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One way to better understand the smooth mapping class group of the 4±sphere

would be to give a list of generators in the form of explicit diffeomorphisms

supported in neighborhoods of submanifolds, in analogy with Dehn twists on

surfaces. As a step in this direction, we describe a surjective homomorphism from

a group associated to loops of 2±spheres in S2 × S2 ’s onto this smooth mapping

class group, discuss two natural and in some sense complementary subgroups of

the domain of this homomomorphism, show that one is in the kernel, and give

generators as above for the image of the other. These generators are described as

twists along Montesinos twins, i.e. pairs of embedded 2±spheres in S4 intersecting

transversely at two points.

1 Introduction

Given a smooth oriented manifold X , let Diff+(X) be the space of orientation preserving

diffeomorphisms of X (fixed on a collar neighborhood of ∂X if ∂X ̸= ∅). Here, inspired

heavily by Watanabe’s work [17] on homotopy groups of Diff+(B4) and Budney and

Gabai’s work [3] on knotted 3±balls in S4 , we initiate a study of π0(Diff+(S4)), i.e.

the smooth mapping class group of the 4±sphere. We know very little about this

group except that it is abelian and that every orientation preserving diffeomorphism

of S4 is pseudoisotopic to the identity; the group could very well be trivial, like the

topological mapping class group. Ideally we would like to find a generating set for

this mapping class group defined explicitly and geometrically, for example as explicit

diffeomorphisms supported in neighborhoods of explicit submanifolds of S4 , in analogy

with Dehn twists as generators of the mapping class groups of surfaces. In this paper

we construct a surjective homomorphism from a limit of fundamental groups of certain

embedding spaces of 2±spheres in 4±manifolds onto π0(Diff+(S4)), we describe one

geometrically natural subgroup of the domain of this homomorphism which we show

to be in its kernel, and we describe a ªcomplementaryº geometrically natural subgroup

and give an explicit list of generators as above for its image in π0(Diff+(S4)).
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All manifolds and maps between manifolds are smooth in this paper. The symbol δij

refers throughout to the Kronecker delta symbol.

Given manifolds X and Y , let Emb(X, Y) denote the space of embeddings of X into

Y . For any manifold Y let Y† refer to the punctured manifold Y \ {p} for some

p ∈ Y . (The puncture is not important until the next paragraph.) Given a manifold X

of dimension m and natural numbers n and k , let

Sk,n(X) = Emb(⨿nSk,X#n(Sk × Sm−k)†)

Note that this notation is a little ambiguous as to how many punctures are involved;

we mean that the puncture happens after the connected sums, so that there is only one

puncture, not n punctures.

This S stands for ªspheresº, as in ªspace of embeddings of collections of spheresº, the

index n is the number of spheres, and the index k is the dimension of the spheres. For

the main results of this paper we are interested in X = S4 and k = 2, giving us

S2,n(S4) = Emb(⨿nS2, S4#n(S2 × S2)†) = Emb(⨿nS2, #n(S2 × S2)†)

Fix a point p ∈ S2 and let ⨿n(S2 × {p}) ⊂ #n(S2 × S2)† denote the union of one copy

of S2 × {p} in each S2 × S2 summand of #n(S2 × S2)† . This will be our basepoint

in S2,n(S4), which we will often suppress from our notation, with the understanding

that S2,n(S4) is a pointed space. We will also be interested in two subspaces of

S2,n(S4): Let S0
2,n(S4) denote the subspace of embeddings with the property that for

each i and j the i’th component of ⨿nS2 intersects the {p}×S2 in the j’th summand of

#n(S2×S2)† transversely at δij points. Let Ŝ2,n(S4) denote the subspace of embeddings

with the property that the image of ⨿nS2 is disjoint from ⨿n(S2 ×{p′}) for some fixed

p′ ̸= p ∈ S2 . Note that our basepoint lies in both of these subspaces.

Thanks to the puncture, we have a natural basepoint-preserving inclusion ȷ : S2,n(S4) →֒

S2,n+1(S4), respecting the inclusions of S0
2,n(S4) and Ŝ2,n(S4), and thus inclusion-

induced homomorphisms ȷ∗ : π1(S2,n(S4)) → π1(S2,n+1(S4)) which commute with

the inclusion-induced homomorphisms ı∗ : π1(S0
2,n(S4)) → π1(S2,n(S4)) and ı∗ :

π1(Ŝ2,n(S4)) → π1(S2,n(S4)). As a consequence, we have limit groups which we will

denote π1(S2,∞(S4)), π1(S0
2,∞(S4)), π1(Ŝ2,∞(S4)) (it is not important for us to think

about the limiting spaces, just the groups, but this notation is convenient) and limiting

inclusion-induced homomorphisms ı∗ between them. Our first result is:

Theorem 1 There exists a sequence of homomorphisms H2,n : π1(S2,n(S4)) →

π0(Diff+(S4)), for n ∈ N, satisfying the following properties:



Diffeomorphisms of the 4-sphere, Cerf theory and Montesinos twins 3

π1(S0
2,n−1(S4))
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ȷ∗
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Figure 1: Commutative diagram relating maps in Theorem 1.

(1) The H2,n ’s commute with the ȷ∗ ’s, fitting into the commutative diagram shown in

Figure 1. Thus this gives rise to a limit homomorphism H2,∞ : π1(S2,∞(S4)) →

π0(Diff+(S4)) and the following diagram:

π1(S0
2,∞(S4))

π1(S2,∞(S4)) π0(Diff+(S4))

π1(Ŝ2,∞(S4))

ı∗

H2,∞

ı∗

(2) The limit homomomorphism H2,∞ is surjective.

(3) The image of π1(S0
2,∞(S4)) under ı∗ is contained in the kernel of H2,∞ .

Note that the diagrams of our theorem include π1(Ŝ2,n(S4)) and π1(Ŝ2,∞(S4)) even

though the actual results in the theorem do not reference these groups. This is to set the

context for Theorem 4, which gives explicit generators for the image of π1(Ŝ2,∞(S4))

in π0(Diff+(S4)).
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Krannich and Kupers [11] have given an alternative, shorter proof of a generalization

of parts of Theorem 1, which explicitly connects this result to work of Kreck [12] and

Quinn [16].

As pointed out by the referee, Theorem 10.1 of [3] includes the statement that

π1(Emb(B2, S2 × B2)) is free abelian of rank two, with explicit generators given,

and one might wonder what happens to these generators under the homomorphism

H2,1 when the B2 is capped off to an S2 . However, the boundary condition for

Emb(B2, S2 × B2) here is {p} × S1 for some fixed p ∈ S2 . If such an embedding of

B2 into S2 ×B2 is capped off to an embedding of S2 into S2 × S2 with any embedding

of B2 into the S2 × B2 with the same boundary condition, the resulting embedding

remains geometrically dual to S2 × {p} for any p ∈ S1 = ∂B2 . Thus all of these

potentially interesting loops of S2 ’s in S2 × S2 land in π1(S0
2,∞(S4)) and hence in the

kernel of H2,∞ .

The homomorphisms H2,n will be defined precisely in Section 2, but they can be briefly

described as follows: Note that surgery along our basepoint embedding of ⨿nS2 in

#n(S2 × S2) turns #n(S2 × S2) into S4 . Thus a loop of embeddings starting and ending

at this basepoint can be interpreted as an S1 ±parameterized family of surgeries all of

which turn #n(S2 × S2) into a 4±manifold diffeomorphic to S4 . These fit together to

give an S4 ±bundle over S1 . The monodromy of this bundle is the output of H2,n . If

one is worried about the fact that the monodromy of a bundle is only well defined up

to conjugation, either note that π0(Diff+(S4)) is abelian or note that we can establish

a canonical (up to isotopy) diffeomorphism between S4 and the result of surgering

#n(S2 × S2) along the basepoint embedding.

The proof of Theorem 1 uses the fact that every orientation preserving diffeomorphism

of S4 is pseudoisotopic to the identity, Cerf’s technique [4] to turn a pseudoisotopy

into a family of Morse functions, and results of Hatcher and Wagoner [9] to optimally

clean up such a family and its associated family of handle decompositions.

Our second result characterizes the image of π1(Ŝ2,∞(S4)) in π0(Diff+(S4)) in terms

of a countable list of explicit generators which we will now describe. This could in

principle be all of π0(Diff+(S4)), although we have no evidence for or against that

possibility.

A Montesinos twin in S4 is a pair W = (R, S) of embedded 2±spheres R, S ⊂ S4

intersecting transversely at two points. For us, the 2±spheres are both oriented.

Montesinos [14] shows, and we explain in Section 6, that the boundary of a regu-

lar neighborhood ν(W) of R ∪ S is diffeomorphic to S1 × S1 × S1 and that in fact

there is a canonical parametrization S1
l × S1

R × S1
S
∼= ∂ν(W). This parametrization is
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characterized by S1
l × {b} × {c} being homologically trivial in H1(S4 \ (R ∪ S)), i.e.

a ªlongitudeº, {a} × S1
R × {c} being a meridian for R, and {a} × {b} × S1

S being a

meridian for S . This parametrization is canonical up to postcomposing with diffeomor-

phisms of ∂ν(W) which are isotopic to the identity and precomposing with independent

diffeomorphisms of S1
l , S1

R and S1
S . This then parametrizes a regular neighborhood of

∂ν(W) as [−1, 1] × S1
l × S1

R × S1
S . We adopt the orientation conventions that S1

R and

S1
S have the standard meridian orientations coming from the orientations of R and S ,

that [−1, 1] is oriented in the outward direction from ν(W), and that S1
l is oriented so

that the orientation of [−1, 1] × S1
l × S1

R × S1
S agrees with the standard orientation of

S4 .

Definition 2 Given a Montesinos twin W in S4 , parametrize a neighborhood of ∂ν(W)

as [−1, 1]×S1
l ×S1

R×S1
S as above. Let τl : [−1, 1]×S1

l → [−1, 1]×S1
l denote a right-

handed Dehn twist. The twin twist along W , denoted τW , is the diffeomorphism of S4

which is the identity outside this neighborhood of ∂ν(W) and is equal to τl×idS1
R
× idS1

S

inside this neighborhood.

By the canonicity of our parametrization, τW is well-defined up to isotopy, i.e. [τW]

is a well-defined class in π0(Diff+(S4)). Incidentally, we have the following as a

consequence of our orientation conventions:

Lemma 3 If W = (R, S) is a Montesinos twin, then [τW]−1 = [τ(S,R)] = [τ(R,S)] =

[τ(R,S)].

Proof Either switching the spheres S and R, or reversing the orientation of one of

them, reverses the orientation of S1
R×S1

S , which then forces the reversal of the orientation

of [−1, 1] × S1
l , changing a positive Dehn twist to a negative Dehn twist.

We now describe a family of twins W(i) = (R(i), S), for i ∈ N ∪ {0}. Figure 2

illustrates W(3); W(i) is the same but with i turns in the spiral rather than 3 turns.

Figure 3 and 4 give two alternate descriptions of this twin. Orientations are not made

explicit here since our main claim is simply that the twists invoved generate a certain

group, and the inverse of a generator is still a generator. Note that both R(i) and S

are individually unknotted 2±spheres, and that the twin W(0) is the trivial ªunknotted

twinº.

Our second result is:
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R(3)

S

Figure 2: An illustration of W(3) = (R(3), S). The picture mostly happens in the slice

{t = 0} ⊂ R
4 = {(x, y, z, t)} ⊂ R

4 ∪ {∞} = S4 . The ring labelled S is a slice through

S , which shrinks to a point as we move forwards and backwards in the ªtimeº coordinate t .

