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One way to better understand the smooth mapping class group of the 4—sphere
would be to give a list of generators in the form of explicit diffeomorphisms
supported in neighborhoods of submanifolds, in analogy with Dehn twists on
surfaces. As a step in this direction, we describe a surjective homomorphism from
a group associated to loops of 2—spheres in 2 x S’s onto this smooth mapping
class group, discuss two natural and in some sense complementary subgroups of
the domain of this homomomorphism, show that one is in the kernel, and give
generators as above for the image of the other. These generators are described as
twists along Montesinos twins, i.e. pairs of embedded 2—spheres in S* intersecting
transversely at two points.

1 Introduction

Given a smooth oriented manifold X, let Diff (X) be the space of orientation preserving
diffeomorphisms of X (fixed on a collar neighborhood of 9X if 9X # (). Here, inspired
heavily by Watanabe’s work [17] on homotopy groups of Diff ¥ (B*) and Budney and
Gabai’s work [3] on knotted 3-balls in $*, we initiate a study of mo(Diff T ($%)), i.e.
the smooth mapping class group of the 4—sphere. We know very little about this
group except that it is abelian and that every orientation preserving diffeomorphism
of $* is pseudoisotopic to the identity; the group could very well be trivial, like the
topological mapping class group. Ideally we would like to find a generating set for
this mapping class group defined explicitly and geometrically, for example as explicit
diffeomorphisms supported in neighborhoods of explicit submanifolds of $*, in analogy
with Dehn twists as generators of the mapping class groups of surfaces. In this paper
we construct a surjective homomorphism from a limit of fundamental groups of certain
embedding spaces of 2—spheres in 4—manifolds onto mo(Diff *($*)), we describe one
geometrically natural subgroup of the domain of this homomorphism which we show
to be in its kernel, and we describe a “complementary” geometrically natural subgroup
and give an explicit list of generators as above for its image in mo(Diff T ($%)).
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All manifolds and maps between manifolds are smooth in this paper. The symbol §;;
refers throughout to the Kronecker delta symbol.

Given manifolds X and Y, let Emb(X, Y) denote the space of embeddings of X into
Y. For any manifold Y let YT refer to the punctured manifold ¥ \ {p} for some
p € Y. (The puncture is not important until the next paragraph.) Given a manifold X
of dimension m and natural numbers n and k, let

Ska(X) = Emb(IT"Sk, X#'(Sk x sm~k)T)

Note that this notation is a little ambiguous as to how many punctures are involved;
we mean that the puncture happens after the connected sums, so that there is only one
puncture, not n punctures.

This S stands for “spheres”, as in “space of embeddings of collections of spheres”, the
index n is the number of spheres, and the index k is the dimension of the spheres. For
the main results of this paper we are interested in X = $* and k = 2, giving us

S».(81) = Emb(I1"S?, S*#'(S? x §%)1) = Emb(11"S*, #'(S> x SH)T)

Fix a point p € S and let IT*(S? x {p}) C #'(5? x §?)I denote the union of one copy
of 82 x {p} in each $? x S? summand of #'(S?> x $?)!. This will be our basepoint
in 827,1(54), which we will often suppress from our notation, with the understanding
that 82,,,(54) is a pointed space. We will also be interested in two subspaces of
827,1(54): Let 837,1(54) denote the subspace of embeddings with the property that for
each i and j the i’th component of I1"S? intersects the {p} x S? in the j’th summand of
#1(S2 x §H)f transversely at d;; points. Let §2,n(S4) denote the subspace of embeddings
with the property that the image of 11"S? is disjoint from I1*(S? x {p’}) for some fixed
p' # p € §2. Note that our basepoint lies in both of these subspaces.

Thanks to the puncture, we have a natural basepoint-preserving inclusion j : Sz,,,(S“) —
827,,+1(S4), respecting the inclusions of Sg7n(S4) and 3’27,1(54), and thus inclusion-
induced homomorphisms j, : 7r1(827n(S4)) — 7r1(52,,,+1(S4)) which commute with
the inclusion-induced homomorphisms 7, : 711(887,1(S4)) — 7r1(827,,(S4)) and 7, :
T1(San(S)) = T1(S2.0(SY). As a consequence, we have limit groups which we will
denote 71(82,00(5%), (S5 (51, T1(S2,00(8) (it is not important for us to think
about the limiting spaces, just the groups, but this notation is convenient) and limiting
inclusion-induced homomorphisms ¢, between them. Our first result is:

Theorem 1 There exists a sequence of homomorphisms H, : 7T1(827n(S4)) —
mo(Diff t (%)), for n € N, satisfying the following properties:
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Figure 1: Commutative diagram relating maps in Theorem 1.

The H, , s commute with the 3, s, fitting into the commutative diagram shown in
Figure 1. Thus this gives rise to a limit homomorphism H> . : W](SQ,OO(S4)) —
mo(Diff * (%)) and the following diagram:

Sy
T~

T1(S2,00(5%) L mo(Diff (%)
LT
71(82,00(5))

The limit homomomorphism H» . is surjective.

The image of Wl(ng(S“)) under 1, is contained in the kernel of Hj .

Note that the diagrams of our theorem include 7r1(§2,n(S4)) and 71(3’\2700(54)) even
though the actual results in the theorem do not reference these groups. This is to set the
context for Theorem 4, which gives explicit generators for the image of 7r1(§2,oo(S4))
in mo(Diff *(5%)).
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Krannich and Kupers [11] have given an alternative, shorter proof of a generalization
of parts of Theorem 1, which explicitly connects this result to work of Kreck [12] and
Quinn [16].

As pointed out by the referee, Theorem 10.1 of [3] includes the statement that
m1(Emb(B?, S? x B?)) is free abelian of rank two, with explicit generators given,
and one might wonder what happens to these generators under the homomorphism
H>.1 when the B? is capped off to an S2. However, the boundary condition for
Emb(B2, S x B?) here is {p} x S! for some fixed p € S. If such an embedding of
B? into S? x B? is capped off to an embedding of S? into S? x §? with any embedding
of B? into the S? x B? with the same boundary condition, the resulting embedding
remains geometrically dual to §? x {p} for any p € S' = OB>. Thus all of these
potentially interesting loops of $2°s in §? x S? land in 771(52 Oo(S4)) and hence in the
kernel of Hj .

The homomorphisms #5 ,, will be defined precisely in Section 2, but they can be briefly
described as follows: Note that surgery along our basepoint embedding of I1"S? in
#'(S? x %) turns #'(S? x §?) into S*. Thus a loop of embeddings starting and ending
at this basepoint can be interpreted as an S'—parameterized family of surgeries all of
which turn #'(S? x S?) into a 4—manifold diffeomorphic to $*. These fit together to
give an S*—bundle over S'. The monodromy of this bundle is the output of Hop. If
one is worried about the fact that the monodromy of a bundle is only well defined up
to conjugation, either note that mo(Diff T($%)) is abelian or note that we can establish
a canonical (up to isotopy) diffeomorphism between S* and the result of surgering
#'(S? x §?) along the basepoint embedding.

The proof of Theorem 1 uses the fact that every orientation preserving diffeomorphism
of $* is pseudoisotopic to the identity, Cerf’s technique [4] to turn a pseudoisotopy
into a family of Morse functions, and results of Hatcher and Wagoner [9] to optimally
clean up such a family and its associated family of handle decompositions.

Our second result characterizes the image of 7r1(§2’oo(S4)) in mo(Diff*(5*)) in terms
of a countable list of explicit generators which we will now describe. This could in
principle be all of my(Diff*(5%)), although we have no evidence for or against that
possibility.

A Montesinos twin in $* is a pair W = (R, S) of embedded 2—spheres R,S C s4
intersecting transversely at two points. For us, the 2—spheres are both oriented.
Montesinos [14] shows, and we explain in Section 6, that the boundary of a regu-
lar neighborhood v(W) of R U S is diffeomorphic to ! x ' x S! and that in fact
there is a canonical parametrization S} X S}e X S_% 2 Qu(W). This parametrization is
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characterized by S! x {b} x {c} being homologically trivial in H;(S*\ (RUS)), i..
a “longitude”, {a} x Sk x {c} being a meridian for R, and {a} x {b} x S} being a
meridian for S. This parametrization is canonical up to postcomposing with diffeomor-
phisms of dv(W) which are isotopic to the identity and precomposing with independent
diffeomorphisms of S} , Sk and S ng This then parametrizes a regular neighborhood of
Ov(W) as [—1,1] x S} x Sk x Si. We adopt the orientation conventions that Sk and
S}Q have the standard meridian orientations coming from the orientations of R and S,
that [—1, 1] is oriented in the outward direction from (W), and that S 11 is oriented so
that the orientation of [—1,1] x S ll X Slle xS § agrees with the standard orientation of
S*.

Definition2 Given a Montesinos twin W in $*, parametrize a neighborhood of Ov(W)
as [—1,1] ><Sl1 XS}e ><S§ asabove. Let 77 : [—1,1] x Sl1 — [—1,1] ><Sl1 denote a right-
handed Dehn twist. The twin twist along W, denoted Ty, is the diffeomorphism of s*
which is the identity outside this neighborhood of Jv/(W) and is equal to 7; X idg) X idg1
inside this neighborhood.

By the canonicity of our parametrization, 7y is well-defined up to isotopy, i.e. [Tw]
is a well-defined class in wo(Difft(5%)). Incidentally, we have the following as a
consequence of our orientation conventions:

Lemma 3 If W = (R, S) is a Montesinos twin, then [Tw]~' = [Ts.p)] = [T(TQ’S)] =

[7r3)]-

Proof Either switching the spheres S and R, or reversing the orientation of one of
them, reverses the orientation of Sk x S, which then forces the reversal of the orientation
of [-1,1] xS ll , changing a positive Dehn twist to a negative Dehn twist. O

We now describe a family of twins W(i) = (R(i),S), for i € N U {0}. Figure 2
illustrates W(3); W(i) is the same but with i turns in the spiral rather than 3 turns.
Figure 3 and 4 give two alternate descriptions of this twin. Orientations are not made
explicit here since our main claim is simply that the twists invoved generate a certain
group, and the inverse of a generator is still a generator. Note that both R(i) and S
are individually unknotted 2—spheres, and that the twin W(0) is the trivial “unknotted
twin”.

