dual port SRAM for the computation. Before
the decoding process, the parity check matrix H corresponding
to a particular codebook is loaded onto the dual-port SRAM.
For a maximum code length n of 128 bits and a minimum
code rate R of 0.66 supported by the chip, the dimension
of H is 44 × 128. Upon receiving the codeword which is a
128×1 vector Y , the syndrome computes the product H ·Y by
matrix multiplication which takes 64 cycles using the H matrix
from the dual port SRAM.

B. Primary and Secondary Error Generator

If the membership check in the syndrome block fails, the
chip will generate rank-ordered binary noise patterns from
1- to 3-bit flips. Each error sequence is multiplied by the
parity check matrix H to calculate the product H · En .
We separate the syndrome block from the error generator
(EG), forming a two-staged pipelined architecture with a
FIFO in between. To increase the throughput, codewords that
fail the membership check are pushed into the FIFO to be
decoded by the EG independently, and the syndrome block
moves on to the next codeword for membership checking.
If the FIFO is empty during the decoding process when the
channel noise is low, the EG remains in sleep mode to save
power. The number of queries required to check the error
patterns for a given Hamming weight i is given by

(n
i

)
. For

a Hamming weight of 3, testing all the 3-bit error patterns
requires generating 341,376 noise patterns which is 41 times
higher than both 1- and 2-bit errors combined. A worst-case
greater than 3-bits error is not very likely but it will stall the
EG until it is processed or abandoned. Therefore, the EG is
further split into two stages: primary EG for testing 1- and
2-bit error patterns and secondary EG for testing 3-bit error
patterns independently. The generation of a single error pattern
per cycle will increase the system’s latency. Therefore error
patterns are generated in parallel. The primary EG checks
2 errors, and the secondary EG checks 16 error patterns in
a single cycle to reduce the latency by a factor of 2 and 16,
respectively. Thus, the worst-case latency of 1-, 2-, and 3-bit
error pattern generation is given by

(128
1

)
/2,

(128
2

)
/2, and(128

3

)
/16, respectively. Fig. 6 shows that at a bit flip probability

(p) of 10−3, the average latency of the system reduces by 31%
when the secondary EG is parallelized to generate 16 errors.
The average latency reduces by an additional 17% when the
16x parallelization of the secondary EG is combined with
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Fig. 4. GRAND decoder hardware system architecture and flow diagram [16].

Fig. 5. Synthesized performance comparison of single-port SRAM, dual–
port SRAM, and register-file-based syndrome multiplier (top) and syndrome
multiplier architecture implemented using a dual-port SRAM (bottom). The
parameter i is given as 2x + 1 where x starts as 0 and increments each cycle
up to 63. Given that t is the current timestamp, H.Y44×1(t − 1) is the value
at a previous timestamp.

2x parallelization in the primary EG. Higher parallelization
reduces latency and increases throughput but comes at the
cost of greater area and power consumption. The choice
of parallelization factor in primary and secondary EGs is
determined by the application requirements. The GRAND chip
in [16] is designed to operate with low power consumption
(less than 5 mW) and a small area (less than 1 mm2) to meet

Fig. 6. Simulated average latency of the system when the primary and
secondary EG generates 2x and 16x errors in parallel (left); Throughput of a
3-stage pipelined architecture compared to no pipelining at different channel
conditions (right). At p = 10−3, the average latency decreases by 1.7x, and
the average throughput increases by 2.1x when 3-stage pipelining is utilized
compared to a single-stage system.

the stringent requirements of IoT devices while delivering the
necessary throughput and latency.

C. Pipelining Advantage

Having a three-stage pipelined architecture increases the
throughput of the system by a factor of two at a bit flip
probability of 10−3 compared to a single-stage architecture.
The gain in throughput due to a 3-stage pipelined architecture
at different channel noise conditions is shown in Fig. 6.