The ªsnake whose tail passes through his headº is R(3), which is projected onto {t = 0} ,

intersecting itself along one circle in the middle of the red disk (the ªsnake’s left ear holeº) and

along another circle in the middle of the blue disk (the ªright ear holeº). Blue and red indicate

that these disks are pushed slightly forwards (blue) and backwards (red) in time to resolve these

intersections; otherwise R(3) lies in the slice {t = 0} . The two points of intersection between

R(3) and S are where the ring pierces the tail.
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Figure 3: Another illustration of W(3) = (R(3), S). Here we have drawn an immersed pair of

disks, one green and one pink, with mostly ribbon intersections except for one nonribbon arc.

Pushing these two disks into R
4
+ or R

4
−

and resolving ribbon intersections in the usual way

gives two embedded disks intersecting each other transversely once, and then taking one copy

in R
4
+ and one in R

4
−

glued along their common boundary, i.e. doubling the ribbon disks,

gives R(3) (green) and S (pink) in R
4 ⊂ S4 .

Figure 4: Yet another illustration of W(3). Here we have drawn two disjoint, embedded

2±spheres in S4 (the two thick circles, becoming 2±spheres when shrunk to points forwards

and backwards in time) and an arc connecting them. Push a finger from one of the spheres out

along this arc and then do a finger move when you encounter the other sphere, creating a pair

of transverse intersections, and the result is W(3).
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Theorem 4 The subgroup H2,∞(ı∗(π1(Ŝ2,∞(S4)))) of π0(Diff+(S4)) is generated

by the twin twists {τW(i) | i ∈ N}. In other words, every diffeomorphism of S4

coming from a loop of embeddings of ⨿nS2 into #n(S2 × S2) which starts and ends at

⨿n(S2×{p}) and remains disjoint from a parallel embedding ⨿n(S2×{p′}) is isotopic

to a composition of twin twists along the Montesinos twins {W(i)}.

In fact these automorphisms τW(i) are also examples of the ªbarbell mapsº discussed

in [3]; readers familiar with barbell maps should be able to use the description of W(i)

in Figure 4 to see the connection.

To avoid cumbersome notation, we will mostly refer to H2,∞(ı∗(π1(Ŝ2,∞(S4)))) as ªthe

image of π1(Ŝ2,∞(S4))º.

Question 5 Is [τW] in the image of π1(Ŝ2,∞(S4)) for an arbitrary Montesinos twin

W ? More generally, given any embedding of S1 × Σ →֒ S4 , for closed surface Σ,

a tubular neighborhood gives an embedding of [−1, 1] × S1 × Σ →֒ S4 which gives

a diffeomorphism τ × idΣ , where τ is the Dehn twist on [−1, 1] × S1 . Are such

diffeomorphisms always in the image of π1(Ŝ2,∞(S4))?

One could try to answer these questions either through Cerf theory, by explicitly

identifying a pseudoisotopy from a given diffeomorphism of S4 to the identity, and

then extracting a loop of attaching spheres for 5±dimensional 2±handles, or one could

try to work explicitly with the diffeomorphisms in S4 and try to find relationships

amongst such twists, to relate them to twists along our standard Montesinos twins

W(i).

The bigger questions are the following, with affirmative answers to both showing that

the smooth mapping class group of S4 is trivial:

Question 6 Is the image of π1(Ŝ2,∞(S4)) trivial?

Theorem 4 could help prove this if one can exhibit explicit isotopies from τW(i) to idS4 .

Question 7 Is the image of π1(Ŝ2,∞(S4)) equal to all of π0(Diff+(S4))?

Since ı∗(π1(S0
2,∞(S4))) is in the kernel of H2,∞ , we know that H2,∞ factors through

the quotient map π : π1(S2,∞(S4)) → π1(S2,∞(S4))/⟨ı∗(π1(S0
2,∞(S4)))⟩, where ⟨H⟩

denotes the normal closure of a subgroup H . Thus one way to answer the above

question in the affirmative is to show that

π ◦ ı∗ : π1(Ŝ2,∞(S4)) → π1(S2,∞(S4))/⟨ı∗(π1(S0
2,∞(S4)))⟩
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is surjective. On the other hand this does not need to be true for the answer to this

question to be ªyesº, since the kernel of H2,∞ could presumably be much larger than

ı∗(π1(S0
2,∞(S4))).

In the next section we elaborate on the connection between loops of embeddings of

certain spheres and self-diffeomorphisms of other spheres, setting up the general theory

in various dimensions and codimensions and defining the homomorphisms H2,n . After

that, we devote one section to completing the proof of Theorem 1, and we break the

proof of Theorem 4 into the three remaining sections.
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2 From loops of spheres to diffeomorphisms

In this section we define the homomorphisms H2,n : π1(S2,n(S4)) → π0(Diff+(S4)) and

establish some lemmas that prove all the results of Theorem 1 except the surjectivity

of H2,∞ . This surjectivity will be proved in the next section.

We define H2,n by first defining a more general family of homomorphisms turning loops

of framed embeddings of spheres of various dimensions into bundles of cobordisms

and hence into self-diffeomorphisms of smooth manifolds. In the introduction above,

we had 2±spheres embedded in 4±manifolds, but we did not mention framings of these

2±spheres. Below, we will work with framed spheres and then at the end of the section

when we relate this back to the terminology of the introduction, we will see why we can

ignore the framing issues. In addition to adding framings, we allow the spheres in the
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domain to have arbitrary dimension, and we allow the target spaces of the embeddings

to have arbitrary dimension.

Fix an m±manifold X , for some m ≥ 2, fix integers 0 < k < m and n ≥ 0, and let

#n(Sk ×Sm−k)† denote a punctured #n(Sk ×Sm−k). As in the introduction, the puncture

is needed so that we can view #n(Sk ×Sm−k)† as a subspace of #n+1(Sk ×Sm−k)† . Now

consider the following space of embeddings of collections of framed spheres:

FSk,n(X) = Emb(⨿n(Sk × Bm−k),X#n(Sk × Sm−k)†)

In the notation, FS stands for ªframed spheresº, the parameter k tells us that the

spheres are k±spheres, the subscript n tells us how many k±spheres and how many

(Sk ×Sm−k)† summands there are, and X is the base m±manifold. Picking a fixed point

p ∈ Sm−k and a disk neighborhood U of p parametrized as Bm−k , we get a natural

basepoint ⨿n(Sk×U) ⊂ X#n(Sk×Sm−k)† for FSk,n(X), which we will again generally

suppress in our notation, understanding that FSk,n(X) is a pointed space.

We now define a homomorphism

FHk,n : π1(FSk,n(X)) → π0(Diff+(X))

as follows: Represent an element b of π1(FSk,n(X)) by a smoothly varying 1±

parameter family of embeddings

βt : ⨿n(Sk × Bm−k) →֒ X#n(Sk × Sm−k)† ⊂ X#n(Sk × Sm−k)

with β0 = β1 = ⨿n(Sk × U). Use this to define a smooth embedding

β : S1 ×⨿n(Sk × Bm−k) →֒ S1 × X#n(Sk × Sm−k)

via β(t, p) = (t, βt(p)), identifying S1 with [0, 1]/1 ∼ 0. Now perform fiberwise

surgery along β , i.e remove

β(S1 ×⨿n(Sk × B̊m−k))

and replace with

S1 ×⨿n(Bk+1 × Sm−k−1)

via the gluing map

β : S1 ×⨿n(Sk × Sm−k−1) →֒ S1 × X#n(Sk × Sm−k)

Let Y denoting the resulting (m + 1)±manifold; because the surgery respects the

S1 ±factor, Y is a bundle over S1 . The fiber over 0 is equal to the result of surgering

X#n(Sk×Sm−k) along ⨿n(Sk×Bm−k). Since the complement of Sk×Bm−k in Sk×Sm−k

is canonically identified with Sk × Bm−k , the result of surgering Sk × Sm−k along
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Sk × Bm−k is canonically identified with (Sk × Bm−k) ∪ (Bk+1 × Sm−k−1), which is

canonically identified with Sm as the boundary of Bk+1 × Bm−k . Thus the fiber over 0

can be canonically identified with X , and thus the monodromy of Y is a well-defined

element of π0(Diff+(X)). This element of π0(Diff+(X)) is our definition of FHk,n(b),

where b ∈ π1(FSk,n(X)) is the element represented by the family βt .

We now give an equivalent definition of FHk,n in terms of parameterized handle

attachment rather than parameterized surgery, more in line with Cerf theory and more

useful for the rest of this paper.

The reader may find it helpful to think of S1 ±parameterized handle attachment as

attachment of round handles, as introduced by [1] and motivated presumably by earlier

work by Bott [2]. In the dimension and indices we care about, a round (m + 2)±

dimensional (k + 1)±handle is S1 × Bk+1 × Bm−k attached along S1 × Sk × Bm−k . If

one attaches a (m + 2)±dimensional round (k + 1)±handle to an (m + 2)±dimensional

manifold Z which is itself equipped with a fibration π : Z → S1 , and if the attaching

map γ : S1 × Sk × Bm−k → ∂Z respects the fibration in the sense that π ◦ γ is the

projection map S1 × Sk ×Bm−k → S1 , then the resulting manifold Z′ again fibers over

S1 so that each fiber of Z′ is obtained from the corresponding fiber of Z by attaching

a standard (m + 1)±dimensional (k + 1)±handle to Z .

As in the parameterized surgery discussion, given b ∈ π1(FSk,n(X)), represent b by

the family of embeddings βt and use this to produce the embedding

β : S1 ×⨿n(Sk × Bm−k) →֒ S1 × X#n(Sk × Sm−k)

We will build a (m+ 2)±manifold Z which fibers over S1 and is a fiberwise cobordism

from S1 × X to the (m + 1)±dimensional bundle Y constructed in the preceding

paragraph. By a ªfiberwise cobordismº, see Figure 5, we mean that ∂Z = −(S1×X)⨿Y

and that the bundle maps Z → S1 , S1 × X → S1 and Y → S1 all commute with the

inclusions of S1 × X and Y into Z , so that the fiber Zt of Z over some t ∈ S1 is itself

a cobordism from {t} × X to the fiber Yt of Y over t .

To build Z , first let W equal [0, 1]×X with n (m+1)±dimensional k±handles attached

along n unlinked 0±framed unknotted Sk−1 ’s lying in a ball in {1} × X ⊂ [0, 1] × X .

Thus W is a cobordism from X to X#n(Sk × Sm−k). Now consider S1 × W , which is

a cobordism from S1 × X to S1 × X#n(Sk × Sm−k). Let Z be the result of attaching n

round (m+ 2)±dimensional (k+ 1)±handles to the top boundary S1 ×X#n(Sk × Sm−k)

of S1×W using β as the attaching map. Equivalently, use each βt as the attaching map

for n (m+1)±dimensional (k+1)±handles attached to {t}×X#n(Sk×Sm−k) ⊂ {t}×Y ;

interpreting this as smoothly varying fiberwise handle attachment gives our construction
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S1

t

X

Yt

Zt

S1 × X

Y

Z

Figure 5: A fiberwise cobordism Z from S1 × X to Y , with fiber Zt being a cobordism from

X to Yt .

of Z . The top boundary of Z is now a bundle over S1 . Since, at t = 0, the atttaching

maps β0 for the n (k + 1)±handles are in standard cancelling position with respect

to the n k±handles used to build W , we see that the fiber of Z over 0 is canonically

identified with [0, 1]×X , and thus the top boundary of this fiber is canonically identified

with X . Thus the monodromy of the top boundary of Z is a well-defined element of

π0(Diff+(X)), which we define to be FHk,n(b).

