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Abstract
While the standard unweighted Voronoi diagram in the plane has linear worst-case
complexity, many of its natural generalizations do not. This paper considers two such
previously studied generalizations, namely multiplicative and semi Voronoi diagrams.
These diagrams both have quadratic worst-case complexity, though here we show that
their expected complexity is linear for certain natural randomized inputs. Specifically,
we argue that the expected complexity is linear for: (1) semi Voronoi diagrams when
the visible direction is randomly sampled, and (2) for multiplicative diagrams when
weights are sampled from a constant-sized set. For the more challenging case, when
weights are arbitrary but fixed, and the locations are sampled from the unit square, we
argue the expected complexity of the multiplicative diagram within the unit square is
linear.
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1 Introduction

Given a set of point sites in the plane, theVoronoi diagram is the correspondingpartition
of the plane into cells, where each cell is the locus of points in the plane sharing the
same closest site. This fundamental structure has a wide variety of applications. When
coupled with a point location data structure, it can be used to quickly answer nearest
neighbor queries. Other applications include robot motion planning, modeling natural
processes in areas such as biology, chemistry, and physics, and moreover, the dual of
the Voronoi diagram is the well known Delaunay triangulation. See the book [5] for
an extensive coverage of the topic.

Many of the varied applications of Voronoi diagrams require generalizing its defi-
nition in one way or another, such as adding weights or otherwise altering the distance
function, moving to higher dimensions, or considering alternative types of sites.While
some of these generalizations retain the highly desirable linear worst-case complexity
of the standard Voronoi diagram, many others unfortunately have quadratic worst-case
complexity or more.

Within the field of Computational Geometry, particularly in recent years, there
have been a number of works analyzing the expected complexity of various geometric
structures when the input is assumed to have some form of randomness. Here we
continue this line of work, by studying the expected complexity of two previously
considered Voronoi diagram variants.
Directional and weighted Voronoi diagrams A natural generalization to consider is
when each site is only visible to some subset of the plane. Here we are interested in
the so called visual restriction Voronoi diagram (VRVD) [6, 15], where a given site p
is only visible to the subset of points contained in some cone with base point p and
angle αp. These diagrams model scenarios where the site has a restricted field of view,
such as may be the case with various optical sensors or human vision. For example,
in a football game, each player has their own field of view at any given time, and the
location of the ball in the VRVD tells us which player is the closest to the ball among
those who can see it. When the visible region for each site is a half-plane whose
boundary passes through the site (i.e., a VRVD where αp = π/2 for each site p),
such diagrams are called semi Voronoi diagrams [11]. Just like general VRVD’s, semi
Voronoi diagrams have �(n2)worst-case complexity. Our expected analysis is shown
for the semi Voronoi diagram case, however, we remark a similar analysis implies the
same bounds hold more generally for VRVD’s.

The other generalization we consider is when sites have weights. There are many
natural ways to incorporate weights into the distance function of each site. Three of
the most common are additive [16, 20, 21], power [3], and multiplicative [4] Voronoi
diagrams (see also [5]). (For brevity, throughout we use the prefixmultiplicative, rather
than the more common multiplicatively-weighted.) For additive Voronoi diagrams the
distance from a point x in the plane to a given site p is d(x, p) = ‖x − p‖ + αp,
for some constant αp, which can vary for each site. For power diagrams the distance
is given by d(x, p) = ‖x − p‖2 − α2

p. For multiplicative diagrams the distance is
given by d(x, p) = αp · ‖x − p‖. The worst-case complexity for additive and power
diagrams is only linear [3, 21]. Here our focus is on multiplicative diagrams, whose
worst-case complexity is known to be �(n2) [4]. Multiplicative diagrams are used to
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model, for example, crystal growth where crystals grow together from a set of sites at
different rates.
Previous expected complexity bounds There are many previous results on the
expected complexity of various geometric structures under one type of randomness
assumption or another. Herewe focus on previous results relating toVoronoi diagrams.
For point sites in �d , the worst-case complexity of the Voronoi diagram is known to
be �(n�d/2�), however, if the sites are sampled uniformly at random from a d-ball or
hypercube, for constant d, then the expected complexity is O(n) [7, 13]. For a set of
n point sites on a terrain consisting of m triangles, [2] showed that, if the terrain satis-
fies certain realistic input assumptions then the worst-case complexity of the geodesic
Voronoi diagram is �(m + n

√
m). Under a relaxed set of assumption, [12] showed

that the expected complexity is only O(n +m), when the sites are sampled uniformly
at random from the terrain domain.

Relevant to the current paper, [18] showed that, for any set of point site locations
in the plane and any set of weights, if the weights are assigned to the points according
to a random permutation, then the expected complexity of the multiplicative Voronoi
diagram is O(n log2 n). The motivation for this work came from [1], who showed that
if one randomly fattens a set of segments in the plane, by taking theMinkowski sum of
each segment with a ball of random radius, then the expected complexity of the union
is near linear, despite having quadratic worst-case complexity. In a follow-up work
to [18], [10] defined the candidate diagram, a generalization of weighted diagrams
to multi-criteria objective functions, and showed that under similar randomized input
assumptions the expected complexity of such diagrams is O(n polylog n).
Our results and significance Our first result concerns semi Voronoi diagrams, where
the visible region of each site is a half-plane whose bounding line passes through the
site, and where the worst-case complexity is quadratic. For any set of site locations
and bounding lines, we show that if the visible side of each site’s bounding line is
sampled uniformly at random, then the expected complexity of the semi Voronoi
diagram is linear, and O(n log3 n) with high probability. To achieve this we argue that
our randomness assumption implies that any point in the plane is likely to be visible
by one of its k nearest neighbors, for large enough k. Thus within each cell of the
order-k Voronoi diagram, one can argue the complexity of semi Voronoi diagram is
O(k2), and so summing over all O(nk) cells gives an O(nk3) bound. This is a variant
of the candidate diagram approach introduced in [18]. Unfortunately, in general this
approach requires k to be more than a constant, which will not yield the desired linear
bound. Thus here, in order to get a linear bound, we give a new refined version of this
approach, by carefully allowing k to vary as needed, in the end producing a diagram
which is the union of order-k cells, for various values of k.

The main focus of the paper is the second part concerning multiplicative Voronoi
diagrams, where the distance to each site is the Euclidean distance multiplied by some
site-dependent weight, and where the worst-case complexity is quadratic. We first
argue that if the weights are sampled from a set with constant size, then interestingly
a similar refined candidate diagram approach yields a linear bound. Our main result,
however, considers the more challenging case when no restrictions are made on the
weights, but instead the site locations are sampled uniformly at random from the unit
square. For this case we show that in any grid cell of side length 1/

√
n in the unit
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square the expected complexity of the multiplicative diagram is O(1). This implies
an O(n) expected bound for the multiplicative diagram over the whole unit square.
This improves over the O(n log2 n) bound of [18] for this case, by using an interesting
new approach which “stretches” sites about a given cell based on their weights, thus
approximately transforming theweighted diagram into an unweighted onewith respect
to a given cell. As this main result is technically very challenging, it is placed last.

It is important to note the significance of our bounds being linear. Given a ran-
domness assumption, one wishes to prove an optimal expected complexity bound,
and for the diagrams we consider linear bounds are immediately optimal. However,
even when a linear bound seems natural, many standard approaches to bounding the
expected complexity yield additional log factors (e.g. [1, 10, 18]). That is, not only are
linear bounds desirable, but also they are nontrivial to obtain. However, when they are
obtained, they reveal the true expected complexity of the structure, free from artifacts
of the analysis.

Remark 1.1 Our paper focuses on diagram complexity not running time. However,
Corollary 3.3 below shows our approach implies that the semi Voronoi diagram can be
computed inO(n log3 n) expected time inour randomizedmodel, byusing theprevious
quadratic time algorithm of [15] on appropriate subsets of sites. For the multiplicative
Voronoi diagram, [18] remarked that their approach implied an O(n log3 n) expected
time algorithm in their model, which also covers all multiplicative models considered
in the current paper.

