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Abstract

Multi-modal sensing systems are becoming increasingly common

in real-world applications like human activity recognition (HAR).

To enable knowledge sharing among individuals, Federated Learn-

ing (FL) o�ers a solution as a distributed machine learning para-

digm that retains user data locally, thereby safeguarding privacy.

However, existing heterogeneous multi-modal Federated Learn-

ing (MMFL) solutions have yet to fully utilize all the potential

knowledge-sharing opportunities, as they fail to capture funda-

mental common knowledge that is independent of both modal-

ity and client. In this paper, we propose Federated Hierarchical

Knowledge Disentanglement (FedHKD), a new sensing system for

heterogeneous multi-modal federated learning. FedHKD introduces

a multi-stage training paradigm based on hierarchical knowledge

disentanglement at both the modality and client levels. This de-

sign enhances collaboration among modality-heterogeneous clients

while maintaining low storage overhead and high adaptation �ex-

ibility to new sensing modalities. Our evaluation of two public

real-world multi-modal HAR datasets and a self-collected dataset

demonstrates that FedHKD outperforms state-of-the-art baselines

by up to 4.85% in accuracy while saving up to 2.29× in storage.

Additionally, when adapting to new sensing modalities, it reduces

communication overhead by up to 4.62×.

CCS Concepts

•Human-centered computing→Ubiquitous andmobile com-

puting; • Computing methodologies → Learning paradigms.
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Figure 1: A typical heterogeneous multi-modal federated

learning system.

1 Introduction

Multi-modal sensing systems leverage data from diverse sensors

(e.g., cameras, microphones, LiDAR,WiFi, mmWave, etc.) to provide

comprehensive insights into various phenomena [9, 12, 17, 20, 53].

These systems are integral to numerous applications, particularly

in human activity recognition (HAR) [31, 32, 34], where sensor

data are fused to generate accurate and robust models for activity

prediction. By combining information from diverse sources, multi-

modal sensing systems enhance the depth and breadth of analysis,

facilitating a deeper understanding of complex real-world scenarios.

However, a single client’s data is usually limited, preventing the

model from achieving optimal performance. Fortunately, Federated

Learning [10, 19, 26, 30, 42–44], allows clients to share knowledge

while keeping all raw data local, thereby preserving privacy. In a

multi-modal federated learning (MMFL) system, our goal is to pro-

vide an optimal local model for each client, taking multi-modality

data as input and predicting activity labels.

In practice, as shown in Figure 1, it is common for clients to have

di�erent sets of sensors due to sensor failures or limited accessibility

to certain modalities, leading to modality heterogeneity among

clients [32, 58, 60]. This poses a signi�cant design challenge for

federated learning, as it must e�ectively handle diversemulti-sensor

clients while maintaining high performance.

Several previous attempts have been made in the �eld of hetero-

geneous MMFL [32, 47, 59, 60]. These can generally be categorized

into three main groups: (1) imputation-based FL [60], which utilizes

data imputation to handle modality heterogeneity. However, [60]

necessitates the use of public data for pretraining a modality im-

putation model. Finding suitable public data for a speci�c sensor

set, particularly in wireless sensing tasks involving mmWave radar,

ultrasonic signals, or WiFi signals, may not always be feasible. (2)

Client-wise FL [47] restricts the federated learning to clients with the

same set of sensing modalities. However, this approach limits train-

ing to clients with identical modality sets, thus missing the opportu-

nity to collaborate with a broader range of clients. (3)modality-wise
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Figure 2: Typical paradigms on heterogeneous multi-modal

FL systems.

FL [32, 59], which aggregates feature encoders at the modality level,

allowing all feature encoders for the same sensing modality to be

aggregated regardless of client-level matching. Though the restric-

tions are alleviated, they still impose limitations on collaboration

scope. As illustrated in Figure 2, consider a typical heterogeneous

MMFL system: one client possesses sensors A and B, while the

other has sensors A and C. Due to their di�ering sensor sets, client-

wise FL is not applicable in this scenario. Although modality-wise

FL can collectively learn feature encoder A, it still does not fully

exploit all potential for collaborative learning between these clients.

In fact, there is common knowledge for the same activity that is

independent of modality or client. Both modality B and modality C

contain such common knowledge, which should be included in the

collaboration. By incorporating this modality-agnostic knowledge,

e�ective sharing can occur between the modality-heterogeneous

clients.

To mitigate the identi�ed limitations while simultaneously de-

livering personalized solutions to users, we propose a two-level

knowledge disentanglement process, where we separate informa-

tion within each modality into modality-agnostic and modality-

speci�c components, while distinguishing between common and

unique aspects among clients. Building upon this framework, we

introduce a multi-stage training paradigm based on hierarchical

knowledge disentanglement at both the modality and client lev-

els. Initially, it learns modality-agnostic and client-independent

knowledge using a shared base model. Subsequently, we �ne-tune

the model to acquire modality-speci�c and client-speci�c informa-

tion sequentially. To preserve the knowledge acquired in the initial

stage, we propose leveraging Low-rank Adaptation (LoRA) [16] to

implement parameter-e�cient �ne-tuning (PEFT). This �ne-tuning

approach focuses solely on training a small number of parameters

introduced by the modality-speci�c components while keeping the

pretrained model unchanged, which e�ciently learns modality-

speci�c knowledge without compromising the modality-agnostic

ones. Simultaneously, each client only needs to store the additional

modality-speci�c components while sharing the same base model

across all modalities. Consequently, the storage burden is signi�-

cantly reduced for resource-constrained devices. Furthermore, this

hierarchical design eliminates the need for complete retraining

when a new sensing modality is introduced. Only the lightweight

�ne-tuning stage is necessary, while the modality-agnostic base

model can be reused directly. This facilitates more e�ective and

e�cient handling of sensor changes in real-world scenarios. Exist-

ing approaches fail to explicitly distinguish between commonness

and uniqueness among modalities. Consequently, they are unable

to optimize storage by sharing a base model or e�ciently adapt to

new modalities with the shared base model.

To further enhance the performance of modality-speci�c �ne-

tuning, we propose a novel computational resource allocation strat-

egy. This strategy uses the sensing quality of each modality as a

measure of importance to allocate resources accordingly. To address

the update heterogeneity caused by varied modality importance

across clients, we introduce a dedicated aggregation mechanism.

Additionally, we integrate a specialized correlation-based attentive

fusion model to optimize local model performance for each client.

We implement FedHKD and conduct extensive experiments to

evaluate its performance. Speci�cally, we compare the performance

of FedHKD against four competitive baselines using three real-

world multi-modal HAR datasets: two public datasets and one self-

collected dataset leveraging a custom-built multi-modal testbed.