The fact that these two definitions of FHk,n(b) agree is simply because, just as handle

attachment modifies the boundary of a manifold by surgery, parameterized handle

attachment modifies the boundary of a bundle by parameterized surgery.

Thanks to the punctures, we have basepoint preserving inclusions

. . . ⊂ FSk,n(X) ⊂ FSn+1(X, k) ⊂ . . .

and thus induced maps on π1 and thus a direct limit

. . .→ π1(FSk,n(X)) → π1(FSk,n+1(X)) → . . .→ π1(FSk,∞(X))

Again, we do not really care about the limiting spaces, just the groups. Thus one

should think of an element of π1(FSk,∞(X)) as an equivalence class of loops in

some FSk,n(X), where two such loops are equivalent if they become homotopic after

including into some FSk,N(X) for some N ≥ n. It is not hard to see that these induced

maps on π1 commute with the FHk,n homomorphisms, so that we can take the direct

limit of the homomorphisms FHk,n



Diffeomorphisms of the 4-sphere, Cerf theory and Montesinos twins 13

We summarize our discussion thus far as follows:

Definition 8 Given an m±manifold X with m ≥ 2, given an integer k with 0 <

k < m, and an integer n ≥ 0, the associated parameterized framed handle attachment

homomomorphism is the homomomorphism

FHk,n : π1(FSk,n(X)) → π0(Diff+(X))

defined in the following way: Use b ∈ π1(FSk,n(X)) to build a bundle over S1 in

which each fiber is a cobordism from X to some m±manifold built with n standardly

attached (m+ 1)±dimensional k±handles and n (m+ 1)±dimensional (k+ 1)±handles

attached according to a loop of embeddings representing b. The monodromy of the

top boundary of this fiberwise cobordism is FHk,n(b). Taking the direct limit as n

goes to ∞ gives the limit homomorphism

FHk,∞ : π1(FS∞(X, k)) → π0(Diff+(X))

As in the unframed setting of the introduction, we have two natural subspaces of

FSk,n(X): Let FS0
k,n(X) denote those embeddings of ⨿n(Sk × Bm−k ) into X#n(Sk ×

Sm−k) for which the Sk×{0} in the i’th Sk×Bm−k transversely intersects the {p}×Sm−k

in the j’th Sk × Sm−k summand transversely at δij points. Let F̂Sk,n(X) denote the

subspace of embeddings with the property that the image of ⨿n(Sk × Bm−k) is disjoint

from ⨿n(Sk ×{p′}) for some fixed p′ ∈ Sm−k \U . Note that our basepoint lies in both

of these subspaces.

Proposition 9 For each n, ı∗(π1(FS0
k,n(X))) is in the kernel of FHk,n . Thus in the

limit, ı∗(π1(FS0
k,∞(X))) is in the kernel of FHk,∞ .

Proof This is because when the Sk × {0}’s are dual to the {p} × Sm−k ’s for all t

in a loop of embeddings βt , then for all t the k±handles and (k + 1)±handles cancel

uniquely (this is Cerf’s l’unicitÂe de mort [4]). Thus the cobordism Z from S1 × X

to Y becomes a bundle over S1 with a Morse function without critical points which

restricts to each fiber as a Morse function without critical points. This implies that

the monodromy at the top is isotopic to the monodromy at the bottom, and since the

monodromy of S1 × X is the identity then the monodromy of Y is isotopic to the

identity.

Now we discuss the relationship to spaces of spheres without framings. Recall that

Sk,n(X) = Emb(⨿nSk,X#n(Sk × Sm−k)†)
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There is an obvious ªframing forgettingº map of pointed spaces

F : FSk,n(X) → Sk,n(X)

given by restricting an embedding of Sk × Bm−k to Sk = Sk × {0}. We have obvious

definitions of the subspaces S0
k,n(X) and Ŝk,n(X).

Lemma 10 The parameterized framed handle attachment homomorphism

FHk,n : π1(FSk,n(X)) → π0(Diff+(X))

factors through the image of the homomorphism

F∗ : π1(FSk,n(X)) → π1(Sk,n(X))

induced by the framing forgetting map F , giving a handle attachment homomorphism

Hk,n : F∗(π1(FSk,n(X))) → π0(Diff+(X)).

Thus if F∗ is surjective we have a homomorphism

Hk,n : π1(Sk,n(X)) → π0(Diff+(X))

and ı∗(π1(S0
k,n(X))) is contained in the kernel of Hk,n . In the limit we get

Hk,∞ : π1(Sk,∞(X)) → π0(Diff+(X))

with ı∗(π1(S0
k,∞(X))) contained in the kernel.

Proof Palais [15] shows that restriction maps such as F are locally trivial and thus

satisfy the homotopy lifting property. The fiber of F is the space of framings of a

fixed Sk , i.e. (up to homotopy) maps from Sk to SO(m − k). Note that the fiber over

the basepoint is actually a subspace of FS0
k,n(X) and thus π1 of the fiber lands in the

kernel of FHk,n . As a consequence, even though

F∗ : π1(FSk,n(X)) → π1(Sk,n(X))

may not be injective, if the fiber is not simply connected, we still have that FHk,n

induces a well-defined homomorphism Hk,n from the image F∗(π1(FSk,n(X))) of F∗

in π1(Sk,n(X)) to π0(Diff+(X)). All of this also commutes with the inclusion maps

from n to n + 1 giving the results for Hk,∞ .

Finally we return to the case of relevance to Theorem 1. Here we have m = 4 and

k = 2 and the base manifold X = S4 .
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Lemma 11 The induced map

F∗ : π1(FS2,n(S4)) → π1(S2,n(S4))

is surjective. Thus we get a well-defined homomorphism

H2,n : π1(S2,n(S4)) → π0(Diff+(S4))

with ı∗(S0
2,n(S4)) in the kernel, and a limit homomorphism

H2,∞ : π1(S2,∞(S4)) → π0(Diff+(S4))

with ı∗(S0
2,∞(S4)) in the kernel.

Proof The fibers of the framing forgetting map F are path-connected, i.e. a 2±sphere

in a 4±manifold with self-intersection 0 has only one framing up to isotopy, since

π2(SO(2)) = 0. Thus the long exact sequence of homotopy groups gives the desired

surjectivity.

3 Surjectivity of H2,∞

In this section we will complete the proof of Theorem 1, by showing that H2,∞ :

π1(S∞) → π0(Diff+(S4)) is surjective.

We will use Cerf theoretic techniques, beginning with a pseudoisotopy. Recall that a

pseudoisotopy from the identity diffeomorphism of a manifold X to a diffeomorphism

ϕ : X → X is a diffeomorphism Φ : [0, 1]×X → [0, 1]×X which restricts to {0}×X

as the identity and to {1} × X as ϕ.

Lemma 12 Every orientation preserving self-diffeomorphism of S4 is pseudoisotopic

to the identity.

Proof Consider an orientation preserving diffeomorphism ϕ : S4 → S4 . Let f :

S5 → R be projection onto the last coordinate in R
6 , and for any interval I ⊂ R,

let S5
I = f−1(I). Let V be a smooth vector field on S5 \ {(0, 0, 0, 0, 0,±1)} which is

orthogonal to all level sets of f and scaled so that df (V) = 1. Let X = S5
[−1,0] ∪ϕ S5

[0,1] ,

where ϕ : ∂S5
[0,1] = S4 → −S4 = ∂S5

[−1,0] is now seen as an orientation reversing

gluing diffeomorphism. Arrange the gluing (i.e. the smooth structure on X ) so that

the vector field V on the two halves of X is still a smooth vector field on X , which we

call VX . Note that X also inherits the Morse function f , which we label fX : X → R,
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and we can use the same notation XI = f−1
X (I) ⊂ X . The point is that if I ⊂ (−∞, 0]

or if I ⊂ [0,∞) then XI = S5
I , i.e. they are actually equal sets, not just diffeomorphic

manifolds.

Now note that X is homotopy equivalent to S5 and therefore [10, 13] diffeomorphic

to S5 . For some small ϵ > 0 we can assume that the diffemorphism Φ : S5 → X is

the identity on S5
[−1,−1+ϵ] = X[−1,−1+ϵ] and on S5

[1−ϵ,1] = X[1−ϵ,1] . Using flow along

V and VX , respectively, and the standard identification of ∂S5
[−1,−1+ϵ] with S4 , we

can parametrize both S5
[−1+ϵ,1−ϵ] and X[−1+ϵ,1−ϵ] as [−1 + ϵ, 1 − ϵ] × S4 and then Φ

restricts to give a diffeomorphism from [−1+ ϵ, 1− ϵ]×S4 to itself. Furthermore, this

map is the identity on {−1+ ϵ}× S4 and by continuity must equal ϕ on {1− ϵ}× S4 .

After reparametrizing [−1 + ϵ, 1 − ϵ] as [0, 1] we get the desired pseudoisotopy.

Given a pseudoisotopy Φ : [0, 1]× S4 → [0, 1]× S4 from the identity to ϕ : S4 → S4 ,

let

Z(Φ) = [0, 1] × [0, 1] × S4/(1, y, p) ∼ (0,Φ(y, p))

be the mapping torus for Φ, interpreted as a bundle over S1 and as a fiberwise cobordism

from S1 × S4 to Y(ϕ) = [0, 1] × S4/(1, p) ∼ (0, ϕ(p)). We use the variable y for the

second [0, 1] factor because later this will play the role of a ªheightº rather than a

ªtime parameterº. We will reserve t for the first [0, 1] factor, which in fact is the base

S1 = [0, 1]/1∼0 variable.

Definition 13 A fiberwise handle decomposition of Z(Φ) is a decomposition of Z(Φ)

into a collar neighborhood [0, 1] × S1 × S4 of the bottom boundary S1 × S4 and a

collection of round handles S1 ×Bk ×B5−k , for various k , on each of which the bundle

map Z(Φ) → S1 pre-composed with the characteristic map of the handle agrees with

the projection S1 × Bk × B5−k → S1 . This induces an ordinary handle decompositon

of each fiber Z(Φ)t as a collar neighborhood [0, 1] × {t} × S4 of the bottom boundary

{t} × S4 and a collection of handles {t} × Bk × B5−k .

Once we establish the following proposition it will not take much work to translate the

result into our main surjectivity of H2,∞ result.

Proposition 14 The cobordism Z(Φ) has a fiberwise handle decomposition with the

following properties, for some n ∈ N:

(1) For each t ∈ S1 , the induced handle decomposition of the 5±dimensional fiber

Z(Φ)t over t involves exactly n 2±handles and n 3±handles.
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(2) There is a fixed embedding

α : ⨿n(S1 × B3) →֒ S4

such that the n 2±handles for each Z(Φ)t are attached to {t}× [0, 1]× S4 along

α , as an embedding into {t} × {1} × S4 . In other words, the attaching maps

for the 2±handle do not vary with t . As a result, for each t the 4±manifold

immediately above these 2±handles is canonically identified with #n(S2 × S2),

and putting all the fibers together, the 5±manifold immediately above these

round 2±handles is canonically identified with S1 × #n(S2 × S2).

(3) For each t , the attaching 2±spheres for the n 3±handles of Z(Φ)t are an embed-

ding

βt : ⨿nS2 →֒ #n(S2 × S2)† ⊂ #n(S2 × S2)

which varies smoothly in t , forming a loop of embeddings of ⨿nS2 into #n(S2 ×

S2)† starting and ending at the standard embedding ⨿n(S2 × {p}). In other

words, the 3±handles are attached along a based loop βt in S2,n(S4).