Subsequent work An earlier version of the current paper appeared in ESA 2020 (
[14]). Subsequently, [8] considered geometric instances of SAT. In the process, they
showed that for a set of sites whose positions are sampled uniformly at random from
the unit hypercube (in constant dimensions), the expected number of regions of the
multiplicative order-k Voronoi diagram is O(W ), whereW is the sumof all theweights
of the sites. (NoteW = �(n) as the lowest weight is 1.) Recall that in our main result
we also assume site locations are random, however, crucially we make no assumption
on the weights whatsoever, making the problem more challenging. Conversely, by
giving a complexity bound in terms of W , [8] are able to extend to higher order and
higher dimensional, but still constant dimensional, multiplicative Voronoi diagrams.
The proof techniques of the two papers differ significantly.

2 Preliminaries

The standard Voronoi diagram Let S = {s1, s2, ..., sn} ⊂ �2 be a set of n point sites
in the plane. Let ‖x − y‖ denote the Euclidean distance from x to y, and for two sites
si , s j ∈ S let β(si , s j ) denote their bisector, that is the set of points x in plane such that
‖si − x‖ = ∥

∥s j − x
∥
∥. Any site si ∈ S induces a distance function fi (x) = ‖si − x‖

defined for any point x in the plane. For any subset T ⊆ S, the Voronoi cell of si ∈ T
with respect to T , Vcell (si , T ) = {x ∈ �2 | ∀s j ∈ T fi (x) ≤ f j (x)}, is the locus
of points in the plane having si as their closest site from T . We define the Voronoi
diagram of T , denoted V (T ), as the partition of the plane into Voronoi cells induced
by the minimization diagram (see [17]) of the set of distance functions { fi | si ∈ T },
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that is the projection onto the plane of the lower envelope of the surfaces defined by
these bivariate functions.

One can view the union,U , of the boundaries of the cells in theVoronoi diagram as a
planar graph. Specifically, define aVoronoi vertex as anypoint inU which is equidistant
to three sites in S (happening at the intersection of bisectors). For simplicity, we make
the general position assumption that no point is equidistant to four or more sites.
Furthermore, define a Voronoi edge as any maximal connected subset of U which
does not contain a Voronoi vertex. (For each edge to have two endpoints we include
the “point” at infinity, i.e., the graph is defined on the stereographic projection of the
plane onto the sphere.) The complexity of the Voronoi diagram is then defined as the
total number of Voronoi edges, vertices, and cells. As the cells are simply connected
sets, which are faces of a straight-line planar graph, the overall complexity is �(n).
Order-k Voronoi diagram Let S be a set of n point sites in the plane. The order-k
Voronoi diagram of S is the partition of the plane into cells, where each cell is the
locus of points having the same set of k nearest sites of S (the ordering of these k
sites by distance can vary within the cell). It is not hard to see that this again defines
a straight-line partition of the plane into cells where the edges on the boundary of a
cell are composed of bisector pieces. The worst-case complexity of this diagram is
�(k(n − k)) (see [5], Section 6.5).

We also consider the diagram where every point in a cell not only has the same k
nearest sites, but also the same ordering of distances to these sites. We refer to this as
the order-k sequence Voronoi diagram, known to have O(nk3) worst-case complexity
(see Appendix B).
Semi Voronoi diagram Let S = {s1, s2, ..., sn} be a set of n point sites in the plane,
where for each si there is an associated closed half-planeH(si ), whose boundary passes
through si . We use L(si ) to denote the bounding line of H(si ). For any point x in the
plane and any site si ∈ S, we say that x and si are visible to each other when x ∈ H(si ).
Given a point x , let S(x) = {si ∈ S | x ∈ H(si )} denote the set of sites which are
visible to x .

For any subset T ⊆ S, define the semi Voronoi cell of si ∈ T with respect to T as,
SVcell (si , T ) = {x ∈ H(si ) | ∀s j ∈ T ∩ S(x) ‖x − si‖ ≤ ∥∥x − s j

∥
∥}. It is possible

that there are points in the plane which are not visible by any site in S. If desired, this
technicality can be avoided by adding a pair of sites far away from S which combined
can see the entire plane. As before, semi Voronoi cells define a straight-line partition
of the plane, where now the edges on the boundary of a cell are either portions of a
bisector or of a half-plane boundary. In the worst case, the semi Voronoi diagram can
have quadratic complexity [15].
Random semi Voronoi diagramWe consider semi Voronoi diagrams where the set of
sites S = {s1, . . . , sn} is allowed to be any fixed set of n points in general position. For
each site si , the line bounding the half-plane of si , L(si ), is allowed to be any fixed line
in �2 passing through si . Such a line defines two possible visible closed half-spaces.
We assume that independently for each site si , one of these two half-spaces is sampled
uniformly at random.

An alternative natural assumption is that the normal of the half-plane for each site
is sampled uniformly at random from [0, 2π). Note our model is strictly stronger, that
is any bound we prove will imply the same bound for this alternative formulation. This
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is because one can think of sampling normals from [0, 2π), as instead first sampling
directions for the bounding lines from [0, π), and then sampling one of the two sides
of each line for the normal.
Multiplicative Voronoi diagram Let S = {s1, s2, ..., sn} be a set of n point sites
in the plane, where for each site si there is an associated weight wi > 0. Any site
si ∈ S induces a distance function fi (x) = wi · ‖si − x‖ defined for any point x
in the plane. For any subset T ⊆ S, the Voronoi cell of si ∈ T with respect to T ,
Vcell (si , T ) = {x ∈ �2 | ∀s j ∈ T fi (x) ≤ f j (x)}, is the locus of points in the
plane having si as their closest site from T . The multiplicative Voronoi diagram of
T , denoted WV (T ), is the partition of the plane into Voronoi cells induced by the
minimization diagram of the distance functions { fi | si ∈ T }.

Note that unlike the standard Voronoi diagram, the bisector of two sites is in general
an Apollonius disk, potentially leading to disconnected cells. Ultimately, the diagram
still defines a planar arrangement and so its complexity, denoted by |WV (S) |, can still
be defined as the number of edges, faces, and vertices of this arrangement. Note the
edges are circular arcs and straight line segments and thus are still constant complexity
curves. In the worst case, the multiplicative Voronoi diagram has �(n2) complexity
[4].

3 The Expected Complexity of Random Semi Voronoi Diagrams

3.1 The Probability of Covering the Plane

As it is used in our later calculations, we first bound the probability that for a given
subset X of k sites of S that there exists a point in the plane not visible to any site in
X .

Lemma 3.1 For any set X = {x1, . . . , xk} of k sites

Pr

⎡

⎣(
⋃

xi∈X
SVcell (xi , X)) 
= �2

⎤

⎦ ≤ (k(k + 1) + 2)/2k+1 = O(k2/2k).

Proof Consider the arrangement of the k bounding lines L(x1), . . . , L(xk). Let F
denote the set of faces in this arrangement (i.e., the connected components of the
complement of the union of lines), and note that |F | ≤ k(k + 1)/2 + 1 = O(k2).
Observe that for any face f ∈ F and any fixed site xi ∈ X , either every point in f is
visible by xi or no point in f is visible by xi . Moreover, the probability that face f is
not visible by site xi is Pr[H(xi ) ∩ f = ∅] ≤ 1/2. Hence the probability that a face
f is not visible by any of the k sites is

Pr

⎡

⎣
⋃

xi∈X
H(xi ) ∩ f = ∅

⎤

⎦ ≤ 1/2k .