Our results demonstrate that FedHKD signi�cantly improves in-

ference accuracy and reduces storage requirements compared to

existing solutions. Additionally, when adopting a new modality not

present during the training stage, FedHKD incurs considerably less

communication overhead.

In summary, our contributions are as follows:

• Uponmeticulous examination of modality heterogeneity in multi-

modal federated learning (FL) systems, we observe that existing

approaches limit collaboration among modality-heterogeneous

clients to the modality level, thus leading to suboptimal knowl-

edge sharing.

• Drawing from these insights, we introduce a novel hierarchical

multi-modal federated learning framework. This framework dis-

entangles common and unique features at both the modality and

client levels, enhancing accuracy while signi�cantly reducing

storage requirements and improving adaptation to new modali-

ties.

• To improve modality-speci�c �ne-tuning, we propose a strategy

that allocates computational resources based on sensing qual-

ity. We introduce an aggregation mechanism to handle update

heterogeneity and a correlation-based attentive fusion model to

optimize local model performance.

• We perform a comprehensive evaluation using two public and

one self-collected multi-modal dataset. Our approach surpasses

state-of-the-art baselines by up to 4.85% in accuracy, with savings

of up to 2.29× in storage. Furthermore, when adapting to new

sensing modalities, it reduces communication overhead by up to

4.62×.

2 Background and Motivation

We start by introducing the background of federated learning. Next,

we demonstrate the necessity of enhancing performance in the

presence of modality-heterogeneity, reducing model redundancy,

and increasing �exibility for incorporating new modalities for an

MMFL system. Additionally, we highlight the limitations of current

approaches, which serve as the key motivation for our work.

2.1 Background on Federated Leaning

Federated learning [19, 30] aims to facilitate information sharing

among users while preserving data privacy. In FL, a central server

coordinates with numerous devices acting as clients, each equipped

with a set of sensors. During each round, every device trains a local

model using its own data. These clients then send their local model
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Figure 3: Preliminary studies on modality-heterogeneity and

multimodal model sizes.

updates to the central server, where the updates are aggregated to

re�ne the global model. The updated global model is subsequently

distributed back to the devices for the next round of training. This

iterative process continues until the model converges. However,

achieving convergence can be signi�cantly in�uenced by modal-

ity heterogeneity in multi-modal federated learning [10, 26, 58],

and the substantial communication overhead arising from message

transmissions further hinders the convergence process in federated

learning setups [24, 55].

2.2 Performance Degradation Due to Modality
Heterogeneity

In a multi-modal setting, each client may have di�erent types of

sensors locally. Previous MMFL work often assumes that the multi-

modal clients possess the same set of sensors [32, 47]. However, in

practice, clients vary signi�cantly in both the number and types

of sensors they possess. This variability poses a substantial chal-

lenge for federated learning systems, particularly due to modality

heterogeneity. When federated learning is restricted to clients with

identical sensor sets, the potential for cooperation is severely lim-

ited, leading to noticeable performance degradation.

To demonstrate the impact of modality heterogeneity on model

performance, we evaluate the previous methods [47] and [32] using

self-collected multi-modal data (refer to Section 4.1 for dataset de-

tails). Our real-world FL testbed collects mmWave data, ultrasonic

data, and depth camera data from 6 people to classify 14 human

activities. We control the modality heterogeneity by assigning the

modality manually. In the modality-homogeneous setup, every sub-

ject lacks ultrasonic data, while in the modality-heterogeneous

one, every two subjects lack mmWave data, ultrasonic data, and

depth camera data, respectively. The second setup presents higher

modality-heterogeneity among the clients. As illustrated in Figure

3(a), client-wise FL [47] and modality-wise FL [32] experience ap-

proximately 4% and 2% drops in accuracy, respectively, highlighting

the need to mitigate this performance degradation.

2.3 Model Redundancy across Modalities

An intuitive approach to handling multi-modal sensing data is

to design separate feature encoders for each type of sensor data

[32, 59, 60]. Such a method allows the model to process and learn

from diverse data sources. However, it often results in redundant

information duplication, as there is signi�cant common knowl-

edge across modalities that is learned repeatedly. Moreover, as the

number of sensors increases, this strategy signi�cantly expands

the overall model size. For instance, we compared the model size

between an unimodal model and a multimodal model with four

sensing modalities. Utilizing separate but structurally identical

transformer encoders for each modality, the multimodal model

is nearly three times larger, as depicted in Figure 3(b). Meanwhile,

the substantial model size impacts the federated learning process

itself. It increases the communication overhead between clients and

the central server, as larger models require more bandwidth and

time to transmit updates. Therefore, �nding e�cient methods to

reduce model redundancy while maintaining or even enhancing

performance is crucial.

2.4 Retraining Cost for New Modality

In real-world settings, new types of sensors may become avail-

able that were not included during the initial training. Integrating

such new modalities presents a signi�cant challenge. Most existing

approaches [47, 60] overlook the need to accommodate new modal-

ities, requiring full model retraining whenever new sensor types

are introduced. These approaches are both in�exible and ine�cient,

particularly in dynamic environments where the set of available

sensors can frequently change. The need to start the training pro-

cess from scratch for each modi�cation in sensor con�guration

results in considerable computational overhead and time consump-

tion. Thus, developing methods that can e�ciently adapt to new

sensor modalities without extensive retraining is crucial for the

practical deployment of MMFL systems.

3 Methodology

3.1 Overview

We aim to develop a model that uses multi-modal data as input and

predicts activity labels as output for each client. To explicitly disen-

tangle knowledge among modalities and clients, we propose decou-

pling the encoder into dedicated components to separately learn

common and unique features. Through this explicit knowledge

disentanglement, we initially acquire modality-agnostic knowl-

edge and subsequently �ne-tune the model for modality-speci�c

and client-speci�c information using low-rank adaptation (LoRA)

[16]. This approach enhances collaboration among clients with

diverse modalities, facilitating collaborative learning of modality-

agnostic knowledge. The parameter-e�cient nature of our �ne-

tuning method for modality-speci�c knowledge minimizes storage

overhead. Moreover, our multi-stage training strategy simpli�es

the integration of new modalities, enhancing the versatility and

applicability of our framework in dynamic real-world scenarios. Fig-

ure 4 illustrates an overview of the proposed framework, FedHKD,

which can be mainly divided into three stages.

In the knowledge-disentangled pretraining stage, all multi-

modal clients collaborate to train a modality-agnostic and client-

independent model within a federated learning framework. This

stage is pivotal as it establishes a foundation that can accommo-

date a diverse range of sensing modalities. To ensure the versatility

of the encoder across di�erent modalities, an adversarial training

approach is employed. This method enables the model to discern

and extract common features, regardless of the speci�c modality or

speci�c client (Section 3.4).
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Figure 4: Overview of FedHKD framework.