The ªcanonical identificationº mentioned in item (2) in the statement can be made

completely explicit, if desired, by first fixing the standard handle decomposition of

S2 × B3 with a single 0±handle and a single 2±handle, using this to fix the standard

handle decomposition of ♮nS2 × B3 with one 0±handle and n 2±handles, and then

removing a small neighborhood of the index 0 critical point.

Proof of Proposition 14 Let f0 : [0, 1] × S4 → [0, 1] be projection onto the first

factor, i.e. f0(y, p) = y, let V0 = ∂y be the unit vector field on [0, 1] × S4 in the [0, 1]

direction, let (f1,V1) = Φ∗(f0,V0) = (f0 ◦ Φ,DΦ−1(V0)), and let (ft,Vt) be a generic

homotopy of functions with gradient-like vector fields from (f0,V0) to (f1,V1).

To preempt potential confusion, note that that [0, 1] factor with coordinate y in the

domain [0, 1]×S4 of each function ft should not be confused with the [0, 1] parameter

with coordinate t . Furthermore, each function ft maps to [0, 1], and this [0, 1] target

space, on which we will use the variable z, should also not be confused with either of

the other two [0, 1]’s.

Hatcher and Wagoner (Chapter VI, Proposition 3, page 214 of [9]) show that such

a family of functions ft with gradient-like vector fields Vt can be homotoped rel

t ∈ {0, 1} so as to arrange the following properties (see Figure 6):

• For each fixed value of the parameter t ∈ [0, 1]:

- The only Morse critical points of ft are critical points of index 2 and 3.
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Figure 6: A nice Cerf graphic with only critical points of index 2 and 3.

- All critical points of ft map to distinct critical values. In other words, if

p and q are distinct critical points of ft with critical values zp = ft(p) and

zq = ft(q), then zp ̸= zq .

- All critical points of index 2 are below all critical points of index 3. In

other words, if p is a critical point of index 2 for ft with critical value

zp = ft(p) and q is a critical point of index 3 with critical value zq = ft(q)

then zp < zq .

- There are no handle slides. In other words, none of the flow lines of the

vector field Vt connect Morse critical points of the same index.

- At the moments of birth and death, the handle pair dying or being born

does not run over any other handles. In other words, none of the flow lines

of Vt connect a non-Morse birth/death critical point to any other critical

point.

- The function ft has at most one non-Morse birth/death critical point.

• All births of cancelling pairs of critical points happen before all deaths of

cancelling pairs. In other words, if ft0 has a non-Morse birth critical point and

ft1 has a non-Morse death critical point, then t0 < t1 .

Recall that Z(Φ) = [0, 1] × [0, 1] × X/(1, y, p) ∼ (0,Φ(y, p)). In this context, let

Z(Φ)t = {t} × [0, 1] × X be the fiber over t ∈ S1 = [0, 1]/1 ∼ 0. Since (f1,V1) =

Φ∗(f0,V0), we get a function F : Z(Φ) → [0, 1] and vector field V on Z(Φ) such that

(F,V)|Z(Φ)t
= (ft,Vt). Each fiber Z(Φ)t of Z(Φ) → S1 gets a handle decomposition

from (ft,Vt) (allowing for birth and death handle decompositions) but it will take some
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work to arrange that these satisfy the remaining properties as stated in Proposition 14.

First let us characterize each fiber Z(Φ)t , with its given handle decomposition, as much

as possible in terms of handle attaching data in {t} × S4 ⊂ S1 × S4 .

Suppose that the births in our Morse functions ft occur at times 0 < 1/8 < t1 < t2 <

. . . < tn < 1/4 and that the deaths occur at times 3/4 < t′n < . . . < t′2 < t′1 < 7/8 < 1.

We will show how each cobordism Z(Φ)t can be described as built from {t}×[0, 1]×S4

according to handle attaching data.

To do this we establish a few notational conventions. First, all of our embeddings

of spheres and disks of various dimensions are framed embeddings, but to keep the

terminology minimal we will sometimes suppress mention of framings. Second, given

a framed embedding ϵ of a sphere in an m±manifold X , let X(ϵ) denote the result of

surgering X along ϵ. Third, a framed embedding δ of a disk Dk into an n±manifold X

gives us several auxiliary pieces of information:

• We get a framed embedding α of Sk−1 = ∂Dk into X .

• We get the surgered manifold X(α).

• In X(α) = X \ α(Sk−1 × B̊m−k+1) ∪α (Bk × Sm−k), there is a natural framed

embedding β of Sk into X(α) which coincides with δ away from the surgery,

i.e. in X \ α(Sk−1 × B̊m−k+1), and which coincides with the core Bk × {0} of

the surgery inside the surgered region Bk × Sm−k .

• This embedding β of Sk also comes with a dual (m − k)±sphere β∗ which is

the meridian to α , i.e. α({p} × Sm−k), so that β and β∗ intersect transversely

at one point in X(α).

This is the basic model for the result of attaching a cancelling pair of a (m + 1)±

dimensional k±handle and a (m + 1)±dimensional (k + 1)±handle, with the attaching

data for the pair being described entirely in X by the framed disk δ . Thus we also see

that X(α)(β) is canonically identified with X . In this proof we will work with the case

k = 2 and k + 1 = 3, but later in the paper we will be interested in the case k = 1 and

k + 1 = 2.

The notation introduced above also makes sense when the δ ’s, α’s or β ’s are embed-

dings of disjoint unions of disks or spheres. Using this, we now describe the form of the

explicit t±varying handle attaching data that gives the fiberwise construction of Z(Φ),

i.e. the data that shows how to construct each Z(Φ)t starting with {t}× [0, 1]× S4 and

attaching various 5±dimensional handles.

• For 0 ≤ t < t1 , no handles are attached, i.e. Z(Φ)t = {t} × [0, 1] × S4 .
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• For t = t1 , there is a framed embedding δ1 of a disk D2 into S4 such that

Z(Φ)t1 is built from {t1} × [0, 1] × S4 by attaching a cancelling pair of a 5±

dimensional 2±handle and 3±handle, with the 2±handle attached along the

framed embedding α1
t1

= δ1|S1 , and with the 3±handle attached along the

resulting framed embedding β1
t1

of S2 into S4(α1
t1

).

• For t1 ≤ t ≤ t2 , we have a t±varying framed embedding αt = α1
t of S1 into S4

and a t±varying framed embedding βt = β1
t of S2 into S4(αt). For t1 ≤ t < t2 ,

Z(Φ)t is built from {t}× [0, 1] × S4 by attaching a 2±handle along αt and then

a 3±handle along βt . At t = t1 , the αt and βt agree with the α1
t and β1

t from

the previous point.

• For t = t2 , there is a framed embedding δ2 of D2 into S4 disjoint from the

images of α1
t2

and β1
t2

, such that Z(Φ)t2 is built from {t2} × [0, 1] × S4 by

attaching

- first a 5±dimensional 2±handle along α1
t2

,

- then a pair of cancelling 2± and 3±handles in which the 2±handle is

attached along α2
t2
= δ2|S1 and the 3±handle is attached along the resulting

framed 2±sphere β2
t2

in S4(α1
t2

)(α2
t2

), and

- then a 3±handle attached along β1
t2

, which can be seen as a framed 2±

sphere in S4(α1
t2

), in S4(α1
t2

)(α2
t2

) or in S4(α1
t2

)(α2
t2

)(β2
t2

) ∼= S4(α1
t2

).

• For t2 ≤ t ≤ t3 , we have a t±varying framed embedding αt = α1
t ⨿ α2

t of

S1 ⨿ S1 into S4 and a t±varying framed embedding βt = β1
t ⨿ β2

t of S2 ⨿ S2

into S4(αt), agreeing with the α1
t2

, α2
t2

, β2
t2

and β1
t2

of the preceding point when

t = t2 , so that Z(Φ)t is built from {t}× [0, 1]×S4 by attaching 2±handles along

αt and then 3±handles along βt .

• This process continues with each birth at time ti governed by a new framed disk

δi , generating a new framed S1 , αi
ti

, and a new framed S2 , βi
ti

, which then join

the previous framed spheres to create αt = α1
t ⨿ . . .⨿α

i
t and βt = β1

t ⨿ . . .⨿β
i
t ,

which are the attaching spheres for 2± and 3±handles for tt ≤ t < ti+1 .

• Reversing time we see the deaths governed by (most likely quite different) disks

δ′n, . . . , δ
′
1 and the same pattern of framed S1 ’s and S2 ’s in between these times.

• For tn ≤ t ≤ t′n , there is a t±parametrized family αt of framed embeddings of

⨿nS1 into S4 and a t±parametrized family βt of framed embeddings of ⨿nS2 into

S4(αt) which constitute the attaching data for the n 2±handles and n 3±handles

used to construct each Z(Φ)t in this range.

We will now improve the format of this data somewhat. First, we can arrange that for

some small ϵ > 0, on the time interval t1 ≤ t ≤ t1 + ϵ the embeddings αt and βt are
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independent of t , i.e. the first framed circle and sphere do not move for a short time

after their birth. Next, since a birth happens at a point, we can make the second birth

happen at an earlier time so that in fact t1 < t2 < t1 + ϵ. Repeating this, and doing the

same in reverse with the deaths, we can assume that on the whole interval t1 ≤ t ≤ tn

and on the whole interval t′n ≤ t ≤ t′1 , the αt and βt are independent of t except for

the fact that at each ti a new αi
t and βi

t is added to the mix (and ditto for the deaths).

Thus now the governing data for the constructions of each Z(Φ)t can be more succinctly

described by the following data:

• A framed embedding δ = δ1⨿ . . .⨿δn of ⨿nD2 into S4 (for the births), defining

framed embeddings α of ⨿nS1 into S4 and β of ⨿nS2 into S4(α). We will call

these the ªbirth disksº.

• A framed embedding δ′ = δ′1 ⨿ . . . ⨿ δ′n of ⨿nD2 into S4 (for the deaths),

defining framed embeddings α′ of ⨿nS1 into S4 and β′ of ⨿nS2 into S4(α′).

We will call these the ªdeath disksº.

• A t±parameterized family, for t ∈ [1/4, 3/4], of framed embeddings αt =

α1
t ⨿ . . .⨿ αn

t of ⨿nS1 into S4 , with α1/4 = α and α3/4 = α′ .

• A t±parameterized family, for t ∈ [1/4, 3/4], of framed embeddings βt =

β1
t ⨿ . . .⨿ βn

t of ⨿nS2 into S4(αt), with β1/4 = β and β3/4 = β′ .

In the time interval t ∈ [1/8, 1/4], the pairs of 2±handles and 3±handles are born one

after another but their attaching circles and spheres do not move after birth, until all

pairs are born and then the motion starts at t = 1/4. Similarly all motion stops at

t = 3/4 and then the pairs die one after another in the time interval t ∈ [3/4, 3/8].

Our next step is to arrange that αt = α for all t ∈ [1/4, 3/4], using a standard ªrun

everything off the endº argument. We give this argument in careful detail here, and

then we appeal to a similar argument without as much detail in the next stage of the

proof. Let α̃t be a family of embeddings of ⨿nS1 →֒ S4 defined for t ∈ [0, 1] as

follows:

• For t ∈ [0, 1/4], α̃t = α1/4 = α .

• For t ∈ [1/4, 3/4], α̃t = αt .

• For t ∈ [3/4, 7/8], α̃t = α3/4 = α′ .

• For t ∈ [7/8, 1], α̃t = α̃7−7t ; this simply means that on [7/8, 1], the family α̃t

is the same as α̃t on [0, 7/8], but sped up and run backwards so that α̃1 = α̃0 .