Our second result is:
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Figure 2: An illustration of W(3) = (R(3),S). The picture mostly happens in the slice
{t =0} C R* = {(x,y,z,0)} C R*U {0} = S*. The ring labelled S is a slice through
S, which shrinks to a point as we move forwards and backwards in the “time” coordinate ¢.
The “snake whose tail passes through his head” is R(3), which is projected onto {t = 0},
intersecting itself along one circle in the middle of the red disk (the “snake’s left ear hole”) and
along another circle in the middle of the blue disk (the “right ear hole”). Blue and red indicate
that these disks are pushed slightly forwards (blue) and backwards (red) in time to resolve these
intersections; otherwise R(3) lies in the slice { = 0}. The two points of intersection between
R(3) and S are where the ring pierces the tail.
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Figure 3: Another illustration of W(3) = (R(3),S). Here we have drawn an immersed pair of
disks, one green and one pink, with mostly ribbon intersections except for one nonribbon arc.
Pushing these two disks into Ri or R* and resolving ribbon intersections in the usual way
gives two embedded disks intersecting each other transversely once, and then taking one copy
in Ri and one in R* glued along their common boundary, i.e. doubling the ribbon disks,
gives R(3) (green) and S (pink) in R* C §*.

7D

Figure 4: Yet another illustration of W(3). Here we have drawn two disjoint, embedded
2—spheres in S* (the two thick circles, becoming 2—spheres when shrunk to points forwards
and backwards in time) and an arc connecting them. Push a finger from one of the spheres out
along this arc and then do a finger move when you encounter the other sphere, creating a pair
of transverse intersections, and the result is W(3).
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Theorem 4 The subgroup Hy (1 (71(S2.00(8))) of mo(Diff*($%)) is generated
by the twin twists {Twq | i € N}. In other words, every diffeomorphism of S*
coming from a loop of embeddings of 11"S? into #'(S> x S?) which starts and ends at
11"(S? x {p}) and remains disjoint from a parallel embedding 11"(S*> x {p’}) is isotopic
to a composition of twin twists along the Montesinos twins {W(i)} .

In fact these automorphisms 7y ;) are also examples of the “barbell maps” discussed
in [3]; readers familiar with barbell maps should be able to use the description of W (i)
in Figure 4 to see the connection.

To avoid cumbersome notation, we will mostly refer to H o (24(71 (5’\2700(54)))) as “the
image of 71(S52,00(51)”.

Question 5 Is [y] in the image of 771(:9\2700(S4)) for an arbitrary Montesinos twin
W? More generally, given any embedding of S' x ¥ < §*, for closed surface ¥,
a tubular neighborhood gives an embedding of [—1,1] x S' x ¥ < $* which gives
a diffeomorphism 7 X idy, where 7 is the Dehn twist on [—1, 1] X S'. Are such
diffeomorphisms always in the image of 7T1(§27OO(S4)) ?

One could try to answer these questions either through Cerf theory, by explicitly
identifying a pseudoisotopy from a given diffeomorphism of $* to the identity, and
then extracting a loop of attaching spheres for 5—dimensional 2—handles, or one could
try to work explicitly with the diffeomorphisms in $* and try to find relationships
amongst such twists, to relate them to twists along our standard Montesinos twins
W(@).

The bigger questions are the following, with affirmative answers to both showing that
the smooth mapping class group of S* is trivial:

Question 6 Is the image of 7'('1(3\2700(54)) trivial?
Theorem 4 could help prove this if one can exhibit explicit isotopies from Ty ;) to idgs.
Question 7 Is the image of 7(S5,(S*) equal to all of mo(Difft(5%))?

Since z*(m(Sg 00(54))) is in the kernel of H; , we know that H» o, factors through
the quotient map 7 : m1(S2,00(5%)) = m1(S2,00(5)/ (1 (m1(S3 oo (1)), where (H)
denotes the normal closure of a subgroup H. Thus one way to answer the above
question in the affirmative is to show that

701y 1 T1(S2,00(5") = T1(S2,00(8h)/ (14 (M1(SF oo (S)))
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is surjective. On the other hand this does not need to be true for the answer to this
question to be “yes”, since the kernel of H» o, could presumably be much larger than

1 (11(S9 oo (SY)).

In the next section we elaborate on the connection between loops of embeddings of
certain spheres and self-diffeomorphisms of other spheres, setting up the general theory
in various dimensions and codimensions and defining the homomorphisms H, ,,. After
that, we devote one section to completing the proof of Theorem 1, and we break the
proof of Theorem 4 into the three remaining sections.
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2 From loops of spheres to diffeomorphisms

In this section we define the homomorphisms H> , : 7r1(82,n(S4)) — mo(Diff 7($*)) and
establish some lemmas that prove all the results of Theorem 1 except the surjectivity
of Hj . This surjectivity will be proved in the next section.

We define H> , by first defining a more general family of homomorphisms turning loops
of framed embeddings of spheres of various dimensions into bundles of cobordisms
and hence into self-diffeomorphisms of smooth manifolds. In the introduction above,
we had 2—spheres embedded in 4—manifolds, but we did not mention framings of these
2-spheres. Below, we will work with framed spheres and then at the end of the section
when we relate this back to the terminology of the introduction, we will see why we can
ignore the framing issues. In addition to adding framings, we allow the spheres in the
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domain to have arbitrary dimension, and we allow the target spaces of the embeddings
to have arbitrary dimension.

Fix an m—manifold X, for some m > 2, fix integers 0 < k < m and n > 0, and let
#1(SK x §"K)T denote a punctured #'(SK x §™~%). As in the introduction, the puncture
is needed so that we can view #'(SK x S %) asa subspace of #'+1 (S* x skt Now
consider the following space of embeddings of collections of framed spheres:

FSia(X) = EmbII"(S* x B" %), x#"(SF x §"~ k)T

In the notation, FS stands for “framed spheres”, the parameter k tells us that the
spheres are k—spheres, the subscript n tells us how many k—spheres and how many
(8% x §"~k)T summands there are, and X is the base m—manifold. Picking a fixed point
p € 8"k and a disk neighborhood U of p parametrized as B ¥, we get a natural
basepoint IT*(S¥ x U) C X#'(S¥ x "5 for FS k,n(X), which we will again generally
suppress in our notation, understanding that Sy ,(X) is a pointed space.

We now define a homomorphism
FHin : m(FSknX)) — mo(Diff (X))

as follows: Represent an element b of m(FSi (X)) by a smoothly varying 1-
parameter family of embeddings

B, 1 IT'(S* x B™ %) — Xx#'(Sk x "  x#'(S* x §"7F)
with By = 81 = II"(S¥ x U). Use this to define a smooth embedding
B:S! x IT'(S* x B" %) — §' x X#'(S* x §"7F)

via B(t,p) = (¢, B(p)), identifying S' with [0,1]/1 ~ 0. Now perform fiberwise
surgery along (3, i.e remove

B(S" x II'(S* x B" %))
and replace with

Sl % Hn(Bk+l X Smfkfl)
via the gluing map

B St x ISk x s K1y s s1 x X#'(S* x §™7K)

Let Y denoting the resulting (m + 1)-manifold; because the surgery respects the
S!—factor, Y is a bundle over S'. The fiber over 0 is equal to the result of surgering

X#'(SK x §™~*) along I11"(S* x B™~*). Since the complement of S¥ x B"~* in §k x §m—*
is canonically identified with S¥ x B™~*  the result of surgering S* x §"* along
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S* x B"™* is canonically identified with (S x B"~%) U (B*t! x §"=%=1) which is
canonically identified with $” as the boundary of B¥*! x B~k Thus the fiber over 0
can be canonically identified with X, and thus the monodromy of Y is a well-defined
element of mo(Diff *(X)). This element of 7o(Diff 7 (X)) is our definition of F Hin(b),
where b € m1(FSi (X)) is the element represented by the family ;.

We now give an equivalent definition of F#Hy, in terms of parameterized handle
attachment rather than parameterized surgery, more in line with Cerf theory and more
useful for the rest of this paper.

The reader may find it helpful to think of S'-parameterized handle attachment as
attachment of round handles, as introduced by [1] and motivated presumably by earlier
work by Bott [2]. In the dimension and indices we care about, a round (m + 2)—
dimensional (k + 1)-handle is S' x B**! x B"* attached along S' x Sk x B" % If
one attaches a (m + 2)—dimensional round (k 4+ 1)—handle to an (/m 4+ 2)—dimensional
manifold Z which is itself equipped with a fibration 7 : Z — S', and if the attaching
map 7 : S' x §¥ x B"* — 9Z respects the fibration in the sense that 7 o v is the
projection map S' x S¥ x B"~* — §!  then the resulting manifold Z’ again fibers over
S! so that each fiber of Z' is obtained from the corresponding fiber of Z by attaching
a standard (m + 1)—dimensional (k + 1)-handle to Z.

As in the parameterized surgery discussion, given b € m(F Sy (X)), represent b by
the family of embeddings /; and use this to produce the embedding

B S' x IT'(S* x B" %) < §' x X#'(S* x §"7F)

We will build a (m + 2)—-manifold Z which fibers over S' and is a fiberwise cobordism
from S' x X to the (m + 1)—dimensional bundle Y constructed in the preceding
paragraph. By a “fiberwise cobordism”, see Figure 5, we mean that 9Z = —(S! x X)I1Y
and that the bundle maps Z — S', S' x X — S! and Y — S! all commute with the
inclusions of S! x X and Y into Z, so that the fiber Z, of Z over some ¢ € S! is itself
a cobordism from {7} x X to the fiber Y; of Y over 7.

To build Z, firstlet W equal [0, 1] x X with n (m+ 1)—dimensional k—handles attached
along n unlinked O—framed unknotted S*~!s lying in a ball in {1} x X C [0, 1] x X.
Thus W is a cobordism from X to X#'(S¥ x $”~%). Now consider S' x W, which is
a cobordism from S' x X to S x X#'(SK x §”). Let Z be the result of attaching n
round (m + 2)—dimensional (k + 1)—handles to the top boundary ST x X#(Sk x §mky
of S! x W using 3 as the attaching map. Equivalently, use each 3; as the attaching map
for n (m+1)—dimensional (k+1)~handles attached to {1} x X#"(Sk x §"~%) c {t} x Y;
interpreting this as smoothly varying fiberwise handle attachment gives our construction
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Figure 5: A fiberwise cobordism Z from S x X to Y, with fiber Z, being a cobordism from
XtoY,.

of Z. The top boundary of Z is now a bundle over S'. Since, at ¢ = 0, the atttaching
maps Sy for the n (k + 1)-handles are in standard cancelling position with respect
to the n k—handles used to build W, we see that the fiber of Z over 0 is canonically
identified with [0, 1] x X, and thus the top boundary of this fiber is canonically identified
with X. Thus the monodromy of the top boundary of Z is a well-defined element of
mo(Diff (X)), which we define to be FH ,(b).