The modality-speci�c �ne-tuning stage builds upon the pre-

trained model by leveraging the LoRA [16]. In this stage, we �ne-

tune modality-speci�c components, involving only a small num-

ber of parameters, which allows the model to adapt to the unique

characteristics of each sensing modality. To optimize �ne-tuning

performance, we introduce an innovative importance-aware budget

allocation technique. This mechanism e�ciently allocates resources

based on a dedicated importance metric, prioritizing the most sig-

ni�cant sensing modalities given limited computational resources.

Accompanying this is a heterogeneity-aware aggregation strategy

achieved through client-server cooperation, ensuring seamless in-

tegration of diverse client updates. Additionally, we highlight the

�exibility of our hierarchical design, demonstrating its adaptability

to accommodate new modalities with minimal e�ort (Section 3.5).

The personalized �ne-tuning stage focuses on personalization,

where the local model is further re�ned to capture the unique

characteristics of individual clients, in addition to the fundamental

activity knowledge and modality-speci�c information. This �ne-

tuning process is also executed in a parameter-e�cient manner,

striking a balance between customization and computational ef-

�ciency. We introduce a dedicated attentive fusion mechanism

designed to enhance local model performance in the multi-modal

setting, enabling e�ective integration of information from multiple

modalities (Section 3.6).

3.2 Notations

We assume that theMMFL system contains clients covering" dif-

ferent data modalities. The client : maintains its own training data

�: =

{(

G
(8 )

:
, ~

(8 )

:

)}#:

8=1
of size #: , where G

(8 )

:
=

(

G
(8 )

:,1
, . . . , G

(8 )

:,":

)

represents the sensing data corresponding to the 8-th data sample

from": ≤ " modalities, and ~
(8 )

:
∈ {1, . . . , !} is a !-way categori-

cal label. Given that each modality has di�erent input dimensions,

we employ a lightweight linear layer for each modality to stan-

dardize these dimensions. This standardization facilitates model

sharing across various modalities in the encoder component. Thus,

here G
(8 )

:,<
= k:,<

(

(Graw)
(8 )

:,<

)

denotes the dimension-uni�ed data,

wherek:,< is modality-speci�c linear embedding layer. In the fol-

lowing sections, we refer to the dimension-uni�ed data sample as

G
(8 )

:,<
by default and a sample-label pair by (G,~) if no ambiguity

arises.

3.3 Design Principle

The goal of our MMFL system is to learn a local model q (·) to

predict label ~ given an input G , which can be an unimodal input

or a multimodal input. The models are deep neural network (DNN)

based that contains a feature encoder � (·) to extract feature I =

� (G) and a classi�cation head� (·) acting on the extracted feature I

such that � (I) returns the !-length vector, with ;-th entry denotes

the predicted probability of label being ; . Put together, we have

q (G) = � (� (G)).

To explicitly decouple the commonness and uniqueness of dif-

ferent modalities and clients, we further decompose the feature

encoder into three parts: a base encoder to capture commonness

information, a modality-speci�c one to capture modality-unique

information, and a client-speci�c one to model client uniqueness.

Formally speaking, for client : , its extracted feature from the<-th

modality sensing data of sample 8 is given by

�:,<

(

G
(8 )

:,<

)

= �1

(

G
(8 )

:,<

)

+ �<

(

G
(8 )

:,<

)

+ �:

(

G
(8 )

:,<

)

.

Here �1 (·), �< (·), �: (·) denotes the base, modality<-speci�c, and

client :-speci�c feature encoders, respectively.

To enhance the e�ectiveness of this design and make the pro-

posed FedHKD lightweight, we enable the parameter-sharing and

�ne-tune the components �< and �: with the LoRA strategy [16].
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Figure 5: The Adversarial Training Architecture in Stage 1.

FedHKD is trained in a three-stage manner, as illustrated in Fig 4.

We now discuss the training details.

3.4 Stage 1: Knowledge-disentangled
Pretraining

This stage seeks to pre-train a good base feature encoder �1 that

captures the fundamental common information of human activities,

independent of modality and client, to be applicable to diverse

multi-modal sensing data. This phase serves as a crucial preparatory

step, laying the foundation for subsequent training stages where

modality-speci�c and client-speci�c �ne-tuning are introduced.

The feature encoder �1 should extract as much modality-agnostic

information as possible. To this end, we involve all multi-modal

clients to participate in the training.

The learned features should be informative to the label, therefore,

in this stage, we train the prediction model q (G) taking �1 as the

feature extractor to predict label ~, i.e., q (G) = � (�1 (G)). This

entails a classi�cation task to minimize the cross-entropy (CE) loss.

Speci�cally, for client : with its local data of size #: , we seek to

minimize

L24 (q) = −
1

#:

#:
∑

8=1

!
∑

;=1

1(~ (8 ) = ;) logq (G (8 ) );

=

1

#:

#:
∑

8=1

��
(

q (G (8 ) ), ~ (8 )
)

.

Here 1(·) ∈ {0, 1} is the indicator function. It takes 1 if the input

holds valid and 0 otherwise. In addition, we denote the CE between

predicted probability q (G) and real ~ after one-hot encoding by

�� (q (G), ~) for notation simplicity. Finally, we omit the modality

and client subscripts since �1 is supposed to be unaware to them.

Loss !24 su�ces to train a predictive feature extractor. Notwith-

standing, the desired unawareness of modality and client informa-

tion cannot be ensured even if we discard them from the training

process. Such failure is attributed to the potential spurious correla-

tion in the collected data [8], and can lead to poor generalizability

of �1 on tail modalities or those unseen during the training process

[41]. Therefore, it is crucial to incorporate an explicit design of

removing any modality- or client-speci�c information in this stage

towards a robust pre-training.

To eliminate the modality-speci�c information, we resort to ad-

versarial training [27, 40]. Speci�cally, as shown in Figure 5, we

introduce a modality discriminator � at each client that seeks to

predict the data modality from the feature extracted by �1 . Being

able to fool such a discriminator indicates that the extracted fea-

tures contain minimal modality information and only re�ect their

shared common knowledge. Motivated by this, we can train the

discriminator � by minimizing:

L3 =

1

#:

#:
∑

8=1

��
(

� (�1 (G
(8 ) )), >=4_ℎ>C (<)

)

,

where >=4_ℎ>C (<) denotes a one-hot vector with<-th entry as 1

and all other entries as 0.

Then the discriminator can predict the modality of the extracted

features. To push the discriminator towards ambiguous predic-

tions over all" modalities, we incorporate the following modality-

adversarial loss during encoder training

L0 =

1

#:

#:
∑

8=1

��

(

� (�1 (G
(8 ) )),

1"
"

)

, (1)

where 1"/" is a vector with all entries takes 1
"
. In other words,

after training, the discriminator will predict that any given feature

as equally likely to come from all possible modalities. The local

training process alternates between the modality-agnostic model (�

and �1 ) and the discriminator � until the convergence is achieved.

