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Abstract
We consider optimal experimental design (OED) for Bayesian nonlinear
inverse problems governed by partial differential equations (PDEs) under
model uncertainty. Specifically, we consider inverse problems in which, in
addition to the inversion parameters, the governing PDEs include secondary
uncertain parameters. We focus on problems with infinite-dimensional inver-
sion and secondary parameters and present a scalable computational frame-
work for optimal design of such problems. The proposed approach enables
Bayesian inversion and OED under uncertainty within a unified framework.
We build on the Bayesian approximation error (BAE) approach, to incorporate
modeling uncertainties in the Bayesian inverse problem, and methods for A-
optimal design of infinite-dimensional Bayesian nonlinear inverse problems.
Specifically, a Gaussian approximation to the posterior at the maximum a pos-
teriori probability point is used to define an uncertainty aware OED objective
that is tractable to evaluate and optimize. In particular, the OED objective
can be computed at a cost, in the number of PDE solves, that does not grow
with the dimension of the discretized inversion and secondary parameters. The
OED problem is formulated as a binary bilevel PDE constrained optimization
problem and a greedy algorithm, which provides a pragmatic approach, is
used to find optimal designs. We demonstrate the effectiveness of the proposed
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approach for a model inverse problem governed by an elliptic PDE on a three-
dimensional domain. Our computational results also highlight the pitfalls of
ignoring modeling uncertainties in the OED and/or inference stages.

Keywords: optimal experimental design, sensor placement,
Bayesian inverse problems, model uncertainty, Bayesian approximation error

1. Introduction

Models governed by partial differential equations (PDEs) are common in science and engineer-
ing applications. Such PDE models often contain parameters that need to be estimated using
observed data and the model. This requires solving an inverse problem. The quality of the
estimated parameters is influenced significantly by the quantity and quality of the measure-
ment data. Therefore, optimizing the data acquisition process is crucial. This requires solving
an optimal experimental design (OED) problem [7, 13, 43]. In the present work, we focus on
inverse problems in which measurement data are collected at a set of sensors. In this case, OED
amounts to finding an optimal sensor placement. In this context, OED is especially important
when only a few sensors can be deployed.

While some parameters in the governing PDEs can be estimated by solving an inverse prob-
lem, often there are additional uncertain model parameters that are not being estimated. These
parameters might be too costly or impossible to estimate. We call the uncertain parameters that
are being estimated in an inverse problem the inversion parameters and refer to the additional
uncertain parameters as the secondary parameters. Such secondary parameters have also been
referred to as auxiliary parameters, latent parameters, or nuisance parameters in the literature.
When solving inverse problems with secondary parameters with significant uncertainty levels,
both the parameter estimation and data acquisition processes need to be aware of such uncer-
tainties. In this article, we present a computational framework for optimal design of nonlinear
Bayesian inverse problems governed by PDEs under model uncertainty.

Uncertainties in mathematical models can be divided into two classes: reducible and irre-
ducible [39]. The reducible uncertainties are epistemic uncertainties that can be reduced via
statistical parameter estimation. On the other hand, irreducible uncertainties are either aleatoric
uncertainties inherent to the model that are impossible to reduce or are epistemic uncertainties
that are too costly or impractical to reduce. Also, in some applications we might have access
to a probabilistic description of secondary model parameters from previous studies and further
reduction of the uncertainty in such parameters may not be worth the additional computational
cost. We consider such uncertainties as irreducible as well. In the present work, we focus on
the case of irreducible uncertainties.

We consider models of the form

where y is a vector of measured data, G is a PDE-based model, m and £ are uncertain para-
meters, and 1) is a random vector that models measurement noise. Herein, m is the inversion
parameter which we seek to infer, and £ is a secondary uncertain model parameter. We assume
the uncertainty in & to be irreducible. The parameters m and £ are assumed to be independ-
ent random variables that take values in infinite-dimensional real separable Hilbert spaces .#
and 2, respectively. Moreover, G is assumed to be nonlinear in both m and £. The methods
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presented in this article enable computing optimal experimental designs in such a way that the
uncertainty in the secondary parameters is accounted for.

1.1 Related work

In the recent years, there have been numerous research efforts directed at OED in inverse
problems governed by PDEs. See the review [1], for a survey of the recent literature in this
area. There has also been an increased interest in parameter inversion and design of experi-
ments in systems governed by uncertain forward models; see e.g. [6, 14, 24, 27, 33, 38] for
a small sample of the literature addressing inverse problems under uncertainty. Methods for
OED in such inverse problems have been studied in [5, 11, 18, 28]. The works [5, 28] concern
optimal design of infinite-dimensional Bayesian linear inverse problems governed by PDEs.
Specifically, [28] considers design of linear inverse problems governed by PDEs with irre-
ducible sources of model uncertainty. On the other hand, [5] targets OED for linear inverse
problems with reducible sources of uncertainty. The efforts [11, 18] focus on inverse problems
with finite- and low-dimensional inversion and secondary parameters. These articles devise
sampling approaches for estimating the expected information gain in such problems. The set-
ting considered in [18] is that of inverse problems with reducible uncertainties. The approach
in [11] employs a small noise approximation that applies to problems with nuisance parameters
that have small uncertainty levels.

1.2. Our approach

We focus on Bayesian nonlinear inverse problems governed by PDEs with infinite-dimensional
inversion and secondary parameters. Traditionally, when solving such inverse problems all the
secondary model parameters are fixed at their nominal values and the focus is on the estim-
ation of the inversion parameters. Considering (1), this amounts to using the approximate
model F(m) := G(m,£), where £ is some nominal value. In section 2, we consider simpler
instances of (1) and illustrate the role of model uncertainty in Bayesian inverse problems and
the importance of accounting for such uncertainties in parameter inversion and OED. The dis-
cussion in section 2 motivates our approach for incorporating secondary uncertainties in non-
linear Bayesian inverse problems and the corresponding OED problems. This is done using
the Bayesian approximation error (BAE) approach [24, 26]; see section 3.

Subsequently, we build on methods for optimal design of infinite-dimensional nonlin-
ear inverse problems [1, 4, 44] to derive an uncertainty aware OED objective. Specifically,
we follow an A-optimal design strategy where the goal is to obtain designs that minimize
average posterior variance. To cope with the non-Gaussianity of the posterior, we rely on a
Gaussian approximation to the posterior. This enables deriving approximate measures of pos-
terior uncertainty that are tractable to optimize for infinite-dimensional inverse problems; see
section 4. We then present two approaches for formulating and computing the OED objective;
see section 5. The first approach uses Monte Carlo trace estimators and the second one formu-
lates the OED problem as an eigenvalue optimization problem. In each case, the OED problem
is formulated as a bilevel binary PDE-constrained optimization problem. In both approaches,
the cost of computing the OED objective, in terms of the number of PDE solves, is independ-
ent of the dimensions of discretized inversion and secondary parameters. This makes these
approaches suitable for large-scale applications. In the present work, we rely on a greedy
approach to solve the resulting optimization problems. As discussed in section 5, a greedy
algorithm is especially suited for the formulation of the OED problem in section 5.2.2, as a
binary PDE-constrained eigenvalue optimization problem.

3
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We elaborate the proposed approach in the context of a model inverse problem governed by
an elliptic PDE in a three-dimensional domain; see section 6. This inverse problem, which is
motivated by heat transfer applications, concerns estimation of a coefficient field on the bot-
tom boundary of the domain, using sensor measurements of the temperature on the top bound-
ary. The secondary uncertain parameter in this inverse problem is the log-conductivity field,
which is modeled as a random field on the three-dimensional physical domain. Our computa-
tional results in section 7 demonstrate the effectiveness of the proposed strategy in computing
optimal sensor placements under model uncertainty. We also systematically study the draw-
backs of ignoring the uncertainty in the Bayesian inversion and experimental design stages.
These studies illustrate the fact that ignoring uncertainty in OED or inference stages can lead
to inferior designs and highly inaccurate results in parameter estimation.

