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Abstract

Multi-modal sensing systems are becoming increasingly common
in real-world applications like human activity recognition (HAR).
To enable knowledge sharing among individuals, Federated Learn-
ing (FL) offers a solution as a distributed machine learning para-
digm that retains user data locally, thereby safeguarding privacy.
However, existing heterogeneous multi-modal Federated Learn-
ing (MMFL) solutions have yet to fully utilize all the potential
knowledge-sharing opportunities, as they fail to capture funda-
mental common knowledge that is independent of both modal-
ity and client. In this paper, we propose Federated Hierarchical
Knowledge Disentanglement (FedHKD), a new sensing system for
heterogeneous multi-modal federated learning. FedHKD introduces
a multi-stage training paradigm based on hierarchical knowledge
disentanglement at both the modality and client levels. This de-
sign enhances collaboration among modality-heterogeneous clients
while maintaining low storage overhead and high adaptation flex-
ibility to new sensing modalities. Our evaluation of two public
real-world multi-modal HAR datasets and a self-collected dataset
demonstrates that FedHKD outperforms state-of-the-art baselines
by up to 4.85% in accuracy while saving up to 2.29X in storage.
Additionally, when adapting to new sensing modalities, it reduces
communication overhead by up to 4.62x.
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Figure 1: A typical heterogeneous multi-modal federated
learning system.

1 Introduction

Multi-modal sensing systems leverage data from diverse sensors
(e.g., cameras, microphones, LIDAR, WiFi, nmWave, etc.) to provide
comprehensive insights into various phenomena [9, 12, 17, 20, 53].
These systems are integral to numerous applications, particularly
in human activity recognition (HAR) [31, 32, 34], where sensor
data are fused to generate accurate and robust models for activity
prediction. By combining information from diverse sources, multi-
modal sensing systems enhance the depth and breadth of analysis,
facilitating a deeper understanding of complex real-world scenarios.
However, a single client’s data is usually limited, preventing the
model from achieving optimal performance. Fortunately, Federated
Learning [10, 19, 26, 30, 42-44], allows clients to share knowledge
while keeping all raw data local, thereby preserving privacy. In a
multi-modal federated learning (MMFL) system, our goal is to pro-
vide an optimal local model for each client, taking multi-modality
data as input and predicting activity labels.

In practice, as shown in Figure 1, it is common for clients to have
different sets of sensors due to sensor failures or limited accessibility
to certain modalities, leading to modality heterogeneity among
clients [32, 58, 60]. This poses a significant design challenge for
federated learning, as it must effectively handle diverse multi-sensor
clients while maintaining high performance.

Several previous attempts have been made in the field of hetero-
geneous MMFL [32, 47, 59, 60]. These can generally be categorized
into three main groups: (1) imputation-based FL [60], which utilizes
data imputation to handle modality heterogeneity. However, [60]
necessitates the use of public data for pretraining a modality im-
putation model. Finding suitable public data for a specific sensor
set, particularly in wireless sensing tasks involving mmWave radar,
ultrasonic signals, or WiFi signals, may not always be feasible. (2)
Client-wise FL [47] restricts the federated learning to clients with the
same set of sensing modalities. However, this approach limits train-
ing to clients with identical modality sets, thus missing the opportu-
nity to collaborate with a broader range of clients. (3) modality-wise
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Figure 2: Typical paradigms on heterogeneous multi-modal
FL systems.

FL [32, 59], which aggregates feature encoders at the modality level,
allowing all feature encoders for the same sensing modality to be
aggregated regardless of client-level matching. Though the restric-
tions are alleviated, they still impose limitations on collaboration
scope. As illustrated in Figure 2, consider a typical heterogeneous
MMEFL system: one client possesses sensors A and B, while the
other has sensors A and C. Due to their differing sensor sets, client-
wise FL is not applicable in this scenario. Although modality-wise
FL can collectively learn feature encoder A, it still does not fully
exploit all potential for collaborative learning between these clients.
In fact, there is common knowledge for the same activity that is
independent of modality or client. Both modality B and modality C
contain such common knowledge, which should be included in the
collaboration. By incorporating this modality-agnostic knowledge,
effective sharing can occur between the modality-heterogeneous
clients.