123



Discrete & Computational Geometry (2025) 73:1–24 7

Hence the probability that at least one face in F is not visible by any site in X is

Pr

⎡

⎣

⎛

⎝
⋃

xi∈X
SVcell (xi , X)

⎞

⎠ 
= �2

⎤

⎦ ≤
∑

f ∈F
Pr

⎡

⎣
⋃

xi∈X
H(xi ) ∩ f = ∅

⎤

⎦

≤ k(k+1)+2

2k+1 = O

(
k2

2k

)

.

��

3.2 A Simple Near Linear Bound

Ultimately we can show that the expected complexity of a random semi Voronoi
diagram is linear, however, here we first show that Lemma 3.1 implies a simple near
linear boundwhich also holdswith high probability. Specifically, we say that a quantity
is bounded by O( f (n)) with high probability, if for any constant α there exists a
constant β, depending on α, such that the quantity is at most β · f (n) with probability
at least 1 − 1/nα .

Lemma 3.2 Let S = {s1, . . . , sn} ⊂ �2 be a set of n sites, where each site has a
corresponding line L(si ) passing through si . For each si , sample a half-plane H(si )
uniformly at random from the two half-planes whose boundary is L(si ). Then the
expected complexity of the semi Voronoi diagram on S is O(n log3 n), and moreover
this bound holds with high probability.

Proof Let k = c log n, for some constant c. Consider the order-k Voronoi diagram of
S. First triangulate this diagram so the boundary of each cell has constant complexity.
(Note triangulating does not asymptotically change the number of cells.) Fix any cell
� in this triangulation, which in turn fixes some (unordered) set X of k-nearest sites.
By Lemma 3.1,

Pr

⎡

⎣

⎛

⎝
⋃

xi∈X
SVcell (xi , X)

⎞

⎠ 
= �2

⎤

⎦ = O(k2/2k)

= O((c log n)2/2c log n) = O(1/nc−ε′
),

for any arbitrarily small value ε′ > 0. Thus with high probability for every point in
� its closest visible site will be in X . Now let T be the set of all O(k(n − k)) =
O(n log n) triangles in the triangulation of the order-k diagram. Observe that the
above high probability bound applies to any triangle � ∈ T . Thus, taking the union
bound, the probability there exists some triangle which has a point not visible by
one of its k closest sites is O(|T |/nc−ε′

) = O((n log n)/nc−ε′
) = O(1/nc−(1+ε)),

for any constant ε > ε′. Thus the complement event that simultaneously for every
triangle �, every point in � will be visible by one of its k closest sites, holds with
probability at least 1 − 1/nc−(1+ε). Let e denote this event happening (and e denote
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it not happening). Conditioning on e happening, there are only O(k) = O(log n)

relevant sites which contribute to the semi Voronoi diagram of any cell �. The total
complexity of the semi Voronoi diagram of these sites is at most O(log2 n), as the semi
Voronoi diagram has worst-case quadratic complexity [15]. Thus the total complexity
of the semi Voronoi diagram restricted to any cell � is at most O(log2 n), as � is
just a triangle (i.e. has constant complexity) and so intersecting the diagram with it
cannot asymptotically increase the complexity. On the other hand, if e happens, then
the worst-case complexity of the entire semi Voronoi diagram is still O(n2).

Now the complexity of the semi Voronoi diagram is bounded by the sum over
the cells in the triangulation of the complexity of the diagram restricted to each cell.
Thus the above already implies that with high probability the complexity of the semi
Voronoi diagram is O

(∑

�∈T log2 n
) = O(n log3 n). As for the expected value, by

choosing c sufficiently large,

= E
[|SV (S) | ∣∣ e ]Pr[e] + E

[|SV (S) | ∣∣ e ]Pr[e]

= O

(
∑

�∈T
log2 n

)

Pr[e] + O(n2)Pr[e]

= O(n log3 n)Pr[e] + O(n2)Pr[e] = O(n log3 n)Pr[e] + O(n2) · (1/nc−(1+ε))

= O(n log3 n) + O(1/nc−(3+ε)) = O(n log3 n).

��
The analysis of Lemma 3.2 immediately implies an algorithm with the same time

bounds, by using the quadratic time algorithm for semi Voronoi diagrams of [15] for
the subset of sites of each order-k cell.

Corollary 3.3 Let the input be as in Lemma 3.2. Then the semi Voronoi diagram can
be computed in O(n log3 n) expected time, and moreover this bound holds with high
probability.

Proof Compute the order-k Voronoi diagram, for k = c log n, where c is the constant
determined in the proof of Lemma 3.2. Triangulate the diagram. Check if every point
of every triangle is visible by one of its k = �(log n) closest sites. If so, then compute
the semi Voronoi diagram of the k nearest sites in each triangle, and clip it to the
triangle. If not, ignore the triangles, and compute the semi Voronoi diagram of all n
sites.

For k = �(log n), the order-k diagram can be computed in O(n log3 n) time [9].
Triangulating the diagram takes linear time in the complexity of the diagram. By
Lemma 3.2, with high probability every point of every triangle is visible by one of its k
closest sites. Thus with high probability the running time is O(n log3 n), as computing
the semi Voronoi diagram of the k = �(log n) nearest sites in each triangle takes
O(log2 n) time per triangle, and thus O(n log3 n) over all the O(n log n) triangles. If
some triangle is not fully visible, then computing the semi Voronoi diagram of all n
sites takes O(n2) time. Thus by the same expected analysis at the end of the proof of
Lemma 3.2, the expected time is O(n log3 n). ��
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3.3 An Optimal Linear Bound

The previous subsection partitioned the plane based on the order-k Voronoi diagram,
for k = c log n, and then argued that simultaneously for all cells one of the k near-
est sites will be visible. This argument is rather coarse, but instead of using a fixed
large value for k, if one is more careful and allows k to vary, then one can argue the
expected complexity is linear. Note that in the following, rather than using the stan-
dard unordered order-k Voronoi diagram, we use the more refined order-k sequence
Voronoi diagram as defined above.

Theorem 3.4 Let S = {s1, . . . , sn} ⊂ �2 be a set of n sites, where each site has a
corresponding line L(si ) passing through si . For each si , sample a half-plane H(si )
uniformly at random from the set of two half-planes whose boundary is L(si ) (i.e.,
each has 1/2 probability). Then the expected complexity of the semi Voronoi diagram
on S is �(n).

Proof Consider the partition of the plane by the first order Voronoi diagram of S,
i.e., the standard Voronoi diagram. We iteratively refine the cells of this partition into
higher order sequence Voronoi diagram cells. At each iteration we have a collection of
order-i sequence Voronoi diagram cells, and for each cell we either mark it final and
stop processing, or further refine the cell into its constituent order-(i + 1) sequence
cells. Specifically, a cell � is marked final in the i th iteration if every point in � is
visible by one of its i nearest sites, or when i = n and the cell cannot be refined further.
The process stops when all cells are marked final. Below we use Fk to denote the set
of cells which were marked final in the kth iteration.

Let Ck be the set of all cells of the order-k sequence Voronoi diagram of S. Note
that the order-k sequence Voronoi diagram can be constructed by iteratively refining
lower order cells, and hence any cell seen at any point in the above process is a cell of
the order-k sequence diagram for some value of k. So consider any cell� j ∈ Ck of the
order-k sequence diagram of S. Let #(� j ) be the number of order-(k + 1) sequence
diagram cells inside � j , and let X j be the indicator variable for the event that � j is
refined into its constituent order-(k + 1) sequence cells in the kth round of the above
iterative process. Note that Pr

[

X j = 1
]

is upper bounded by the probability that � j

has not been marked final by the end of the kth round, which in turn is bounded by
Lemma 3.1. Thus letting Zk+1 be the random variable denoting the total number of
order-(k + 1) sequence cells created in the above process, we have

E
[

Zk+1
]

= E

⎡

⎣
∑

� j∈Ck

#(� j ) · X j

⎤

⎦ =
∑

� j∈Ck

#(� j ) · E[X j
]

= O

(
k2

2k

)

·
∑

� j∈Ck

#(� j ) = O

(

nk5

2k

)

,
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as
∑

#(� j ) is at most the total number of cells in the order-(k + 1) sequence Voronoi
diagram, which is bounded by O(nk3) (see Appendix B). Note that above the expec-
tation distributes due to linearity of expectation and the fact that the #(� j ) are not
random variables.