Use the isotopy extension theorem to produce a family of diffeomorphisms ψt : S4 →

S4 , for t ∈ [0, 1], such that ψt ◦ α̃t = α̃0 = α for all t ∈ [0, 1] and satisfying:
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• For t ∈ [0, 1/4], ψt = id.

• For t ∈ [3/4, 7/8], ψt = ψ3/4 , i.e. ψt does not vary with t in this time interval.

• For t ∈ [7/8, 1], ψt = ψ7−7t and in particular,

• ψ1 = id.

Since ψt , as a loop of diffeomorphisms of S4 starting and ending at the ending at

the identity, simply traverses a path from ψ0 = id to ψ7/8 and then follows exactly

the same path backwards to id, there exists a 2±parameter family of diffeomorphisms

ϕs,t : S4 → S4 such that ϕ0,t = id, ϕ1,t = ψt and ϕs,0 = ϕs,1 = id for all s ∈ [0, 1].

We can use this to produce a 2±parameter family of gradient-like vector fields Vs,t for

the 1±parameter family of Morse functions ft on [0, 1] × S4 satisfying:

• For each (s, t) ∈ [0, 1] × [0, 1], Vs,t is gradient-like for ft .

• For each t ∈ [0, 1], V0,t = Vt .

• For each s ∈ [0, 1], Vs,0 = V0 and Vs,1 = V1 .

• There are values 0 < y0 < y1 < 1 such that, for all t ∈ [0, 1], there are no

critical values of ft in [0, y1] and such that, for all (s, t) ∈ [0, 1] × [0, 1], Vs,t

agrees with Vt outside f−1
t ([y0, y1]).

• Using flow along Vt to identify f−1
t (y0) and f−1

t (y1) with S4 , we have that for

all (s, t) ∈ [0, 1] × [0, 1] downward flow along Vs,t from f−1(y1) to f−1(y0) is

the diffeomorphism ϕs,t .

Then we see that, for the 1±parameter family (ft,V1,t), the attaching circles for the 2±

handles are precisely ϕ1,t ◦αt = ψt ◦αt = α . Now we use V1,t as our new gradient-like

vector field and we have succeeded in making sure that the 2±handle attaching maps

do not move with time, i.e. αt = α for all t ∈ [1/4, 3/4]. The ªtrickº used is that

in the time interval t ∈ [7/8, 1] on which we run everything backwards, there are no

critical points, so we do not have to worry about what running things backwards does

to the attaching data for handles. Also note that, because ψt = id does not vary with t

on the intervals t ∈ [1/8, 1/4] and t ∈ [3/4, 7/8] when the births and deaths occur, we

still have the property that the attaching circles and spheres for the 2± and 3±handles

do not move after their births until t = 1/4 and that all motion stops at t = 3/4, after

which the cancelling handle pairs die one by one. The only differences are that the

attaching spheres αt for the 2±handles do not vary at all with t , over the entire time

interval t ∈ [1/4, 3/4]. We have preserved our orginal configuration of birth disks δ ,

but our death disks δ′ have now changed, but they still do not vary with t during the

death interval t ∈ [3/4, 7/8]. Although δ′ has now changed, we will relabel the new

death disks as δ′ .
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Now we would like to arrange that δ′ = δ . This is easy to arrange if we allow the

boundaries of the disks to move, but we have already arranged that ∂δ′ = ∂δ = α and

we want to preserve this feature. We do this as an application of Gabai’s 4±dimensional

lightbulb theorem, in particular the multiple spheres version Theorem 10.1 in [6].

Recall from our discussion of handle and surgery terminology earlier that, given the

2±3±birth disks δ , we immediately get the attaching 2±spheres for the 3±handles β

and their dual 2±spheres β∗ . The same holds for the death disks δ′ , giving attaching 2±

spheres β′ with dual 2±spheres β′∗ . But since ∂δ = ∂δ′ and since these dual spheres

can be taken to the meridians to the boundaries of these disks, in fact we now have

arranged that β′∗ = β∗ . Thus, thinking about our 1±parameter family βt of attaching

spheres for the 3±handles for t ∈ [1/4, 3/4], we know that β1/4 and β3/4 have a

common set of dual spheres β∗ and in fact β1/4 and β3/4 agree in a neighborhood of

β∗ . Since β3/4 is isotopic to β1/4 (although this isotopy does not preserve geometric

duality with β∗ ), they are homotopic and thus the lightbulb theorem applies. The

conclusion of the theorem is that β3/4 is isotopic to β1/4 via an isotopy that fixes a

neighborhood of β∗ . This isotopy happens in the surgered manifold S4(α), but since

surgering S4(α) along β∗ recovers S4 , the fact that the isotopy fixes a neighborhood

of β∗ means precisely that we get an isotopy rel. boundary of δ3/4 = δ′ to δ1/4 = δ′

in S4 .

Let us assume that βt = β3/4 for all t ∈ [5/8, 3/4]. We can use the isotopy from

the preceding paragraph and a ªrun everything off the end argumentº similar to the αt

argument above to modify our family of gradient-like vector fields Vt so as to finally

arrange that δ′ = δ as desired. More precisely, let δ̃t , for t ∈ [5/8, 3/4], be a family

of embeddings of ⨿nD2 into S4 such that δ̃5/8 = δ′ and δ̃3/4 = δ . Extend this to an

ambient isotopy ψt : S4 → S4 for t ∈ [0, 1] such that:

• For all t ∈ [0, 5/8], ψt = id.

• For all t ∈ [5/8, 3/4], ψt ◦ δ
′ = δ̃t .

• For all t ∈ [3/4, 7/8], ψt = ψ3/4 = ψ7/8 .

• For t ∈ [7/8, 1], ψt = ψ13/8−t , i.e ψt is the same as ψt on [5/8, 3/4] but run

backwards in time.

As before, ψt is a null homotopic loop of diffeomorphisms of S4 based at id, so we

let ϕs,t be a homotopy rel t ∈ {0, 1} from ϕ0,t = id to ϕ1,t = ψt , and then use this to

modify our gradient like vector field Vt rel t ∈ {0, 1}. The upshot is that we are able

to modify our attaching maps by ψt and thus arrange that our death disks δ′ become

equal to our birth disks δ .



24 David T Gay

To complete the proof, since the birth and death disks are now equal, we can move

the births closer and closer to t = 0 and move the deaths closer and closer to t = 1

and then merge the deaths with the births at t = 0 = 1 ∈ S1 = [0, 1]/1 ∼ 0. Now

we have a t±parameterized family (ft,Vt) giving a fiberwise handle decomposition of

Z(Φ) satisfying almost everything as advertised in the statement of the proposition.

The last detail to arrange is that the loop of embeddings βt of ⨿nS2 →֒ #n(S2 × S2) all

miss a single fixed point in #n(S2 ×S2). This is done simply by observing that the trace

of the family is a smooth map of a 3±manifold S1 × ⨿nS2 into a 4±manifold which,

by Sard’s theorem, must miss a point.

Proof of Theorem 1 In Section 2 we have already constructed the homomorphisms

H2,n , shown that it commutes with j∗ , and thus constructed H2,∞ , and we have shown

that ı∗(π1(S0
2,∞(S4))) lies in the kernel of H2,∞ ; this was all summarized as Lemma 11.

It remains to prove that H2,∞ is surjective.

Since H2,∞ is a limit of maps H2,n , what we are really trying to prove is the following:

For any orientation preserving diffeomorphism ϕ : S4 → S4 , there is some n ∈ N

and some loop βt in Sn based at the basepoint ⨿n(S2 × {p}), such that H2,n([βt]) =

[ϕ] ∈ π0(Diff+(S4)). Choose a pseudoisotopy Φ from id to ϕ, build the bundle

of cobordisms Z(Φ) and apply Proposition 14. This gives us exactly the loop βt ,

and we see that Z(Φ) is exactly the result of parameterized handle attachment as in

Definition 8.

4 Turning (2, 3)±handle pairs into (1, 2)±handle pairs

We now need to work toward the connection with Montesinos twins and the proof of

Theorem 4, that twists along Montesinos twins generate the subgroup of π0(Diff+(S4))

corresponding to loops of 2±spheres which remain disjoint from parallel copies of the

basepoint 2±spheres. More precisely, recall that Ŝ2,n(S4) is the space of embeddings

of ⨿nS2 into #n(S2 × S2)† which remain disjoint from ⨿n(S2 × {p′}) for some fixed

p′ ∈ S2 , with basepoint being ⨿n(S2×{p}) for p ̸= p′ . We want to study the subgroup

H2,∞(ı∗(π1(Ŝ2,∞(S4)))).

As in the title of this section, we will frequently refer to (k, k + 1)±handle pairs.

Definition 15 A (k, k+ 1)±handle pair is a pair of handles, one being a k±handle and

the other being a (k + 1)±handle, such that the attaching sphere for the (k + 1)±handle
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can be isotoped in the level above the k±handle to intersect the belt sphere for the

k±handle transversely at one point. A (k, k + 1)±handle pair is in cancelling position

if the attaching sphere and the belt sphere intersect transversely at exactly one point,

without performing an isotopy first.

In other words, for a general (k, k + 1)±handle pair, after an isotopy of the attaching

sphere of the (k + 1)±handle, the pair of handles can be cancelled, but they are not

necessarily in cancelling position before this isotopy is performed.

To relate H2,∞(ı∗(π1(Ŝ2,∞(S4)))) to Montesinos twins we will first need to relate it to

families of (1, 2)±handle pairs coming from loops of framed circles in #n(S1 × S3). In

particular, using the notation from Section 2, in this section we will prove:

Theorem 16 For any n, H2,n(ı∗(π1(Ŝ2,n(S4)))) = FH1,n(π1(FS1,n(S4))).

This means that any isotopy class of diffeomorphisms of S4 that can be realized by a

family of cobordisms built with n (2, 3)±handle pairs governed by a loop in Ŝ2,n(S4)

can also be realized by a family of cobordisms built with n (1, 2)±pairs governed by a

loop in FS1,n(S4), which is the space of framed embeddings of a disjoint union of n

circles in #n(S1 × S3)† .

The essential idea is that, when the 3±handle attaching maps lie in Ŝ2,n(S4), we can use

a 5±dimensional analog of the 4±dimensional Kirby calculus ªdotted circleº notation

to represent our 2±handles as dotted circles and our 3±handles as 2±spheres moving

in the complement of these dotted circles. Then we can do the 5±dimensional analog

of the 4±dimensional trick of ªswitching dots and zerosº to turn the dotted circles

into attaching circles for 2±handles and to turn the 2±spheres into dotted 2±spheres

which represent 1±handles. Note that in general this process changes the underlying

cobordism. In addition to the subtleties involved in working in dimension 5 rather than

dimension 4, we have the added complication that we need to do this in a 1±parameter

family. The author would like to thank Peter Teichner and Danica Kosanovic for first

making him aware of the potential of 5±dimensional dotted circle and sphere notation

when discussing Watanabe’s work [17].

For the reader who is not comfortable with 4±dimensional dotted circle notation, the

discussion by Gompf and Stipsicz in Section 5.4 of [7] should be helpful, with many

more details than given here and with helpful illustrations. In general dimensions, a

trivial n±dimensional k±handle is a k±handle which could be cancelled by a (k + 1)±

handle, in which case one way to attach a trivial k±handle to a n±manifold X is to

attach a cancelling (k, k + 1)±handle pair to X and then remove a neighborhood of
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the Bn−k−1 co-core of the (k + 1)±handle. If one then cancels the (k, k + 1)±handle

pair, one is simply removing a regular neighborhood of a properly embedded boundary

parallel Bn−k−1 from X , which can be indicated as a dotted Sn−k−2 in ∂X . Looking at

the effect on ∂X , note that adding a trivial k±handle modifies ∂X by a connected sum

with Sk × Sn−k−1 , and that this can be also achieved by adding a trivial (n − k − 1)±

handle, so that from the point of view of the boundary the dotted Sn−k−2 can either be

interpreted with its dot as describing a k±handle or simply as the attaching sphere for

a (n − k − 1)±handle.