1.3. Contributions

The contributions of this article are as follows: (1) We present an uncertainty aware formula-
tion of the OED problem, uncertainty aware OED objectives along with scalable methods for
computing them, and an extensible optimization framework for computing optimal designs.
These make OED for nonlinear Bayesian inverse problems governed by PDEs with infinite-
dimensional inversion and secondary parameters feasible. Additionally, the proposed approach
enables Bayesian inversion and OED under uncertainty within a unified framework. (2) We
elaborate the proposed approach for an inverse problem governed by an elliptic PDE, on
a three-dimensional domain, with infinite-dimensional inversion and secondary parameters.
This is used to elucidate the implementation of our proposed approach for design of inverse
problems governed by PDEs under uncertainty. (3) We present comprehensive computational
studies that illustrate the effectiveness of the proposed approach and also the importance of
accounting for modeling uncertainties in both parameter inversion and experimental design
stages. (4) By considering simpler instances of (1), in section 2, we present a systematic study
of the role of model uncertainty in Bayesian inverse problems and the importance of accounting
for such uncertainties in parameter inversion and OED. That study also reveals a connection
between the BAE-based approach taken in the present work and the method for OED in linear
inverse problems under uncertainty in [5].

The developments in this article point naturally to a number of extensions of the presented
methods. We discuss such issues in section 8, where we present our concluding remarks, and
discuss potential limitations of the presented approach and opportunities for future extensions.

2. Motivation and overview

In this section, we motivate our approach for OED under uncertainty and set the stage for
the developments in the rest of the article. After a brief coverage of requisite notation and
preliminaries in section 2.1, we begin our discussion in section 2.2 by considering a simple
form of (1) where G is linear in m and £. This facilitates an intuitive study of the role of model
uncertainty in Bayesian inverse problems and OED. We then consider nonlinear models of
varying complexity in section 2.3 to motivate our approach for design of inverse problems
governed by nonlinear models of the form (1).

2.1. Preliminaries

In this article, we consider inversion and secondary parameters that take values in infinite-
dimensional Hilbert spaces. For a Hilbert space .7, we denote the corresponding inner product

4
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by (-,-) ,,» and the associated induced normby || - || s; 1.e. || - || == (-, >l;éﬂz For Hilbert spaces

A and 6, L (4 ,74) denotes the space of bounded linear transformations from .7 to
. The space of bounded linear operators on a Hilbert space .7 is denoted by .Z (%), and
the subspace of bounded selfadjoint operators is denoted by Z¥™ (). We let L™ ()
denote the set of bounded positive selfadjoint operators. The subspace of trace-class operat-
ors in .Z () is denoted by % (), and the subspace of selfadjoint trace-class operators is
denoted by Z¥" (). Also, the sets of positive and strictly positive selfadjoint trace-class
operators are denoted by £>™" () and ZY™" (), respectively.

Throughout the article, N'(a,C) denotes a Gaussian measure with mean a and covariance
operator C. For a Gaussian measure on an infinite-dimensional Hilbert space .77, the covari-
ance operator C is required to be in £}*™" (). Herein, we consider non-degenerate Gaussian
measures; i.e. we assume that C € ™" (). For further details on Gaussian measures, we
refer to [15, 40]. Also, when considering measures on Hilbert spaces, we equip these spaces
with their associated Borel sigma algebra. Throughout the article, for notational convenience,
we suppress this choice of the sigma-algebra in our notations.

The adjoint of a linear transformation A € £ (54, %), where ] and .77 are (real) Hilbert
spaces, is denoted by A*. Recall that A* € £ (.54,74) and

(Avl,vz>%gz = (vl,.A*vz>%gl, for all vi € J4,v, € 6.

We also recall the following basic result regarding affine transformations of Gaussian ran-
dom variables. Let X be an .#{-valued Gaussian random variable with law A (a,C), A €
L (H,65), and b € . Then, the random variable AX + b is an .7%-valued Gaussian ran-
dom variable with law A (Aa + b, ACA*); see [15] for details.

2.2. Linear models

Consider the model
y=8m+T¢ +n, @

where y € RY denotes measurement data, m € ./ is the inversion parameter, & € 2 is the
secondary uncertain parameter, and 7) is the measurement noise vector. (The spaces .# and
Z are as described in the introduction.) This type of model, which was considered in [5], may
correspond to inverse problems governed by linear PDEs with uncertainties in source terms or
boundary conditions. We assume S € . (.4 ,R?) and T € £ (%2 ,RY). Moreover, we assume
that 77 ~ N (0, i) and that 7 is independent of m and £. We consider a Gaussian prior law
popr = N (my,Cpr) for m, and for the purpose of this illustrative example, let the secondary
model uncertainty £ be distributed according to a Gaussian pe = N (£,C¢). Also, we assume
T hoise = 021, with o2 denoting the noise level.

2.2.1. Incorporating model uncertainty in the inverse problem.  For a fixed realization of
&, estimating m from (2) is a standard problem. This also follows the common practice of
fixing additional model parameters at some nominal values before solving the inverse problem.
However, it is possible to account for the model uncertainty in this process. To see this, suppose
we fix ¢ at £ and consider the approximate model F(m) = Sm + T €. Note that

Sm+TE =Sm+TE+T (£-€).
—_——

accurate model F(m) error €
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In this case, the approximation error € = 7 ({ — &) has a Gaussian law, € ~ N(0,7C:T™).
Hence, we may rewrite (2) in terms of the approximate model F as follows:

y=F(m)+v, 3)

where v = € + 1 denotes the rotal error. In the present setting, v ~ N'(0,7CeT* + Thoise)-
Note that we have incorporated the uncertainty due to £ in the error covariance matrix.* The
present procedure for incorporating the secondary model uncertainty into the inverse problem
is a special case of the Bayesian approximation error (BAE) approach (see section 3).

Since we have Gaussian prior and noise models and F in (3) is affine, the posterior is
also Gaussian with analytic formulas for its mean and covariance operator; see e.g. [40]. In
particular, the posterior covariance operator is given by

- —1
Cpos = (ST, S+ ) = (8" (TCT +Toe) ' S+G') - @)

Considering, for example, the A-optimality criterion tr(Cpost), (4) illustrates the manner in
which the uncertainty due to use of an approximate model impacts the posterior uncertainty.

2.2.2. Interplay between measurement error and approximation error.  Note that TC¢T™* €
Z¥m*(RY). This operator admits a spectral decomposition VAV, where V is an orthogonal
matrix of eigenvectors and A is a diagonal matrix with the eigenvalues on it diagonal. Thus,
the total error covariance matrix can be written as T',, = VAV + 21 = >N+ o)),
Therefore, the modes for which \; < o> may be ignored. To observe the impact of model
uncertainty on individual observations, we note that

Var{y;} =elT,e; = Z (/\j+02) (e,ij)z’ ie{l,...,d},

J

where e;’s are the standard basis vectors in R?. Thus, we see that only large eigenvalues con-
tribute significantly to the total error in the ith measurement.

We can also consider the interplay between the spectral representation of the error cov-

ariance and the posterior covariance operator. Specifically, Cpost = (S*I‘; 'S +Cl;1)71 =

C;r/z(S*F,le 4—1)_1(,’;/2 with S = SCPI,r/z. Thus, letting E; = vjv}-,j =1,...,d, we can write

—1
d

Coo = Ci2 |3 (N +02) T SES+1| i
j=1

Note that in the directions corresponding to very large eigenvalues the measurements will have
a negligible impact on posterior uncertainty.

The above discussion indicates that model uncertainty cannot be ignored in the inverse
problem, especially when the model uncertainty overwhelms measurement noise. The latter
is also important in design of experiments. Specifically, some of the measurements might be
completely useless due to large amount of model uncertainty associated to the corresponding
measurements. This information needs to be accounted for in the OED problem to ensure only
measurements that are helpful in reducing posterior uncertainty are selected.

4 If the approximate model F was defined by fixing £ at a point different from &, then the error term v would have
nonzero mean.
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2.2.3. Connection to post-marginalization.  In general, the BAE approach involves pre-
marginalization over the secondary model uncertainties. This can be related to the idea of
post-marginalization in the case of linear Gaussian inverse problems. Namely, if we consider
& as areducible uncertainty that is being estimated along with m and pi¢ as the corresponding
prior law, then (4) is the covariance operator of the marginal posterior law of m. To see this,
we first note that
-1

(ch T* + FHOiSC) : = I‘I;)%se - I‘I;)%SCT (Cg_l + T* ]'-‘1170%567—/) T* I‘I;)%SC' (5)
This relation can be derived by following a similar calculation as the one in [40, p 536].° Then,
we substitute (5) in (4) to obtain

. -1
-1 -1 -1 -1 -1 —1

Cpost = Cpr + S*Fnoises - S*FnoiseT (Cg +7T" Fnoise ) T Fnoise8:| :

This Cpog is the same as the marginal posterior covariance operator of /1 as noted in [5, equation

(2.4)]. Thus, for a linear Gaussian inverse problem with reducible secondary uncertainty, the

posterior covariance operator obtained using the BAE approach equals the marginal posterior
covariance operator of m obtained following joint estimation of m and &.