To mitigate the identified limitations while simultaneously de-
livering personalized solutions to users, we propose a two-level
knowledge disentanglement process, where we separate informa-
tion within each modality into modality-agnostic and modality-
specific components, while distinguishing between common and
unique aspects among clients. Building upon this framework, we
introduce a multi-stage training paradigm based on hierarchical
knowledge disentanglement at both the modality and client lev-
els. Initially, it learns modality-agnostic and client-independent
knowledge using a shared base model. Subsequently, we fine-tune
the model to acquire modality-specific and client-specific informa-
tion sequentially. To preserve the knowledge acquired in the initial
stage, we propose leveraging Low-rank Adaptation (LoRA) [16] to
implement parameter-efficient fine-tuning (PEFT). This fine-tuning
approach focuses solely on training a small number of parameters
introduced by the modality-specific components while keeping the
pretrained model unchanged, which efficiently learns modality-
specific knowledge without compromising the modality-agnostic
ones. Simultaneously, each client only needs to store the additional
modality-specific components while sharing the same base model
across all modalities. Consequently, the storage burden is signifi-
cantly reduced for resource-constrained devices. Furthermore, this
hierarchical design eliminates the need for complete retraining
when a new sensing modality is introduced. Only the lightweight
fine-tuning stage is necessary, while the modality-agnostic base
model can be reused directly. This facilitates more effective and
efficient handling of sensor changes in real-world scenarios. Exist-
ing approaches fail to explicitly distinguish between commonness
and uniqueness among modalities. Consequently, they are unable
to optimize storage by sharing a base model or efficiently adapt to
new modalities with the shared base model.
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To further enhance the performance of modality-specific fine-
tuning, we propose a novel computational resource allocation strat-
egy. This strategy uses the sensing quality of each modality as a
measure of importance to allocate resources accordingly. To address
the update heterogeneity caused by varied modality importance
across clients, we introduce a dedicated aggregation mechanism.
Additionally, we integrate a specialized correlation-based attentive
fusion model to optimize local model performance for each client.

We implement FedHKD and conduct extensive experiments to
evaluate its performance. Specifically, we compare the performance
of FedHKD against four competitive baselines using three real-
world multi-modal HAR datasets: two public datasets and one self-
collected dataset leveraging a custom-built multi-modal testbed.
Our results demonstrate that FedHKD significantly improves in-
ference accuracy and reduces storage requirements compared to
existing solutions. Additionally, when adopting a new modality not
present during the training stage, FedHKD incurs considerably less
communication overhead.

In summary, our contributions are as follows:

e Upon meticulous examination of modality heterogeneity in multi-
modal federated learning (FL) systems, we observe that existing
approaches limit collaboration among modality-heterogeneous
clients to the modality level, thus leading to suboptimal knowl-
edge sharing.

e Drawing from these insights, we introduce a novel hierarchical
multi-modal federated learning framework. This framework dis-
entangles common and unique features at both the modality and
client levels, enhancing accuracy while significantly reducing
storage requirements and improving adaptation to new modali-
ties.

o To improve modality-specific fine-tuning, we propose a strategy
that allocates computational resources based on sensing qual-
ity. We introduce an aggregation mechanism to handle update
heterogeneity and a correlation-based attentive fusion model to
optimize local model performance.

e We perform a comprehensive evaluation using two public and
one self-collected multi-modal dataset. Our approach surpasses
state-of-the-art baselines by up to 4.85% in accuracy, with savings
of up to 2.29% in storage. Furthermore, when adapting to new
sensing modalities, it reduces communication overhead by up to
4.62X.

2 Background and Motivation

We start by introducing the background of federated learning. Next,
we demonstrate the necessity of enhancing performance in the
presence of modality-heterogeneity, reducing model redundancy,
and increasing flexibility for incorporating new modalities for an
MMEFL system. Additionally, we highlight the limitations of current
approaches, which serve as the key motivation for our work.

2.1 Background on Federated Leaning

Federated learning [19, 30] aims to facilitate information sharing
among users while preserving data privacy. In FL, a central server
coordinates with numerous devices acting as clients, each equipped
with a set of sensors. During each round, every device trains a local
model using its own data. These clients then send their local model
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Figure 3: Preliminary studies on modality-heterogeneity and
multimodal model sizes.

updates to the central server, where the updates are aggregated to
refine the global model. The updated global model is subsequently
distributed back to the devices for the next round of training. This
iterative process continues until the model converges. However,
achieving convergence can be significantly influenced by modal-
ity heterogeneity in multi-modal federated learning [10, 26, 58],
and the substantial communication overhead arising from message
transmissions further hinders the convergence process in federated
learning setups [24, 55].