In the standard 4±dimensional setting, n = 4 and k = 1, so that we have dotted circles.

In our setting we will work with two cases, one where n = 5 and k = 2, giving dotted

circles, and the other where n = 5 and k = 1, giving dotted 2±spheres. We now

describe these cases, and the 4±dimensional case, more explicitly.

In dimension 4, a dotted circle κ : S1 →֒ S3 in a Kirby diagram needs to be an unknot,

and then one chooses a disk κ : D2 →֒ S3 with ∂κ = κ, pushes the interior of κ into a

collar neighborhood (−ϵ, 0]×S3 of S3 and then removes a regular neighborhood of κ.

This has the same result as attaching a 4±dimensional 1±handle along an embedding

ζ : S0 →֒ S3 where ζ = ∂ζ for an embedding ζ : B1 →֒ S3 which is dual to κ, i.e. ζ

transversely intersects κ at one point in their interiors.

There are several important points to note about this construction:

(1) In principle one needs to specify the disk κ, not just its boundary κ. However,

in dimension 3 there is a unique disk bounded by an unknot so one ignores

this issue. In higher dimensional analogs, and especially when working in 1±

parameter families, we should really keep track of the analog of the disk, not

just the boundaries.

(2) Suppose that a 1±handle is described by a dotted circle κ : S1 →֒ S3 bounding

a disk κ : D2 →֒ S3 , and that a 2±handle is attached along a knot K : S1 →֒

S3 \κ(S1). If K intersects κ transversely once, then the 1±handle and 2±handle

are in cancelling position and can be cancelled.

(3) The real advantage, in 4±dimensional Kirby calculus, of using dotted circle

notation is that the attaching knots for the 2±handles can be drawn entirely in

S3 even though they might run over some 1±handles, and the 1± and 2±handle

information is given by a single link in S3 including both the dotted circles

and the attaching knots for the 2±handles. Each 1±handle creates an S1 × S2

summand in the boundary of the 4±manifold one is building, and the reason that

we can draw everything in S3 is that the attaching knots for the 2±handles can

be assumed to miss an S1 × {p} in each of these S1 × S2 summands, for some
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p ∈ S2 . In a 1±parameter family this may not be the case, which is why one of

the Kirby calculus moves when using dotted circle notation involves ªsliding a

2±handle over a dotted circleº as in Figure 5.36 of [7].

(4) Not all 1±handles can be represented by a dotted circle. The 1±handle needs

to be a trivial 1±handle, which means that it could be cancelled by a 2±handle,

since removing a neighborhood of a disk bounded by the dotted circle can be

seen as first attaching the 1±handle, then attaching a cancelling 2±handle, and

then removing a neighborhood of the co-core of that 2±handle. A trivial 1±

handle is nothing more than a 1±handle with both feet on the same component

of the manifold to which it is being attached, and which does not create a non-

orientable manifold after being attached. Alternatively, this condition is that the

1±handle is attached along an S0 that bounds a B1 with a framing which extends

across the B1 .

(5) Given a dotted circle κ, one can either use the dotted circle notation and interpret

this as a 1±handle or one can attach a 2±handle along κ with framing 0. These

produce different 4±manifolds but the new boundaries created are the same. In

other words, from the point of view of the 3±manifold boundary, putting a dot

or a 0 on an unknotted circle in a Kirby diagram describes the same resulting

3±manifold.

Now we spell out, with more detail, the 5±dimensional analogs of these points for

5±dimensional 1±handles.

(1) Let W be a 5±dimensional cobordism from 4±manifold X0 to 4±manifold X1 ,

and let W ′ be the result of attaching a 5±dimensional 1±handle to W via a

framed embedding ζ : S0 × B4 →֒ X1 which extends to a framed embedding

ζ : B1 × B3 →֒ X1 . This is a cobordism from X0 to X′
1 . Let β• : B3 →֒ X1

be the restriction of ζ to {0} × B3 . In other words, β• is a dual B3 to the

B1 bounded by the attaching 0±sphere of the 1±handle. The superscript •

indicates that this is a ªdotted 3±ballº. Let W ′′ be the 5±manifold obtained by

pushing the interior of β• into a collar neighborhood (−ϵ, 1] × X1 of X1 in W

and then removing a regular neighborhood of this pushed-in 3±ball. This is a

cobordism from X0 to X′′
1 . Then X′

1 and X′′
1 are diffeomorphic and W ′′ and

W ′ are diffeomorphic cobordisms. These diffeomorphisms are canonical in the

sense that if we do this in parameterized families and build fiberwise cobordisms,

we have corresponding fiberwise diffeomorphisms. For this reason we abuse

notation and declare that W ′ = W ′′ and X′
1 = X′′

1 .

(2) Since everything described above happens in a ball one can see directly that

X′
1
∼= X1#(S1 ×S3). In the dotted B3 notation, the S1 factor is a linking meridian
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to the dotted 2±sphere ∂β• , and the dotted B3 itself is one hemisphere of the S3

factor.

(3) Using dotted 3±ball notation, the difference between X′
1 and X1 is the S1 × B3

part of the boundary of the neighborhood B2 × B3 of the pushed-in B3 that is

removed from W to produce W ′ . This S1×B3 is thus a regular neighborhood of

S1 ×{p} in the S1 × S3 summand of X′
1 = X1#(S1 × S3), for some fixed p ∈ S3 .

(4) From this we see that if a 5±dimensional 2±handle is attached to W ′ along

an embedding α : S1 →֒ X′
1
∼= X1#(S1 × S3) which is disjoint from S1 × {p}

for some fixed p ∈ S3 , then using dotted B3 notation the attaching S1 for the

2±handle can be draw entirely in X1 along with the dotted B3 ’s.

(5) In this case, the S1 ’s for the 2±handles and the boundaries of the dotted B3 ’s for

the 1±handles are disjoint, but the S1 ’s may intersect the interiors of the dotted

B3 ’s, indicating that a 2±handle is running over a 1±handle.

(6) If the attaching S1 for a 2±handle transversely intersects a dotted B3 for a 1±

handle exactly once, then the (1, 2)±handle pair is in cancelling position and can

be cancelled.

(7) Given the dotted 3±ball β• , we could attach a 3±handle along the 2±sphere ∂β•

instead of the 1±handle construction above. This produces a different cobordism,

but the boundary 4±manifold is exactly the same, since both constructions

change the boundary by surgery along ∂β• .

And finally we can give the analogous statements for 5±dimensional 2±handles.

(1) Let W be a 5±dimensional cobordism from 4±manifold X0 to 4±manifold X1 ,

and let W ′ be the result of attaching a 5±dimensional 2±handle to W via a

framed embedding α : S1 × B3 →֒ X1 which extends to a framed embedding

α : B2 × B2 →֒ X1 . This is a cobordism from X0 to X′
1 . Let γ• : B2 →֒ X1

be the restriction of α to {0} × B2 . In other words, γ• is a dual ªdotted diskº

to the disk bounded by the attaching circle of the 2±handle. Let W ′′ be the

5±manifold obtained by pushing the interior of γ• into a collar neighborhood

(−ϵ, 1] × X1 of X1 in W and then removing a regular neighborhood of this

pushed-in disk. This is a cobordism from X0 to X′′
1 and again W ′′ and W ′ are

canonically diffeomorphic, and we again declare that W ′ = W ′′ and X′
1 = X′′

1 .

(2) Now we have that X′
1
∼= X1#(S2 × S2) where the first S2 factor is a linking

meridian to the dotted circle ∂γ• , and the dotted disk itself is one hemisphere of

the second S2 factor.

(3) Using dotted disk notation, the difference between X′
1 and X1 is the S2 × B2

part of the boundary of the neighborhood B3 × B2 of the pushed-in B2 that is
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removed from W to produce W ′ . This S2×B2 is thus a regular neighborhood of

S2 ×{2} in the S2 × S2 summand of X′
1 = X1#(S2 × S2), for some fixed p ∈ S2 .

(4) From this we see that if a 5±dimensional 3±handle is attached to W ′ along an

embedding β : S2 →֒ X′
1
∼= X1#(S2 × S2) which is disjoint from S2 × {p} for

some fixed p ∈ S2 , then using dotted disk notation the attaching S2 for the

3±handle can be draw entirely in X1 along with the dotted disks.

(5) In this case, the S2 ’s for the 3±handles and the boundaries of the dotted disks for

the 2±handles are disjoint, but the S2 ’s may intersect the interiors of the dotted

disks, indicating that a 3±handle is running over a 2±handle.

(6) If the attaching S2 for a 3±handle transversely intersects a dotted disk for a

2±handle exactly once, then the (2, 3)±handle pair is in cancelling position and

can be cancelled.

(7) Given the dotted disk γ• , we could attach a 2±handle along the circle ∂γ• instead

of the 2±handle construction above. This produces a (potentially) different

cobordism, but the boundary 4±manifold is again exactly the same, since both

constructions change the boundary by surgery along ∂γ• .

One might wonder whether we really need to keep track of the dotted B3 ’s and disks

or whether, as in the 4±dimensional setting, one can just track the boundary spheres

and circles. Budney and Gabai have shown [3] that unknotted 2±spheres in S4 can

bound ªknottedº 3±balls, and of course, although all S1 ’s in S4 are unknotted, 2±knots

can be tied into any spanning disk for such an S1 . What really matters is whether

these spanning disks and balls are isotopic in dimension 5, and we leave this as an

interesting question; the Budney-Gabai examples are in fact isotopic in B5 , but there

might in principle be more complicated examples that remain nonisotopic even when

pushed into B5 . * However, here we play it safe by working with ªdotted disksº instead

of ªdotted circlesº and ªdotted ballsº instead of ªdotted spheresº.

The following technical lemma will be needed in our proof of Theorem 16 as preparation

for a ªdot switchº argument. In the statement of the lemma there is no mention of

handles, but to set it in context, think of γ•

t as a family of dotted circles describing

5±dimensional 2±handles and think of βt as a family of attaching 2±spheres for 5±

dimensional 3±handles. The lemma constructs a family β•

t of dotted B3 ’s which

can either be seen as simply auxiliary data to the 3±handle attaching spheres or as

dotted B3 ’s for 1±handles. Once the components of β•

t are interpreted as dotted B3 ’s

describing 1±handles, then one is ready to interpret the boundary S1 ’s ∂γ•

t as attaching

*Added in proof: Daniel Hartman [8] has in fact shown that this does not happen: any two

B3 ’s in S4 with the same boundary become isotopic after pushing their interiors into B5 .
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circles for 2±handles rather than as boundaries of dotted disks for 2±handles. The

work of this lemma is to find the dotted B3 ’s and extend the families in time, preserving

cancellation where necessary, so that both the dotted B3 ’s and dotted B2 ’s actually form

loops of embeddings rather than just paths of embeddings.

Lemma 17 Suppose we are given a pair of 1±parameter families of embeddings

γ•

t : ⨿nB2 →֒ S4 and βt : ⨿nS2 →֒ S4 , for t ∈ [0, 1], satisfying the following

properties:

(1) β0 is an unlink of unknots, i.e. β0 extends to an embedding of ⨿nB3 →֒ S4 .

(2) γ•

1 = γ•

0 and β1 = β0 .