The fact that these two definitions of FH ,(b) agree is simply because, just as handle
attachment modifies the boundary of a manifold by surgery, parameterized handle
attachment modifies the boundary of a bundle by parameterized surgery.

Thanks to the punctures, we have basepoint preserving inclusions
oo CFSkn(X) C FSut1(X k) C ...
and thus induced maps on 7; and thus a direct limit
coe = TUF S n(X) = T(FSknt1(X)) — - .. = T(FSk,00(X))

Again, we do not really care about the limiting spaces, just the groups. Thus one
should think of an element of 7(FSk (X)) as an equivalence class of loops in
some FSy ,(X), where two such loops are equivalent if they become homotopic after
including into some F Sy n(X) for some N > n. Itis not hard to see that these induced
maps on 7y commute with the 7Hy , homomorphisms, so that we can take the direct
limit of the homomorphisms FHy ,
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‘We summarize our discussion thus far as follows:

Definition 8 Given an m-manifold X with m > 2, given an integer £ with 0 <
k < m, and an integer n > 0, the associated parameterized framed handle attachment
homomomorphism is the homomomorphism

FHpn : TI(FSk (X)) — mo(Diff (X))

defined in the following way: Use b € m(FSk,(X)) to build a bundle over S' in
which each fiber is a cobordism from X to some m-manifold built with n standardly
attached (m 4+ 1)—dimensional k—handles and n (m + 1)—dimensional (k 4 1)-handles
attached according to a loop of embeddings representing . The monodromy of the
top boundary of this fiberwise cobordism is FHy ,(b). Taking the direct limit as n
goes to oo gives the limit homomorphism

FHi oo : M(FSoo(X, k) — mo(Diff T (X))

As in the unframed setting of the introduction, we have two natural subspaces of
FSin(X): Let ]-"Sg’n(X) denote those embeddings of IT"(S* x B”~¥) into X#"(S¥ x
S"=k) for which the S¥ x {0} in the i’th S¥ x B~ transversely intersects the {p} x §"*
in the j’th Sk % §m=k summand transversely at ¢;; points. Let ]/:§k7n(X) denote the
subspace of embeddings with the property that the image of II"(S* x B"*) is disjoint
from I1"(S* x {p'}) for some fixed p’ € §"~*\ U. Note that our basepoint lies in both
of these subspaces.

Proposition 9 For each n, 1,(mw(F 827H(X))) is in the kernel of FHy ,. Thus in the
limit, z*(m(]:Sg,oo(X))) is in the kernel of FH .

Proof This is because when the S¥ x {0}’s are dual to the {p} x S"*’s for all ¢
in a loop of embeddings f;, then for all ¢ the k—handles and (k 4+ 1)-handles cancel
uniquely (this is Cerf’s 'unicité de mort [4]). Thus the cobordism Z from § I'x X
to Y becomes a bundle over S! with a Morse function without critical points which
restricts to each fiber as a Morse function without critical points. This implies that
the monodromy at the top is isotopic to the monodromy at the bottom, and since the
monodromy of S' x X is the identity then the monodromy of Y is isotopic to the
identity. O

Now we discuss the relationship to spaces of spheres without framings. Recall that

Sia(X) = Emb(I1"Sk, X#'(S* x sm=k)T)
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There is an obvious “framing forgetting”” map of pointed spaces
F i FSin(X) = Sin(X)
given by restricting an embedding of S X B" % to §¥ = Sk x {0}. We have obvious
definitions of the subspaces Sf’n(X) and S (X).
Lemma 10 The parameterized framed handle attachment homomorphism
FHin : mi(FSkaX)) — mo(Diff (X))

factors through the image of the homomorphism

Fi: T(FSkn(X) = m1(Sin(X))
induced by the framing forgetting map F , giving a handle attachment homomorphism

Hin » Fu(mi(FSka(X)) = mo(Diff ¥ (X)).

Thus if F, is surjective we have a homomorphism

Hin : T1(Sen(X)) — mo(Diff (X))
and z*(m(S,?’n(X))) is contained in the kernel of Hy ,,. In the limit we get

He oo T1(Sk,00(X)) — mo(Diff ™ (X))

with 1,(7 (SS,OO(X))) contained in the kernel.

Proof Palais [15] shows that restriction maps such as F are locally trivial and thus
satisfy the homotopy lifting property. The fiber of F is the space of framings of a
fixed S, i.e. (up to homotopy) maps from S¥ to SO(m — k). Note that the fiber over
the basepoint is actually a subspace of F ngn(X) and thus 7; of the fiber lands in the
kernel of FHy ,. As a consequence, even though

Fi : Ti(FSin(X) = m1(Sen(X))

may not be injective, if the fiber is not simply connected, we still have that FH ,
induces a well-defined homomorphism #y , from the image F. (7 (F S (X)) of F.
in m1(Sk,(X)) to mo(Diff T(X)). All of this also commutes with the inclusion maps
from n to n + 1 giving the results for Hy o . O

Finally we return to the case of relevance to Theorem 1. Here we have m = 4 and
k = 2 and the base manifold X = S*.
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Lemma 11 The induced map
Fo: m(FS2n(8) = m1(S2,n(S*)
is surjective. Thus we get a well-defined homomorphism
Mo m1(S2,(8Y) — mo(Diff ()
with 1, (Sgn(S“)) in the kernel, and a limit homomorphism
Ha oo T1(S2,00(SY)) — mo(DIffT(5%))
with 1.(S3 () in the kernel.

Proof The fibers of the framing forgetting map F are path-connected, i.e. a 2—sphere
in a 4—-manifold with self-intersection 0 has only one framing up to isotopy, since
m(SO(2)) = 0. Thus the long exact sequence of homotopy groups gives the desired
surjectivity. a

3 Surjectivity of H

In this section we will complete the proof of Theorem 1, by showing that H> o :
T1(Sse) — mo(Diff T(S%)) is surjective.

We will use Cerf theoretic techniques, beginning with a pseudoisotopy. Recall that a
pseudoisotopy from the identity diffeomorphism of a manifold X to a diffeomorphism
¢ : X — X is adiffeomorphism @ : [0, 1] x X — [0, 1] x X which restricts to {0} x X
as the identity and to {1} x X as ¢.

Lemma 12 Every orientation preserving self-diffeomorphism of $* is pseudoisotopic
to the identity.

Proof Consider an orientation preserving diffeomorphism ¢ : §* — S$*. Let f :
$°> — R be projection onto the last coordinate in R®, and for any interval / C R,
let S = f~1(I). Let V be a smooth vector field on $° \ {(0,0,0,0,0,41)} which is
orthogonal to all level sets of f and scaled so that df (V) = 1. Let X = Si[llyo] Ug S[Soyl],
where ¢ : 8S€071] =5 - -85 = 8S[571’O] is now seen as an orientation reversing
gluing diffeomorphism. Arrange the gluing (i.e. the smooth structure on X) so that
the vector field V on the two halves of X is still a smooth vector field on X, which we
call Vx. Note that X also inherits the Morse function f, which we label fy : X — R,
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and we can use the same notation X; :fgl(l) C X. The point is that if I C (—o0,0]
or if I C [0, 00) then X; = S?, i.e. they are actually equal sets, not just diffeomorphic
manifolds.

Now note that X is homotopy equivalent to S° and therefore [10, 13] diffeomorphic
to S°. For some small ¢ > 0 we can assume that the diffemorphism ® : §°> — X is
the identity on S[S—l,—l-i-e] = X[—1,—14¢ and on 5?1—6,1] = X[1—¢,1]- Using flow along
1te] with §*, we
can parametrize both S?—H—e,l—e] and X|_jqc1—as[—1+¢1—¢€] X S* and then @
restricts to give a diffeomorphism from [—1+¢, 1 — €] x $* to itself. Furthermore, this
map is the identity on {—1+4 ¢} x §* and by continuity must equal ¢ on {1 — €} x S*.
After reparametrizing [—1 + €,1 — €] as [0, 1] we get the desired pseudoisotopy.

V and Vy, respectively, and the standard identification of 65[5_ 1

O

Given a pseudoisotopy ® : [0, 1] x st [0,1] x S* from the identity to ¢ : §t 54,
let
Z(®) = [0,1] x [0,1] x §*/(1,y,p) ~ (0, D(y, p))

be the mapping torus for ®, interpreted as a bundle over S' and as a fiberwise cobordism
from S' x §* to Y(¢) = [0, 1] x §*/(1,p) ~ (0, $(p)). We use the variable y for the
second [0, 1] factor because later this will play the role of a “height” rather than a
“time parameter”. We will reserve ¢ for the first [0, 1] factor, which in fact is the base
S! =10, 1]/1~0 variable.

Definition 13 A fiberwise handle decomposition of Z(®) is a decomposition of Z(P)
into a collar neighborhood [0, 1] x S' x $* of the bottom boundary S' x $* and a
collection of round handles S! x B x B>—* for various k, on each of which the bundle
map Z(®) — S' pre-composed with the characteristic map of the handle agrees with
the projection S' x BX x B3~% — §'. This induces an ordinary handle decompositon
of each fiber Z(®), as a collar neighborhood [0, 1] x {r} x S* of the bottom boundary
{t} x §* and a collection of handles {t} x B* x B>7*,

Once we establish the following proposition it will not take much work to translate the
result into our main surjectivity of H o result.

Proposition 14 The cobordism Z(®) has a fiberwise handle decomposition with the
following properties, for some n € N:

(1) Foreacht € S', the induced handle decomposition of the 5—dimensional fiber
Z(®), over t involves exactly n 2—handles and n 3—handles.
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(2) There is a fixed embedding
a: 11" x BY) — §*
such that the n 2-handles for each Z(®), are attached to {t} x [0, 1] x s4 along
«, as an embedding into {t} x {1} x S*. In other words, the attaching maps
for the 2—handle do not vary with t. As a result, for each t the 4-manifold
immediately above these 2—handles is canonically identified with #'(S* x §?),

and putting all the fibers together, the 5—manifold immediately above these
round 2-handles is canonically identified with S U #1(S% x §%).

(3) For each t, the attaching 2—spheres for the n 3—handles of Z(®), are an embed-
ding
By II"S? — #'(S% x $H)T € #'(S* x %)
which varies smoothly in t, forming a loop of embeddings of I1"S? into #"(S? x

S starting and ending at the standard embedding 11"(S> x {p}). In other
words, the 3—handles are attached along a based loop 3; in Sz,n(S“).