2.3. Nonlinear models

The linear model (2) can be generalized in the following ways:

additive model, linear in m, nonlinear in £ : G (m,§) = Sm+T (£); 6)
additive model, nonlinear in m, linearin & : G (m,§) =S (m) + T¢; ™
additive model, nonlinear in bothmand £ : G (m,£) =S (m) + T (£); (8)
nonadditive model, nonlinear in both m and &. )

While the cases (6)—(8) might be of independent interest, our focus in this article is on the
general case (9). However, items (6)—(8) do serve to illustrate some of the key challenges.

In the case of (6), one can repeat the steps leading to (3), except € will not be Gaussian
anymore and therefore the distribution of v will not be known analytically. In that case, one
may obtain a Gaussian approximation to ¢ either by fitting a Gaussian to € or by using a linear
approximation of 7 (£). Then, one may obtain a Gaussian posterior, where one also relies on
the linearity of S. On the other hand, in the case of (7), the total error v will be Gaussian as
before, but due to nonlinearity of S(m) the posterior will not be Gaussian. The latter leads to
one of the fundamental challenges in OED of nonlinear inverse problem—defining a suitable
OED objective whose optimization is tractable. The more complicated cases of (8)—(9) inherit
the challenges corresponding to the previous cases.

In the rest of this article, we build on the BAE approach to incorporate the uncertainty in £
in inverse problems governed by nonlinear models of the type (9). The uncertainty in  will be
assumed irreducible, and in general, £ will not be assumed to follow a Gaussian law. All that we
require is the ability to generate samples of £. Following the BAE approach, we approximate
the approximation error € with a Gaussian. This enables incorporating the model uncertainty
in the data likelihood; see section 3. To cope with non-Gaussianity of the posterior, we rely on

3 Note that (5) can be viewed as a special form of the Sherman—Morrison-Woodbury formula involving Hilbert space
operators.
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a Gaussian approximation to the posterior, to derive an uncertainty aware OED objective that
is tractable to evaluate and optimize for infinite-dimensional inverse problems; see section 4
for the definition of the OED objective and section 5 for computational methods.

3. Infinite-dimensional Bayesian inverse problems under uncertainty

We consider the inverse problem of inferring a parameter m from a model of the form (1),
where G : . # x % — R%is a parameter-to-observable map that in general is nonlinear in both
arguments. We focus on problems where G is defined as a composition of an observation oper-
ator and a PDE solution operator. The model G is assumed to be Fréchet differentiable in m,
at £ = ¢, where £ € 2 is a nominal value. As before, we employ a Gaussian noise model,
1 ~ N (0,Toise ), a Gaussian prior law gy = N (my, Cpr) for m, and assume 7 is independent
of m and . The prior induces the Cameron—Martin space & = range(C;r/ 2), which is endowed
with the inner product [15, 17]

(a,b) , = (C;l/za,cp_rl/zb)%, a,be &,

where (-,-) , is the inner product on the parameter space ./ .

To account for model uncertainty (due to £) in the inverse problem, we rely on the BAE
approach [24, 26], which we explain next. We fix the secondary parameter to ¢ and consider
the approximate (also known as inaccurate, reduced order, or surrogate) model

=G (m,é). (10)

As mentioned before, this is typically what is done in practice where the secondary model
parameters are fixed at some (possibly well-justified) nominal values. In the BAE approach,
we quantify and incorporate errors due to the use of this approximate model in the Bayesian
inverse problem analogously to what was done in section 2.2. Namely, we consider

y=F(m)+Gm&) = F(m)+n=F (m) +v(mg), (11)
—_—
approximation error €

where v(m, &) = e(m, &) + n is the total error. In the BAE framework, the approximation error
€, is approximated as a conditionally Gaussian random variable. That is, the distribution of
€|m is assumed to be Gaussian. In the present work, we employ the so-called enhanced error
model [10, 24, 27], that ignores the correlation between € and m and approximates the law of
€ as a Gaussian € ~ N (go,T'c) with

0= / / €) ppr (dm) pug (d€)
I'. = //// /5{ (5 (m,f) - 50) (6 (ma§> - sO)T Hpr (dm) He (df) ’

In general, the approximation errors can be (highly) correlated with the parameters [24, 34].
However, ignoring the correlation between € and m (i.e. employing the enhanced error model)
is typically viewed as a conservative (safe) approximation as it is analogous to approximating
the conditional distribution of &|m with the marginal distribution of &, which cannot reduce
variance [25, section 3.4]. On the other hand, employing the enhanced error model can sig-
nificantly reduce the costs associated with computing the mean and covariance operator of
€ [24] which are in practice computed via sampling; see section 5.

With these approximations, and by our assumption on the measurement noise (which is
independent of the parameters), the total error v is modeled by a Gaussian A/ (gg,T,), where

12)

8
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T', =T, + I'jise- Using this approximate noise model along with the approximate model F
we arrive at the following data likelihood:

I ) xexp {5 = () o T = Flm) —en)} . (13

With the prior measure in place, and using this BAE-based data likelihood, we can state the
Bayes formula [40],

dN{)ost
dptpr

oc ik (y[m).

To make computations involved in design of large-scale inverse problems tractable, we rely
on a local Gaussian approximation to the posterior. Namely, we use ﬂ%ost =N (m&AP,CgOS[),
where n1,,, is the maximum a posteriori probability (MAP) point and Cgost is an approximate
posterior covariance operator, described below. The MAP point is given by

1
" = argmin 7 (m) := 5 (y — F (m) — o) T, (y = F (m) — &)

1
Jri(mfmpr,mfmpr)g,. (14)

For the approximate posterior covariance operator Cgost, we use

Ko 1y —1
Cgost = (‘Fm (’nyMAP) Fu lfm (’nyMAP) +Cprl) ) (15)

where JF,, (nty,) is the Fréchet derivative of F evaluated at nz,p.

Note that the true posterior /Lfmt is equivalent to the prior measure. It is also possible to
show that the Gaussian approximation is equivalent to p,, as well. This fact, which is made
precise below, is important in justifying the use of this Gaussian approximation for defining
an approximate measure of posterior uncertainty. Namely, to define a notion of uncertainty
reduction, it is important that our surrogate for the posterior measure is absolutely continuous
with respect to our reference measure, which is given by the prior. The equivalence of ﬂfmt
to jipr may be inferred from the more general developments in [35]. However, we present an
accessible argument that applies to the specific problem setup under study in the present work.
We first present the following result.

Proposition 3.1. Consider the linearized forward model
L(m) =F (Myap) + Fon (mypp) (M — myp), me I, (16)

where we have suppressed the dependence of my,y to y for notational convenience. Define the
data model

y=L(m)+v, a7

where v ~ N (g0,T',,). Consider the Bayesian inverse problem of estimating m using (17) and
the prior fipe = N (mpr,Cpx). The corresponding posterior measure is given by ﬂlywst.

Proof. Using the theory of Bayesian linear inverse problems in a Hilbert space [40], the
solution of the linear inverse problem under study yields a Gaussian posterior ,uL‘Sst =

N (mmp, Cpost). The covariance operator Cpos is as in (15) and mi%, is found by minimizing

Jp(m) = % (y—L(m) feo)TI‘;l (y—L(m)—eo)+ %(mfmpr,mfmpr&o, (18)

9
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over the Cameron—Martin space &. To complete the proof, we show m!" = my,,. Note that
Jp. is a strictly convex quadratic functional with a unique global minimizer. We consider the
Euler—Lagrange equation for the present optimization problem. Note that the Fréchet derivat-
ive of L is given by L,, = F;,(myap). It is straightforward to see

d ~ _ . )
& 0‘—7L (m+ sm) = <ma}—m (mMAP) FV ! (y — E(m) — E())>(//! -+ <m7m — mpr>(g>,
e=
for every m € &. Thus, recalling L(myp) = F (myap), We note that for every im € &,
d N ~ .o )
de 8:0'.7[‘ (myap +€imt) = (i, Foy (Myap) T, 1 (y = F (myue) — 80)),/1 + (M, mypp — mpr>(g
d N
=3 E:OJ(mMAP +em) = 0.

The last equality follows from the fact that m,,, is a minimizer of 7 in (14). Hence, my,» is
the ungiue global minimizer of ;. Therefore, mmp = Myap- O

Proposition 3.1 shows that ﬂ{,ost is the posterior measure corresponding to the linearized
Bayesian inverse problem considered in the result. Therefore, by construction, ﬂi;ost is equi-
valent to fip;.