Using the same argument as in Lemma 3.2, the complexity of the random semi
Voronoi diagram is bounded by

∑n
k=1 |Fk | · O(k2). (If k = n then a cell may not be

fully visible, though the bound still applies as the worst-case complexity is O(n2).)
Thus by the above, the expected complexity is

E[|SV (S) |] ≤
n
∑

k=1

E
[

|Fk |
]

· O(k2) ≤
n
∑

k=1

E
[

Zk
]

· O(k2) ≤ O

(
n
∑

k=1

nk7

2k

)

= O(n).

��
Remark 3.5 For simplicity the results abovewere presented for semiVoronoi diagrams,
though they extend to the more general VRVD case, where the visibility region of si
is determined by a cone with base point si and angle αi , where the orientation of
the cone is sampled uniformly at random. Specifically, the plane can be covered by
a set of (2π)/(αi/2) = 4π/αi cones around si each with angle αi/2. Any one of
these smaller cones is completely contained in the randomly selected αi cone with
probability αi/(4π). If the αi are lower bounded by a constant β, one can then prove
a variant of Lemma 3.1 (and hence Lemma 3.2 and Theorem 3.4), as the arrangement
of all these smaller cones still has O(k2) complexity, and the probability a face is not
visible to any site is still exponential in k but with base proportional to 1 − β/(4π).

4 The Expected Complexity of Multiplicative Voronoi Diagrams

In this section we consider the expected complexity of multiplicative Voronoi dia-
grams under different randomness assumptions. First, by using the approach from the
previous section, we show that for any set of site locations, if each site samples its
weight from a set of constant size c, then the expected complexity is O(nc6). Next,
we consider the case when the sites can have arbitrary weights, but the site locations
are sampled uniformly at random from the unit square. As making no assumptions
on the weights makes the problem considerably more challenging, as a warm-up, we
first assume the weights are in an interval [1, c]. In this case, we consider a 1/√n side
length grid, and argue that locally in each grid cell the expected complexity of the
multiplicative diagram is O(c4) (inspired by the approach in [12]), and thus over the
entire unit square the complexity is O(nc4). Finally, we remove the bounded weight
assumption, and argue that for any set of weights, the expected complexity in the unit
square is linear when site locations are sampled uniformly at random from the unit
square, by introducing the notion of “stretched” sites.
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4.1 Sampling from a Small Set ofWeights

Lemma 4.1 Let W = {w1, w2, ..., wc} be a set of non-negative real weights and let
S = {s1, s2, s3, . . . , sn} be a set of point sites in the plane, where each site in S is
assigned a weight independently and uniformly at random from W. Then the expected
complexity of the multiplicative Voronoi diagram of S is O(n · c6).
Proof Consider the partition of the plane determined by the unweighted first order
Voronoi diagram of S, i.e., the standard Voronoi diagram. Following the strategy of
the proof of Theorem 3.4, we iteratively refine the cells of this partition into higher
order sequence Voronoi diagram cells, except now a cell � is marked final in the i th
iteration if at least one of its i-nearest sites has weight wm , where wm is the minimum
realizedweight over all the sites.Analogous to the semiVoronoi diagramcase,with this
new definition if a cell � is marked final in the i th iteration then only its i unweighted
nearest sites can contribute to the diagram within �. This is because one of these i
nearest sites is both closer and has weight less than or equal to any site outside of the
i nearest sites. Note also that the probability that k sites are all assigned weight larger
than wm is at most (1− 1/c)k , as there are at most c − 1 possible weights larger than
wm . Using the same notation as in the proof of Theorem 3.4, we have

E
[

Zk+1
]

= E

⎡

⎣
∑

� j∈Ck

#(� j ) · X j

⎤

⎦ =
∑

� j∈Ck

#(� j ) · E[X j
]

= O
(

(1 − 1/c)k
)

·
∑

� j∈Ck

#(� j ) = O
(

nk3(1 − 1/c)k
)

.

As theworst-case complexity of themultiplicativeVoronoi diagram of k sites is O(k2),
overall the complexity of themultiplicativeVoronoi diagram is boundedby

∑n
k=1 |Fk |·

O(k2). Thus by the above, the expected complexity is

E[|WV (S) |] ≤
n
∑

k=1

E
[

|Fk |
]

· O(k2) ≤
n
∑

k=1

E
[

Zk
]

· O(k2)

≤ O

(
n
∑

k=1

nk5(1 − 1/c)k
)

= O(n · c6),

where the last step is obtained by viewing the sum as a power series in x = (1− 1/c).
Specifically, we substitute x = (1 − 1/c), then rewrite the series in a simpler form
by using repeated applications of the derivative d

dx followed by multiplying by x , i.e.
repeated applications of the operation (x · d

dx ). This yields the standard series
∑

k>0 x
k

whose closed form solution is x
1−x . Thus we have,
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∑

k>0

k5(1 − 1/c)k =
∑

k>0

k5xk =
(

x · d

dx

)
∑

k>0

k4xk =
(

x · d

dx

)5∑

k>0

xk

=
(

x · d

dx

)5 x

1 − x
= (x5 + 26x4 + 66x3 + 26x2 + x)

(1 − x)6

= 120c6 − 360c5 + 390c4 − 180c3 + 31c2 − c = O(c6).

��

4.2 Sampling Site Locations with BoundedWeights

In this section we argue that the expected complexity of the multiplicative Voronoi
diagram within the unit square is linear when the site locations are uniformly sampled
from the unit square and the weights are in a constant spread interval (i.e. the ratio of
the largest possible weight divided by the smallest possible weight is a constant). In
the next section we remove the bounded weight assumption. Thus the current section
can be viewed as a warm-up, and serves to illustrate the extent to which assuming
bounded weights simplifies the problem. However, as the results of the next section
subsume those here, this section can be safely skipped if desired.

The following fact is used both in the proof of the lemma below and the next section.

Fact 4.2 Consider doing m independent experiments, where the probability of success
for each experiment is α. Let X be the total number of times the experiments succeed.
Then E

[

X2
] ≤ αm + α2 m2 = E[X ] + E[X ]2.

Note that the above fact holds since X is a binomial random variable, Bin(α,m),
and so E

[

X2
] = Var[X ] + E[X ]2 = mα(1 − α) + (mα)2.

Lemma 4.3 Let S = {s1, s2, s3, ..., sn} be a set of point sites in the plane, where for
some value c ≥ 1, each site in S is assigned a weight wi ∈ [1, c]. Suppose that the
location of each site in S is sampled uniformly at random from the unit square U.
Then the expected complexity of the multiplicative Voronoi diagram of S within U is
O(n · c4).
Proof Place a regular grid overU , where grid cells have side length 1/

√
n. Fix any grid

cell � = �x,y , where (x, y) ∈ √
n×√

n. We now argue that the expected complexity
of the multiplicative Voronoi diagram within � is O(c4), and thus by linearity of
expectation, the expected complexity over all n grid cells in U is O(nc4).