There will be no pipeline stalls on average as long as
the average arrival time of codewords to the primary FIFO
and secondary FIFO is greater than the average processing
time of the primary EG and secondary EG. The graphs in
Fig. 7(a) and (b) show the average processing rate of the
primary EG for parallelization factors of 1, 2, and 4, and
of the secondary EG for parallelization factors of 8, 16, and
32 for varying bit-flip probability p. The syndrome completes
the membership check with a fixed latency of 71 cycles. The
fastest arrival of codewords to the primary will be 106 per
second. At higher SNR, the arrival rate to the primary will
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Fig. 7. (a) Average arrival rate and average processing rate of a codeword for primary EG with parallelization factors Bp of 1, 2, and 4; (b) average arrival
rate and average processing rate of a codeword for secondary EG with parallelization factors Bs of 8, 16, and 32. The graph in (c) shows the average number
of elements in the primary EG FIFO for a given p and Bp. The stalling probability of primary EG FIFO for a FIFO depth of 16, 32, and 48 is shown in
(d) and the probability that a stall will occur when the maximum FIFO size is 32 with parallelization factors Bp of 1, 2, and 4 in primary EG is shown in
(e). The average throughput obtained for different parallelization factors (Bp, Bs) in primary and secondary EGs is shown in (f) for a given p.

decrease as most of the codewords will pass the membership
check by the syndrome. The average processing rate of the
primary EG depends on the proportion of the codewords with
a 1-bit error, 2-bit error, and greater than 2-bit error. Those
with a greater than 2-bit error will be passed to the secondary
EG. Each block will operate with maximum throughput when
the average processing rate is greater than the average arrival
rate. It can be seen that the primary EG FIFO determines
the highest p where the chip can operate with negligible
probability of a stall occurring. The plot in Fig. 7(c) shows
the average number of elements in the FIFO for the primary
EG, while Fig. 7(d) and (e) show the probability of the FIFO
being full for varying FIFO sizes and parallelization factors.
At p = 10−2.66 the probability of the FIFO being full is
less than 10-10 for a FIFO size of 32 with a parallelization
factor of two. In the worst-case scenario, when the FIFO is
full, the system waits until the primary or the secondary EG
has finished decoding the current codeword before loading
the next sequence onto the chip, which reduces the average
throughput. The impact of stalling on the chip’s throughput
is shown in Fig. 7(f). The parallelization factors in the EGs
are chosen to ensure that the chip operates at maximum
throughput for the desired bit-flip probability. All three stages
of the system operate in parallel and are clock-gated to save
power. A hardware block consumes power only when it is
actively processing a codeword. Therefore the average energy
of the system depends on the average active time of each
block. For a given p, the active time of the primary and

Fig. 8. Simulated active time of each block for different channel noise
conditions (left); Measured average power consumption of the clock-gated
system compared to power consumption of each block, i.e., syndrome,
primary and secondary (right). The average power consumption of the decoder
dynamically improves and approaches the syndrome power consumption when
the channel noise conditions improve.

secondary EG depends on the probability of having 1- and
2-, and 3-bit errors, respectively, according to the channel
noise conditions. The syndrome block is always active since
all the codewords first go through the membership check.
Fig. 8 shows the average active time of each block for different
channel noise conditions. As the channel noise decreases, the
system’s average power consumption will approach the power
consumption of the syndrome block only. Thus, the system
energy consumption dynamically adapts when the channel
improves, without requiring any feedback.

D. Sparse Matrix Multiplier

The matrix multiplier in the syndrome block takes 64 cycles
to compute H · Y n . Using the same multiplier for computing
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Fig. 9. Low-latency matrix-vector multiplication enabled by the sparsity of
error vector [16].

TABLE I
COMPARISON OF PERFORMANCE WHEN THE SYNDROME MULTIPLIER

IS USED FOR ERROR VECTOR MULTIPLICATION VERSUS THE
PROPOSED SPARSE MULTIPLIER LEVERAGING

THE SPARSITY OF THE ERROR VECTORS

the H · En product will allow checking only one error every
64 cycles. To reduce the latency of calculating the product
H ·En to a single cycle, we leverage the sparsity of noise. The
error vector En will have 3 active high bits at most since the
abandonment threshold is set to 3. These high bits are equally
likely to be anywhere in the 128-bit error vector. We take the
index of high bits as the column address for the parity-check
matrix H stored in the SRAM. These columns of H are
XORed together to give the product in a single cycle, as shown
in Fig. 9. For checking 1- or 2-bit error patterns in primary
EG, one dual-port SRAM returns the respective columns of H
depending on the indices of the high bits in En . For checking a
3-bit error pattern in secondary EG, two dual-port SRAMs are
used to get 3 columns of H in a single cycle where one port
of the second SRAM is disabled. A performance comparison
of the syndrome multiplier and sparse matrix multiplier is
shown in Table I. The sparse multiplier consumes 1.65x lower
power, with a 64x lower latency, providing 106x higher energy
efficiency.