(3) For all t ∈ [0, 1], βt and ∂γ•

t are disjoint.

(4) The i’th component of β0 = β1 transversely intersects the j’th component of

γ•

0 = γ•

1 at exactly δij points.

Then there exists an extension of γ•

t and βt to t ∈ [0, 3] and a 1±parameter family

of embeddings β•

t : ⨿nB3 →֒ S4 defined for all t ∈ [0, 3], satisfying the following

properties:

(1) For all t ∈ [0, 1], γ•

t is the same as the given γ•

t and βt is the same as the given

βt .

(2) For all t ∈ [0, 3], ∂β•

t = βt .

(3) γ•

3 = γ•

0 and β•

3 = β•

0 .

(4) For all t ∈ [1, 3], the i’th component of βt transversely intersects the j’th

component of γ•

t at exactly δij points.

(5) The i’th component of ∂γ•

3 = ∂γ•

0 transversely intersects the j’th component of

β•

3 = β•

0 at exactly δij points.

(6) The path β•

t is homotopic rel t ∈ {0, 3} in Emb(⨿nB3, S4) to the constant path.

We have extended to the time range t ∈ [0, 3] because the proof naturally involves two

extensions, one on [1, 2] and one on [2, 3]. Of course this time parameter can and will

be reparameterized as needed.

Proof First we construct β•

t on t ∈ [0, 1]. Because βt and ∂γ•

t are disjoint for

all t ∈ [0, 1], we can use the isotopy extension theorem to find an ambient isotopy

ϕt : S4 → S4 , for t ∈ [0, 1], such that ϕ0 = id, ϕt ◦ β0 = βt and ϕt ◦ ∂γ
•

0 = ∂γ•

t .

Choose any extension of β0 to an embedding β•

0 : ⨿nB3 →֒ S4 with the property that

the i’th component of ∂γ•

0 transversely intersects the j’th component of β•

0 at exactly
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δij points. This can be done because the i’th component of ∂γ•

0 is a meridian to the

i’th component of β0 . Then let β•

t = ϕt ◦ β
•

0 .

The most immediate problem at this point is that there is no reason to expect that

β•

1 = β•

0 . We now extend both β•

t and γ•

t to t ∈ [1, 2] using the isotopy ϕt in reverse.

More precisely, for t ∈ [1, 2], let

β•

t = β•

2−t = ϕ2−t ◦ β
•

0 = (ϕ2−t ◦ ϕ
−1
1 ) ◦ β•

1

and let

γ•

t = (ϕ2−t ◦ ϕ
−1
1 ) ◦ γ•

1.

Also let βt = ∂β•

t . Note that when t = 1, ϕ2−t ◦ϕ
−1
1 = id, so we do have a continuous

extension of both β•

t and γ•

t from t ∈ [0, 1] to t ∈ [0, 2]. Also note that now, on

t ∈ [1, 2], since both γ•

t and β•

t are moved by the same isotopy ϕ2−t ◦ ϕ
−1
1 , we have

that the i’th component of ∂β•

t transversely intersects the j’th component of γ•

t at δij

points for all t ∈ [1, 2].

Furthermore, since β•

t = β•

2−t for t ∈ [1, 2], we have guaranteed that β•

2 = β•

0 and

that the path β•

t in Emb(⨿nB3, S4) is homotopic rel t ∈ {0, 2} to the constant path.

Now, however, we have no reason to expect that γ•

2 = γ•

0 , and this is the last thing

that we fix, using the time interval t ∈ [2, 3]. Both γ•

2 and γ•

0 have the property

that their i’th components transversely intersect the j’th component of β2 = β0 in δij

points. Parameterize a regular neighborhood of β0(⨿nS2) as ⨿n(S2 × B2) and note

that both γ•

2 and γ•

1 are now isotopic to small meridional disks ⨿n({p}×B2) centered

at the points of intersection between γ•

2 , resp γ•

0 , with β0 . These isotopies can be

chosen so as to preserve the property that γ•

t and β0 transversely intersect at δij points,

simply by shrinking the disks without moving them. Running one of these isotopies

forward for t ∈ [2, 2.4] and the other one backwards for t ∈ [2.6, 3], and connecting

them in t ∈ [2.4, 2.6] by moving the small meridional disks inside the neighborhood

⨿n(S2 × B2), we get a path of embeddings γ•

t for t ∈ [2, 3] from the given γ•

2 to

γ•

3 = γ•

0 . For all t ∈ [2, 3], let β•

t = β•

2 = β•

3 = β•

0 and let βt = ∂β•

t . Since

we simply shrank the disks γ•

2 into the tubular neighborhood of β2 = βt = β3 , then

moved these disks around the neighborhood, and then expanded back out along the

disks γ•

3 = γ•

3 , we see that we did not introduce any extra intersections between ∂γ•

t

and βt for t ∈ [2, 3], and thus maintained the δij intersection property.

Lastly, since β•

t is t±invariant for t ∈ [2, 3], then we still have the property that βt is

homotopic rel t ∈ {0, 3} to the constant path in Emb(⨿nB3, S4).

Proof of Theorem 16 Consider a cobordism Z from S1 × S4 to Y = S1 ×ϕ S4 for

some ϕ ∈ Diff+(S4), built as before as a family Zt of cobordisms, such that each Zt
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is built by attaching n 2±handles to [0, 1] × S4 and then n 3±handles to the result,

with the attaching data for the handles varying smoothly with t . The 2±handles are

attached along a family αt of framed embeddings of ⨿nS1 into S4 . In fact at this point

αt = α0 does not vary with t and is a standard embedding, so that S4(αt) is canonically

identified with #n(S2 × S2). The 3±handles are attached along a family βt of framed

embeddings of ⨿nS2 into #n(S2 × S2) = S4(αt), with β0 = β1 = ⨿n(S2 × {p}), and

with each βt disjoint from ⨿n(S2 × {p′}).

We would like to show that there is also a cobordism Z′ from S1 × S4 to Y = S1 ×ϕ S4

for the same ϕ ∈ Diff+(S4), but now built as a family Z′
t of cobordisms such that each

Z′
t is buit by attaching first n 1±handles to [0, 1] × S4 and then n 2±handles to the

result, and such that the attaching maps for the 1±handles are t±invariant. This will

prove the theorem.

Now, given our handle attaching data αt and βt used to build Z , since the αt ’s are

invariant in t , and αt = α0 bounds a fixed collection of framed disks δ0 , we can

instead represent the 2±handles by a (for now, t±invariant) t±parametrized family of

n dotted disks γ•

t : ⨿nB2 →֒ S4 . Note that ∂γ•

t ̸= αt , but instead ∂γ•

t is a linking

circle to δ0 . Also, we insist on maintaining the subscript t even though these are

t±invariant because we will shortly modify the family so as to lose t±invariance. Now

the instructions for building the cobordism Z are to build each Zt from [0, 1] × S4 by

pushing the interiors of the disks γ•

t from {1} × S4 into the interior of (1 − ϵ, 1] × S4

and removing their neighborhoods, and then attaching 3±handles along βt . Note that,

after carving out the disks but before attaching the 3±handles, the upper boundary of

this cobordism Yt is the surgered 4±manifold S4(∂γ•

t ). In other words, when looking

at the 4±dimensional boundary, we cannot tell whether we carved out the dotted disks

or attached 2±handles along their boundaries, because the resulting surgeries are the

same.

As noted in the preamble to this proof discussing 5±dimensional dotted circle and

sphere notation, because each βt is disjoint from ⨿n(S2 × {p′}), we can isotope the

family βt so that it never goes over the surgered region of S4(∂γ•

t ), and thus the entire

handle attaching data now lives in S4 . Thus we can now describe each Yt , and thus

Z , via data entirely lying in S4 , i.e. γ•

t : ⨿nB2 →֒ S4 and βt : ⨿nS2 →֒ S4 . The only

intersections occur between ⨿nS2 and the interiors of the disks ⨿nB2 . At times t = 0

and t = 1, each S2 intersects its corresponding B2 transversely once and is disjoint

from all the other B2 ’s, i.e. the spheres and disks are in ªcancelling positionº

Our goal is now to ªswitch the dots from the circles to the spheresº, i.e. to think of βt as

being dotted spheres, thus corresponding to 5±dimensional 1±handles, and to think of
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∂γ•

t as attaching circles for 2±handles, rather than dotted circles describing 2±handles.

Furthermore, we need to arrange that we actually end up with a loop of dotted B3 ’s

after this extension. This was the point of Lemma 17. To use this result, homotope our

given loops of embeddings so as to arrange that γ•

t and βt are t±invariant on the time

interval t ∈ [1 − ϵ, 1] for some small ϵ > 0. Apply Lemma 17, but reparameterizing

the time parameters so that the time interval [0, 1 − ϵ] here is mapped to the time

interval [0, 1] in the lemma, so that the time interval [1, 3] in the lemma is mapped to

the time interval [1 − ϵ, 1] in this proof.

This gives us γ•

t and β•

t defined for t ∈ [0, 1] such that:

(1) γ•

1 = γ•

0 and β•

1 = β•

0 .

(2) γ•

t agrees with the original γ•

t on [0, 1 − ϵ].

(3) ∂β•

t agrees with the original βt on [0, 1 − ϵ].

(4) If we interpret γ•

t as dotted disks for 2±handles and interpret ∂β•

t as attaching

S2 ’s for 3±handles, then these give cancelling (2, 3)±pairs for all t ∈ [1 − ϵ, 1].

(5) If instead we interpret β•

t as dotted B3 ’s for 1±handles and interpret ∂γ•

t as

attaching circles for 2±handles, then these give cancelling (1, 2)±pairs for t ∈

{0, 1}.

Thus we can use the fact that the dotted disks γ•

t and the attaching S2 ’s ∂β•

t are in

cancelling position for t ∈ [1 − ϵ, 1] to modify our fiberwise handle decomposition of

Z so that the new handle decomposition is in fact given by the new families γ•

t and

∂β•

t for all t ∈ [0, 1]. One way to see this is to first cancel the original (2, 3)±handle

pairs on the time interval [1 − ϵ, 1], so that we have no handles on that time interval,

with deaths of cancelling pairs at t = 1 − ϵ and births at t = 1 = 0. Then we can

introduce a birth slightly after t = ϵ, let the (2, 3)±pairs move between this time and

until slightly before t = 1 following the new γ•

t and ∂β•

t , and then have the pairs die

at the time slightly before t = 1. Because the pairs are in cancelling position over this

entire time interval, this family of handle decompositions does not change the bundle

Z . Finally we cam merge the births and deaths at t = ϵ and at t = 1 = 0 to get the

desired result.

Now ªswitch all the dots from the γ ’s to the β ’sº. In other words, build a new fiberwise

cobordism Z′ from S1 × S4 to some Y ′ with dotted 1±handles given by β•

t and 2±

handles attached along the circles ∂γ•

t . Because the surgered 4±manifolds produced

by the dotted ball, respectively disk, constructions are the same as those produced by

attaching handles along the boundaries of the balls, respectively disks, in fact the top

boundary Y ′ of our new fiberwise cobordism is the same as our original top boundary

Y = S1 ×ϕ S4 .
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Finally, because we arrange that the loop β•

t is homotopically trivial in π1(Emb(⨿nB3, S4)),

an ambient isotopy argument as in the proof of Proposition 14 can now be used to ar-

range that β•

t is independent of t , and thus the entire construction is governed by the

loop of framed circles ∂γ•

t .