Let ρ be the random variable denoting the unweighted distance of the closest site
in S to the center of the grid cell �, and let Xρ be the random variable denoting
the number of points which contribute to the multiplicative Voronoi diagram in �
conditioned on the value ρ. (For now ignore the contribution of the point at distance
exactly ρ.) Observe that any point in S which contributes to the multiplicative Voronoi
diagram within � must lie within the annulus centered at the center of �, with inner
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radius ρ and outer radius c(ρ + √
2/n). Conditioned on the value ρ, let αρ be the

probability for a point to fall in this annulus, and let Xρ be the binomial random
variable Bin(αρ, n) representing the number of points which fall into this annulus.
For now assume ρ ≤ 1/4, in which case the region outside the disk centered at the
center of � and with radius ρ has area at least 3/4. We then have that

E
[

Xρ

] ≤ nαρ ≤ n
(π(c(ρ + √

2/n))2 − πρ2)

3/4
= O(nc2(ρ2 + ρ/

√
n + 1/n))

= O(c2((
√
nρ)2 + √

nρ + 1)) = O(c2((
√
nρ)2 + 1)) = O(c2 + n(cρ)2).

Let Yρ be the random variable denoting the complexity of the multiplicative Voronoi
diagram within � when conditioned on the value ρ. As the worst-case complexity
of the multiplicative Voronoi diagram is quadratic, we have Yρ = O((1 + Xρ)2) =
O(1+ Xρ + X2

ρ), where the plus 1 counts the point at distance exactly ρ. Thus using
Fact 4.2, and again assuming ρ ≤ 1/4,

E
[

Yρ

] = O(1 + E
[

Xρ

]+ E
[

X2
ρ

]

) = O(c2 + n(cρ)2 + (c2 + n(cρ)2)2)

= O(c4(1 + nρ2 + (nρ2)2)) = O(c4(1 + n2ρ4))

Now consider the event that ρ ∈ [i/√n, (i + 1)/
√
n] for some integer i . For this to

happen, the open disk with radius i/
√
n centered at the center of � must be empty,

and one of the n points must lie in the annulus with inner radius i/
√
n and outer radius

(i + 1)/
√
n. Therefore, for n ≥ 3,

Pr
[

ρ ∈ [i/√n, (i + 1)/
√
n]]

≤ n · (π((i + 1)/
√
n)2 − π(i/

√
n)2) · (1 − π(i/

√
n)2/4)n−1

= π(2i + 1) · (1 − π i2/(4n))n−1

≤ π(2i + 1)e−π i2(n−1)/(4n) ≤ π(2i + 1)e−i2/2.

Furthermore, by the above, when ρ ∈ [i/√n, (i + 1)/
√
n] and ρ ≤ 1/4, we have

E
[

Yρ

] = O(c4(1 + n2ρ4)) = O(c4(1 + (i + 1)4)) = O((c(i + 1))4),

and for ρ ≥ 1/4 we have the trivial bound E
[

Yρ

] = O(n2).
Finally, let Y be the random variable denoting the complexity of the multiplicative

Voronoi diagram within �. By the law of total expectation we have,

E[Y ] ≤
⎛

⎝

√
n/4−1
∑

i=0

Pr
[

ρ ∈
[

i√
n
,
(i+1)√

n

]]

· O((c(i + 1))4)

⎞

⎠

+
⎛

⎝

√
2n
∑

i=√
n/4

Pr
[

ρ ∈
[

i√
n
,
(i+1)√

n

]]

· O(n2)

⎞

⎠
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≤
⎛

⎝

√
n/4−1
∑

i=0

π(2i + 1)

ei2/2
· O((c(i + 1))4)

⎞

⎠+
⎛

⎝

√
2n
∑

i=√
n/4

π(2i + 1)

ei2/2
· O(n2)

⎞

⎠

= O(1) +
√
n/4
∑

i=0

2i + 1

ei2/2
· O((c(i + 1))4)

= O(c4) + O

⎛

⎝

√
n/4
∑

i=1

c4i5

ei2/2

⎞

⎠ = O(c4).

��

4.3 Sampling Sites Locations in General

In this section we argue that the expected complexity of the multiplicative Voronoi
diagram in the unit square is linear when the site locations are uniformly sampled
from the unit square. Here the weights can be any arbitrary set of positive values.
Without loss of generality we can assume the smallest weight is exactly 1, as dividing
all weights by the same positive constant does not change the diagram. Throughout,
m denotes the maximum site weight, hence all weights are in the interval [1,m].

Let σ be an arbitrary point in the unit square. The high level idea is that we want
to apply a transformation to the sites such that the weighted Voronoi diagram around
σ can be interpreted as an unweighted Voronoi diagram. Specifically, for a site s
with weight w and distance d = ‖s − σ‖, let the stretched site of s with respect to
σ , denoted by t , be the point at Euclidean distance w · d from σ which lies on the
ray from σ through s. That is, the weighted distance from s to σ is the same as the
unweighted distance from t to σ .

So let σ be an arbitrary fixed point in the unit square, S = {s1, . . . , sn} be a set
of sites with weights {w1, . . . , wn} ⊂ [1,m] whose positions have been uniformly
sampled from the unit square, and let T = {t1, . . . , tn} be the corresponding set of
stretched sites.

Let γ = √
1/(2n). Our goal is to argue that for any arbitrary choice of σ in U

the expected complexity of the multiplicative Voronoi diagram in the ball B(σ, γ )

is constant, i.e., E
[|WV (S) ∩ B(σ, γ )|] = O(1). Then by the grid argument in the

previous section this immediately implies a linear bound on the expected complexity
of the overall diagram inU . Namely, place a uniform grid overU , where the grid cell
side length is 1/

√
n. Then as each cell is contained in a ball B(σ, γ ) for some σ , and

there are n cells overall, by the linearity of expectation the expected complexity of the
overall diagram is O(n).

At a high level, the idea is simple. We wish to argue that sites whose stretched
location is far from σ will be blocked from contributing by sites whose stretched
location is closer to σ . However, putting this basic plan into action is tricky and
requires handling various edge cases.

The first edge case we handle by classifying sites based on whether they are within
a small constant multiple of γ from σ or not. The expected number of such sites is only
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X Y

σ γ
4γ

(a) Sets X and Y from ,

and the grid cell and γ radius ball cen-
tered at σ .

r j +2

R j +2 D jR j +1

r j +1σ r j

(b) Exponentially increasing radii, and

rings R j +1 , R j +2 around disk Dj , all
centered at σ .

Fig. 1 Pictorial representations of some of the defined quantities from Sect. 4.3

a constant (as γ is proportional to 1/
√
n), so intuitively they can be ignored. We can

then focus on the remaining sites which are further away, but now have the advantage
that up to a constant factor, all points in B(σ, γ ) are roughly the same distance to a
given site.

Definition 4.4 For a fixed point σ inU , let X be the subset of Swhich falls in B(σ, 4γ ),
i.e., X = S ∩ B(σ, 4γ ). Let Y be the complement set, i.e., Y = S \ X . See Fig. 1.

Remark 4.5 In the following, we typically condition on the set of sites which fall in
Y as being fixed, but not the actual precise locations of those sites. We refer to this
as “Fixing Y ”. Ultimately the statements below hold regardless of what sites actually
fall in Y .

Fix Y . Let r1 be the radius such that the expected number of stretched sites from Y
that are contained in B(σ, r1) is n · π(16γ )2. Observe that a site can only be moved
further from σ after stretching, thus r1 ≥ 16γ . (Potentially r1 is significantly larger.)
Also, note that as Y is fixed, the value of r1 is fixed.

For any integer j > 0, let Dj be the disk with radius r j = r1 × 2 j−1, centered at
σ . Moreover, define the rings R j+1 = Dj+1 \ Dj , for any j > 0. See Fig. 1.

As discussed above, the high level intuition is that stretched sites which are closer to
σ will block stretched sites that are further away from contributing. We now precisely
express this intuition in terms of where sites fall in the above defined disks and rings.

Lemma 4.6 Consider two sites s j ∈ Y , and si such that either si ∈ Y or si ∈ X with
wi ≤ w j . For any k′ ≥ k ≥ 1, if ti ∈ Dk and t j ∈ Rk′+2, then s j cannot contribute to
the multiplicative Voronoi diagram in B(σ, γ ).
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Proof For site si , let di = ‖si − σ‖ and d ′
i = wi ·di . Similarly define d j and d ′

j for site
s j . Note that the furthest weighted distance of a point in B(σ, γ ) to si is wi · (di + γ ),
and the closest weighted distance of a point in B(σ, γ ) to s j is w j · (d j − γ ). Thus it
suffices to argue wi · (di +γ ) < w j · (d j −γ ), or equivalently (wi +w j )γ < d ′

j −d ′
i .