E. Error Generator

The error generator in primary and secondary EG produces
the 1-, 2-, and 3-bit error patterns to be multiplied with H
by the sparse multiplier. Each error generator consists of
error logic, pattern generator, and error shifter. Distance logic
generates a distance pair (D1 and D2) that defines a specific
error pattern that is translated into indices of active high bits
by a pattern generator. The error shifter uses these indices to
shift the pattern to the left to generate all possible errors for
that given pattern. The error generator is shown in Fig. 10.

Fig. 10. Key blocks of the Error Generator: Error Logic for distance pair
generation, Pattern Generator, and Error Shifter [16].

1) Error Logic: The 1-, 2-, and 3-bit error patterns are
defined by a distance pair (D1 and D2). D1 indicates the
distance between the first and second active high bit in an
error sequence starting from the least significant bit (LSB).
D2 indicates the distance between the second and third active
high bits. For example, an error vector of 128-bits, E128

=

(00 . . . 0100101), has a distance pair of D1 = 2 and D2 = 3.
For a 1-bit error pattern, both D1 and D2 are zero. A 2-bit
error pattern is defined by a non-zero D1 where D2 = 0.
A 3-bit error pattern needs both D1 and D2 to be determined.
The distance logic is implemented as counters. For a 3-bit
error with a code length of n = 128, the maximum ranges for
D1 and D2 are 1 to 127 − D2 and 1 to 126, respectively.

2) Pattern Generator: The pattern generator uses the dis-
tance pair from distance logic to generate the indices of the
active high bits in the error vector. The least significant bit
of the error vector is always active high, so the first index is
always 1. The second and third high-bit indices are given as
D1 and D1 + D2, respectively. This set of indices is passed
to the error shifter.

3) Error Shifter: The error shifter uses the indices provided
by the pattern generator to produce all the error combinations
associated with one given pattern by shifting to the left. It is
implemented as a counter that adds one to the set of indices,
essentially performing the shift left operation until an overflow
occurs. Overflow is defined as either of the index values of D1
or D2 exceeding n − 1. The sparse multiplier uses each set
of indices produced by the error shifter to select the columns
of the H matrix to be XORed together to produce H · En .
When an overflow occurs, the error shifter requests a new
distance pair as all the patterns for the previous pair have
been exhausted. The error shifter in the primary EG generates
two errors in a single cycle by using 1-bit and 2-bit logical
shift left (LSL) operations. The error shifter in secondary uses
a combination of 1-bit and 4-bit LSL operations to generate
16 errors in parallel, as shown in Fig. 11. The secondary error
shifter is split into 4 branches of 4-bit LSL to reduce the
critical path delay. By using the distance pair values D1 and
D2 in the error logic, the chip can be configured to produce
error patterns for a Hamming Weight of one, two, or three.
This enables implementing the distance bound on IGRAND
where only a certain number of bits are flipped in the first
iteration and the distance bound increases only if necessary
for further iterations.

F. Code-Interleaving for Asymmetric Product Codes

GRAND, being a universal decoder, allows the decoding
of any binary linear codebook. To use a new codebook,
we need a new H-matrix corresponding to the given codebook
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Fig. 11. Error shifter implementation of Primary and Secondary EG [16].

for the syndrome, primary EG, and secondary EG blocks.
We implemented a Code-Interleaved (CI) architecture to allow
multiple codebook support simultaneously without waiting
to load a new H-matrix. In the context of product codes,
this enables decoding asymmetric product codes where the
rows and columns can be encoded by using two distinct
codebooks with different rates and code lengths. This will
further increase the coding space and hence the system’s
flexibility in the choice of codebook, code length, and code
rate. Each CI hardware chain has a pair of sets of SRAMs.
At the beginning of the decoding, we can load two H-matrix
belonging to those codebooks. Once the decoding starts, either
of the set of SRAMs can be used to decode codewords
belonging to the different codebooks. A single bit CI-tag is
used to indicate which set of SRAMs has the corresponding
H-matrix for the correct decoding. The CI tag is set to 0 for the
column decoding and it is changed to 1 for the row decoding
to specify the respective H-matrices. This process allows
seamless decoding of the incoming codewords belonging to
different codebooks without any downtime for loading the new
H-matrix. A simplified block diagram is shown in Fig. 12
which shows how the product code can take advantage of this
architecture to decode asymmetric product codes without any
wait time to change the H-matrix.