4. A-optimal experimental design under uncertainty

We consider inverse problems in which measurement data are collected at a set of sensors.
In this case, the OED problem seeks to find an optimal placement of sensors. Specifically,
we formulate the OED problem as that of selecting an optimal subset from a set of candidate
sensor locations, which is a common approach; see e.g. [3, 20, 43]. To make matters concrete,
we begin by fixing a set of points {x,x,...,x, } that indicate the candidate sensor locations.
We then assign a binary weight w; to each candidate location x;; a weight of one indicates that
a sensor will be placed at the corresponding candidate location. The binary vector w € {0,1}"
thus fully specifies an experimental design in the present setting. Note that specification of a
set of candidate sensor locations will in general depend on the specific application at hand. For
example, placing sensors in certain parts of the domain might be impractical or impossible.
Also, in problems with Dirichlet boundary conditions, placing sensors on or very close to such
boundaries will be a waste of resources.

4.1 Design of the Bayesian inverse problem

The design w enters the formulation of the Bayesian inverse problem through the data likeli-
hood. This requires additional care in the present work because the total error covariance mat-
rix I', is non-diagonal. We follow the setup in [31] to incorporate w in the Bayesian inverse
problem formulation. For a binary design vector w € {0, 1}"s, we define the matrix P,, as sub-
matrix of diag(w) with rows corresponding to the zero weights removed. Thus, given a generic
measurement vector d € R", P,d returns the measurements corresponding to active sensors.
For d € R, we use the notation d,, = P, d.

Next, we describe how a design vector w enters the Bayesian inverse problem, within the
BAE framework. For a given w, we consider the model y,, = P,,(F (m) 4 ). Using this model
leads to the following, w-dependent, data likelihood

I ) o exp {5 (= () o 00— Flm) —en) . (19

10
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with
S (w)=PT,.P,, where T,,=P,,P. (20)

wT v,w

Consequently, we obtain the following w-dependent Gaussian approximation to the pos-

terior, 0% = N (miy, Coug) - Where miy, is obtained by minimizing
1
Tw (m3y) = 3 (y — F (m) —0) B (w) (y — F (m) — o) + 2<m_mpram_mpr>g7 21
and
. -1
Chte = (Fon (m20) " 3 (0) Fo () +Cr1) (22)

Note that in practical computations, the cost function 7, in (21) is implemented as

1 1
Tw (m3y) = 5 (v, — Py F (m) — wEO) vw ()’w P, F (m) —Pyeo) + - (m — mpr’m_mpr>gv

2 <
with I', ,, as in (20). This amounts to using the data from the active sensors and removing the
rows and columns corresponding to inactive sensors from the error covariance matrix I',,.

4.2. The design criterion

In the present work, we follow an A-optimal design strategy, where the goal is to find designs
that minimize the average posterior variance. Generally, computing the average posterior vari-
ance for a Bayesian nonlinear inverse problem is computationally challenging. We follow the
developments in [4] to define a Bayesian A-optimality criterion in the case of nonlinear inverse
problems.

Given a data vector y € R™, an approximate measure of posterior uncertainty is provided
by tr(ngS[). However, when solving the OED problem data is not available. Indeed, it is the
goal of the OED problem to specify how data should be collected. To overcome this, we fol-
low the general approach in Bayesian OED of nonlinear inverse problems, where we consider
Ey{tr(Clngst)}, with E, denoting expectation with respect to the set of all likely data. We com-
pute this expectation by using the information available in the Bayesian inverse problem and
the information regarding the distribution of the model uncertainty. Namely, following the
approach in [4], we use the design criterion

W) = / / / tr (Clyggsl) Hnoise (g (Wl, 5) —y) dy Lpr (dm) fhe (df) , (23)
2 St Jrns

where IT,,0ise is the probability density function (pdf) of the noise distribution N (0, T';oise ). In
practice, ®(w) will be computed via sample averaging. Specifically, we use

_ ;iizn_d;tr (Cﬁ&t) (24)

where the training data samples y', are given by yi, = P, (G(m',£') + '), with {(m', &', )},

a sample set from the product space (A, ppr) @ (2, p1e) @ (R™, N (0, Tpoise ) ). In large- scale
applications, typically a small n4 can be afforded. However, in this context, typically a modest
ng enables computing good quality optimal designs. This is also demonstrated in the compu-
tational results in the present work.

1
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Note that, for eachi € {1,...,nq4},

) oo
Vi
tr (Cpost> Z posteja ej

J=1

where {ej}]?’il is a complete orthonormal set in .# . Inserting this in (24) and using the defini-

i
tion of Cg(‘jst, we have

Py, (W) - ZZ <Cijvej>//[7 (25a)

where, fori € {1,...,nq4} andj €N,

s, = argmin J,, (m3y') (25)

(fm ()" 2 (W) Fou (100) + C,;,.l) ci=e. (25¢)

Computing the OED objective as defined above is not practical. However, (25) provides
insight into the key challenges in computing the OED objective. In the first place, (25b) is a

challenging PDE-constrained optimization problem whose solution is the MAP point m{iﬁw
Moreover, upon discretization, (25¢) will be a high-dimensional linear system with the dis-
cretization of the operator (}"m (1m0 )* S (W) F (m0ie) + CI;I) as its coefficient matrix. Such
systems can be tackled with Krylov iterative methods that require the application of the coeffi-
cient matrix on vectors. In section 5, we present two approaches for efficiently computing the
OED objective: one approach uses randomized trace estimation and the other utilizes low-rank
approximation of F, (ntus,)* 3 (w) F,, (). These approaches rely on scalable optimization
methods for (25b) as well as adjoint based gradient and Hessian apply computation.

4.3. The optimization problem for finding an A-optimal design

We state the OED problem of selecting the best K sensors, with K < ng, as follows:
min P, (w
Jhin P, (w)

n, (26)

S.t.ZWg =K.

(=1

This is a challenging binary optimization problem. One possibility is to pursue a relaxation
strategy [3, 4, 31] to enable gradient-based optimization with design weights w; € [0,1]. A
practical alternative is to follow a greedy approach to find an approximate solution to (26).
Namely, we place sensors one at a time. In each step of a greedy algorithm, we select the
sensor that provides the largest decrease in the value of the OED objective ®,,. While the
solutions obtained using a greedy algorithm are suboptimal in general, greedy approaches
have shown good performance in many sensor placement problems; see, e.g. [5, 23, 29, 37].
In the present work, we follow a greedy approach for finding approximate solutions for (26).
The effectiveness of this approach is demonstrated in our computational results in section 7.

12
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5. Computational methods

We begin this section with a brief discussion on computing the BAE error statistics
in section 5.1. We then detail our proposed methods for computing the OED objective
in section 5.2. The greedy approach for computing optimal designs is outlined in section 5.3.
Then, we discuss the computational cost of OED objective evaluation, using our proposed
methods, as well as the greedy procedure in section 5.4.

5.1 Estimating approximation error statistics

As discussed in section 3, the mean and covariance of the approximation error in (12) will
be approximated via Monte Carlo sampling. Specifically, we begin by drawing samples
{(m &)Y in (M x X, pipe ® p1¢) and compute

1 e ) N 1 HAme ) N ) N
Y L= ) (¢ —a) (@ =),
= Ame —

Amc © —
i=1

where &' =G (mi,,fi) -F (m’) . 27

g =

Subsequently, we use €y ~ &g and I, ~ fs. The computational cost of this process is 27y
model evaluations. Note, however, that these model evaluations are done a priori, in parallel,
and can be used for both the OED problem and solving the inverse problem. Typically, only
a modest sample size is sufficient for approximating the mean and covariance of the model
error [10, 33]. Specifically, as noted in section 2, only dominant modes of the error covariance
matrix need to be resolved. Note also that (a subset of) the model evaluations in (27) may be
reused in generation of training data needed for computation of the OED objective.

5.2. Computation of the OED objective

In this section, we present scalable computational methods for computing the OED object-
ive. Specifically, we present two methods: (i) a method based on the use of randomized
trace estimators (section 5.2.1) and (ii) a method based on low-rank spectral decomposi-
tions (section 5.2.2). As discussed further below, the latter is particularly suited to our overall
approach in the present work. Therefore, we primarily focus on the method based on low-rank
spectral decompositions, which we also fully elaborate in the context of a model inverse prob-
lem (see sections 6 and 7). However, the first method does have its own merits and is included
to provide an alternative approach. The relative benefits and computational complexity of these
methods are discussed in section 5.4.