To that end, observe d ′
j − d ′

i ≥ d ′
j − d ′

j/2 = d ′
j/2. Thus we only need to argue

(wi + w j )γ < d ′
j/2.

Case 1, wi ≤ w j : In this case (wi + w j )γ ≤ w j · 2γ < w j · d j/2 = d ′
j/2.

Case 2, wi > w j : In this case (wi + w j )γ ≤ wi · 2γ < wi · di/2 = d ′
i/2 ≤ d ′

j/2.��
Note that a site with weight 1 does not move after stretching. Thus as S always

has a site with weight 1, there must be at least one stretched site in U . Therefore, if
we define Z − 1 to be the smallest value of j such that U ⊆ Dj , then DZ−1 must
contain a stretched site. Thus the above lemma implies any site which contributes to
the multiplicative Voronoi diagram within B(σ, γ ) must lie within DZ after being
stretched, and so going forward we only consider stretched sites in DZ .

Definition 4.7 Fix Y , and consider any 1 ≤ j ≤ Z − 2. For si ∈ Y , let pi, j denote the
probability that ti is located in Dj . For si ∈ Y , let qi, j denote the probability that si
is located inU\B(σ, 16γ ) and ti is located in R j+2 ∪ R j+1, conditioned on the event
that no stretched sites from Y are located in Dj .1

Lemma 4.8 Fix Y . For any 1 ≤ j ≤ Z − 2 and si ∈ Y we have qi, j ≤ 32 · pi, j .
Proof Note in the following we always take as given that si ∈ Y . Observe that

pi, j = Pr
[

ti ∈ Dj
] = Pr

[

si ∈ U ∩ B(σ, r j/wi )
]

= area((U ∩ B(σ, r j/wi )) \ B(σ, 4γ ))

area(U \ B(σ, 4γ ))
.

Let ei be the event that (si ∈ U\B(σ, 16γ ))∩(ti ∈ Dj+2\Dj ). Then as the location
of the sites in Y are independent, for qi, j we have,

qi, j = Pr
[

ei | ∀k s.t. sk ∈ Y , tk /∈ Dj
] = Pr

[

ei ∩ (∀k s.t. sk ∈ Y , tk /∈ Dj )
]

Pr
[∀k s.t. sk ∈ Y , tk /∈ Dj

]

= Pr
[

ei ∩ (ti /∈ Dj ) ∩ (∀k 
= i s.t. sk ∈ Y , tk /∈ Dj )
]

Pr
[∀k s.t. sk ∈ Y , tk /∈ Dj

]

= Pr
[

ei ∩ (∀k 
= i s.t. sk ∈ Y , tk /∈ Dj )
]

Pr
[∀k s.t. sk ∈ Y , tk /∈ Dj

]

= Pr[ei ]Pr
[∀k 
= i s.t. sk ∈ Y , tk /∈ Dj

]

Pr
[∀k s.t. sk ∈ Y , tk /∈ Dj

] = Pr[ei ]
∏

∀k 
=i s.t. sk∈Y Pr
[

tk /∈ Dj
]

∏

∀k s.t. sk∈Y Pr
[

tk /∈ Dj
]

= Pr[ei ]

Pr
[

ti /∈ Dj
] = Pr

[

(si ∈ U \ B(σ, 16γ )) ∩ (ti ∈ Dj+2 \ Dj )
]

Pr
[

ti /∈ Dj
]

1 Note for j ≤ Z−2, Dj � U , thus the condition that no stretched sites are in Dj has non-zero probability.
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= Pr
[

si ∈ (U ∩ B(σ, 4r j/wi )) \ (B(σ, r j/wi ) ∪ B(σ, 16γ ))
]

Pr
[

ti /∈ Dj
]

≤ Pr
[

si ∈ (U ∩ B(σ, 4r j/wi )) \ B(σ, 16γ )
]

Pr
[

ti /∈ Dj
]

= area((U ∩ B(σ, 4r j/wi )) \ B(σ, 16γ ))

area(U \ B(σ, 4γ )) · Pr[ti /∈ Dj
]

≤ 16 · area((U ∩ B(σ, r j/wi )) \ B(σ, 4γ ))

area(U \ B(σ, 4γ )) · Pr[ti /∈ Dj
] = 16 · pi j

Pr
[

ti /∈ Dj
] = 16 · pi j

1 − pi j
.

If pi j ≤ 1/2, then the above implies qi j ≤ 16 · pi j/(1− pi j ) ≤ 32 · pi j . On the other
hand, if pi j > 1/2, then pi j > 1/2 ≥ qi j/2. ��
Fact 4.9 Fix Y . For any 1 ≤ j ≤ Z − 2, consider the event, C j , that j is the largest
index such that there are no stretched sites from Y located in D j . We have Pr

[

C j
] ≤

∏

si∈Y (1 − pi, j ).

Lemma 4.10 Fix Y . Let ψ be the number of sites that fall outside B(σ, 16γ ) and
contribute to the multiplicative Voronoi diagram within B(σ, γ ). Then we have

E
[

ψ2
]

≤ O(1) + 2
Z−2
∑

j=1

⎛

⎜
⎝

⎛

⎝
∏

si∈Y
(1 − pi, j )

⎞

⎠ ·
⎛

⎜
⎝1 + 3

∑

si∈Y
qi, j +

⎛

⎝
∑

si∈Y
qi, j

⎞

⎠

2
⎞

⎟
⎠

⎞

⎟
⎠ .

Proof For 1 ≤ j ≤ Z − 2, let C j be the event that j is the largest index such that Dj

contains no stretched sites from Y . (Note for i 
= j , Ci and C j are disjoint events.)
If C j occurs then only sites in R j+1 ∪ R j+2 can contribute to the weighted diagram
in B(σ, γ ), based on Lemma 4.6. Let y j be the random variable denoting the number
of sites such that si /∈ B(σ, 16γ ) and ti ∈ R j+1 ∪ R j+2. If C j occurs, then y j is an
upper bound on the number of sites which fall outside B(σ, 16γ ) and contribute to
the weighted diagram in B(σ, γ ). Note we must also consider the event that C j does
not occur for any j ≥ 1, namely there exist stretched sites from Y contained in D1.
Call this event C0, and let y0 be the random variable for the number of sites such that
si /∈ B(σ, 16γ ) and ti ∈ D2. By the law of total expectation,

E
[

ψ2
]

=
Z−2
∑

j=0

(Pr
[

C j
] · E

[

(y j )
2 | C j

]

),

where the sum stops at Z − 2 since there always exists a stretched site with weight 1
in DZ−1 (by definition of Z ), and so stretched sites outside of DZ can be ignored.

So consider any E
[

(y j )2 | C j
]

term, for some j > 0. Let A j be the event that Dj

contains no stretched sites from Y and let Bj be the event that R j+1 has a stretched
site from Y , and observe that C j = A j ∩ Bj . The following claim is intuitive, and its
proof is in Appendix A.
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Claim 4.11 E
[

y2j | C j

]

≤ 2E
[

(y j + 1)2 | A j
]

.