The “canonical identification” mentioned in item (2) in the statement can be made
completely explicit, if desired, by first fixing the standard handle decomposition of
S? x B3 with a single 0—handle and a single 2—handle, using this to fix the standard
handle decomposition of §"S?> x B with one O-handle and n 2-handles, and then
removing a small neighborhood of the index 0 critical point.

Proof of Proposition 14 Let f; : [0,1] x $* — [0,1] be projection onto the first
factor, i.e. fo(y,p) =y, let Vo = O, be the unit vector field on [0, 1] x $* in the [0, 1]
direction, let (fi, V1) = ®*(fo, Vo) = (fo o o, DD 1(Vp)), and let (f;, Vi) be a generic
homotopy of functions with gradient-like vector fields from (fy, Vo) to (fi, V1).

To preempt potential confusion, note that that [0, 1] factor with coordinate y in the
domain [0, 1] x $* of each function f; should not be confused with the [0, 1] parameter
with coordinate . Furthermore, each function f; maps to [0, 1], and this [0, 1] target
space, on which we will use the variable z, should also not be confused with either of
the other two [0, 1]’s.

Hatcher and Wagoner (Chapter VI, Proposition 3, page 214 of [9]) show that such
a family of functions f; with gradient-like vector fields V; can be homotoped rel
t € {0, 1} so as to arrange the following properties (see Figure 6):

* For each fixed value of the parameter ¢ € [0, 1]:

- The only Morse critical points of f; are critical points of index 2 and 3.
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Figure 6: A nice Cerf graphic with only critical points of index 2 and 3.

All critical points of f; map to distinct critical values. In other words, if
p and g are distinct critical points of f; with critical values z, = f;(p) and
74 = fi(q), then z, # z,.

All critical points of index 2 are below all critical points of index 3. In
other words, if p is a critical point of index 2 for f; with critical value
Zp = f(p) and ¢ is a critical point of index 3 with critical value z, = fi(¢q)
then z, < z,.

There are no handle slides. In other words, none of the flow lines of the
vector field V; connect Morse critical points of the same index.

At the moments of birth and death, the handle pair dying or being born
does not run over any other handles. In other words, none of the flow lines
of V; connect a non-Morse birth/death critical point to any other critical
point.

The function f; has at most one non-Morse birth/death critical point.

* All births of cancelling pairs of critical points happen before all deaths of
cancelling pairs. In other words, if f;, has a non-Morse birth critical point and
/1, has a non-Morse death critical point, then 7y < #;.

Recall that Z(®) = [0,1] x [0,1] x X/(1,y,p) ~ (0,®(y,p)). In this context, let
Z(®), = {t} x [0,1] x X be the fiber over t € S' = [0,1]/1~0. Since (f;, V) =
D*(fy, Vo), we get a function F : Z(®) — [0, 1] and vector field V on Z(®P) such that
(F,V)|z@), = (f, Vi). Each fiber Z(®), of Z(P) — s! gets a handle decomposition
from (f, V;) (allowing for birth and death handle decompositions) but it will take some
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work to arrange that these satisfy the remaining properties as stated in Proposition 14.
First let us characterize each fiber Z(®),, with its given handle decomposition, as much
as possible in terms of handle attaching data in {¢} x §* C S' x S§*.

Suppose that the births in our Morse functions f; occur at times 0 < 1/8 <1} < 1, <
... <ty < 1/4 and thatthe deaths occurattimes 3/4 <1, < ... <th <1, <7/8 < 1.
We will show how each cobordism Z(®), can be described as built from {z} x [0, 1] x §*
according to handle attaching data.

To do this we establish a few notational conventions. First, all of our embeddings
of spheres and disks of various dimensions are framed embeddings, but to keep the
terminology minimal we will sometimes suppress mention of framings. Second, given
a framed embedding € of a sphere in an m—manifold X, let X(e) denote the result of
surgering X along e. Third, a framed embedding ¢ of a disk D* into an n—manifold X
gives us several auxiliary pieces of information:

» We get a framed embedding o of S*~! = 9D into X.
* We get the surgered manifold X(«).

e In X(a) = X\ a(S*" x Bm*+1y U, (B¥ x §”%), there is a natural framed
embedding 3 of S* into X(c) which coincides with § away from the surgery,
ie. in X\ a(S¥! x B"~*¥+1), and which coincides with the core BX x {0} of
the surgery inside the surgered region B* x §"*.

* This embedding 3 of S* also comes with a dual (m — k)—sphere 3* which is
the meridian to «, i.e. a({p} x §"7%), so that 3 and B* intersect transversely
at one point in X(a).

This is the basic model for the result of attaching a cancelling pair of a (m + 1)-
dimensional k—handle and a (m + 1)—dimensional (k + 1)-handle, with the attaching
data for the pair being described entirely in X by the framed disk J. Thus we also see
that X(a))(8) is canonically identified with X. In this proof we will work with the case
k =2 and k+ 1 = 3, but later in the paper we will be interested in the case k = 1 and
k+1=2.

The notation introduced above also makes sense when the d’s, «’s or [3’s are embed-
dings of disjoint unions of disks or spheres. Using this, we now describe the form of the
explicit t—varying handle attaching data that gives the fiberwise construction of Z(®P),
i.e. the data that shows how to construct each Z(®), starting with {r} x [0, 1] x $* and
attaching various 5—dimensional handles.

 For 0 < t < t1, no handles are attached, i.e. Z(®), = {t} x [0, 1] x S*.
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For t = t;, there is a framed embedding §; of a disk D? into $* such that
Z(®),, is built from {#;} x [0, 1] x $* by attaching a cancelling pair of a 5—
dimensional 2-handle and 3-handle, with the 2-handle attached along the
framed embedding a,ll = 01|g1, and with the 3-handle attached along the
resulting framed embedding ﬁ,]] of $? into S4(a,1]).

For t; < t < t,, we have a t—varying framed embedding o, = ! of S' into $*
and a t—varying framed embedding 3, = 3 of §? into S*(y). For t; <t < 1,
Z(®); is built from {z} x [0, 1] x $* by attaching a 2—handle along o, and then
a 3—-handle along 3;. At t = t;, the o, and j3; agree with the o} and 3! from
the previous point.

For t = t,, there is a framed embedding &, of D? into $* disjoint from the
images of a}z and B}Z, such that Z(®),, is built from {} x [0,1] x §* by
attaching

- first a 5—dimensional 2-handle along 04,12,

- then a pair of cancelling 2— and 3-handles in which the 2-handle is
attached along oz,22 = d»|¢1 and the 3—handle is attached along the resulting
framed 2-sphere 7 in $*(a})(a?), and

- then a 3-handle attached along 5,12, which can be seen as a framed 2-
sphere in $*(y))), in $*(y),)(02) or in $* (o)) ) (@) (B2) = S* (o).

For r, <t < t3, we have a t—varying framed embedding o, = a,l II a,2 of
S'I1 8! into $* and a t—varying framed embedding 3, = B} I1 8% of 2 11 §?
into S*(ay), agreeing with the atlz, atzz, ﬁ,zz and B,lz of the preceding point when
t = tp, so that Z(®), is built from {¢} x [0, 1] x $* by attaching 2—handles along
«; and then 3-handles along (;.

This process continues with each birth at time #; governed by a new framed disk
§;, generating a new framed S', o , and a new framed $?, 3!, which then join
the previous framed spheres to create o, = o} II.. .1l and 3, = B II.. .11 3,
which are the attaching spheres for 2— and 3-handles for #; < ¢ < f41.

Reversing time we see the deaths governed by (most likely quite different) disks
4, ...,0) and the same pattern of framed S'’s and $?’s in between these times.

For t, <t <1, there is a t—parametrized family «;, of framed embeddings of
11"S" into S* and a —parametrized family /3, of framed embeddings of 11"S? into
S*(cy;) which constitute the attaching data for the n 2—-handles and n 3-handles
used to construct each Z(®), in this range.

We will now improve the format of this data somewhat. First, we can arrange that for
some small € > 0, on the time interval #; < ¢ < f; + € the embeddings o, and [; are
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independent of ¢, i.e. the first framed circle and sphere do not move for a short time
after their birth. Next, since a birth happens at a point, we can make the second birth
happen at an earlier time so that in fact #; < f, < t; + €. Repeating this, and doing the
same in reverse with the deaths, we can assume that on the whole interval 1 < ¢ <,
and on the whole interval 7, < t < t’l, the a; and 5, are independent of ¢ except for
the fact that at each #; a new ozﬁ and ﬂf is added to the mix (and ditto for the deaths).

Thus now the governing data for the constructions of each Z(®),; can be more succinctly
described by the following data:

* A framed embedding § = 6;I1...116, of IT"D? into S* (for the births), defining
framed embeddings « of I1"S' into $* and /3 of 11"S? into S*(«). We will call
these the “birth disks”.

* A framed embedding &' = §] IT... 118, of I"D? into $* (for the deaths),
defining framed embeddings o/ of II"S' into $* and /' of II"S? into S*(¢/).
We will call these the “death disks”.

* A t-parameterized family, for + € [1/4,3/4], of framed embeddings o, =
of 1. 1L o) of 1I"S" into §*, with vy /4 = @ and a3,4 = .

* A t-parameterized family, for ¢+ € [1/4,3/4], of framed embeddings (5; =
BHI.. 11 B} of I"S? into $*(a), with 3y /4 = B and B34 = /.

In the time interval 7 € [1/8, 1/4], the pairs of 2-handles and 3—handles are born one
after another but their attaching circles and spheres do not move after birth, until all
pairs are born and then the motion starts at + = 1/4. Similarly all motion stops at
t = 3/4 and then the pairs die one after another in the time interval ¢ € [3/4,3/8].

Our next step is to arrange that o, = « for all ¢+ € [1/4,3/4], using a standard “run
everything off the end” argument. We give this argument in careful detail here, and
then we appeal to a similar argument without as much detail in the next stage of the
proof. Let & be a family of embeddings of II"S' — §* defined for ¢ € [0, 1] as
follows:

. Fort€[0,1/4],d,:a1/4:a.

» Forte[1/4,3/4], & = o.

. Forte[3/4,7/8],dt:a3/4:a’.

» Fort € [7/8,1], & = é&7_7,; this simply means that on [7/8, 1], the family &,
is the same as &, on [0, 7/8], but sped up and run backwards so that &; = dy.

Use the isotopy extension theorem to produce a family of diffeomorphisms 1, : $* —
§*, for t € [0, 1], such that v, o &, = G = « for all # € [0, 1] and satisfying:
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For t € [0,1/4], ¥, = id.
For t € [3/4,7/8], 1y = 134, i.e. 1, does not vary with # in this time interval.