5 From many (1, 2) pairs to a single (1, 2) pair

We now know that diffeomorphisms of S4 that can be realized by a family of cobordisms

built with n (2, 3)±handle pairs can also be realized by a family of cobordisms built with

n (1, 2)±handle pairs, as long as the original governing loop of embeddings of ⨿nS2

into #n(S2 × S2) lies in Ŝn . Before we get to Montesinos twins, we need now to show

that every diffeomorphism of S4 that can be a realized by a family of cobordisms built

with n (1, 2)±handle pairs can be realized by a family built with a single (1, 2)±handle

pair.

Theorem 18 For any n, FH1,n(π1(FS1,n(S4))) = FH1,1(π1(FS1,1(S4))).

Proof We begin again with a cobordism Z from S1 × S4 to S1 ×ϕ S4 built as a

family of cobordisms Yt , each Yt built by attaching n fixed standard 1±handles to

[0, 1] × S4 followed by n ªmovingº 2±handles governed by a loop of embeddings

αt : ⨿n(S1×B3) →֒ #n(S1×S3). Cancelling the (1, 2) pairs at time t = 0 ∼ 1, we revert

to the Cerf theoretic perspective to get a family (ft,Vt) of Morse functions with gradient-

like vector fields on [0, 1] × S4 interpolating from f0 , which is projection onto [0, 1],

to f1 , which is the pullback of f0 via some pseudoisotopy Φ : [0, 1]× S4 → [0, 1]× S4

from id4
S to ϕ. The graphic now looks like Figure 7, exactly as in Figure 6 except that

now the critical points are of index 1 and 2; there are still no handle slides.

Theorem 2.1.1 of Chenciner’s thesis [5], restated as Hatcher and Wagoner’s Proposi-

tion 1.4 on p.177 of [9], asserts that, given a 1±parameter family ft of Morse functions

on [0, 1] × X where X is an m±manifold, if the Cerf graphic contains a swallowtail

involving critical points of index i and i + 1 as in the left of Figure 8, with i ≤ m − 3,

then the swallowtail can be cancelled to give the graphic on the right in Figure 8. This

applies in our setting because m = 4 and i = 1 = 4 − 3. We use this to reduce the

number of (1, 2) pairs using the main idea of Proposition 4 on p.217 of [9], as in the

figure on the top of p.218 of [9]. We essentially reproduce this figure here in Figure 9

which shows how to reduce a nested pair of birth-deaths of 1±2 handles to a single
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1
1

1

2
2

2

Figure 7: A nice Cerf graphic with only critical points of index 1 and 2.

ii

i + 1 i + 1 i + 1

Figure 8: Eliminating a swallowtail.

pair. (The other elementary moves are introducing a swallowtail, which can always

be done, and merging a death with a birth, which can always be done if level sets are

connected, which they are in our case.)

Repeating this we can turn n nested 1±2 ªeyesº into a single nested 1±2 ªeyeº, and

then we can merge the birth again at t = 0 ∼ 1. Note that in fact we could have left this

last (bottom-most) index 1 critical point completely unchanged in this whole process,

we even did not need to cancel it with its cancelling 2±handle at the beginning. Thus

we can easily arrange that this last 1±handle is still stationary, i.e. its attaching map

does not move with t . This shows that this cobordism can be built with a single fixed

standard 1±handle followed by a single moving 2±handle whose attaching map is given

by a loop of embeddings S1 ×B3 →֒ S1 ×S3 . Therefore [ϕ] ∈ FH1,1(π1(FS1,1(S4))).
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Figure 9: Using a swallowtail to turn a nested pair of ªeyesº into a single eye.

Remark 19 In case it is needed in another context, the general version of this theorem

is that, if k ≤ m− 3 and X is an m±manifold, then for any n, FHk,n(π1(FSk,n(X))) =

FH1(π1(FSk,1(X))).

6 Twists along Montesinos twins

As a consequence of the preceding two theorems we now know that any diffeomorphism

of S4 arising as the monodromy of the top of a cobordism constructed as above from

a loop of n 2±spheres in #n(S2 × S2) which remain disjoint from a parallel copy

⨿n(S2×{p′}) of the basepoint embedding ⨿n(S2×{p}) is isotopic to a diffeomorphism

arising from a loop of embeddings of a single circle in S1 ×S3 . This is summarized as:

Corollary 20

H2,∞(ı∗(π1(Ŝ2,∞(S4)))) = FH1,1(π1(FS1,1(S4)))

Our next goal, which will complete the proof of Theorem 4, is to show that

FH1,1(π1(FS1,1(S4)))
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is generated by twists along Montesinos twins as advertised. Recall that a Montesinos

twin is a pair W = (R, S) of embedded, oriented 2±spheres R, S ⊂ S4 intersecting

transversely at two points. We asserted in the introduction that the boundary of a regular

neighborhood of R∪ S is a 3±torus S1
l × S1

R × S1
S . We will now give an explanation of

this fact tailored to the proof to follow.

Consider the 4±manifold X = S1 × B2 × S1 with boundary M = S1 × S1 × S1 . Let Γ

be the core 2±torus S1 × {0} × S1 ⊂ X and let C be the circle {1} × {0} × S1 ⊂ Γ,

with the obvious framing coming from all the product structures involved. Now let XC

be the result of surgery along C . Since C ⊂ Γ, this also surgers Γ along C and the

resulting surface ΓC is a 2±sphere, which we will call R. Since surgering along a circle

C replaces an S1 × B3 with S2 × B2 , we also get a new S2 coming from the surgery,

which we will call S , and we note that S which intersects R at exactly two points, with

opposite sign. Thus in fact XC is a regular neighborhood of two 2±spheres R∪S , each

with trivial normal bundle, intersecting each other twice with opposite signs. In other

words, XC is a regular neighborhood of a Montesinos twin W = R ∪ S .

Furthermore, looking at the boundary 3±manifold M = S1×S1×S1 = ∂S1×B2×S1 =

∂XC , we see that the second factor {1}×S1×{1} bounds a disk transversely intersecting

R once, and is therefore characterized by being a meridian to R. Likewise the third

factor {1}×{1}×S1 bounds a disk (after the surgery) which intersects S transversely

once, and is therefore characterized by being a meridian to S . The first factor is not

uniquely characterized by this construction, but if the Montesinos twin is embedded in

S4 then it can be uniquely characterized by being a longitude, i.e. being homologically

trivial in the complement of the twin.

Proof of Theorem 4 Recall that FS1,1(S4)) is the space of framed embeddings of S1

in S1 × S3 while S1,1(S4)) = Emb(S1, S1 × S3) is the space of unframed embeddings

of S1 in S1 × S3 . As noted at the end of Section 2, we might worry that the homomor-

phism π1(FS1,1(S4))) → π1(S1,1(S4))) is not surjective, since there are two possible

framings of a circle in a 4±manifold. However, Budney and Gabai [3] give explicit

representatives of generators for π1(Emb(S1, S1 × S3)) all of which can be seen to lift

to framed loops of embeddings, and thus the map is surjective so we do not need to

worry about framings anymore. There is presumably a more direct way to see this, the

point being that there is no loop of embeddings of S1 in S1 × S3 which switches the

two framings of S1 .

For the remainder of this proof, we will use the less obscure notation Emb(S1, S1 × S3)

to refer to the space S1,1(S4), the latter more complicated notation only being helpful

when placing things in the much more general context of Section 2. Also note that
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in Section 2 we punctured the target space of our embeddings, but here we drop the

puncture for simplicity. The point is that, at the level of π1 , the puncture is irrelevant

since loops of circles are 2±dimensional while homotopies of loops of circles are 3±

dimensional, so since the ambient space is 4±dimensional everything can be assumed

to miss a point.

In fact [3] shows that every class a ∈ π1(Emb(S1, S1×S3)) can be represented by a loop

αt : S1 →֒ S1 × S3 of embeddings such that the associated map Γ : S1 × S1 → S1 × S3

given by Γ(t, s) = αt(s) is itself an embedding. Thus we have an embedded torus

Γ : S1×S1 →֒ S1×S3 such that Γ({0}×S1) is the basepoint embedding C = S1×{p}.

Surgery along C applied to the pair (S1 × S3,Γ) yields (S4,R) for some embedded

2±sphere R ⊂ S4 , and the 2±sphere S dual to the surgery circle is an unknotted

sphere S ⊂ S4 such that (R, S) forms a Montesinos twin. Furthermore, the boundary

∂ν(R ∪ S) of a neighborhood of this twin in S4 is the same as the boundary of a

tubular neighborhood of Γ(S1 × S1) in S1 × S3 . When this 3±torus is parametrized as

S1
l × S1

R × S1
S as in the introduction, we see that the S1

l parameter corresponds to the

t parameter in Γ(t, s) = γt(s), that the S1
R direction corresponds to the s±parameter,

and that the S1
S direction corresponds to the boundary of the disk factor in the tubular

neighborhood ν(Γ(S1 × S1)) ∼= D2 × S1 × S1 .

Because Γ is embedded, it is relatively easy to see what H1([γt]) looks like. We need

an ambient isotopy ϕt of S1 × S3 with ϕ0 = id, ϕt ◦ γ0 = γt and ϕ1 equal to the

identity on a neighborhood of C . This is the ªcircle pushingº map we get by dragging

the circle around the embedded torus and back to its starting position. This can happen

entirely in a tubular neighborhood D2 × S1 × S1 of Γ, by spinning in the t direction

more and more as we move towards the center of D2 , which we state explicitly as

follows: Let (r, θ) be polar coordinates on D2 , and let (t, s) be coordinates as before

on S1 × S1 . Choose a smooth non-increasing function T : [0, 1] → [0, 2π] which is

1 on [0, 1/4], 0 on [3/4, 1], and let ϕt(r, θ, t, s) = (r, θ, t + T(r), s). From this it is

clear that ϕ1 is the identity on r ∈ [0, 1/4] and r ∈ [3/4, 1], and on the intermediate

[1/4, 3/4] × S1 × S1 × S1 is equal to a Dehn twist on [1/4, 3/4] × S1 crossed with

the identity in the remaining S1 × S1 direction. Back in S4 this is exactly the twist τW

along the twin W = (R, S).

In fact [3] establishes an isomorphism

W1 × W2 : π1(Emb(S1, S1 × S3),C) → Z⊕ Λ
1
3

where Λ1
3 is a free abelian group on a countably infinite generating set. The Z factor

in Z⊕Λ1
3 is given by the loops of S1 ±reparametrizing embeddings γt(s) = γ0(s+ nt),

and it is easy to see that H1 applied to such a loop of embeddings is isotopic to idS4 ,
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C

Figure 10: The embedded torus T(3) in S1 × S3 , the obvious next member of the family of tori

described in Figure 4 of [3]. The top is glued to the bottom, and horizontal slices are S3 ’s, with

the ªtimeº coordinate indicated in red/blue shading, as in Figure 2. Here we have exaggerated

certain features of this torus and deformed somewhat from the drawings in Figure 4 of [3] so

that the connection with the Montesinos twin W(3) = (R(3), S) in Figure 2 is visually apparent.

Surgering along the red circle C collapses the vertical cylinder on the right into a sphere (the

tail of the snake), with the dual sphere to C becoming the tail-piercing sphere S .

i.e. this Z factor is in the kernel of H1 . Modulo this Z factor, Figure 4 in [3] gives

the first two tori T(1) and T(2) in an obvious family T(i) of tori in S1 × S3 which give

the countably infinite generating set corresponding to Λ1
3 . We draw T(3) in Figure 10.

In this figure, the circle C ⊂ S1 × S3 is represented as a red vertical line on the far

right side of the torus. The torus T(n) is just like this but wraps n times around the S1

direction. Surgering along C yields our Montesinos twins W(i) = (R(i), S).
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