The events, over all si ∈ Y , that si falls outside B(σ, 16γ )while ti is located in R j+1∪
R j+2, are independent. Moreover, this event for any si ∈ Y , when conditioned on A j ,
has probability qi, j (seeDefinition 4.7). Hence conditioned on A j , the randomvariable
y j has a Poisson Binomial distribution. Thus we have E

[

y j | A j
] = ∑

si∈Y (qi, j ),
and the variance is then Var[y j | A j ] = ∑

si∈Y
(

qi, j (1 − qi, j )
) ≤ ∑

si∈Y (qi, j ) =
E
[

y j | A j
]

. Thus using the above claim,

E
[

(y j )
2 | C j

]

≤ 2E
[

(y j + 1)2 | A j

]

= 2E
[

1 + 2y j + y2j | A j

]

= 2(1 + 2E
[

y j | A j
]+ ( Var[y j | A j ] + (E[y j | A j

])2
))

≤ 2(1 + 3E
[

y j | A j
]+ (E[y j | A j

])2
)

≤ 2

⎛

⎜
⎝1 + 3

∑

si∈Y
qi, j +

⎛

⎝
∑

si∈Y
qi, j

⎞

⎠

2
⎞

⎟
⎠ .

Suppose that Pr[C0] · E[(y0)2|C0
] = O(1), then the lemma statement follows.

Specifically, by Fact 4.9, Pr
[

C j
] ≤ ∏si∈Y (1 − pi, j ), for any 1 ≤ j ≤ Z − 2. Thus

by the above,

E
[

ψ2
]

=
Z−2
∑

j=0

(Pr
[

C j
] · E

[

(y j )
2 | C j

]

)

≤ O(1) + 2
Z−2
∑

j=1

⎛

⎜
⎝

⎛

⎝
∏

si∈Y
(1 − pi, j )

⎞

⎠ ·
⎛

⎜
⎝1 + 3

∑

si∈Y
qi, j +

⎛

⎝
∑

si∈Y
qi, j

⎞

⎠

2
⎞

⎟
⎠

⎞

⎟
⎠ .

Thus what remains is to show Pr[C0] · E[(y0)2|C0
] = O(1). First, observe that

Pr[C0]E
[

(y0)
2|C0

]

= Pr[C0]
|Y |2
∑

k=1

k · Pr
[

(y0)
2 = k|C0

]

= Pr[C0]
|Y |2
∑

k=1

k · Pr[((y0)2 = k) ∩ C0
]

Pr[C0]
=

|Y |2
∑

k=1

k · Pr
[

((y0)
2 = k) ∩ C0

]

≤
|Y |2
∑

k=1

k · Pr
[

(y0)
2 = k

]

= E
[

(y0)
2
]

.

Thus it suffices to argue E
[

(y0)2
] = O(1).

For any si ∈ Y , let qi,0 denote the probability that si /∈ B(σ, 16γ ) while
ti ∈ D2, then E[y0] = ∑

si∈Y qi,0. Note that as area(B(σ, r2/wi )\B(σ, 16γ )) ≤ 4 ·
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Q � �
1 Q2

Q3Q4
σ

Q4

Q1

Q3

Q2

U

� �

Fig. 2 The locations of the four defined quarters for each disk, and how they intersect U

area(B(σ, r1/wi )\B(σ, 4γ )) it follows that area((U ∩ B(σ, r2/wi ))\B(σ, 16γ )) ≤
4 · area((U ∩ B(σ, r1/wi ))\B(σ, 4γ )). This implies qi,0 ≤ 4 · pi,1, and hence
∑

si∈Y qi,0 ≤ 4
∑

si∈Y pi,1 = 4 · nπ(16γ )2 = O(1), by the definition of r1.
Thus E[y0] = O(1), and since y0 has a Poisson Binomial distribution, E

[

(y0)2
] =

(E[y0])2 + Var[y0] ≤ (E[y0])2 + E[y0] = O(1). ��
Lemma 4.12 Let Pj =∑si∈Y pi, j . Then for any j ≤ Z − 3, we have Pj ≥ Pj−1 + 1.

Proof Note that by definition, the expected number of stretched sites from Y that are
contained in B(σ, r1) is nπ(16γ )2 > 2, and thus P1 = (

∑

si∈Y pi,1) > 2.
We argue that for any j ≤ Z −3, that area(U ∩Dj ) ≥ 2 ·area(U ∩Dj−1). To this

end, break Dj into 4 quarters, by cutting it with a vertical and horizontal line through
σ . Let the quarters be labeled Q1, Q2, Q3, and Q4, in clockwise order, starting with
the northwest quarter, see Fig. 2. Similarly break Dj−1 into quarters, Q′

1, Q
′
2, Q

′
3, and

Q′
4, with the same clockwise labeling order. Recall that by definition Z − 1 is the

smallest j such thatU ⊆ Dj . Since σ ∈ U , this implies that for any j ≤ Z −3 at least
one of the quarters of Dj is fully contained inU , and without loss of generality assume
it is Q2. Note that area(Dj ) = 4area(Dj−1), thus this implies that area(U ∩ Q2) =
area(Q2) = 2(area(Q′

2) + area(Q′
4)) ≥ 2(area(U ∩ Q′

2) + area(U ∩ Q′
4)). It

is easy to argue that since r j = 2r j−1 that area(U ∩ Q1) ≥ 2area(U ∩ Q′
1) and

area(U ∩ Q3) ≥ 2area(U ∩ Q′
3), thus summing over all quarters area(U ∩ Dj ) ≥

2 · area(U ∩ Dj−1).
This implies that area(U ∩ B(σ, r j/wi )) ≥ 2 · area(U ∩ B(σ, r j−1/wi )),

which in turn implies area((U ∩ B(σ, r j/wi ))\B(σ, 4γ )) ≥ 2 · area((U ∩
B(σ, r j−1/wi ))\B(σ, 4γ )). Hence by Definition 4.7, pi, j ≥ 2pi, j−1, and therefore
Pj ≥ 2Pj−1 ≥ Pj−1 + 1. ��
Lemma 4.13

Z−2
∑

j=1

⎛

⎜
⎝

⎛

⎝
∏

si∈Y
(1 − pi, j )

⎞

⎠ ·
⎛

⎜
⎝1 + 3

∑

si∈Y
qi, j +

⎛

⎝
∑

si∈Y
qi, j

⎞

⎠

2
⎞

⎟
⎠

⎞

⎟
⎠ = O(1).
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Proof We argue that
∑Z−2

j=1

((
∏

si∈Y (1 − pi, j )
)

·
(
∑

si∈Y qi, j
)α) = O(1), where

α = 0, 1, or 2, thus implying the lemma statement. By Lemma 4.8, qi, j ≤ 32 · pi, j ,
and therefore

Z−2
∑

j=1

⎛

⎝

⎛

⎝
∏

si∈Y
(1 − pi, j )

⎞

⎠ ·
⎛

⎝
∑

si∈Y
qi, j

⎞

⎠

α⎞

⎠

≤
Z−2
∑

j=1

⎛

⎝

⎛

⎝
∏

si∈Y
(1 − pi, j )

⎞

⎠ ·
⎛

⎝32
∑

si∈Y
pi, j

⎞

⎠

α⎞

⎠

≤ 32α
Z−2
∑

j=1

⎛

⎝

(

e−∑si∈Y pi, j
)

·
⎛

⎝
∑

si∈Y
pi, j

⎞

⎠

α⎞

⎠ = 32α
Z−2
∑

j=1

((

e−Pj
)

· (Pj
)α
)

,

where the last inequality follows as 1 − x ≤ e(−x), and the last equality is by the
definition of Pj from the Lemma 4.12 statement.

Note that by definition, the expected number of stretched sites from Y that are
contained in B(σ, r1) is nπ(16γ )2, and thus P1 = (

∑

si∈Y pi,1) > 2. Moreover, the
function xαe−x is monotonically decreasing for x > 2, and always has value less than
1, for α = 0, 1, or 2. Thus since by Lemma 4.12, Pj ≥ Pj−1 + 1 for j ≤ Z − 3, and
since PZ−2 ≥ PZ−3, we have,

Z−2
∑

j=1

Pα
j · e−Pj ≤ 1 +

Z−3
∑

j=1

Pα
j · e−Pj ≤ 1 +

∞
∑

x=2

xα · e−x ≤ 2 +
∫ ∞

2
xα · e−xdx ≤ 4,

for α = 0, 1, or 2. Combining the above two equalities thus yields the lemma
statement. ��

Now that we have the above lemmas for any fixed Y , we are finally ready to prove
our main lemma (where Y is no longer assumed to be fixed).