Simultaneously, client-speci�c information can be further mini-

mized within a federated learning paradigm. In speci�c, the central

server aggregates updates from all clients and combines the knowl-

edge gained from each individual client. As a consequence, this

process helps the global model cancel out the uniqueness of indi-

vidual clients and is capable of achieving better generalizability

thereof.

This stage ensures that encoder �1 learns to extract features

devoid of modality- and client-speci�c information, providing a

robust initialization for further training.

3.5 Stage 2: Modality-speci�c Fine-tuning

The base encoder �1 trained in stage 1 is capable of capturing funda-

mental common activity information from di�erent modalities and

clients. However, modality-speci�c information cannot be ignored,

as it provides comprehensive insights into activity understanding,

enhancing model performance.

In practice, incorporating useful modality-speci�c information

can be challenging. First, due to the dynamic nature of the real

world, the number of modalities can grow rapidly, making it pro-

hibitive to maintain a powerful feature encoder for each modality,

especially if it is of considerable size. Second, certain modalities,

like LiDAR due to its high price [39], may be owned by only a

few clients. This poses a signi�cant challenge for modality-speci�c

federated learning due to limited client participation.

To tackle the above two di�culties, we propose to obtain the

modality-speci�c component �< by �ne-tuning the base encoder

�1 , which is conducted in a parameter-e�cientmanner. By updating

only a small number of parameters in the encoder, the updated

encoder inherits much of the pre-trained knowledge. Notably, this

update can be achieved with signi�cantly less modality-speci�c

data compared to the data required for �1 .
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Figure 6: The working principle of modality-speci�c LoRA.

Our proposed parameter-e�cient �ne-tuning (PEFT) extends

Low-rank Adaption (LoRA) [16]. In speci�c, LoRA models the e�-

cient incremental updates of the pretrained model. As illustrated in

Figure 6, such an e�cient incremental update of pretrained model

introduces two learnable low-rank matrices. Then the �ne-tuned

weight, ′ can be represented as:

, ′
=, + Δ =, + 3,� · 3,� (2)

where, ∈ R
=×< is the pretrained weights matrix, Δ ∈ R

=×< is

a low-rank incremental updates matrix parameterized by 3,� ∈

R
A×< and 3,� ∈ R

=×A with A ≪ min(<,=). During the �ne-

tuning, the lightweight matrices 3,� and 3,� are updated with

the pre-trained weight, kept frozen.

This approach often achieves accuracy similar to that of �ne-

tuning the entire pre-trained model directly. By training only the

small trainable components, LoRA ensures e�cient computation,

making it an attractive solution for �ne-tuning models. More im-

portantly, it requires only the communication of the trainable com-

ponents between clients and the server, thereby reducing commu-

nication overhead in federated learning settings [45, 54].

The parameter-e�cient nature of LoRA makes it suitable for

learning modality-speci�c encoder �< from limited data in a light-

weight way. With the base encoder �1 frozen, we only need to train

and communicate the modality-speci�c components �< , which

requires only a few parameters. However, clients usually have lim-

ited computing and storage resources, and may not a�ord to learn

Δ with large rank A for every modality. Therefore, it is crucial to

decide how to allocate the budget wisely.

Importance-Aware Budget Allocation. To tackle the alloca-

tion issue, we propose an adaptive way to allocate LoRA on each

modality a proper budget (namely, the matrix rank A ) based on its

importance. Here a modality is important if it is of high quality.

Inspired by previous �ndings that features extracted from sensing

data can be decomposed into an activity-related part that is shared

by all modalities plus some random noises that are speci�c to each

modality [52], we measure the importance of a modality by how

much activity information it carries out. If a modality is dominated

by such information, we consider it important and assign more bud-

get to learn it. In contrast, if a modality rarely agrees with others,

then most of its information is likely noise, and the modality is less

important. We note that the modality importance can di�er across

di�erent clients, and allow each to determine its own importance,

which is de�ned as follows.

First, we extract the modality-agnostic feature of activity sample

8 from client : with the pre-trained base encoder �1 by averaging

𝑃1 𝑃2 2ߣ1ߣ ܳ1ܳ2 𝑃1 𝑃2 𝑃3 3ߣ2ߣ1ߣ
ܳ1ܳ2ܳ3

𝑃1 𝑃2 𝑃31ߣ 2ߣ 3ܳ1ߣ ܳ2 ܳ3𝑃1 𝑃21ߣ 2ܳ1ߣ ܳ2

Figure 7: Illustration of heterogeneity-aware aggregation

given a speci�c sensing modality.

features extracted from": modalities:

6
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In intuition, by taking an average of all modality data, 6
(8 )

:
smooths

out the modality-speci�c noise and extracts the shared activity

information. Built upon this measure, we check how each modality

feature �1 (G
(8 )

:,<
) agrees with 6

(8 )

:
by their inner product

2
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In words, 2
(8 )

:,<
quanti�es the importance of modality< in activity 8

on client : . We next compute the importance score of each modality

by normalizing 2
(8 )

:,<
over": modalities

B
(8 )

:,<
=

2
(8 )

:,<

∑":

<=1 2
(8 )

:,<

.

Finally, we assign each modality an overall importance score on

client : by averaging over all activity samples 1 ≤ 8 ≤ #:

B:,< =

1

#:

#:
∑

8=1

B
(8 )

:,<

and the computation budget of client : , denoted by ', is distributed

over": modalities. Namely, to obtain �< on modality<, client :

tunes LoRA with rank A< = ⌊B:,<'⌉, where ⌊·⌉ rounds the input to

the nearest interger.

Heterogeneity-aware Aggregation. According to the

importance-aware allocation, a client is allowed to �ne-tune

each modality-aware �< with LoRA using di�erent ranks.

Notwithstanding, these varying local rank assignments result in

heterogeneous updates within each modality, making the global

aggregation of modality updates from di�erent clients challenging.

To address this issue, we propose a novel aggregation strategy.

Inspired by [56], for each client, we �rst assign budgets (rank)

to di�erent modalities based on their local importance. Then, we

parameterize the update matrices Δ using singular value decompo-

sition (SVD). This approach enables us to aggregate local updates

from di�erent clients on a singular value-vector pair basis.