Before we proceed further, we define some notations that simplify the discussions that fol-
low. Fori € {1,...,nq}, we define

H (0) = F (meh) S 0) o () and () = CL2H! () G2 (28)
Note that the operator H' is the so-called Gauss—Newton Hessian of the data mistfit term

in the definition of 7, (m;y’) in (21), evaluated at m{,,l‘;,,.

5.2.1. Monte Carlo trace estimator approach. = We begin by deriving a randomized (Monte
Carlo) trace estimator for the posterior covariance operator (22). This is facilitated by the
following technical result.
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Proposition 5.1. LetC € """ () and K € £ (M), and consider the Gaussian measure
p=N(0,C) on .#. Then, [ ,(Kz,z) , u(dz) =tr(C'/2KC'/?).

Proof. By the assumptions on C and K, we have that both CK and C'/2KCC'/? are trace-
class. Also, by the formula for the expectation of a quadratic form in the infinite-dimensional
Hilbert space setting [2, Lemma 1], we have that [  (Kz,z) , u(dz) =tr(CK). To finish the
proof, we let {¢;}72, be the (orthonormal) basis of the eigenvectors of C with corresponding
(real, positive) eigenvalues {);}°<,, and note tr(CK) = >, (CKej,€;) , = >, Ni(Keje)) , =
S (KC e, C ) =3 <Cl/2KC1/Zej,ej>(//{ =tr(C'/2KC'/?). O

Next, note that we can write Cy post a8

i * i -1 . -1
Cﬁzsl (fm (miq) = (w) Fn (mmp)+q;> =C)? (H (w)+1) clr 9
Using this and letting C:C'pr and K = (ﬁ"(w)—i-l)fl in proposition 5.1, we have

tr C[y)ggt =4 ( W)+ I) z,2) , (dz). Approximating the integral on the right hand side
via sampling, we obtaln

Ny

tr (Cﬁgst) R~ niuz < (ﬁ" (w) +I) - zj,z_/>/

j=1

where {z;}7*, are draws from the measure y = N(0,C,). This randomized (Monte Carlo)

trace estimator allows approximating the OED objective (24), as follows.

1 nyg Ny

O (W) =——> > (ci»3) (30a)
ntrndl 1=

where, fori € {1,...,nq4} andj € {1,...,n4},
i, = argmin 7, (m:") (300)
(W) +1) e =3 (300)

The major computational challenge in computing @) (w) is solving the MAP estimation
problems in (30b). These inner optimization problems can be solved efficiently using an inex-
act Newton-Conjugate Gradient (Newton-CG) method. The required first and second order
derivatives can be obtained efficiently using adjoint-based gradient and Hessian apply compu-
tation. The Hessian solves in (30c) are also done using (preconditioned) CG. This only requires
the action of H'(w) on vectors, which can be done using the adjoint method. A detailed study
of the computational cost of computing @) (w) is provided in section 5.4.

5.2.2. Low-rank approximation approach.  Due to the use of finite-dimensional observations,
H' in (28) has a finite-dimensional range. Also, often #' exhibits rapid spectral decay and, in
cases where the dimension of measurements is high, the numerical rank of this operator is typ-
ically much smaller than its exact rank. Note that the exact rank is bounded by the measurement
dimension. Such low-rank structures are due to possible smoothing properties of the forward
operator and that of Cy; see, e.g. [12]. The following technical result facilitates exploiting such
low-rank structures to compute the OED objective.

14



Inverse Problems 40 (2024) 095001 A Alexanderian et al

Proposition 5.2. Let C and A be in """ (M ). Letting {v}32 | be the orthonormal basis of
eigenvectors of A with corresponding (real non-negative) eigenvalues {\}22,, we have

r(C2(14.4) ) =tr<6>—Zlﬂ IC"2v%. (1)

Proof. The result follows by noting that

M
WK

tr(C) —tr (c1/2 1+ A" cl/z) Cvivi) g =S €U+ A)  vvd) ,

»
I
-
~
I
HR

1
1+ X

M
M8

(Cvivi) gy — (Cvi,vi) 4

»
Il
-
~
Il

1
Ak _ = Ak /2. 112
1+)\k <Cprvk7vk>/// Z 1+)\ ||C Vk ||

M

-~
I
-

O

The relation (31) facilitates approximating tr(C'/?(I 4+ A) ~'C'/?). Namely, we can truncate
the infinite summation in the right-hand side to the first r terms, corresponding to the r dom-

inant eigenvalues of A. We can also quantify the approximation error due to this truncation as
follows.

Proposition 5.3. Let A and C be as in proposition 5 2 and let {\} L) be the r+ 1 largest

eigenvalues of A. Define T,(A,C) =tr(C) — > _, = v 1CY2vi||?- Then,
_ Ar
tr (C1/2 (I+A) 161/2) —T,(AC)| < Hi;\rltr(C). (32)
r+1
Proof. We have
[tr (Cl/2 (H—A)_lCl/z) —T,(AC)| = i A 1Y |
’ 1+ M o
k=r+1
A1 1/2,, 12
C/ vy
< Z+ TS
/\r+1 — >\r+1
=— Cvy, ———1r(C).
1+ )\r+l kg< Vi vk>,//[ 1+ )\r+1 ( )

O

Next, we consider 7' (w) and let { (A, vit) };_, be its dominant eigenpairs. (The dependence
of eigenvalues and eigenvectors on w is suppressed, for notational convenience.) Using pro-
position 5.2 with C = C,,; and A = H'(w), we obtain the approximation

w(ah) =t (e (1) o)
o : (33)
—u(ew (1)) Sy Rl

15




Inverse Problems 40 (2024) 095001 A Alexanderian et al

Observe that only the second term in the right-hand side depends on w. This term, which
provides a measure of uncertainty reduction, can be used to define the OED objective.
Specifically, using (24) along with (33), leads to following form of the OED objective:

DL ( :——ZZHA ICo/2viell e (34a)

i=1 k=1

where, fori € {1,...,nq4},

WfM%\p = argmin [, (m;yi) , (34b)
H (W) vie = davie ke {1,...,r}, (34¢)
<Vik7ViZ>//(:5kl k,lE{l,...,r}. (34d)

Note that the numerical rank of ' will, in general, depend on i. In (34), we have used a
common target rank r for simplicity. In the present setting, this target rank is bounded by the
number of active sensors for a given w. Note also that proposition 5.3 shows how to quantify
the error due to the use of truncated spectral decompositions. Namely, in view of (32), the error

due to the truncation is bounded by (nd ST +/\/+'1+] ) tr(Cpr)-

As in the case of the approach outlined in section 5.2.1, the dominant computational chal-
lenge in computing ®;,.%(w) is the solution of the MAP estimation problems (34b). This will be
tackled using the same techniques. The eigenvalue problem (34c¢) can be tackled via Lanczos
or randomized approaches. The target rank r, can be selected as the number of active sensors.
This is suitable in cases where we have a small number of active sensors. See section 5.4 for
further details regarding the computational cost of evaluating ®j,.F.

We point out that if the dominant eigenvalues are simple, the condition (v, vi) y = 1for
all k€ {1,...,r}, implies the orthonormality condition (34d). This follows from the fact that
the eigenvectors corresponding to distinct eigenvalues of H!, which belongs to .stym(% ).
are orthogonal. The simplicity assumption on the dominant eigenvalues is observed in many
applications where the dominant eigenvalues decay rapidly. Making this simplicity assump-

tion, and letting s = Clir/ Zv,-k, we may also write the eigenvalue problem above as the following
generalized eigenvalue problem

H' (W) siuc = XaCpr ' Sit
(Sik, Sik) g = 1,

where i € {1,...,nq} and k € {1,...,r}. This formulation is helpful when describing the
eigenvalue problem in the weak form, as seen in section 6.2. In particular, the eigenvalue
problem (35) will be formulated in terms of the incremental state and adjoint equations and
the adjoint based expression for 7' applies.

(35)

5.3. Greedy optimization

We follow a greedy approach for solving the OED problem. That is, we select sensors one
at a time: at each step, we pick the sensor that results in the greatest decrease in the OED
objective value; see algorithm 1. As mentioned before, we use the approach in section 5.2.2
for computing the OED objective. That is, we use the OED objective ®,.¢, as defined in (34).

16
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Algorithm 1. Greedy approach for solving the OED problem (26) with ®,, = <I>f,idg.