2.2 Performance Degradation Due to Modality
Heterogeneity

In a multi-modal setting, each client may have different types of
sensors locally. Previous MMFL work often assumes that the multi-
modal clients possess the same set of sensors [32, 47]. However, in
practice, clients vary significantly in both the number and types
of sensors they possess. This variability poses a substantial chal-
lenge for federated learning systems, particularly due to modality
heterogeneity. When federated learning is restricted to clients with
identical sensor sets, the potential for cooperation is severely lim-
ited, leading to noticeable performance degradation.

To demonstrate the impact of modality heterogeneity on model
performance, we evaluate the previous methods [47] and [32] using
self-collected multi-modal data (refer to Section 4.1 for dataset de-
tails). Our real-world FL testbed collects mmWave data, ultrasonic
data, and depth camera data from 6 people to classify 14 human
activities. We control the modality heterogeneity by assigning the
modality manually. In the modality-homogeneous setup, every sub-
ject lacks ultrasonic data, while in the modality-heterogeneous
one, every two subjects lack mmWave data, ultrasonic data, and
depth camera data, respectively. The second setup presents higher
modality-heterogeneity among the clients. As illustrated in Figure
3(a), client-wise FL [47] and modality-wise FL [32] experience ap-
proximately 4% and 2% drops in accuracy, respectively, highlighting
the need to mitigate this performance degradation.

2.3 Model Redundancy across Modalities

An intuitive approach to handling multi-modal sensing data is
to design separate feature encoders for each type of sensor data
[32, 59, 60]. Such a method allows the model to process and learn
from diverse data sources. However, it often results in redundant
information duplication, as there is significant common knowl-
edge across modalities that is learned repeatedly. Moreover, as the
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number of sensors increases, this strategy significantly expands
the overall model size. For instance, we compared the model size
between an unimodal model and a multimodal model with four
sensing modalities. Utilizing separate but structurally identical
transformer encoders for each modality, the multimodal model
is nearly three times larger, as depicted in Figure 3(b). Meanwhile,
the substantial model size impacts the federated learning process
itself. It increases the communication overhead between clients and
the central server, as larger models require more bandwidth and
time to transmit updates. Therefore, finding efficient methods to
reduce model redundancy while maintaining or even enhancing
performance is crucial.

2.4 Retraining Cost for New Modality

In real-world settings, new types of sensors may become avail-
able that were not included during the initial training. Integrating
such new modalities presents a significant challenge. Most existing
approaches [47, 60] overlook the need to accommodate new modal-
ities, requiring full model retraining whenever new sensor types
are introduced. These approaches are both inflexible and inefficient,
particularly in dynamic environments where the set of available
sensors can frequently change. The need to start the training pro-
cess from scratch for each modification in sensor configuration
results in considerable computational overhead and time consump-
tion. Thus, developing methods that can efficiently adapt to new
sensor modalities without extensive retraining is crucial for the
practical deployment of MMFL systems.

3 Methodology
3.1 Overview

We aim to develop a model that uses multi-modal data as input and
predicts activity labels as output for each client. To explicitly disen-
tangle knowledge among modalities and clients, we propose decou-
pling the encoder into dedicated components to separately learn
common and unique features. Through this explicit knowledge
disentanglement, we initially acquire modality-agnostic knowl-
edge and subsequently fine-tune the model for modality-specific
and client-specific information using low-rank adaptation (LoRA)
[16]. This approach enhances collaboration among clients with
diverse modalities, facilitating collaborative learning of modality-
agnostic knowledge. The parameter-efficient nature of our fine-
tuning method for modality-specific knowledge minimizes storage
overhead. Moreover, our multi-stage training strategy simplifies
the integration of new modalities, enhancing the versatility and
applicability of our framework in dynamic real-world scenarios. Fig-
ure 4 illustrates an overview of the proposed framework, FedHKD,
which can be mainly divided into three stages.

In the knowledge-disentangled pretraining stage, all multi-
modal clients collaborate to train a modality-agnostic and client-
independent model within a federated learning framework. This
stage is pivotal as it establishes a foundation that can accommo-
date a diverse range of sensing modalities. To ensure the versatility
of the encoder across different modalities, an adversarial training
approach is employed. This method enables the model to discern
and extract common features, regardless of the specific modality or
specific client (Section 3.4).
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Figure 4: Overview of FedHKD framework.