Formally, the incremental update matrix in Eqn. 2 can be ex-

pressed:

, ′
=, + Δ =, + % · Λ ·& (4)
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(a) Attentive Fusion

= + +
(b) Example of Hierarchical LoRA Usage in Stage 3

Figure 8: Illustration of proposed multi-modal fusion and hierarchical training design.

where % ∈ R
=×: and & ∈ R

:×< represent the left and right singu-

lar vectors of Δ, respectively, and the diagonal matrix Λ ∈ R
:×:

contains the singular values {_8 }1≤8≤: . We refer to each singular

value and its corresponding singular vectors as a triplet. During

execution, LoRA updates are conducted by learning % , Λ,& , respec-

tively. To ensure the orthogonality of P and Q, we add the following

regularizer:

'(%,&) = ∥%) % − � ∥2
�
+ ∥&&) − � ∥2

�
(5)

Before sending the singular vectors and singular values to the

server, each client sorts the triplets based on the magnitude of the

corresponding singular values. This sorting ensures a consistent

order across updates. The server then aggregates these ordered

triplets based on rank overlapping and distributes the aggregated

values according to each client’s preset ranks, as shown in Figure 7.

This approach ensures e�cient and e�ective aggregation despite

the heterogeneity in local rank assignments.

E�cient Adaptation to New Modalities. In real-world appli-

cations, new modalities may be introduced in the system. Rather

than retraining the entire system, our hierarchical design o�ers

a more e�cient solution. By disentangling common and unique

aspects among sensing modalities, we can leverage a pre-trained

modality-agnostic model as a foundation and �ne-tune modality-

speci�c delta weights for new modalities. This approach saves

signi�cant time and computational resources, ensuring the system

can seamlessly accommodate new modalities.

3.6 Stage 3: Personalized Fine-tunig

After e�ectively �ne-tuning the model for each modality, there re-

mains signi�cant potential for improving the system in real-world

human activity recognition tasks. Typically, each client exhibits

unique statures and action habits, which can degrade the perfor-

mance of the global model trained through federated learning. To

mitigate this issue, personalized �ne-tuning emerges as an e�ective

strategy. Similar to the modality-speci�c �ne-tuning step, we in-

struct the client to freeze the shared weights �1 , modality-speci�c

delta-weights �< learned earlier, and focus on client-speci�c �:
using LoRA.

To obtain a multi-modal classi�er for each client, sensor fusion

has proven e�ective in achieving a comprehensive understanding

of human activities [28, 49, 51, 52]. Among various sensor fusion

methods, self-attention based fusion [52] aligns well with our goal

of identifying correlations among features captured by di�erent

sensing modalities. Unlike the approach of learning a global fea-

ture vector from scratch as seen in [52], we propose a new fusion

strategy tailored to our unique system design as shown in Figure

8(a). Similar to modality importance capture described in Section

3.5, we directly utilize the modality-agnostic encoder to capture the

global feature representation. This eliminates the need to train the

global feature vector from scratch, signi�cantly speeding up the lo-

cal �ne-tuning process. However, unlike in Eqn. 3, the correlations

here are calculated between the �ne-tuned feature vectors and the

global feature vector. The correlation for modality< of client : is

as follows:

2
(8 )

:,<
= ⟨�:,< (G

(8 )

:,<
), 6

(8 )

:
⟩

= ⟨�1 (G
(8 )

:,<
) + �< (G

(8 )

:,<
) + �: (G

(8 )

:,<
), 6

(8 )

:
⟩

where the base encoder �1 (·) and the modality-speci�c component

�< (·) are kept frozen while the client-speci�c component �: (·) are

trainable as shown in Figure 8(b).

Next, we rescale the correlation scores using Softmax and then

fuse the multi-modal features by performing a weighted sum. This

parameter-e�cient �ne-tuning process achieves a balance between

customization and computational e�ciency, allowing for the e�ec-

tive integration of information from multiple modalities.

4 Experiment

4.1 Datasets and Models

We apply FedHKD to two representative public multi-modal HAR

datasets and one self-collected dataset to show the generality of the

proposed method. Table 1 summarizes the details of these datasets.

Please note that these datasets are collected individually by each

human subject. We adopt the data partitioning scheme introduced

by FEMNIST [7] and naturally treat each subject as a client in

following federated learning experiments. This approach highlights

the non-IID nature of real-world applications, where user data is

often skewed by user behavior.

598



SenSys ’24, November 4–7, 2024, Hangzhou, China Wang et al.

(a) Experiment setup (b) Room1 (c) Room2 (d) Room3

Figure 9: Our real-world multi-modal sensor testbed for human activity recognition incorporates three sensor modalities:

mmWave radar, depth camera, and smartphone for ultrasound sensing. These nodes are deployed across three distinct

environments: a large conference room, a laboratory, and a small conference room.

Table 1: Statistical information of datasets (W: WiFi, M:

mmWave, L: LiDAR, D: depth camera, Y: eye-tracking, G:

EMG, B: body-tracking, A: acoustic)

Dataset Sensors # Clients
# Samples

per client
# Classes

MM-Fi [50] W+M+L+D 40 154 14

ActionSense [11] Y+G+B 10 400 21

MMHAR M+D+A 10 204 17

Dataset #1: MM-Fi.MM-Fi [50] is a multi-modal, non-intrusive

4D human activity dataset designed to bridge the gap between wire-

less sensors and high-level human perception tasks, featuring 25

categories of daily or rehabilitation actions. This dataset includes

more than 320: synchronized frames across �ve modalities col-

lected from 40 participants. These participants were divided into

four groups evenly, each corresponding to a di�erent environmental

setting. For our evaluation, we selected 14 classes of daily activi-

ties, and four privacy-oriented modalities: WiFi, mmWave Radar,

LiDAR, and depth camera. Each sample was evenly segmented

into 11 units, with 8 units randomly chosen for training and the

remaining 3 reserved for testing.

Dataset #2: ActionSense. ActionSense [11] is a multimodal

dataset and recording framework designed to capture wearable

sensing data in a kitchen setting. It features eye tracking with a

�rst-person perspective camera, EMG sensors for forearm muscle

activity, and a body-tracking system utilizing 17 inertial sensors.

The dataset includes recordings of 20 di�erent activities performed

by 10 participants. Each client has at least 400 segments, with 80%

allocated for training and the remaining segments left for testing.

Real-world Evaluation (MMHAR)1 To further validate the

robustness and generalizability of the proposed method, we build

our own multi-modal HAR testbed by incorporating the ultrasound

as an additional sensing modality and collect the data in a realistic

setting. As depicted in 9(a), our experimental setup incorporates

three privacy-preserving sensors: a mmWave radar [1], a depth

camera [5], and a smartphone [4] (for ultrasound sensing purposes).

The testbed is designed to collect synchronized multi-modal data,

which is stored for further evaluation. We carefully selected these

three sensors to capture human activity from diverse dimensions

while preserving user privacy. Importantly, we intentionally enlarge

1All the data collection was approved by IRB of the authors’ institution.