Input: The target number of sensors K in (26).
Output: The optimal design vector w.
l:w<+0
2: Teandidate 4 {17 cee Jls}
3: Iactive — @
4:for/=1to Kdo
5:  Evaluate ®,°(w +¢;), for all j € Teandidate {e; is the jth coordinate vector in R™}
6:  i¢ + argmin @2 (w +¢))
J €Lcandidate
7 Iactive <~ Iactive U {ié}
8: Icandidale — Icandidate \ {IZ}
9: wwHe,
10: end for

Theoretical justifications behind the use of a greedy approach for sensor placement, in vari-
ous contexts, have been investigated in a number of works [23, 29, 37]. The solution obtained
using the greedy algorithm is known to be suboptimal. However, as observed in practice, the
use of a greedy algorithm is a practical approach and is effective in obtaining near optimal
sensor placements; see also [5, 30, 44]. We demonstrate the effectiveness of this approach, in
our computational results in section 7.

5.4. Computational cost of sensor placement

The /th step of the greedy algorithm requires ng — £ — 1 OED objective evaluations (cf step 5
of algorithm 1); these can be performed in parallel. It is straightforward to note that placing
K sensors using the greedy approach requires a total of C(K,ns) := Kny — K(K—1)/2 OED
objective function evaluations. Therefore, the overall cost of computing an optimal design,
in terms of the number of PDE solves, using the proposed approach is C(K,n) times the
number of PDE solves required in each OED objective evaluation. Thus, to provide a complete
picture, in this section, we detail the cost of OED objective evaluation using the two approaches
discussed in section 5.2. A key aspect of both of these approaches is that the cost of OED
objective evaluation, in terms of the number of required PDE solves, is independent of the
dimension of the discretized inversion and secondary parameters.

In the following discussion, the rank of the operators H'(w) in (28) plays an important role.
As mentioned before, the exact rank of these operators is bounded by the number of active
sensors. Moreover, if the number of active sensors is high, the numerical rank is typically
considerably smaller than the exact rank. We denote the number of active sensors in a given
design by nuee = e (w). Note that for a binary design vectors w, ny (w) = ||w;.

5.4.1. Cost of evaluating ®;,. The most expensive step in evaluating (30) is solving the

inner optimization problems for the MAP points mmp, i €{1,...,nq4}. In the present work,
the inner optimization problem is solved via inexact Gauss—Newton-CG with line search. The
cost of each Gauss—Newton iteration is dominated by the CG solves for the search direction.
When using the prior covariance operator as a preconditioner, the number of CG iterations is
bounded by O(n,y); see e.g. [22]. Each CG step in turn requires two linearized PDE solves
(incremental forward/adjoint solves). Hence, the cost of the ng MAP estimation problems, in

17
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terms of ‘forward-like’ PDE solves, is O(2 X ng X Hyewton X Ract), Where Rpewion 18 the (aver-
age) number of Gauss—Newton iterations. The 2 X ng X ny solves in (30c) are also done using
preconditioned CG. As noted before, each of these solves requires O(n,) CG iterations. To
summarize, the overall cost of evaluating (30) is bounded by

O (2 X ng X Nyewton X Mact) + O (2 X ng X iy X Myey) - (36)

cost of MAP point solves in (30) cost of solves in (30c)

It is important to note that MAP estimation problems as well as the linear solves in (30c) can
be performed in parallel.

5.4.2. Cost of evaluating <I>f,;g. As is the case with (30), the solution of the MAP estimation
problems (34b) dominates the computational cost of evaluating @Zﬂg. This cost was analyzed
for the case of @] . We next discuss the cost of solving the eigenvalue problems in (34c). We
rely on the Lanczos method [19] for these eigenvalue problems.6 Foreachi € {1,...,nq}, the
Lanczos method requires O (n,) applications of H' on vectors, each costing two PDE solves.
Therefore, solving the eigenvalue problems requires a total of O(2 X ngq X n,) PDE solves.
Hence, the overall cost of computing <I>Zidg is bounded by

O (2 X ng X Nnewton X Mact) + O (2 X ng X Nyey) - 37

cost of MAP point solves in (34b) cost of solves in (34¢)

To sum up, the computational cost of evaluating both ®} and ®;,¢ is dominated by the cost
of solving the MAP estimation problems. However, by exploiting the low-rank structure of
the operators H', ®,.¢ is more efficient to compute, as it does not require n, Hessian solves
(compare also the second terms in (36) and (37)). Moreover, computing the traces using the
eigenvalues will be, in general, more accurate than a sampling based approach, as long as
sufficiently many eigenvalues are used. Note also that when using a greedy approach, 7,
starts at n,e = 1 in the first step and increase by one in each iteration.

However, the idea of using a randomized trace estimator does have some merits. For one
thing, typically a small (in order of tens) ny is sufficient when solving the OED problem.
Moreover, @} is simpler to implement as it does not require solving eigenvalue problems.
Note, however, that if a large ny is needed, then the cost of Hessian solves in (30c) might
exceed the cost of the MAP estimation problems.

6. Model problem

Here, we present the model problem used to study our approach for OED under uncertainty. We
consider a nonlinear inverse problem governed by a linear elliptic PDE, in a three-dimensional
domain. This problem, which is adapted from [33], is motivated by heat transfer applica-
tions. In section 6.1, we detail the description of the Bayesian inverse problem under study.
Subsequently, we detail the description of the OED objective @2, for this specific model
problem in section 6.2.

6 Another option is the use of randomized methods [21].
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31

Figure 1. Sketch of the physical domain €2 and location of candidate sensor locations
(blue circles).

6.1 The Bayesian inverse problem

We consider the following model

0 in{,

0 onlp,
eVu-n=h only,

EVu-n+e"u=0 onlg.

—V - (e*Vu)
u

(38)

In this problem, 2 C R?® is bounded domain with sufficiently smooth boundary I =I', U
I'vUTIR, where Iy, I'y, and I'x are mutually disjoint. In (38), u is the state variable, m is
the inversion parameter, and ¢ is the secondary uncertain parameter. The Neumann bound-
ary data is h € LZ(FN), n is the unit-length outward normal for the boundaries I'y and Iy,
and for simplicity we have considered zero volume source, and homogeneous Dirichlet and
Robin conditions. In our numerical experiments, {2 is a three-dimensional domain with a
unit square base and height such that aspect ratio (base/height) is 100; see figure 1. In the
present example, I'r is the bottom edge of the domain, I'y is the top edge, and I is the union
of the side edges. In our computations, we define the boundary source term % according to
h(x) = 1+sin (47 /(x1 — 1)2 + (x, — 1)2).

Note that in this problem, the inversion and secondary parameters are both functions. The
inversion parameter belongs to the Hilbert space .# = L?(I'z), which is equipped with the
L?(T'r)-inner product. The secondary parameter ¢ takes values in L*(2). As discussed below,
we define ¢ as an L*(2)-valued Gaussian random variable with almost surely continuous real-
izations, which ensures (almost sure) well-posedness of the problem (38). Below we use (-, -),
and (-,-)p,, to denote the L*(£2)- and L*(I'y)-inner products, respectively. Also, with a slight
abuse of notation, we denote the L?(£2)* inner-product with (-, ), as well.

We use measurements of u on the top boundary, I'y, to estimate the inversion parameter
m. The measurements are collected at a set of sensor locations as depicted in figure 1. Hence,
in the present problem, the parameter-to-observable is defined as the composition of a linear
observation operator 3, which extracts solution values at the sensor locations, and the PDE
solution operator. Note that this parameter-to-observable map is a nonlinear function of the
inversion and secondary parameters.

As detailed in section 3, we assume a Gaussian noise model, and use the BAE approach
to account for the secondary uncertainties in the inverse problem. Also, we use a Gaussian
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prior law for m and model the secondary uncertainty as a Gaussian random variable.” For both
m and &, we use covariance operators that are defined as negative powers of Laplacian-like
operators [40]; see section 7. Note that with the appropriate choice of the covariance operator,
the realizations of £ will be almost surely continuous on the closure of €.