IV. EXPERIMENTAL RESULTS

The GRAND chip is fabricated using 40 nm low-power
CMOS technology. The chip occupies an active core area
of 0.83 mm2. A die photo of the GRAND chip is shown
in Fig. 13(a).

A. Measurement Setup

The measurement setup is shown in Fig. 13(b) and (c). The
chip is wire bonded to a QFN package soldered to a test printed
circuit board (PCB). The PCB is connected to an Opal Kelly
FPGA (XEM-7360) through a breakout board. The FPGA is
connected to a host PC through a serial USB port. The PC is
only used to initialize and send the generator matrix, and the
parity check matrix once before the start of measurements. The
FPGA generates the codewords for the component codebook
for testing using the generator matrix. An AWGN channel
emulation is implemented on the FPGA using linear-feedback

Fig. 12. The Code-Interleaved (CI) architecture block diagram when used for
product codes. The H-matrices of the columns and rows are first loaded into
the SRAMs A and B. When the columns and rows are iteratively decoded,
a 1-bit CI-tag indicates the corresponding SRAM to be used. This allows
seamless decoding of rows and columns without any downtime for changing
the H-matrix.

shift registers (LFSR) that generate the noise according to the
given bit flip probability. An outer wrapper is implemented
on the FPGA that constructs a product code matrix using
the component codes and adds the generated noise effect to
that matrix. The rows and columns of this matrix are the
codewords with noise that will be the input of the decoder
chip. The product code is then decoded iteratively as described
in section II-D. First, all the columns of the product code are
sent to the GRAND chip for decoding. IGRAND passes the
distance bound as a parameter to the GRAND chip which
allows GRAND to abandon its guessing process. A vector of
status flags keeps track of columns indicating which columns
need to be decoded, which are successfully decoded, and
which failed the decoding for the given distance bound. Then
the rows are decoded in the same way, and the next iteration
begins. This process is repeated until the product code is
fully decoded, or further error correction is not possible
with the bounding distance set to a maximum of 3 bits.
A new product code and noise effect are then generated,
and the process is repeated. The FPGA records the measured
performance metrics for each product code and outputs the
final values to the host PC. To obtain an estimate of the power
consumption and area of the IGRAND algorithm implemented
on FPGA, we synthesized the IGRAND algorithm including
the noise generator in 40 nm CMOS. Fig. 14(a) and (b)
show the power and area breakdown of each of the blocks
for the full experimental setup for decoding product codes.
The GRAND chip area and power are based on the chip
measurements, while the IGRAND wrapper area and power
are estimated through synthesis. Fig. 14(c) shows the synthesis
performance of the IGRAND algorithm in 40 nm CMOS
excluding the GRAND chip. The GRAND chip measured
results as a component code decoder with the FPGA-supported
IGRAND experimental setup are demonstrated separately in
section IV-B and IV-C. All the energy and power
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Fig. 13. (a) Die micrograph of the universal GRAND decoder implemented in 40 nm low-power CMOS technology [16] (b) Block diagram of the IGRAND
setup (c) Measurement setup [16].

Fig. 14. (a) Power and (b) area breakdown for each of the blocks used in product decoder implementation. The GRAND chip power and area are based
on the chip measurements, while the IGRAND power and area are estimated through synthesis; (c) area and power consumption of the IGRAND algorithm
implemented in 40 nm CMOS through synthesis excluding the GRAND chip.

measurement of the chip includes the total leakage power
of 0.18 mW.

B. Measured Decoding Performance

Fig. 15(a) shows the decoding performance of the GRAND
chip for component codes up to 128-bit code length [16]. The
BER performance of the GRAND chip is measured for Ran-
dom Linear Code (RLC), CRCs, and systematized CA-Polar
with varying code lengths and code rates. Fig. 15(b) depicts
the measured decoding accuracy of IGRAND experimental
setup to decode product codes constructed from CRCs [6],
BCH codes [31], extended BCH (eBCH) codes [32], CA-
Polar codes and RLCs. The chip can decode all of these
codes without adjustment to the hardware; it is required only
that the chip be loaded with the corresponding parity-check
matrix of the target component code. We note that CRCs and
RLCs do not have specialized decoders demonstrated before,
and it is the universality of the GRAND chip that enables
their decoding for the first time. Of particular note is that
the CRC-based product codes achieve equal or better error

correction performance compared to the BCH-based product
codes, despite CRCs typically being used for error detection.