Table 2: Details of the Transformer architecture.

Hyperparameters Values

# Layers 3

# Attention heads 2

Model dimension 768

Feed-forward network hidden dimension 768*2

the availability gap among the sensors. Smartphones are ubiquitous

in daily life, while the other two sensors may be less common,

re�ecting the issue of modality missing in our daily lives. This

deliberate variation in sensor availability allows us to explore and

address challenges related to modality-heterogeneity problems.

To capture the main moving part of the human subject, we posi-

tion the depth camera and smartphone on two tripods. The three

sensing devices are placed at similar heights ranging from 1.1 me-

ters to 1.4meters, which may vary depending on the speci�c experi-

mental environment. Ten subjects participated in the data collection,

conducting activities in di�erent rooms: four in room 1, three in

room 2, and three in room 3. The multi-modal data are synchronized

using the system clock and annotated using depth videos. The sam-

pling rates of the mmWave radar, depth camera, and smartphone

are 44.1 kHz, 30 Hz, and 44.1 kHz, respectively. We preprocess each

sensing modality data separately. For radar data, we use a series of

FFT preprocessing steps [35] to generate time-doppler heatmaps.

For ultrasound signals, upon receiving the re�ected pure tone signal,

we �rst demodulate the acoustic signals using a coherent detec-

tor [38], then apply STFT on the processed data to generate DFS

pro�les containing velocity information. Finally, we segment all

data into 3-second time windows with synchronized timestamps

to obtain paired multi-modal data. This results in 12 segments per

class, further divided into 9 for training and 3 for testing.

Model. FedHKD aims to enable parameter sharing across di�er-

ent modalities. To achieve this, we need a uni�ed backbone neural

architecture for all modalities. Given the Transformer’s dominant

performance across various modalities and its proven e�ectiveness

in previous multi-modal studies [21, 29, 37], we choose it as the

primary component of our model, which consists of three identical

layers. The detailed architecture is outlined in Table 2.

Since the data from each modality have di�erent dimensions, we

add a lightweight embedding layer for each modality before passing

the data into the encoder. These modality-speci�c embedding layers
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Figure 10: Modality distribution in MM-Fi dataset for two levels of modality heterogeneity setups (client #1 to #16 with all

modalities).
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Figure 11: Histograms of modality number per client in MM-

Fi dataset for two levels of modality missing setups (per ev-

ery ten clients). The red line denotes the average number of

modalities per client.

are trained locally and not involved in federated learning, thus

avoiding any additional communication overhead. Initially, these

layers are trained from scratch, and in subsequent stages, they are

�ne-tuned in a full �ne-tuning manner. As part of a multi-stage

training scheme, the classi�ers are retrained multiple times, as they

are essential for assisting the training of the encoders. To reduce

the unnecessary training workload associated with the classi�ers,

similar to the embedding layers, they do not need to be retrained

from scratch each time. In Stage 2, each modality �ne-tunes its

classi�er using the base classi�er developed in the �rst Stage. In

the last Stage, the modality-speci�c classi�ers are averaged, and

the resulting classi�er is then slightly �ne-tuned.

4.2 Experimental Setup

Baselines. To demonstrate the e�ectiveness of FedHKD, we com-

pare it with the following baseline methods, each providing a dis-

tinct perspective on heterogeneous MMFL sensing systems:

• Standalone: In this approach, each client independently trains

its model using only its local data, without any collaboration

with other clients. This method serves as a basic benchmark

to evaluate the performance of collaborative methods against

individual learning e�orts.

• Client-wise FL [47]: Client-wise FL restricts collaboration to

clients with identical sets of sensing modalities, by focusing on

homogeneous groups of clients.

• Modality-wise FL [59]:Modality-wise FL extends collaboration

beyond homogeneous groups by aggregating all feature encoders

for the same sensing modality to be aggregated regardless of

client-level matching (e.g., between a uni-modal client and a

multi-modal client).

• Harmony [32]: Building upon the principles of Modality-wise

FL, Harmony incorporates additional collaborative training on

the classi�er to mitigate potential biases introduced during fea-

ture fusion. These additional collaborations are limited to multi-

modal clients with the same set of sensors.

For a fair comparison, all baselines will utilize the same encoder

backbone as ours.

Heterogeneous MMFL Setup. By default, for the MM-Fi

dataset, the client distribution is proportionally set at 4:3:2:1 for

clients with all modalities, and those missing one, two, and three

modalities, respectively. For the other two datasets, which have

only three sensing modalities, the client distribution is proportion-

ally set at 4:3:3 for clients with all modalities, and those missing

one and two modalities, respectively.

To comprehensively study the heterogeneous MMFL scenarios,

we design the distribution of modalities among clients to vary at

two orthogonal levels:

• Level of Modality Heterogeneity. In a heterogeneous MMFL

system, a client may miss some sensing modalities locally, ei-

ther missing the same modality or di�erent ones. Therefore,

we design two levels of modality heterogeneity. In the low

modality-heterogeneous case, clients miss the same type of

modalities given a speci�c number of missing modalities. In the

high modality-heterogeneity case, clients miss di�erent types of

modalities, which are randomly assigned, as shown in Figure 10.

• Level of Modality Missing. Besides varying in modality het-

erogeneity, the severity of modality missing also impacts perfor-

mance. To study this factor, we set two levels of modality missing

as shown in Figure 11. Figure 11(a) represents the mild modality

missing case, where the number of clients follows the ratio of

4:3:2:1 for clients with all modalities, and those missing one, two,

and three modalities, respectively. This mild case results in an

average of three sensing modalities per client. Conversely, we set

the ratio to 1:2:3:4 for the severe modality missing case, leading

to an average of two sensing modalities per client.

Unless otherwise speci�ed, evaluations are conducted under con-

ditions of low modality heterogeneity and mild modality missing.

4.3 System Implementation

Given that our goal is to provide an optimal local model for each

client, and considering the limited size of the datasets we use, we

include all clients in the federated learning training process, similar

to the approach taken by our baseline [32]. We adopt FedAvg [30]
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Figure 12: Local model performance on di�erent heterogeneous MMFL setups (Low / High: Low / High modality-heterogeneity;

Mild / Severe: Mild / Severe modality missing).

as our aggregation scheme, as it is the most widely used method in

federated learning.

During the federated learning process, each training client con-

ducts 5 local training epochs per communication round during

stages 1, and 2 local training epochs for stage 2. The neural network

is implemented using PyTorch [33] and trained using the Adam

optimizer [22]. The learning rates for the three training stages are

set to 10−3, 10−3, and 10−5, respectively. The LoRAs in the �nal

two stages are trained with an average rank of 64 for each modal-

ity. Training is performed with a batch size of 16 on a server with

NVIDIA A6000 GPU [3] and Intel Xeon Gold 6254 CPU [2]. The

inference is conducted on the same machine. Each experiment is

repeated three times using di�erent random seeds, and the aver-

aged results are presented in the following results sections. We

report the best test accuracy of our method and baselines in 100

communication rounds.