For t € [7/8, 1], ¥; = 17—7, and in particular,
® 1[)1 =id.

Since 1, as a loop of diffeomorphisms of S$* starting and ending at the ending at
the identity, simply traverses a path from 9 = id to 17,3 and then follows exactly
the same path backwards to id, there exists a 2—parameter family of diffeomorphisms
oY §* — §* such that o, = id, ¢1; = 1 and @50 = ¢1 = id for all s € [0, 1].
We can use this to produce a 2—parameter family of gradient-like vector fields V;, for
the 1-parameter family of Morse functions f; on [0, 1] x $* satisfying:

» Foreach (s,7) € [0,1] x [0, 1], Vs, is gradient-like for f;.
e Foreachrc [0,1], Vo, = V;.
e Foreach s € [0,1], Vso = Vp and Vs = V.

e There are values 0 < yp < y; < 1 such that, for all ¢ € [0, 1], there are no
critical values of f; in [0, y;] and such that, for all (s,7) € [0,1] x [0, 1], V,
agrees with V; outside f,*l([yo,yl]).

« Using flow along V; to identify f,~(yo) and f,"'(y;) with S*, we have that for
all (s,#) € [0,1] x [0, 1] downward flow along V;; from o) to ffl(yo) is
the diffeomorphism ¢ ;.

Then we see that, for the 1—parameter family (f;, V1), the attaching circles for the 2—
handles are precisely ¢1 ,00; = ¥;0a; = a. Now we use Vj ; as our new gradient-like
vector field and we have succeeded in making sure that the 2—-handle attaching maps
do not move with time, i.e. a, = « for all t € [1/4,3/4]. The “trick” used is that
in the time interval 7 € [7/8, 1] on which we run everything backwards, there are no
critical points, so we do not have to worry about what running things backwards does
to the attaching data for handles. Also note that, because v); = id does not vary with ¢
on the intervals 7 € [1/8,1/4] and ¢ € [3/4,7/8] when the births and deaths occur, we
still have the property that the attaching circles and spheres for the 2— and 3—handles
do not move after their births until # = 1/4 and that all motion stops at t = 3/4, after
which the cancelling handle pairs die one by one. The only differences are that the
attaching spheres o, for the 2—-handles do not vary at all with ¢, over the entire time
interval ¢ € [1/4,3/4]. We have preserved our orginal configuration of birth disks 4,
but our death disks &’ have now changed, but they still do not vary with ¢ during the
death interval 7 € [3/4,7/8]. Although ¢’ has now changed, we will relabel the new
death disks as ¢'.



Diffeomorphisms of the 4-sphere, Cerf theory and Montesinos twins 23

Now we would like to arrange that &' = §. This is easy to arrange if we allow the
boundaries of the disks to move, but we have already arranged that 96’ = 96 = « and
we want to preserve this feature. We do this as an application of Gabai’s 4—dimensional
lightbulb theorem, in particular the multiple spheres version Theorem 10.1 in [6].

Recall from our discussion of handle and surgery terminology earlier that, given the
2-3-birth disks ¢, we immediately get the attaching 2—spheres for the 3—handles 3
and their dual 2—spheres 3*. The same holds for the death disks ', giving attaching 2—
spheres 3’ with dual 2-spheres 3. But since 9§ = 9’ and since these dual spheres
can be taken to the meridians to the boundaries of these disks, in fact we now have
arranged that 8* = [3*. Thus, thinking about our 1—parameter family (3, of attaching
spheres for the 3-handles for ¢ € [1/4,3/4], we know that 3, 4 and (33,, have a
common set of dual spheres 3* and in fact 3 /4 and (334 agree in a neighborhood of
p*. Since 334 is isotopic to (/4 (although this isotopy does not preserve geometric
duality with 8*), they are homotopic and thus the lightbulb theorem applies. The
conclusion of the theorem is that (334 is isotopic to 34 via an isotopy that fixes a
neighborhood of 3*. This isotopy happens in the surgered manifold $*(x), but since
surgering S*(ar) along B* recovers S*, the fact that the isotopy fixes a neighborhood
of 5* means precisely that we get an isotopy rel. boundary of 43,4 = 0’ to 4, /4= o
in $*.

Let us assume that 8, = (5 4 forall 1 € [5 /8,3/4]. We can use the isotopy from
the preceding paragraph and a “run everything off the end argument” similar to the «;
argument above to modify our family of gradient-like vector fields V; so as to finally
arrange that & = § as desired. More precisely, let &, for € [5/8,3/4], be a family
of embeddings of I1"D? into S* such that §s 8 = 0" and b5 /4 = 0. Extend this to an
ambient isotopy 1 : §* — §* for t € [0, 1] such that:

e Forall r € [0,5/8], ¥, = id.

 Forall t € [5/8,3/4], ;06 = 0.

 Forall t € [3/4,7/8], ¥ = 34 = /3.

 For ¢ € [7/8,1], ¥y = v13/8—, i.€ 9y is the same as ¢, on [5/8,3/4] but run

backwards in time.

As before, 1), is a null homotopic loop of diffeomorphisms of S* based at id, so we
let ¢, be a homotopy rel ¢ € {0, 1} from ¢, = id to ¢, = 9/, and then use this to
modify our gradient like vector field V; rel ¢t € {0, 1}. The upshot is that we are able
to modify our attaching maps by v, and thus arrange that our death disks ¢’ become
equal to our birth disks §.
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To complete the proof, since the birth and death disks are now equal, we can move
the births closer and closer to ¢+ = 0 and move the deaths closer and closer to t = 1
and then merge the deaths with the births at t = 0 = 1 € S' = [0,1]/1 ~0. Now
we have a r—parameterized family (f;, V;) giving a fiberwise handle decomposition of
Z(®) satisfying almost everything as advertised in the statement of the proposition.
The last detail to arrange is that the loop of embeddings j3; of 11"S? — #(5% x §?) all
miss a single fixed point in #*(S? x §%). This is done simply by observing that the trace
of the family is a smooth map of a 3—manifold S' x I1"S? into a 4—manifold which,
by Sard’s theorem, must miss a point.

O

Proof of Theorem 1 In Section 2 we have already constructed the homomorphisms
H>,,, shown that it commutes with j,, and thus constructed H» o, and we have shown
that 2,.(m (Sg 00(54))) lies in the kernel of H . ; this was all summarized as Lemma 11.
It remains to prove that H . is surjective.

Since H> o is a limit of maps H ,, what we are really trying to prove is the following:

For any orientation preserving diffeomorphism ¢ : $* — $*, there is some n € N
and some loop 3; in S, based at the basepoint I1*(S?> x {p}), such that Ho n([5i]) =
[#] € mo(Difft($*)). Choose a pseudoisotopy ¢ from id to ¢, build the bundle
of cobordisms Z(®) and apply Proposition 14. This gives us exactly the loop [,
and we see that Z(®) is exactly the result of parameterized handle attachment as in
Definition 8. |

4 Turning (2,3)-handle pairs into (1,2)-handle pairs

We now need to work toward the connection with Montesinos twins and the proof of
Theorem 4, that twists along Montesinos twins generate the subgroup of mo(Diff " (5*))
corresponding to loops of 2—spheres which remain disjoint from parallel copies of the
basepoint 2—spheres. More precisely, recall that §27H(S4) is the space of embeddings
of II"S? into #'(S? x $?)! which remain disjoint from 11(S? x {p'}) for some fixed
p €S2, with basepoint being I1(S? x {p}) for p # p’. We want to study the subgroup
Ho, 00 (1 (1 (S2,00 (5.

As in the title of this section, we will frequently refer to (k, k + 1)—handle pairs.

Definition 15 A (k, k + 1)—handle pair is a pair of handles, one being a k—handle and
the other being a (k + 1)—handle, such that the attaching sphere for the (k 4 1)—handle



Diffeomorphisms of the 4-sphere, Cerf theory and Montesinos twins 25

can be isotoped in the level above the k—handle to intersect the belt sphere for the
k—handle transversely at one point. A (k, k + 1)—handle pair is in cancelling position
if the attaching sphere and the belt sphere intersect transversely at exactly one point,
without performing an isotopy first.

In other words, for a general (k,k + 1)-handle pair, after an isotopy of the attaching
sphere of the (k + 1)-handle, the pair of handles can be cancelled, but they are not
necessarily in cancelling position before this isotopy is performed.

To relate szoo(z*(m(gzm(ﬁ)))) to Montesinos twins we will first need to relate it to
families of (1,2)—handle pairs coming from loops of framed circles in #*(S! x $%). In
particular, using the notation from Section 2, in this section we will prove:

Theorem 16 For any 1, H (1.(m1(S2,,(S)) = FH1 u(m1 (FS1 ().

This means that any isotopy class of diffeomorphisms of S* that can be realized by a
family of cobordisms built with n (2, 3)—handle pairs governed by a loop in gz,n(S“)
can also be realized by a family of cobordisms built with n (1,2)—pairs governed by a
loop in FS 17,1(54), which is the space of framed embeddings of a disjoint union of n
circles in #'(S' x $3)f.

The essential idea is that, when the 3—handle attaching maps lie in §2yn(S4), we can use
a 5—dimensional analog of the 4—dimensional Kirby calculus “dotted circle” notation
to represent our 2—handles as dotted circles and our 3—handles as 2—spheres moving
in the complement of these dotted circles. Then we can do the 5—dimensional analog
of the 4—dimensional trick of “switching dots and zeros” to turn the dotted circles
into attaching circles for 2—handles and to turn the 2—spheres into dotted 2—spheres
which represent 1-handles. Note that in general this process changes the underlying
cobordism. In addition to the subtleties involved in working in dimension 5 rather than
dimension 4, we have the added complication that we need to do this in a 1 —parameter
family. The author would like to thank Peter Teichner and Danica Kosanovic for first
making him aware of the potential of 5—dimensional dotted circle and sphere notation
when discussing Watanabe’s work [17].

For the reader who is not comfortable with 4—dimensional dotted circle notation, the
discussion by Gompf and Stipsicz in Section 5.4 of [7] should be helpful, with many
more details than given here and with helpful illustrations. In general dimensions, a
trivial n—dimensional k—handle is a k—handle which could be cancelled by a (k + 1)-
handle, in which case one way to attach a trivial k—handle to a n—manifold X is to
attach a cancelling (k, k + 1)—handle pair to X and then remove a neighborhood of
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the B" ¥~ co-core of the (k 4+ 1)-handle. If one then cancels the (k, k + 1)—handle
pair, one is simply removing a regular neighborhood of a properly embedded boundary
parallel B %! from X, which can be indicated as a dotted " ¥=2 in 9X. Looking at
the effect on 0X, note that adding a trivial k—handle modifies OX by a connected sum
with ¥ x §"~%=1 and that this can be also achieved by adding a trivial (n — k — 1)—
handle, so that from the point of view of the boundary the dotted $" %= can either be
interpreted with its dot as describing a k—handle or simply as the attaching sphere for
a (n — k — 1)-handle.