C. Measured Energy Consumption and Latency Performance

1) Component Code Decoding: Fig. 16(a) and (b) show
the measured energy consumption and latency results of the
GRAND chip when the component codes BCH(127, 106) and
CRC(128, 105) are used to perform the decoding [16]. The
GRAND chip provides a base latency of 1 µs with an energy
per bit of 30.6 pJ and a throughput of 122.6 Mbps at a bit flip
probability of 10-5 at 68 MHz operating frequency. At these
operating conditions, the chip consumes 3.75 mW of power
from a 1.1 V supply. The comparison of the GRAND chip
with the state-of-the-art for decoding component codes using
the GRAND algorithm is shown in Fig. 18(a). The GRAND
chip [16] performance is compared with other hard-detection
GRAND decoders [33], [34], [35]. The GRAND chip con-
sumes 5.65× and 13.9× lower power but 5.3× and 3.33×
higher energy per bit than the more recently proposed archi-
tectures [33], [34]. The lower energy consumption of [33] is
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Fig. 15. (a) Measured bit error rates (BER) for component code decoding of RLC(128, 115), BCH(127, 113), BCH(127, 106), systematized CA-Polar(128,106),
and CRC(128, 105) using the GRAND chip [16]; (b) measured BER of the following product codes when they are decoded by the IGRAND: CRC(128, 117)2,
RLC(128, 115)2, BCH(127, 113)2, BCH(127, 106)2, CA-Polar(128, 106)2, Polar(128, 106)2, eBCH(128, 106)2, and CRC(128, 105)2. A single RLC was
generated to represent the RLC(128, 115) class of codes, such that the non-systematic part of its generator matrix had no all-zero columns or rows. The
CA-Polar code uses an 11-bit CRC, as in the 5G uplink scenario.

Fig. 16. The graphs in (a) and (b) show the measured average energy consumption per bit and measured average latency for the GRAND chip to decode the
component codes BCH(127, 106) and CRC(128, 105). The graphs in (c) and (d) show the measured energy consumption per bit and measured average latency
for the iterative decoding of BCH(127, 106)2 and CRC(128, 105)2 product codes using IGRAND. The simulated latency and energy of the Al-Dweik/Sharif
and Elias algorithms are shown in (c) and (d) for comparison with IGRAND when applied to the BCH code. Here, the performance of IGRAND is measured
for both CRC and BCH, whereas the Al-Dweik/Sharif and Elias algorithms are simulated only for BCH.

attributed to the lower supply voltage of 0.75 V, and the energy
consumption of [34] is estimated based on synthesis using
an ideal clock frequency of 500 MHz compared to the fabri-
cated designs [16], [33] which include parasitics, performance
degradation due to routing, and clock non-idealities (i.e., clock
skew and jitter), which lower maximum operating frequency
that degrades the performance significantly. Moreover, the
work in [33] targets latency-critical applications that require
constant latency and throughput, with trade-offs in area and
power consumption. The GRAND chip in [16] is designed
to meet the power and area constraints of IoT devices while
meeting the latency and throughput requirements. This design
can be modified to achieve higher throughput by increasing the
parallelization of noise guessing in the primary and secondary
EGs to meet application demands.

2) Product Code Decoding: Fig. 16 (c) and (d) pro-
vide the measured latency and energy results, respectively,

for the chip when it is used with IGRAND to decode
BCH(127, 106, 7)2 and CRC(128, 105, 7)2 product codes with
code lengths of 16,129 and 16,384 bits and code rates of
0.70 and 0.67, respectively. IGRAND decoding consumes a
base energy per bit of 61.2 pJ/b and a base latency of 18k
cycles, regardless of the code type. Furthermore, using the
column-only decoding technique discussed in section IV-D,
the latency can be further reduced as shown in Fig. 17. To com-
pare the IGRAND results with Al-Dweik/Sharif and Elias
algorithms, we performed simulations for these algorithms
using GRAND as the component code decoder and estimated
the average latency and energy consumption. The IGRAND
performs with better energy efficiency and lower latency,
especially in a noisy channel. As the channel noise conditions
improve, the energy consumption and latency approach the
best-case scenario for the syndrome check only. The table in
Fig. 18(b) shows the performance of product code decoding
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Fig. 17. IGRAND decoding latency of a BCH(127, 106, 7)2 product code
when a columns-only decoding strategy is applied. For a bit-flip probability p
and a component code length of n = 127, the second plot shows the
approximate probability P̂(M) of event M , that columns-only decoding will
cause a performance compromise. Also included is the probability of G, the
event that the columns will genuinely be error-free and that energy costs will
be saved.