4.4 Overall Performance

4.4.1 Impact of Modality-heterogeneity Level on Performance. First,

we compare the inference accuracy of FedHKD with all the base-

lines in both low and high-modality-heterogeneous situations using

di�erent datasets. FedHKD consistently outperforms the baselines

in both scenarios. Speci�cally, in the low modality-heterogeneity

setting, the performance with the standard deviation across clients

in Figure 12(a), 12(b), and 12(c) shows that FedHKD improves

inference accuracy of the highest-performing baseline by 1.78%,

0.59%, and 1.35% on MM-Fi, ActionSense, and MMHAR, respec-

tively. When modality heterogeneity increases, the performance

gaps become more pronounced, with improvements of 3.58%, 2.54%,

and 2.77% on these datasets, respectively. These results demon-

strate the e�ectiveness of FedHKD in handling heterogeneous

MMFL systems. Furthermore, the larger performance gaps in high

modality-heterogeneity scenarios indicate that the commonality

among modalities is underutilized in existing methods for modality-

heterogeneous clients. From a dataset perspective, FedHKD en-

hances inference accuracy more on MM-Fi compared to the other

two datasets due to the greater number of sensingmodalities inMM-

Fi. As the number of sensing modalities in the system increases, the

likelihood of higher modality-heterogeneity also rises. With more

modalities, FedHKD’s advantages are more pronounced. For the

following evaluations, all results are tested on the MM-Fi dataset.

4.4.2 Impact of Modality Missing Level on Performance. We com-

pare the inference accuracy of all methods at mild and severe modal-

ity missing levels using the MM-Fi dataset while maintaining a

high modality-heterogeneity setting. As shown in the Figure 12(d),

FedHKD outperforms Standalone, Client-wise FL, Modlaity-wise

FL, and Harmony by 11.72%, 6.36%, 8.15%, 3.58%, respectively, in

mild modality missing scenarios. When more modalities are miss-

ing, the performance gaps widen to 12.91%, 8.62%, 9.02%, and 4.85%,

respectively. In cases of severe modality missing, it becomes crucial

for clients with more modalities to help those with fewer modalities.

Addressing this challenge requires sharing modality-speci�c knowl-

edge and collaboratively learning modality-agnostic knowledge for

e�ective transfer in modality-heterogeneous environments.

4.4.3 LoRA Hyper-parameter Study. A crucial hyper-parameter in

our system design is the rank of our low-rank adaptation method.

A higher rank generally improves inference accuracy but also in-

creases storage requirements and communication overhead during

the federated learning process. Therefore, there is a tradeo� be-

tween e�ectiveness and e�ciency. To determine the optimal rank

that balances these factors, we compare model performance at dif-

ferent ranks, evaluating inference accuracy, storage footprint, and

communication overhead.

Speci�cally, we vary the rank with values of 4, 16, 64, and 256.

For comparison, we also conduct �ne-tuning across the full param-

eter scope. The results in Figure 13(a) demonstrate that accuracy

increases with a larger rank during the �ne-tuning process, but

this improvement reaches a point of saturation at a rank of 64.

Allocating additional resources beyond this point does not yield

further accuracy gains and may even cause a slight decline. This

occurs because the modality-agnostic knowledge learned by the

base model during the �rst stage is at risk of being forgotten during

�ne-tuning due to over�tting [23].

In terms of storage, we reduce footprint by sharing a base en-

coder across modalities, which is more e�cient than using separate

encoders. Speci�cally, with ranks of 4, 16, 64, and 256, the parameter-

sharing model reduces the storage footprint by factors of 2.87×,

2.74×, 2.29×, 1.39×, respectively, compared to the split encoder

approach.

Another advantage of adopting LoRA in a federated learning

system is its communication e�ciency. For the encoder, we freeze

all the pretrained parameters and only train a few newly introduced

parameters. Consequently, only these lightweight components need

to be aggregated and distributed during federated learning, signi�-

cantly reducing the communication overhead. As shown in Figure
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Figure 13: Study on LoRA and new modality adaptation.

13(c), with ranks of 4, 16, 64, and 256, the LoRA-based �ne-tuning

method reduces communication overhead per round by factors of

7.78×, 6.84×, 4.62×, 2.01×, respectively, compared to full-model

�ne-tuning.

Based on the evaluation of di�erent ranks, we ultimately selected

a rank of 64 for each modality-speci�c �ne-tuning process. This

choice strikes an optimal balance, o�ering signi�cant reductions

in both storage footprint and communication overhead without

compromising model performance. In practical deployment, storage

requirements can be directly determined based on the rank value

and system architecture, allowing each client to select the highest

rank that it can accommodate.

4.5 New Modality Adaptation Performance

One of the key bene�ts of our hierarchical design is its �exibility,

which proves especially valuable when incorporating a new modal-

ity into the system. Existing works such as [32, 47, 59, 60] do not

adequately address this challenge; they typically require retraining

the entire network from scratch or at least completely retraining

the modality-speci�c encoder. In contrast, our approach allows

for reusing the base model trained during the �rst stage for new

modality adaptation. For a new modality that did not participate

in the initial training stage, we compare �ne-tuning from the pre-

trained encoder to retraining the encoder from scratch. As shown

in Figure 13(d), our approach converges with signi�cantly less com-

munication overhead while achieving similar �nal testing accuracy

compared to the training-from-scratch method. This comparison

highlights the e�ciency of our hierarchical design in adaptation,

which is crucial for enhancing the scalability of federated learning

systems.

4.6 Ablation Study

To understand the contribution of each module in FedHKD, we

perform an ablation study to assess the individual e�ectiveness of

each component.

4.6.1 Importance-aware Budget Allocation. Firstly, we scrutinized

the performance of our dynamic budget allocation strategy on LoRA

in comparison to a uni�ed budget allocation approach. The �ndings,

detailed in Table 3 underscore the e�cacy of our importance-aware

budget allocation technique, showcasing a notable 1.33% enhance-

ment in �nal testing accuracy. Importantly, this improvement is

achieved without incurring any additional communication over-

head compared to the uni�ed budget allocation method. Further-

more, when contrasted with full model �ne-tuning, our approach

Table 3: Ablation study results.