In the standard 4—dimensional setting, n = 4 and k = 1, so that we have dotted circles.
In our setting we will work with two cases, one where n = 5 and k = 2, giving dotted
circles, and the other where n = 5 and k = 1, giving dotted 2—spheres. We now
describe these cases, and the 4—dimensional case, more explicitly.

In dimension 4, a dotted circle x : S' < §° in a Kirby diagram needs to be an unknot,
and then one chooses a disk 7 : D*> < S§° with 0K = &, pushes the interior of % into a
collar neighborhood (—¢, 0] x $3 of S and then removes a regular neighborhood of .
This has the same result as attaching a 4—dimensional 1-handle along an embedding
¢ : 8% < §3 where ¢ = ¢ for an embedding ¢ : B! < §* which is dual to &, i.e. ¢
transversely intersects X at one point in their interiors.

There are several important points to note about this construction:

(1) In principle one needs to specify the disk %, not just its boundary . However,
in dimension 3 there is a unique disk bounded by an unknot so one ignores
this issue. In higher dimensional analogs, and especially when working in 1-
parameter families, we should really keep track of the analog of the disk, not
just the boundaries.

(2) Suppose that a 1-handle is described by a dotted circle « : S! < S bounding
a disk & : D> < S°, and that a 2—handle is attached along a knot K : §' —
s3 \ k(S 1. If K intersects & transversely once, then the 1-handle and 2-handle
are in cancelling position and can be cancelled.

(3) The real advantage, in 4—dimensional Kirby calculus, of using dotted circle
notation is that the attaching knots for the 2—handles can be drawn entirely in
S even though they might run over some 1-handles, and the 1— and 2-handle
information is given by a single link in S including both the dotted circles
and the attaching knots for the 2—handles. Each 1-handle creates an S' x S?
summand in the boundary of the 4-manifold one is building, and the reason that
we can draw everything in S° is that the attaching knots for the 2—handles can
be assumed to miss an S' x {p} in each of these S' x S? summands, for some
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p € S%. Ina 1-parameter family this may not be the case, which is why one of
the Kirby calculus moves when using dotted circle notation involves “sliding a
2-handle over a dotted circle” as in Figure 5.36 of [7].

Not all 1-handles can be represented by a dotted circle. The 1-handle needs
to be a trivial 1-handle, which means that it could be cancelled by a 2—handle,
since removing a neighborhood of a disk bounded by the dotted circle can be
seen as first attaching the 1-handle, then attaching a cancelling 2-handle, and
then removing a neighborhood of the co-core of that 2—handle. A trivial 1-
handle is nothing more than a 1-handle with both feet on the same component
of the manifold to which it is being attached, and which does not create a non-
orientable manifold after being attached. Alternatively, this condition is that the
1-handle is attached along an S° that bounds a B! with a framing which extends
across the B'.

Given a dotted circle x, one can either use the dotted circle notation and interpret
this as a 1-handle or one can attach a 2—handle along x with framing 0. These
produce different 4—manifolds but the new boundaries created are the same. In
other words, from the point of view of the 3—manifold boundary, putting a dot
or a 0 on an unknotted circle in a Kirby diagram describes the same resulting
3—manifold.

Now we spell out, with more detail, the 5—dimensional analogs of these points for
S5—dimensional 1-handles.

6]

2

Let W be a 5—dimensional cobordism from 4-manifold X to 4—-manifold X,
and let W’ be the result of attaching a 5—dimensional 1-handle to W via a
framed embedding ¢ : S° x B* < X, which extends to a framed embedding
¢ : B' x B} — X;. This is a cobordism from Xy to X|. Let B°: B® — X!
be the restriction of ¢ to {0} x B>. In other words, 3° is a dual B* to the
B' bounded by the attaching O—sphere of the 1-handle. The superscript e
indicates that this is a “dotted 3—ball”. Let W” be the 5—manifold obtained by
pushing the interior of 3° into a collar neighborhood (—e, 1] X X; of X} in W
and then removing a regular neighborhood of this pushed-in 3—ball. This is a
cobordism from Xy to X{'. Then X| and X/ are diffeomorphic and W” and
W' are diffeomorphic cobordisms. These diffeomorphisms are canonical in the
sense that if we do this in parameterized families and build fiberwise cobordisms,
we have corresponding fiberwise diffeomorphisms. For this reason we abuse
notation and declare that W = W” and X| = X/

Since everything described above happens in a ball one can see directly that
X} = X #(S"' x $%). In the dotted B? notation, the S! factor is a linking meridian
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to the dotted 2—sphere 93°, and the dotted B? itself is one hemisphere of the S°
factor.

Using dotted 3-ball notation, the difference between X and X is the St x B3
part of the boundary of the neighborhood B> x B3 of the pushed-in B> that is
removed from W to produce W’. This S! x B3 is thus a regular neighborhood of
S x {p} in the S! x $* summand of X] = X;#(S! x $%), for some fixed p € S°.

From this we see that if a 5—dimensional 2-handle is attached to W’ along
an embedding « : S' — X{ = X;#(S! x $%) which is disjoint from S! x {p}
for some fixed p € §3, then using dotted B> notation the attaching S' for the
2-handle can be draw entirely in X; along with the dotted B>’s.

In this case, the S'’s for the 2—handles and the boundaries of the dotted B>’s for
the 1-handles are disjoint, but the S'’s may intersect the interiors of the dotted
B?’s, indicating that a 2—handle is running over a 1-handle.

If the attaching S' for a 2—handle transversely intersects a dotted B® for a 1-
handle exactly once, then the (1, 2)—handle pair is in cancelling position and can
be cancelled.

Given the dotted 3-ball 3°, we could attach a 3—handle along the 2—sphere 03°
instead of the 1-handle construction above. This produces a different cobordism,
but the boundary 4-manifold is exactly the same, since both constructions
change the boundary by surgery along 93°.

And finally we can give the analogous statements for 5S—dimensional 2—handles.

)

2

3)

Let W be a 5—dimensional cobordism from 4-manifold X to 4—-manifold X,
and let W’ be the result of attaching a 5—dimensional 2—handle to W via a
framed embedding o : S' x B® < X; which extends to a framed embedding
@ : B? x B> < X;. This is a cobordism from X; to Xi. Let 4° : B? — X!
be the restriction of @ to {0} x B2. In other words, ~* is a dual “dotted disk”
to the disk bounded by the attaching circle of the 2-handle. Let W” be the
S5—manifold obtained by pushing the interior of +* into a collar neighborhood
(—¢,1] x X; of X; in W and then removing a regular neighborhood of this
pushed-in disk. This is a cobordism from X to X| and again W” and W’ are
canonically diffeomorphic, and we again declare that W = W” and X| = X7 .
Now we have that X| = X #(S? x S?) where the first S? factor is a linking
meridian to the dotted circle 0+°, and the dotted disk itself is one hemisphere of
the second S? factor.

Using dotted disk notation, the difference between X| and X; is the S% x B?
part of the boundary of the neighborhood B> x B? of the pushed-in B? that is
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removed from W to produce W’. This S? x B is thus a regular neighborhood of
§? x {2} in the $? x $? summand of X} = X #(S? x §?), for some fixed p € S2.

(4) From this we see that if a 5—-dimensional 3-handle is attached to W’ along an
embedding 3 : S? — X| = X;#(S? x $?) which is disjoint from S? x {p} for
some fixed p € S2, then using dotted disk notation the attaching S* for the
3-handle can be draw entirely in X; along with the dotted disks.

(5) Inthis case, the $2’s for the 3—handles and the boundaries of the dotted disks for
the 2—handles are disjoint, but the S?’s may intersect the interiors of the dotted
disks, indicating that a 3—handle is running over a 2—handle.

(6) If the attaching S for a 3—handle transversely intersects a dotted disk for a
2-handle exactly once, then the (2, 3)—handle pair is in cancelling position and
can be cancelled.

(7) Given the dotted disk +°, we could attach a 2—handle along the circle 9~° instead
of the 2—handle construction above. This produces a (potentially) different
cobordism, but the boundary 4-manifold is again exactly the same, since both
constructions change the boundary by surgery along 0+°.

One might wonder whether we really need to keep track of the dotted B>’s and disks
or whether, as in the 4—dimensional setting, one can just track the boundary spheres
and circles. Budney and Gabai have shown [3] that unknotted 2—spheres in S* can
bound “knotted” 3—balls, and of course, although all S > in §* are unknotted, 2—knots
can be tied into any spanning disk for such an S'. What really matters is whether
these spanning disks and balls are isotopic in dimension 5, and we leave this as an
interesting question; the Budney-Gabai examples are in fact isotopic in B>, but there
might in principle be more complicated examples that remain nonisotopic even when
pushed into BY. * However, here we play it safe by working with “dotted disks” instead
of “dotted circles” and “dotted balls” instead of “dotted spheres”.

The following technical lemma will be needed in our proof of Theorem 16 as preparation
for a “dot switch” argument. In the statement of the lemma there is no mention of
handles, but to set it in context, think of 7/ as a family of dotted circles describing
S5—dimensional 2—handles and think of /3, as a family of attaching 2—spheres for 5—
dimensional 3-handles. The lemma constructs a family 3 of dotted B*’s which
can either be seen as simply auxiliary data to the 3-handle attaching spheres or as
dotted B3’s for 1-handles. Once the components of 3¢ are interpreted as dotted B>’s
describing 1-handles, then one is ready to interpret the boundary S'’s 97 as attaching

*Added in proof: Daniel Hartman [8] has in fact shown that this does not happen: any two
B*’sin §* with the same boundary become isotopic after pushing their interiors into B>.
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circles for 2-handles rather than as boundaries of dotted disks for 2—handles. The
work of this lemma is to find the dotted B>’s and extend the families in time, preserving
cancellation where necessary, so that both the dotted B*’s and dotted B>’s actually form
loops of embeddings rather than just paths of embeddings.

Lemma 17 Suppose we are given a pair of 1-parameter families of embeddings
yp : II"B* — S* and B, : 11"S? — S§*, for t € [0, 1], satisfying the following
properties:

(1) Bop is an unlink of unknots, i.e. 5y extends to an embedding of 11"B3 — §*.