Lemma 4.14 Let S be a set of n point sites in the plane, with arbitrary positive weights.
Suppose that the location of each site in S is sampled uniformly at random from the
unit square U. Then for any point σ ∈ U, E

[|WV (S) ∩ B(σ, γ )|] = O(1).

Proof Let 
̂ = S ∩ B(σ, 16γ ) be the sites which fall in B(σ, 16γ ) and let 
 = S \ 
̂

be the complement set. Let ψ̂ ,ψ , be the random variables denoting the number of sites
respectively from 
̂, 
, which contribute to the multiplicative diagram in B(σ, γ ).

Recall that the worst-case complexity of the multiplicative diagram is quadratic in

the number of sites. Thus it suffices to bound E
[

(ψ̂ + ψ)2
]

≤ E
[

2(ψ̂2 + ψ2)
]

=
2(E
[

ψ̂2
]

+E
[

ψ2
]

).Thuswe now show each of the above two expected value terms are

constant. First, note that Lemmas 4.10 and 4.13 combined imply that E
[

ψ2
] = O(1)

(as those lemmas hold regardless of which sites fall in Y ). Thus we only need to bound
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E
[

ψ̂2
]

. Observe that clearly |
̂| ≥ ψ̂ . To bound |
̂|, observe that area(B(σ, 16γ )) =
O(1/n), and thus E

[

|
̂|
]

= O(1). Moreover, the number of sites which fall into

this ball is a binomial random variable. Thus by Fact 4.2, E
[

ψ̂2
]

≤ E
[

|
̂|2
]

≤
E
[

|
̂|
]

+ E
[

|
̂|
]2 = O(1). ��

Consider placing a uniform gridwith side length 1/
√
n over the unit squareU . Then

for any grid cell, if we set σ to be the center of the grid cell then B(σ, γ ) contains
the grid cell, and hence the above lemma implies the expected complexity in the grid
cell is constant. Thus using linearity of expectation over all n grid cells implies the
following main theorem.

Theorem 4.15 Let S be a set of n point sites in the plane, with arbitrary positive
weights. Suppose the location of each site in S is sampled uniformly at random from
the unit square U. Then the expected complexity of the multiplicative Voronoi diagram
of S within U is O(n).

A Claim Proof

Here we prove the claim from Lemma 4.10. Below is the restated claim.

Claim 4.11 E
[

y2j | C j

]

≤ 2E
[

(y j + 1)2 | A j
]

.

Proof Let y j andC j = A j ∩Bj be as defined in the proof of Lemma 4.10. Throughout
j is fixed and so we drop the j subscripts. Thus we must prove E

[

y2|A ∩ B
] ≤

2E
[

(y + 1)2|A].
As the conditioning on A appears in all terms, for simplicity of exposition we

write that we want to show E
[

y2|B] ≤ 2E
[

(y + 1)2
]

where the conditioning on A is
implicit.

Note that y = y′ + y′′, where y′ is the number of stretched sites falling in R j+1
and y′′ the number falling in R j+2. Moreover, (y′ + y′′)2 ≤ 2((y′)2 + (y′′)2).

Lemma A.1 E
[

(y′′)2 | y′ 
= 0
] ≤ E

[

(y′′)2
]

.

Proof Let α = E
[

(y′′)2 | y′ = 0
]

and β = E
[

(y′′)2 | y′ 
= 0
]

. It is easy to verify that
α = E

[

(y′′)2 | y′ = 0
] ≥ E

[

(y′′)2
]

. Now, observe that

μ = E
[

(y′′)2
]

= E
[

(y′′)2 | y′ = 0
]

Pr
[

y′ = 0
]+ E

[

y′′2 | y′ 
= 0
]

Pr
[

y′ 
= 0
]

= α Pr
[

y′ = 0
]+ β(1 − Pr

[

y′ = 0
]

).

Namely, μ is a convex combination of α and β, and since α ≥ μ, it must be that
β ≤ μ, as claimed. ��
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As B = (y′ 
= 0), by the above lemma and linearity of expectation we have

E
[

y2 | B
]

≤2E
[

(y′)2 | y′ 
= 0
]

+ 2E
[

(y′′)2 | y′ 
= 0
]

≤2E
[

(y′)2 | y′ 
= 0
]

+ 2E
[

(y′′)2
]

.

Observe that 2E
[

(y′ + 1)2
] + 2E

[

(y′′)2
] ≤ 2E

[

(y + 1)2
]

. Thus if we can prove
that E

[

(y′)2 | y′ 
= 0
] ≤ E

[

(y′ + 1)2
]

, then the above implies that E
[

y2 | B] ≤
2E
[

(y + 1)2
]

as claimed.
So to prove E

[

(y′)2 | y′ 
= 0
] ≤ E

[

(y′ + 1)2
]

, note that (y′ 
= 0) = ∪i Xi , where
Xi is the event that the i th stretched site from Y is in R j+1. Thus,

E[(y′)2 | y′ 
= 0]
= E[(y′)2 | X1] · Pr [X1] + E[(y′)2 | X1 ∩ X2] · Pr [X1 ∩ X2] + . . .

+ E[y′2 | X1 ∩ . . . ∩ X |Y |−1 ∩ X |Y |] · Pr [X1 ∩ . . . ∩ X |Y |−1 ∩ X |Y |]
+ E[(y′)2 | X1 ∩ . . . ∩ X |Y |] · Pr [X1 ∩ . . . ∩ X |Y |].

Note the last term above is zero and can be ignored. Also note that

Pr [X1] + Pr [X1 ∩ X2] + . . . + Pr [X1 ∩ . . . ∩ X |Y |−1 ∩ X |Y |]
+Pr [X1 ∩ . . . ∩ X |Y |] = 1.

Thus the claim follows if we can argue that each expectation in the above sum is upper
bounded by E[(y′ + 1)2]. So consider any term E[(y′)2 | X1 ∩ . . . ∩ Xk−1 ∩ Xk]. Let
z be the number of sites from {pk+1 . . . p|Y |} falling in R j+1. Then since the points
were sampled independently we have

E[(y′)2 | X1 ∩ . . . ∩ Xk−1 ∩ Xk] ≤ E[(z + 1)2 | X1 ∩ . . . ∩ Xk−1 ∩ Xk]
≤ E[(z + 1)2] ≤ E[(y′ + 1)2].

��

B Complexity Sketch

Here we give a very brief description of why the order-k sequence Voronoi diagram
has O(nk3) worst-case complexity. First, recall that by standard lifting, the regular
order-k diagram is described by the exact kth level in the arrangement of hyperplanes
tangent to the unit paraboloid. Since we care about the ordering of the k sites, we are
instead concerned with the at most k level. There is a shallow cutting covering the at
most k level with O(n/k) vertical prisms each intersecting O(k) planes [19]. Each
prism projects to a triangle in the plane, and thus within this triangle only O(k) sites
(corresponding to the planes intersecting the prism) are relevant. Note that O(k) sites

123



Discrete & Computational Geometry (2025) 73:1–24 23

can define at most O(k4) different orderings as they define O(k2) bisectors and the
the arrangment of these bisectors has O(k4) complexity. Thus the plane is covered
by O(n/k) triangles within which the order-k sequence Voronoi diagram has O(k4)
complexity, and thus in total the complexity is O(nk3).

We remark that for the purposes of this paper an O(nk5) boundwould have sufficed,
and is trivial to obtain. Namely, the worst case complexity of the regular order-k
diagram is O(nk), and by the same argument, within each cell there can be at most
O(k4) orderings.
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