using the IGRAND algorithm. The rows and columns of
the product codes are iteratively decoded using the GRAND
chip as the component code decoder and the GRAND chip
performance is measured for all the iterations of the product
code. At a bit flip probability of 10-2.5, the IGRAND con-
sumes 2× lower energy per bit and 1.8× lower latency than
Al-Dweik/Sharif. At the same conditions, IGRAND consumes
5× lower energy per bit and demonstrates 2.4× lower latency
than Elias. When product codes are decoded using a single
GRAND chip as the component decoder for the iterative
decoding, the throughput obtained is 52 Mbps at p of 10−2.5.
Utilizing the property of the product code that its components
are independent of each other and can be decoded in paral-
lel, we can increase the throughput by employing multiple
GRAND chips to decode the rows and columns of product
code simultaneously. The number of chips operating in parallel
can be chosen according to the throughput requirements of the
application and the power budget.

D. Columns-Only Decoding

In columns-only decoding, row decoding is skipped when-
ever the decoding of the product code’s columns does not
identify any errors, resulting in the reduction of energy usage
and latency by 50%. This method utilizes the syndrome check
of columns to dynamically determine whether to mark the
decoding as complete or proceed to row decoding. If all
the columns pass the initial codebook membership check,
the decoding is completed which provides gains in energy
efficiency and reduction in latency without degrading the
decoding performance at higher SNR conditions. Fig. 17
compares decoding latency with and without columns-only
decoding. As channel conditions improve, the latency with
columns-only decoding converges to ∼9k cycles, which is half
of the latency that is achieved without enabling the columns-
only decoding.

To study how columns-only decoding can impact the decod-
ing performance, we consider two cases that can occur for
any given p. In the first case, no errors occur in both rows
and columns and decoding is halted after column decoding,
consuming only half the energy cost of both row and column
decoding. Let G denote this event. In a BSC with bit-flip

probability p and given a product code with component codes
of length n, we represent the probability of the event G as
P(G) = (1 − p)n2

.
In the second case, the columns are decoded without detec-

tion of errors and hence the row decoding is skipped but
unresolved errors still exist in the rows. Let M denote this
event. Consider a product code with randomly constructed
[n, k] component codes, each with a minimum Hamming
distance of dmin. Let N n,i taking values in {0, 1}n be an error
pattern affecting the i-th column and let Bi =

∑n
j=1 N n,i

j .
Then,

P(M)

=

n∏
i=1

P(N n,i
∈ C) −

n∏
i=1

P(Bi = 0)

=

n∏
i=1

(
P(Bi = 0) + P(Bi ≥ dmin, N n,i

∈ C)
)
− (1 − p)n2

≈

n∏
i=1

(1 − p)n
+

1 −

dmin−1∑
j=0

(
n
j

)
p j (1 − p)n− j

 2k

2n


− (1 − p)n2

.

In the above, the first equality comes from the fact that
a miscorrection occurs when all columns are codewords but
not all of them have zero noise effect. In the second equality,
the probability of an individual column being a codeword is
broken down into the case where it is errorless and the case
where it contains at least dmin errors and is a codeword; if
0 < Bi < dmin, then by the definition of dmin the column
cannot be a codeword. For the final equality, the approximation
is employed that, given Bi ≥ dmin, the probability of hitting
a codeword is 2k/2n , which is an accurate approximation for
well-distributed codebooks [8].

Fig. 17 demonstrates that the estimated probability of a
mistake is minimal, particularly for dmin ≥ 5. Thus, there is
a high probability of saving energy, particularly in low-noise
channels. This suggests that column-only decoding is a viable
strategy for reducing decoding costs at a negligible (<10-10)
risk of decoding error especially at a higher SNR.