(2) 7 =1 and B1 = fo.
(3) Forallt e [0,1], B; and Ov; are disjoint.
(4) The i’th component of Sy = 31 transversely intersects the j’th component of

Yo = 7] at exactly d;; points.

Then there exists an extension of v} and (3, to t € [0,3] and a 1—parameter family
of embeddings 3! : 1I"B® — S* defined for all t € [0, 3], satisfying the following
properties:

(1) Forallt e [0,1], ~; is the same as the given ; and [3; is the same as the given
B
(2) Forallte[0,3], 08; = 5.

() 73 =g and 33 = ;.
(4) For all t € [1,3], the i’th component of [3; transversely intersects the j’th
component of v; at exactly ¢;; points.

(5) The i’th component of 3 = 0 transversely intersects the j ’th component of
B3 = [3; at exactly &; points.

(6) The path 3¢ is homotopic rel t € {0,3} in Emb(II"B?, §*) to the constant path.

We have extended to the time range ¢ € [0, 3] because the proof naturally involves two
extensions, one on [1,2] and one on [2, 3]. Of course this time parameter can and will
be reparameterized as needed.

Proof First we construct 37 on ¢ € [0,1]. Because (3; and 0~ are disjoint for
all + € [0, 1], we can use the isotopy extension theorem to find an ambient isotopy
¢ §* — 8%, for t € [0, 1], such that ¢ = id, ¢, 0 By = 5, and ¢, o Oy = 0.
Choose any extension of /3y to an embedding 3 : II"B*> — $* with the property that
the i’th component of 0 transversely intersects the j’th component of /3 at exactly
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d;; points. This can be done because the i’th component of d; is a meridian to the
i’th component of 3y. Then let 3; = ¢; o 3.

The most immediate problem at this point is that there is no reason to expect that
B1 = B;. We now extend both 3; and ~; to ¢ € [1,2] using the isotopy ¢; in reverse.
More precisely, for ¢ € [1,2], let

B =B = drs0fy = (¢2s09, ) o i
and let
%= (@20 ¢ o,

Alsolet 5, = 03;. Note that when t = 1, ¢»_,0 qﬁl_l = id, so we do have a continuous
extension of both 8; and v; from ¢t € [0,1] to t € [0,2]. Also note that now, on
t € [1,2], since both 7; and 3; are moved by the same isotopy ¢»_; o gbl—l , we have
that the i’th component of 93] transversely intersects the j’th component of ~; at
points for all ¢ € [1, 2].

Furthermore, since 5] = 3;_, for t € [1,2], we have guaranteed that 55 = [3; and
that the path 37 in Emb(I1"B3, §*) is homotopic rel ¢ € {0,2} to the constant path.

Now, however, we have no reason to expect that v; = 7, and this is the last thing
that we fix, using the time interval ¢t € [2,3]. Both v; and 7 have the property
that their i’th components transversely intersect the j’th component of 3, = By in
points. Parameterize a regular neighborhood of Bo(11"5%) as 11"(S?> x B?) and note
that both 3 and +} are now isotopic to small meridional disks I1I"({p} x B?) centered
at the points of intersection between 3, resp 7y, with By. These isotopies can be
chosen so as to preserve the property that ; and (3 transversely intersect at d;; points,
simply by shrinking the disks without moving them. Running one of these isotopies
forward for ¢ € [2,2.4] and the other one backwards for ¢ € [2.6, 3], and connecting
them in ¢ € [2.4,2.6] by moving the small meridional disks inside the neighborhood
I1"(S? x B?), we get a path of embeddings 7} for ¢ € [2,3] from the given 75 to
73 = 7. Forall t € [2,3], let 3} = 85 = B3 = B, and let 5, = 93;. Since
we simply shrank the disks ~y; into the tubular neighborhood of 3, = ; = 3, then
moved these disks around the neighborhood, and then expanded back out along the
disks 73 = 73, we see that we did not introduce any extra intersections between 0~y;
and f3; for ¢t € [2,3], and thus maintained the J;; intersection property.

Lastly, since 3; is t—invariant for ¢ € [2, 3], then we still have the property that j; is
homotopic rel ¢ € {0,3} to the constant path in Emb(IT"B>, $%). O

Proof of Theorem 16 Consider a cobordism Z from S' x $* to ¥ = S! x4 $* for
some ¢ € Difft(5%), built as before as a family Z; of cobordisms, such that each Z,
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is built by attaching n 2—handles to [0, 1] x $* and then n 3—handles to the result,
with the attaching data for the handles varying smoothly with . The 2-handles are
attached along a family oy of framed embeddings of II"S' into S*. In fact at this point
a; = ap does not vary with ¢ and is a standard embedding, so that S*ay) is canonically
identified with #'(S? x S$?). The 3-handles are attached along a family f; of framed
embeddings of 11"S? into #'(S? x §?) = S*(a,), with By = By = 1I"(S* x {p}), and
with each 3; disjoint from 11"(S? x {p'}).

We would like to show that there is also a cobordism Z’ from S' x §* to ¥ = S! x5 5%
for the same ¢ € Diff*(5*), but now built as a family Z] of cobordisms such that each
7! is buit by attaching first n 1-handles to [0, 1] x S* and then n 2-handles to the
result, and such that the attaching maps for the 1-handles are 7r—invariant. This will
prove the theorem.

Now, given our handle attaching data a; and (; used to build Z, since the «;’s are
invariant in ¢, and o; = «g bounds a fixed collection of framed disks &y, we can
instead represent the 2—handles by a (for now, r—invariant) r—parametrized family of
n dotted disks 7 : I1"B?> — S*. Note that 9y, # a;, but instead 97/ is a linking
circle to dp. Also, we insist on maintaining the subscript ¢ even though these are
t—invariant because we will shortly modify the family so as to lose r—invariance. Now
the instructions for building the cobordism Z are to build each Z; from [0, 1] X s* by
pushing the interiors of the disks 7 from {1} x $* into the interior of (1 — ¢, 1] x §*
and removing their neighborhoods, and then attaching 3—handles along [3,. Note that,
after carving out the disks but before attaching the 3—handles, the upper boundary of
this cobordism Y; is the surgered 4—manifold $*(9!). In other words, when looking
at the 4—dimensional boundary, we cannot tell whether we carved out the dotted disks
or attached 2—handles along their boundaries, because the resulting surgeries are the
same.

As noted in the preamble to this proof discussing S—dimensional dotted circle and
sphere notation, because each £, is disjoint from II"(S> x {p’}), we can isotope the
family 3; so that it never goes over the surgered region of $*(9!), and thus the entire
handle attaching data now lives in S*. Thus we can now describe each Y;, and thus
Z, via data entirely lying in $*,i.e. 7 : II"B> < §* and 3, : 11"S? — S*. The only
intersections occur between 11"S? and the interiors of the disks 1I"B>. At times ¢ = 0
and ¢t = 1, each S? intersects its corresponding B transversely once and is disjoint
from all the other B?’s, i.e. the spheres and disks are in “cancelling position”

Our goal is now to “switch the dots from the circles to the spheres”, i.e. to think of 3; as
being dotted spheres, thus corresponding to 5—dimensional 1-handles, and to think of
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0, as attaching circles for 2—handles, rather than dotted circles describing 2—handles.
Furthermore, we need to arrange that we actually end up with a loop of dotted B>’s
after this extension. This was the point of Lemma 17. To use this result, homotope our
given loops of embeddings so as to arrange that ; and f3; are r—invariant on the time
interval ¢ € [1 — ¢, 1] for some small € > 0. Apply Lemma 17, but reparameterizing
the time parameters so that the time interval [0, 1 — €] here is mapped to the time
interval [0, 1] in the lemma, so that the time interval [1, 3] in the lemma is mapped to
the time interval [1 — €, 1] in this proof.

This gives us v; and 3; defined for ¢ € [0, 1] such that:

(1) A7 =~ and 37 = 5.

(2) ~; agrees with the original ~; on [0, 1 — €].

(3) 0p; agrees with the original 3; on [0, 1 — €].

(4) If we interpret ; as dotted disks for 2—handles and interpret J; as attaching
$2°s for 3—handles, then these give cancelling (2, 3)—pairs forall € [1 — €, 1].

(5) If instead we interpret 3¢ as dotted B>’s for 1-handles and interpret 9~ as
attaching circles for 2—handles, then these give cancelling (1, 2)—pairs for ¢ €
{0,1}.

Thus we can use the fact that the dotted disks 7; and the attaching $?’s 93; are in
cancelling position for ¢ € [1 — ¢, 1] to modify our fiberwise handle decomposition of
Z so that the new handle decomposition is in fact given by the new families v; and
0p; forall ¢ € [0, 1]. One way to see this is to first cancel the original (2, 3)-handle
pairs on the time interval [1 — ¢, 1], so that we have no handles on that time interval,
with deaths of cancelling pairs at t = 1 — ¢ and births at t = 1 = 0. Then we can
introduce a birth slightly after * = ¢, let the (2, 3)—pairs move between this time and
until slightly before # = 1 following the new ~; and Jf3;, and then have the pairs die
at the time slightly before r = 1. Because the pairs are in cancelling position over this
entire time interval, this family of handle decompositions does not change the bundle
Z. Finally we cam merge the births and deaths at t = € and at r = 1 = 0 to get the
desired result.

Now “switch all the dots from the ~’s to the 5’s”. In other words, build a new fiberwise
cobordism Z’ from S!' x $* to some Y’ with dotted 1-handles given by 37 and 2—
handles attached along the circles 0v;. Because the surgered 4—manifolds produced
by the dotted ball, respectively disk, constructions are the same as those produced by
attaching handles along the boundaries of the balls, respectively disks, in fact the top
boundary Y’ of our new fiberwise cobordism is the same as our original top boundary
Y =S x, %
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Finally, because we arrange that the loop 3; is homotopically trivial in 7r; (Emb(1I" B, §%)),
an ambient isotopy argument as in the proof of Proposition 14 can now be used to ar-
range that 3; is independent of #, and thus the entire construction is governed by the
loop of framed circles 07, .

S From many (1,2) pairs to a single (1,2) pair

We now know that diffeomorphisms of S* that can be realized by a family of cobordisms
built with (2, 3)-handle pairs can also be realized by a family of cobordisms built with
n (1,2)-handle pairs, as long as the original governing loop of embeddings of 11"S?
into #'(S? x §?) lies in :S‘; Before we get to Montesinos twins, we need now to show
that every diffeomorphism of $* that can be a realized by a family of cobordisms built
with n (1,2)-handle pairs can be realized by a family built with a single (1, 2)—handle
pair.