6.2. OED under uncertainty problem formulation

In this section we discuss the precise definition of @f,zg, for the model inverse problem discussed

in section 6.1. The MAP estimation problems in (34b) require minimizing 7, (m;y"’) defined

in (21). For notational convenience, in this section, we use the shorthand m; to denote .
In the present example, the first order optimality conditions for this optimization problem are
given by

(e*Vur, Vp)g = (h.p)p, + (" ui.p) 4 = 0, e, (39)

(€Vpi, Vit) + (" 1,p;) 5 + (B*E (w) (Bu; —y' + &0),it), =0, Ve, (40
(m — mpe, i) o + (e ui,pi) , =0, Vine &, (41

where % = {v e H'(Q) : | = 0}. For the derivation details, we refer to [33]. Note that (39)

is the weak form of the state equatlons (38), (40) and (41) are the weak forms of the adjoint and
gradient equations, respectively. Note also that the left hand side of (41) describes the action
of the derivative of 7, (m;y’) in the direction 7.

To specify the eigenvalue problem in (34c), we first discuss the action of the operator '
(evaluated at m;") in the direction 7. In weak form, this Hessian application satisfies,

*

(H' (m})in, ) 4y = (€™ i, i) 4 42)

for every m € &. In (42), for a given m}, u; solves the state problem (38), p; solves the incre-
mental adjoint problem

(e5Vpi, Vit + (€™ it pi) 5 + (B*E (W) Biy, iy, =0, Vi € %, 43)
and i; solves the so-called incremental state problem
(¢*Vits, V) g+ (¢" i, p) 4o + (" i, P, =0, Vp € % (44)

We next summarize the OED problem of minimizing (34) as a PDE-constrained optimiza-
tion problem specialized for the model inverse problem in section 6:

min —— 5; ’ 45
we{0,1}% ndzlgl_;'_)\ Ils k”/{ (45a)

where, fori € {1,...,nq4} and k € {1,...,r},

*

<€§VMI'7V1§>Q - <h7ﬁ>1"N =+ <€ ‘ ul7p> 07 Vﬁ S %a
(45b)

7 As discussed earlier, the presented framework does not rely on a specific choice of distribution law for &. The
Gaussian assumption here is merely for computational convenience.
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(€Vpi, Vit) + (" 1, p;) 4 + (B S (w) (Bu; —y' +&0),i1), =0, Vit e ¥,
(45¢)

(m — mpe,in)  + (™ u,pi) 4 =0, Vin€ &,
(45d)

(e5Vpu, Vitye, + (€™ it, pi) 4 + (B*S () Bity, it} = 0, Vi€ ¥,
(45¢)

(ime™ UisPik) g = Nik(Sit: M) o, V€&,
45f)

(€5 Vi, V), + (€™ it p) 4 + (" suttip) 4 =0, vp e,
45g)
(Sits i) o = 1. (45h)

The PDE constraints (45b)—(45d) are the optimality system (39)—(41) characterizing the

MAP point m} = mﬁi\p described in (34b). The equations (45¢)—(45g) are the PDE constraints
that describe the Hessian apply and eigenvalue problem. Note that we have reformulated the
eigenvalue problem according to (35).

7. Computational results

In this section, we numerically study our OED under uncertainty approach, which we apply
to the model inverse problem described in section 6. We begin by specifying the Bayesian
problem setup and discretization details in section 7.1. Then, we study the impact of secondary
model uncertainty on the measurements and compute the BAE error statistics in section 7.2.
Finally, in section 7.3, we examine the effectiveness of our approach in computing uncertainty
aware designs. We also study the impact of ignoring model uncertainty in (i) experimental
design stage and (ii) both experimental design and inference stages. Ignoring uncertainty in
the design stage amounts to fixing the secondary parameter £ at its nominal value (i.e. using
the approximate model (10)) and ignoring the approximation error when solving the OED
problem. We refer to designs computed in this manner as uncertainty unaware designs. Note
that in the case of (i), the uncertainty is still accounted for when solving the inverse problem.
This study illustrates the importance of accounting for model uncertainty, when computing
experimental designs. On the other hand, the study of case (ii) illustrates the pitfalls of ignoring
uncertainty in both the optimal design problem and subsequent solution of the inverse problem.

71. Problem setup

We consider ny = 100 candidate sensor locations that are arranged in a regular grid on the top
boundary I'y; see figure 1. The additive noise in the synthetic measurements has a covariance
matrix of the form I'pe = 021, with ¢ = 1073 This amounts to about one percent noise.
We use a Gaussian prior law fip, = N (mpr, Cpr) for m. The prior mean is taken as a con-
stant function my, = 1, and we use a covariance operator given by the inverse of a Laplacian-
like operator. Specifically, we let Cpy := A ™2, with A[m] = —V - (0Vm) + am, where we take
0 =0.1 and o = 1. To help mitigate undesirable boundary affects that can arise due to the use of
PDE-based prior covariance operators, we equip the operator .4 with Robin boundary condi-
tions [16]. For illustration, four random draws from the prior distribution are shown in figure 2.
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Figure 2. Samples of the primary uncertain parameter m.
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Figure 3. Samples of the secondary uncertain parameter .

LLSL

Figure 4. The effect of the secondary uncertain parameter £ on the state u on top surface
for the (fixed) true primary parameter m and four different realizations of &.

The law of the secondary parameter  is chosen to be a Gaussian measure pg = N (f_ , Cg). We
set the mean of £ as the constant function £ =0, and the covariance operator is defined as
Ce := L2, where L[¢] = —V - (OVE) +~¢ with © = 0.25diag(1,1, 13;) and v =50. This
choice of ©® corresponds to a random field with much shorter correlation in the z—direction
than in the x- and y-directions, inline with aspect ratio of 100 used in defining the domain 2.
We show four representative samples of £ in figure 3.

The forward problem (38) is solved using a continuous Galerkin finite element method.
We use 9600 tetrahedral elements and 2205 piecewise linear basis functions. As such, the
discretized state and adjoint variables, as well as the secondary parameter £, have dimension
2205. On the other hand, the discretized inversion parameter m, which is defined on the bottom
boundary, is of dimension 441.

72. Incorporating the model uncertainty in the inverse problem

We begin by studying the impact of the secondary parameter on the solution of the forward
problem. This is illustrated in figure 4. In this experiment, we solve the forward problem for a
fixed m and four different realizations of . Note that, although the qualitative behavior of u on
I'y is similar for the different samples of &, there are considerable differences in the values. This
indicates that the approximation error due to fixing ¢ at the nominal value will have significant
variations.
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Figure 5. Left: the mean of the approximation error at the candidate sensor locations;
right: the marginal standard deviation of the approximation error at these locations

(i.e. the square root of diagonal entries of fs given in (27)).
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Figure 6. Left: the correlation of a measurement from a sensor near the middle marked
by red dot, with the remaining sensors; middle: The same information for the sensor in
the top left corner of the sensor grid; right: the correlation matrix of the approximation
error.

We compute the sample mean and covariance matrix of the approximation error as in (27)
with 7, = 1000. The mean and marginal standard deviations are shown in figure 5. To illus-
trate the correlation structure of the approximation error, we show the correlation of the
approximation error at two of the candidate locations with the other candidate locations in
figure 6 (left-middle). To provide an overall picture, we report the correlation matrix of the
approximation error in figure 6 (right). Note that the approximation errors at the sensor sites
are not only larger than the measurement noise, but also they are highly correlated and have a
nonzero and non-constant mean. Thus, in the present application, the approximation error due
to model uncertainty cannot be ignored and needs to be accounted for.

73. Optimal experimental design under uncertainty

We begin by solving the OED problem (45) with ng = 5 training data samples. In figure 7 (left),
we show an uncertainty aware optimal sensor placement with 20 sensors. Note that due to the
use of a greedy algorithm, we can track the order in which the sensors are picked. To understand
the impact of ignoring model uncertainty in the design stage, we also compute an uncertainty
unaware design; this is reported in figure 7 (right).
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Figure 7. The uncertainty aware (left) and uncertainty unaware (right) sensor place-
ments. The numbers indicate the order in which the sensors are picked in the greedy
algorithms for minimizing (34a).