V. DISCUSSION

Hardware decoders are typically limited to decoding prod-
uct codes with a small collection of component codes. The
GRAND chip is demonstrated to support universal decoding of
both component codes and any product code constructed with
moderate redundancy component codes, regardless of code
type. We have presented its performance when the GRAND
chip is used as a component code decoder for the IGRAND
algorithm, demonstrating its efficacy through hardware experi-
ments, as well as the performance gain of IGRAND over other
iterative decoding algorithms.

We have considered BCH and CRC codebooks for perfor-
mance evaluation. The CRC-based product codes are shown
to have similar decoding accuracy to the BCH-based prod-
uct codes, despite CRCs not typically being used for error
correction. Both CRCs and BCH codes outperform CA-Polar
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Fig. 18. (a) Performance summary and comparison for the GRAND chip used as a component code decoder [16] with the other state-of-the-art hard-detection
GRAND decoders [33], [34], [35]. (b) Performance summary and comparison for the product code measurements using the GRAND chip with IGRAND,
and simulated Elias and Al-Dweik/Sharif.

codes. In addition to their powerful error correction capability,
CRCs are also available at all code lengths and rates, making
them more flexible than eBCH and Polar codes, which are
available only at lengths of power of two. Evidently, CRCs
merit more investigation as error correction codes. The same
flexibility holds for RLCs, and product codes with random
linear component codes (RLPCs) were proven to be capacity-
achieving in [17]. We demonstrate the first-time decoding of
RLPCs in hardware.

CRCs are ubiquitously used as error detection codes in
standards such as Bluetooth Low Energy (BLE) and IEEE
802.15.4 IoT, but they could now be used as error correction
codes. CA-Polar codes are used as error-correcting codes in 5G
control channel communications [36]. BCH and eBCH product
codes have been employed in optical transport networks [19].
The GRAND chip, coupled with an iterative decoding wrapper,
could be used as a universal product code decoder in any of
these contexts or simply to decode component codes. While
we have demonstrated the scaling of the GRAND chip to
decoder product codes up to 16,384 bits in code length using
the IGRAND experimental setup, the same architecture can
be extended to decode longer cubic tensor codes [37] that are
constructed by encoding information bits in 3D resulting in a
code with dimensions (n3, k3) with a rate R3. As long as the
component code is up to 128 bits in codelength, the GRAND
chip can be employed as the component code decoder.

A natural progression from the hard-input iterative decod-
ing of product codes investigated in this work is soft-input
soft-output iterative decoding, also known as turbo decod-
ing [24]. With the recent development of a high-throughput
soft-detection variant of GRAND called Ordered Reliability
Bits Guessing Random Additive Noise Decoding (ORB-
GRAND) [11], it should now be feasible to demonstrate
efficient soft-input soft-output iterative decoding. Many effi-
cient hardware architectures have already been developed for
ORBGRAND [38], [39], [40] including its first chip realiza-
tion [41] that consumes a low energy of sub-0.8 pJ/b, making
it suitable for energy-efficient soft-detection iterative decod-
ing. It has been shown that soft-output variant of GRAND
(SOGRAND) [42] can provide accurate blockwise and bitwise

soft output that can be used iteratively to improve the decoding
performance significantly. In a soft-detection channel scenario,
the received Log-Likelihood Ratios (LLRs) are updated at each
iteration using the soft output from the decoder.

VI. CONCLUSION

We present the hardware implementation of the IGRAND
algorithm by integrating the hard-detection GRAND chip [16],
implemented in 40 nm CMOS, as a component code
decoder with an FPGA-supported outer wrapper for itera-
tively decoding product codes of up to 16,384 bits in length.
We describe the inherent properties of the GRAND chip
architecture that enable efficient product code decoding with
low power consumption and minimal area while supporting
a reconfigurable system for a wide range of codebooks.
We demonstrate the measured decoding performance, energy
consumption, and latency for various product codes, includ-
ing capacity-achieving random linear product codes. When
decoding the component codes, the GRAND chip achieves
an average energy consumption of 30.6 pJ/b with a latency
of 1.04 µs at 68 MHz at a bit flip probability of 10-5 while
consuming 3.75 mW of power from a 1.1 V supply. At the
same operating conditions, the chip consumes an average
energy of 61.2 pJ/b with an average latency of 265 µs
for iteratively decoding product codes using the IGRAND
experimental setup. This implementation provides a power-
and area-efficient solution for product code decoding while
meeting the necessary throughput and latency requirements of
various low-power IoT applications.
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