Theorem 18 For any n, FH 1 o(m1(FS1,(SY)) = FH11(m1(FS1.1(5%)).

Proof We begin again with a cobordism Z from S' x §* to §! X S* built as a
family of cobordisms Y;, each Y; built by attaching n fixed standard 1-handles to
[0, 1] x §* followed by n “moving” 2—handles governed by a loop of embeddings
a;  II(S'x BY) — #1(S' x §%). Cancelling the (1,2) pairsattime r = 0 ~ 1, we revert
to the Cerf theoretic perspective to get a family (f;, V) of Morse functions with gradient-
like vector fields on [0, 1] x S$* interpolating from fy, which is projection onto [0, 1],
to f1, which is the pullback of fy via some pseudoisotopy & : [0, 1] X st - 10,11 x $*
from id§ to ¢. The graphic now looks like Figure 7, exactly as in Figure 6 except that
now the critical points are of index 1 and 2; there are still no handle slides.

Theorem 2.1.1 of Chenciner’s thesis [5], restated as Hatcher and Wagoner’s Proposi-
tion 1.4 on p.177 of [9], asserts that, given a 1—parameter family f; of Morse functions
on [0, 1] x X where X is an m—manifold, if the Cerf graphic contains a swallowtail
involving critical points of index i and i 4- 1 as in the left of Figure 8, with i < m — 3,
then the swallowtail can be cancelled to give the graphic on the right in Figure 8. This
applies in our setting because m = 4 and i = 1 = 4 — 3. We use this to reduce the
number of (1,2) pairs using the main idea of Proposition 4 on p.217 of [9], as in the
figure on the top of p.218 of [9]. We essentially reproduce this figure here in Figure 9
which shows how to reduce a nested pair of birth-deaths of 1-2 handles to a single
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Figure 7: A nice Cerf graphic with only critical points of index 1 and 2.

i+1 i+1 i+1

Figure 8: Eliminating a swallowtail.

pair. (The other elementary moves are introducing a swallowtail, which can always
be done, and merging a death with a birth, which can always be done if level sets are
connected, which they are in our case.)

Repeating this we can turn n nested 1-2 “eyes” into a single nested 1-2 “eye”, and
then we can merge the birth again at t = 0 ~ 1. Note that in fact we could have left this
last (bottom-most) index 1 critical point completely unchanged in this whole process,
we even did not need to cancel it with its cancelling 2—handle at the beginning. Thus
we can easily arrange that this last 1-handle is still stationary, i.e. its attaching map
does not move with 7. This shows that this cobordism can be built with a single fixed
standard 1-handle followed by a single moving 2—handle whose attaching map is given
by a loop of embeddings S! x B> < S! x §3. Therefore [¢] € FH i 1(m1(FS1,1(5Y)).
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Figure 9: Using a swallowtail to turn a nested pair of “eyes” into a single eye.

O

Remark 19 In case it is needed in another context, the general version of this theorem
is that, if X < m — 3 and X is an m—manifold, then for any n, FH; ,(m1(F Sk (X)) =
FHi(m1(FSk1(X))).

6 Twists along Montesinos twins

As aconsequence of the preceding two theorems we now know that any diffeomorphism
of §* arising as the monodromy of the top of a cobordism constructed as above from
a loop of n 2-spheres in #'(S?> x S$?) which remain disjoint from a parallel copy
11"(S? x {p'}) of the basepoint embedding I1"(S? x {p}) is isotopic to a diffeomorphism
arising from a loop of embeddings of a single circle in S' x §3. This is summarized as:

Corollary 20
H00 (1 (T1(S2,00(SH))) = FH1 1 (m1(FS1.1(5*))

Our next goal, which will complete the proof of Theorem 4, is to show that

FH11(m1(FS1,1(5%))
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is generated by twists along Montesinos twins as advertised. Recall that a Montesinos
twin is a pair W = (R, S) of embedded, oriented 2—spheres R, S C S$* intersecting
transversely at two points. We asserted in the introduction that the boundary of a regular
neighborhood of RU § is a 3—torus Sl1 x Sk x S&. We will now give an explanation of
this fact tailored to the proof to follow.

Consider the 4—manifold X = S' x B> x S' with boundary M = §' x §! x §'. Let T’
be the core 2—torus S' x {0} x S' C X and let C be the circle {1} x {0} x S' C T,
with the obvious framing coming from all the product structures involved. Now let X¢
be the result of surgery along C. Since C C I, this also surgers I' along C and the
resulting surface I'c is a 2—sphere, which we will call R. Since surgering along a circle
C replaces an S' x B with § x B?, we also get a new S? coming from the surgery,
which we will call §, and we note that S which intersects R at exactly two points, with
opposite sign. Thus in fact X¢ is a regular neighborhood of two 2—spheres RU S, each
with trivial normal bundle, intersecting each other twice with opposite signs. In other
words, X is a regular neighborhood of a Montesinos twin W = RU S.

Furthermore, looking at the boundary 3—manifold M = S' x §' x §' = 95! x B> x §! =
OX ¢, we see that the second factor {1} x5! x {1} bounds a disk transversely intersecting
R once, and is therefore characterized by being a meridian to R. Likewise the third
factor {1} x {1} x S! bounds a disk (after the surgery) which intersects S transversely
once, and is therefore characterized by being a meridian to S. The first factor is not
uniquely characterized by this construction, but if the Montesinos twin is embedded in
S* then it can be uniquely characterized by being a longitude, i.e. being homologically
trivial in the complement of the twin.

Proof of Theorem 4 Recall that 7S 1,1(S4)) is the space of framed embeddings of S !
in S! x $3 while S;1(5%) = Emb(S!,S' x §%) is the space of unframed embeddings
of S' in §' x §%. As noted at the end of Section 2, we might worry that the homomor-
phism 71 (FSi, 1($H) — 7T1(81,1(S4))) is not surjective, since there are two possible
framings of a circle in a 4—manifold. However, Budney and Gabai [3] give explicit
representatives of generators for 7 (Emb(S', S! x $?)) all of which can be seen to lift
to framed loops of embeddings, and thus the map is surjective so we do not need to
worry about framings anymore. There is presumably a more direct way to see this, the
point being that there is no loop of embeddings of S! in S! x $3 which switches the
two framings of S'.

For the remainder of this proof, we will use the less obscure notation Emb(S L st x $3)
to refer to the space S ; (5%), the latter more complicated notation only being helpful
when placing things in the much more general context of Section 2. Also note that
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in Section 2 we punctured the target space of our embeddings, but here we drop the
puncture for simplicity. The point is that, at the level of 7|, the puncture is irrelevant
since loops of circles are 2—dimensional while homotopies of loops of circles are 3—
dimensional, so since the ambient space is 4—dimensional everything can be assumed
to miss a point.

In fact [3] shows that every class a € 7w (Emb(S 1 S1% %)) canbe represented by a loop
a; 1 S — S x §3 of embeddings such that the associated map ' : S' x ST — S! x §3
given by I'(¢,s) = a4(s) is itself an embedding. Thus we have an embedded torus
I':S"x8!" < §'x8? such that I'({0} x ') is the basepoint embedding C = S' x {p}.
Surgery along C applied to the pair (S' x §3,T") yields ($*,R) for some embedded
2-sphere R C S*, and the 2—sphere S dual to the surgery circle is an unknotted
sphere S C $* such that (R, S) forms a Montesinos twin. Furthermore, the boundary
Ov(R U §) of a neighborhood of this twin in $* is the same as the boundary of a
tubular neighborhood of T'(S! x S') in S' x $*. When this 3—torus is parametrized as
S! x Sk x S& as in the introduction, we see that the S| parameter corresponds to the
t parameter in I'(¢,s) = ,(s), that the S}e direction corresponds to the s—parameter,
and that the S§ direction corresponds to the boundary of the disk factor in the tubular
neighborhood v(I'(S! x §1)) = D? x S! x §'.

Because I is embedded, it is relatively easy to see what H([7;]) looks like. We need
an ambient isotopy ¢; of S! x §% with ¢g = id, ¢, o Y0 = 7 and ¢; equal to the
identity on a neighborhood of C. This is the “circle pushing” map we get by dragging
the circle around the embedded torus and back to its starting position. This can happen
entirely in a tubular neighborhood D? x S' x S! of T', by spinning in the ¢ direction
more and more as we move towards the center of D?, which we state explicitly as
follows: Let (r,6) be polar coordinates on D?, and let (¢, s) be coordinates as before
on S' x S'. Choose a smooth non-increasing function 7 : [0, 1] — [0, 27] which is
1 on [0,1/4], 0 on [3/4,1], and let ¢,(r,0,t,5) = (r,0,t+ T(r),s). From this it is
clear that ¢; is the identity on r € [0, 1/4] and r € [3/4, 1], and on the intermediate
[1/4,3/4] x S' x S' x S! is equal to a Dehn twist on [1/4,3/4] x S! crossed with
the identity in the remaining ' x S' direction. Back in S* this is exactly the twist Ty
along the twin W = (R, §).

In fact [3] establishes an isomorphism
Wi x Wy : m(Emb(S', S' x §%),C) — Z @ A}

where A% is a free abelian group on a countably infinite generating set. The Z factor
inZ® A% is given by the loops of S!-reparametrizing embeddings ~(s) = yo(s + nt),
and it is easy to see that H; applied to such a loop of embeddings is isotopic to idg:,
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=

Figure 10: The embedded torus T'(3) in ' x S3, the obvious next member of the family of tori
described in Figure 4 of [3]. The top is glued to the bottom, and horizontal slices are S*’s, with
the “time” coordinate indicated in red/blue shading, as in Figure 2. Here we have exaggerated
certain features of this torus and deformed somewhat from the drawings in Figure 4 of [3] so
that the connection with the Montesinos twin W(3) = (R(3), S) in Figure 2 is visually apparent.
Surgering along the red circle C collapses the vertical cylinder on the right into a sphere (the
tail of the snake), with the dual sphere to C becoming the tail-piercing sphere S.

i.e. this Z factor is in the kernel of ;. Modulo this Z factor, Figure 4 in [3] gives
the first two tori T(1) and 7((2) in an obvious family 7'(i) of tori in S' x §% which give
the countably infinite generating set corresponding to A%. We draw T'(3) in Figure 10.
In this figure, the circle C C S' x §? is represented as a red vertical line on the far
right side of the torus. The torus 7'(n) is just like this but wraps 7 times around the S'
direction. Surgering along C yields our Montesinos twins W(i) = (R(i), S).
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