To evaluate the quality of the computed designs, we first study the expected posterior vari-
ance and expected relative error of the MAP point. To facilitate this, we draw parameter
samples {m}}/ | from p, and generate validation data samples,

d, =P, (G(m!,&)+n)), ic{l,....n},

where {£}": | and {n)}"* | are draws from s and N (0, Ty ), respectively. Then, we con-
sider

m m;
Ztr( post) and EMAP Z H NT‘\;/[V” ||//l . (46)

Vi=1

In our numerical experiments we use ny, = 100. We compare V(w) and E,,.,(w) when solv-
ing the inverse problem with the computed optimal design versus randomly chosen designs
in figure 8, where we consider designs with different numbers of sensors. We also examine
the impact of ignoring the model uncertainty in solving the OED problem (see the black dots
in figure 8). Note that the uncertainty aware designs outperform the random designs as well
as the uncertainty unaware designs. This is most pronounced when the number of sensors is
small. This is precisely when optimal placement of sensors is crucial. We also observe that
as the number of sensors in the designs increase, the cloud moves left and downward. This is
expected. The more sensors we use, the more we can improve the quality of the MAP point
and reduce posterior uncertainty. For ng > 30, we note that the difference between uncertainty
aware and uncertainty unaware designs become small (in the case of ny = 30, they nearly over-
lap). For nq > 40, even the random designs become competitive. All these are expected. As
mentioned, earlier, optimal placement of sensors is crucial, when we have access only to a
‘small” number measurement points. What constitutes ‘small’ is problem dependent.

Next, we illustrate the effectiveness of the computed optimal designs in reducing posterior
uncertainty. To this end, we consider the computed optimal designs with 10 sensors. In figure 9,
we show the effectiveness of the uncertainty aware optimal design in reducing posterior uncer-
tainty; we also report the posterior standard deviation field, when solving the inverse problem
with an uncertainty unaware design. To complement this study, we consider the quality of the
MAP points computed using uncertainty aware and uncertainty unaware designs in figure 10.
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Figure 8. The expected relative error Eyne(w) of the MAP point versus expected pos-
terior variance V(w) using random designs (red dots), an uncertainty aware sensor place-
ments (blue dots), and uncertainty unaware sensor placements (black dots) using 10, 15,

and 20 sensors.
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Figure 9. The effectiveness of the computed optimal design with 10 sensors on pos-
terior uncertainty. We report the pointwise prior standard deviation of m (left), and the
pointwise posterior standard deviation of m using the uncertainty aware (middle) and
uncertainty unaware (right) optimal designs.

Overall, we observe that the uncertainty aware design is more effective in reducing posterior
uncertainty and results in a higher quality MAP point. This conclusion is also supported by
the results reported in figure 8.

Note that the data used to solve the inverse problem is synthesized by solving the PDE
model (1), using our choice of the ‘truth’ inversion parameter (see figure 10 (left)) and a ran-
domly chosen ¢ followed by extracting measurements at the sensor sites and adding meas-
urement noise. This simulates the practical situation when field data that corresponds to an

unknown choice of £ is collected.
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Figure 10. The quality of the MAP points computed using optimal designs with 10
sensors. We show the true parameter field (left), the MAP point computed using the
uncertainty aware optimal design (middle) and using the uncertainty unaware design

(right).
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Figure 11. The posterior standard deviation field (left) and MAP point (right) when solv-
ing the uncertainty unaware inverse problem using an uncertainty unaware design.

In the above experiments, when examining the performance of uncertainty unaware designs,
model uncertainty was still accounted for (following the BAE framework) when solving the
inverse problem using these designs. Next, we examine the impact of ignoring model uncer-
tainty in both OED and inference stages. For this experiment, we use the same synthesized
data as that used to obtain the results in figure 10 (right). In figure 11 we report the result
of solving the inverse problem with an uncertainty unaware design, when ignoring model
uncertainty in the inverse problem as well. We note an impressive reduction of uncertainty;
see figure 11 (left), which uses the same scale as the standard deviation plots in figure 9. On the
other hand, the MAP point computed in this case is of very poor quality; see figure 11 (right),
where we have used the same scale as the MAP point plots in figure 10. Intuitively, this indic-
ates that ignoring model uncertainty in both OED and inference stages, in presence of signi-
ficant modeling uncertainties, can lead to an unfortunate situation where one is highly certain
(i.e. low posterior variance) about a very wrong parameter estimate.

As mentioned earlier, we used ng = 5 training data samples when solving the OED prob-
lem (45). Clearly, increasing ng would improve the quality of the design—we would be optim-
izing a more accurate estimate of the OED objective. However, this comes with increased
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Figure 12. The impact of the number of training data samples nq on the quality of the
computed optimal design with 10 sensors.

computational overhead. In practice, typically a small nq is effective in obtaining good qual-
ity designs. This is demonstrated in the results above (e.g. figure 8). To examine the impact
of changing n4 on the quality of the computed optimal design, we perform a brief compu-
tational study where we focus on designs with 10 sensors. We compute the expected value
of the posterior variance (as in (46)) at the computed optimal design, wqp, with values of
nq € {3,5,10,20,30}. The results are reported in figure 12. As before, V(wqp) is computed
with n, = 100 validation data samples. Note that going beyond ng = 10 results in diminishing
returns. This, however, entails increased computational cost. In practice, studies such as the
one conducted here may be necessary to estimate a reasonable choice for ny. In the present
example, we see that ny = 5 is approximately at the ‘elbow’ of the curve in figure 12, making
it a reasonable practical choice.

8. Conclusions

In the present work, we addressed OED under uncertainty for Bayesian nonlinear inverse prob-
lems governed by PDEs with infinite-dimensional inversion and secondary parameters. We
have presented a mathematical framework and scalable computational methods for comput-
ing uncertainty aware optimal designs. Our results demonstrate that ignoring the uncertainty
in the OED and/or the parameter inversion stages can lead to inferior designs and inaccurate
parameter estimation. Hence, it is important to account for modeling uncertainties in Bayesian
inversion and OED.

The limitations of the proposed approach are in its reliance on Gaussian approximations
for the posterior and the approximation error. The former is a common approach in large-scale
Bayesian inverse problems as well as in the BAE literature. The Gaussian approximation to the
posterior is suitable if a linearization of the forward model, at the MAP point, is sufficiently
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accurate for the set of parameters with significant posterior probability. On the other hand, the
Gaussian approximation of the approximation error, which is guided by the BAE approach,
might fail to adequately capture the distribution of the approximation error. However, as shown
in various studies in the BAE literature, this Gaussian approximation is reasonable in broad
classes of inverse problems; see, e.g. [24, 27, 32, 33]. Additionally, in the present work we
considered a greedy approach for tackling the binary OED optimization problems. This can
become expensive if the number of candidate sensor locations or the desired number of sensors
in the computed sensor placements become very large.

The numerical experiments in the present work focus on an academic, albeit application-
driven, model problem. The present application was chosen since it exhibits key problem struc-
tures seen in broad classes of ill-posed inverse problems. Namely, smoothing properties of the
forward operator lead to low-rank structures that can be exploited when developing numerical
methods. The present numerical study also builds on and complements the previous study of
BAE for the Robin boundary condition inversion problems in [33]. Examining the properties
of the present method in more challenging inverse problems with multiple types of modeling
uncertainties is a subject for future work.

The discussions in this article point to a number of opportunities for future work. In the
first place, we point out that the use of BAE approach to account for modeling uncertainties
in Bayesian inverse problems is only one possible application of this approach. In general,
BAE has been used in a wide range of applications to account for uncertainty due to the use
of approximate forward models. For example, BAE can be used to model the approximation
errors due to the use of reduced order models or upscaled models. BAE has also been used
to account for the errors due to the use of a mean-field model instead of an underlying high-
fidelity stochastic model [38]. Thus, the framework presented for OED under uncertainty in
the present work can be extended to OED in inverse problems where the forward model is
replaced with a low-fidelity approximate model instead of a computationally intensive high-
fidelity model, as long the approximation error can be modeled adequately by a Gaussian.

Another interesting line of inquiry involves replacing the greedy strategy used to find
optimal designs with more powerful optimization algorithms. One possibility is to follow a
relaxation approach [3, 4, 8, 31] where the design weights are allowed to take values in the
interval [0, 1]. This enables use of efficient gradient-based optimization algorithms and can
be combined with a suitable penalty approach to control the sparsity of the computed sensor
placements. An attractive alternative is the approach in [9], which tackles the binary OED
optimization problem by replacing it with a related stochastic programming problem. A fur-
ther line of inquiry is investigating the idea of using fixed MAP points, computed prior to
solving the OED problem, as done in [44] for OED problems with no additional uncertainties.
This idea, at the expense of further approximations, replaces the bilevel optimization problem
with a simpler one, hence reducing computational cost significantly.

Finally, in inverse problems governed by complex models with multiple sources of sec-
ondary uncertainty, an a priori sensitivity analysis of the Bayesian inverse problem may be
necessary to identify secondary modeling uncertainties that are most influential to the solution
of the inverse problem. This may be accomplished by suitable adaptations of hyper-differential
sensitivity analysis methods for inverse problems [36, 41, 42].
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