Method Accuracy1 (%) (↑)
Communication

overhead2 (MB) (↓)

full model �ne-tuning 93.18 402.20

uni�ed rank assignment 93.31 87.11

w/o adversarial training 93.65 -

w/o attentive fusion 92.21 -

FedHKD 94.64 87.11
1 mean accuracy of all clients’ local model performance
2 per communication round for a single client

not only yields larger performance gains but also signi�cantly re-

duces communication overhead. These results underscore the dual

bene�ts of our design, emphasizing both its e�ectiveness and e�-

ciency in the context of federated learning.

4.6.2 Adversarial Training. To ensure the feature extracted from

the base model does not include any modality-speci�c information,

we implement adversarial training in the �rst stage. To demonstrate

the e�ectiveness of this approach, we compare it to a standard train-

ing scenario that employs a uni�ed encoder across modalities but

does not incorporate adversarial training. The results show a 0.99%

improvement in �nal testing accuracy with adversarial training.

This indicates that adversarial training e�ectively enhances the

encoder’s ability to learn common knowledge shared among modal-

ities.

4.6.3 A�entive Fusion. To understand the performance gain of

our dedicated attentive fusion design, we compare our method

with a simple fusion approach where the multi-modal features are

averaged. It’s also trained with LoRA. The results show a 2.43%

improvement in �nal testing accuracy, indicating the e�cacy of

our approach in e�ciently assigning weights based on modality

correlation and ultimately enhancing performance.

5 Related work

Multi-modal Federated LearningMulti-modal federated learn-

ing (MMFL) [10, 26] enables model training over distributed multi-

modal data without disclosing private data. However, most existing

approaches do not consider the modality heterogeneity among

clients [36, 47]. [59] aggregates feature encoders at the modality

level. Harmony [32] disentangles training into modality-wise and

federated fusing learning stages and incorporates a balance-aware

resource allocation mechanism. However, they [32, 59] ignore

the importance of learning modality-agnostic knowledge between
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modality-heterogeneous clients, which leads to suboptimal perfor-

mance in a federated learning framework. AutoFed [60] leverages

multimodal sensory data through pseudo-labeling, data imputation,

and client selection mechanisms. Nevertheless, their modality im-

putation requires the use of a public dataset which is not always

feasible in real-world applications. MultimodalHD [57] encodes

multimodal sensor data into high-dimensional hypervectors and

uses an attentive fusion module. Nonetheless, their primary focus is

on optimizing encoder-level training e�ciency, which is orthogonal

to our work. Moreover, their study is limited to sensor types like

accelerometers and gyroscopes, which do not adequately represent

severe modality heterogeneity.

Parameter-e�cient Fine-tuning Parameter-e�cient �ne-

tuning (PEFT) [13, 46, 48] typically introduces a small number

of trainable parameters into pre-trained models to adapt them to

speci�c tasks. Prompt-based methods [25] add extra soft tokens to

the initial input, which is unsuitable for human activity recogni-

tion tasks and sensitive to initialization. Adapter-based methods

[14, 15] inject additional trainable modules into the original frozen

backbone, introducing additional computation delay during infer-

ence. LoRA and its variants [16, 56] apply low-rank matrices to

approximate weight changes during �ne-tuning and can merge

with pre-trained weights prior to inference, thereby not adding any

extra inference burden.

6 Discussion

6.1 Overhead of Adversarial Training

Adversarial training introduces additional overhead in terms of

computational resources and local training time. However, the �rst

stage of adversarial training only needs to be performed once. This

e�ort yields signi�cant bene�ts in the long run. The resulting base

model established during this initial training phase serves as a solid

foundation for subsequent lightweight �ne-tuning. This means

that rather than starting from scratch, we can leverage the pre-

trained base model, making it easier and faster to adapt to new

modalities or user requirements as they arise. Thus, although the

initial overhead may seem considerable, it is more than justi�ed by

the long-term e�ciency gains and �exibility it brings to the overall

system. Ultimately, this approach allows for a more responsive and

adaptable model that can e�ectively meet evolving demands in

real-world applications.

6.2 Varying Client Participation

Clients in federated learning may contribute inconsistently to

the training process due to technical limitations or user behav-

ior. This variation in client participation across communication

rounds presents a major challenge in multi-modal federated learn-

ing, particularly when dealing with modality heterogeneity. When

di�erent clients have access to di�erent sets of sensors or modali-

ties, it can lead to inconsistencies in the training data, complicating

the learning process and potentially degrading model performance.

Fortunately, our approach explicitly disentangles modality-agnostic

information that can be shared among all clients, regardless of their

individual modality combinations. By identifying and extracting

this common knowledge, we ensure that even when some clients

are unavailable or participating inconsistently, the model can still

leverage this shared information. This design not only enhances

the robustness of the learning process but also e�ectively mitigates

the adverse e�ects associated with �uctuating client participation.

As a result, the overall system maintains high accuracy and sta-

bility, even in challenging scenarios where client availability is

unpredictable.

6.3 System Scalability

Scalability is a crucial aspect of a federated learning system. Our

model’s design of parameter-e�cient �ne-tuning enhances scal-

ability by signi�cantly reducing both communication overhead

and computational costs. In the pretraining stage, as the number

of clients continues to grow, it becomes essential to incorporate

client selection to further improve scalability. As highlighted in

Section 6.2, our method demonstrates considerable promise in ac-

commodating sporadic client participation schemes. By designing

our approach to e�ectively handle varying levels of client engage-

ment, we can maintain system performance and reliability, even as

the network expands. Overall, our system ensures practicality and

e�ciency in larger-scale deployments, ultimately paving the way

for more comprehensive multi-modal federated learning applica-

tions.

6.4 Potential Applications

While this paper primarily focuses on human activity recognition,

the principles and methodologies developed through multi-modal

federated learning systems have broad implications across vari-

ous domains beyond HAR. In autonomous vehicles, these systems

can integrate data from cameras, LiDAR, and radars to enhance

object detection, route planning, and driving behavior, all while pre-

serving data privacy across vehicles [60]. Similarly, in healthcare,

federated learning can support remote monitoring and personalized

medicine by combining data from wearables and diagnostic tools,

improving patient outcomes without compromising sensitive data

[6]. In �nance, multi-modal federated learning can utilize transac-

tion records, device information, and market trends to bolster fraud

detection and credit scoring while ensuring data privacy [18]. These

diverse applications demonstrate the transformative potential of

multi-modal federated learning to balance e�ciency and privacy

across a wide range of industries.

7 Conclusion

In this paper, we propose FedHKD, a novel heterogeneous multi-

modal federated learning sensing system. FedHKD disentangles

common and unique features at both the modality and client lev-

els through a multi-stage training design. Extensive experiments

demonstrate that FedHKD outperforms state-of-the-art baselines

in accuracy and reduces storage requirements. Additionally, when

adapting to new sensing modalities, it signi�cantly reduces com-

munication overhead.
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