The modality-specific fine-tuning stage builds upon the pre-
trained model by leveraging the LoRA [16]. In this stage, we fine-
tune modality-specific components, involving only a small num-
ber of parameters, which allows the model to adapt to the unique
characteristics of each sensing modality. To optimize fine-tuning
performance, we introduce an innovative importance-aware budget
allocation technique. This mechanism efficiently allocates resources
based on a dedicated importance metric, prioritizing the most sig-
nificant sensing modalities given limited computational resources.
Accompanying this is a heterogeneity-aware aggregation strategy
achieved through client-server cooperation, ensuring seamless in-
tegration of diverse client updates. Additionally, we highlight the
flexibility of our hierarchical design, demonstrating its adaptability
to accommodate new modalities with minimal effort (Section 3.5).

The personalized fine-tuning stage focuses on personalization,
where the local model is further refined to capture the unique
characteristics of individual clients, in addition to the fundamental
activity knowledge and modality-specific information. This fine-
tuning process is also executed in a parameter-efficient manner,
striking a balance between customization and computational ef-
ficiency. We introduce a dedicated attentive fusion mechanism
designed to enhance local model performance in the multi-modal
setting, enabling effective integration of information from multiple
modalities (Section 3.6).

3.2 Notations

We assume that the MMFL system contains K clients covering M dif-
ferent data modalities. The client k maintains its own training data
Dy = {( (l),yl(cl))}i:1 of size Ni, where xl((i) = ( ]Elz X 1511\)/1,()
represents the sensing data corresponding to the i-th data sample
from My < M modalities, and ylii) € {1,...,L} is a L-way categori-
cal label. Given that each modality has different input dimensions,
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we employ a lightweight linear layer for each modality to stan-
dardize these dimensions. This standardization facilitates model
sharing across various modalities in the encoder component. Thus,

here x = Vkm ((xraw) kom ) denotes the dimension-unified data,

where l//k!m is modality-specific linear embedding layer. In the fol-
lowing sections, we refer to the dimension-unified data sample as
xlgl:n by default and a sample-label pair by (x,y) if no ambiguity
arises.

3.3 Design Principle

The goal of our MMFL system is to learn a local model ¢(-) to
predict label y given an input x, which can be an unimodal input
or a multimodal input. The models are deep neural network (DNN)
based that contains a feature encoder E(-) to extract feature z =
E(x) and a classification head C(-) acting on the extracted feature z
such that C(z) returns the L-length vector, with I-th entry denotes
the predicted probability of label being I. Put together, we have
$(x) = C(E(x)).

To explicitly decouple the commonness and uniqueness of dif-
ferent modalities and clients, we further decompose the feature
encoder into three parts: a base encoder to capture commonness
information, a modality-specific one to capture modality-unique
information, and a client-specific one to model client uniqueness.
Formally speaking, for client k, its extracted feature from the m-th
modality sensing data of sample i is given by

) - i L) 5 )

Here Ej(-), Em(+), Ex(+) denotes the base, modality m-specific, and
client k-specific feature encoders, respectively.

To enhance the effectiveness of this design and make the pro-
posed FedHKD lightweight, we enable the parameter-sharing and
fine-tune the components E,, and Ej with the LoRA strategy [16].
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Figure 5: The Adversarial Training Architecture in Stage 1.

FedHKD is trained in a three-stage manner, as illustrated in Fig 4.
We now discuss the training details.

3.4 Stage 1: Knowledge-disentangled
Pretraining

This stage seeks to pre-train a good base feature encoder Ej, that
captures the fundamental common information of human activities,
independent of modality and client, to be applicable to diverse
multi-modal sensing data. This phase serves as a crucial preparatory
step, laying the foundation for subsequent training stages where
modality-specific and client-specific fine-tuning are introduced.
The feature encoder Ej, should extract as much modality-agnostic
information as possible. To this end, we involve all multi-modal
clients to participate in the training.

The learned features should be informative to the label, therefore,
in this stage, we train the prediction model ¢(x) taking Ej, as the
feature extractor to predict label y, ie., #(x) = C(Ep(x)). This
entails a classification task to minimize the cross-entropy (CE) loss.
Specifically, for client k with its local data of size Ny, we seek to
minimize

z

L

DY =Dlogp(x),

=
1 N 1 . .
- N ; CE (gﬁ(x(’)), y(l)) ]

Here 1(-) € {0, 1} is the indicator function. It takes 1 if the input
holds valid and 0 otherwise. In addition, we denote the CE between
predicted probability ¢(x) and real y after one-hot encoding by
CE(¢(x),y) for notation simplicity. Finally, we omit the modality
and client subscripts since Ej, is supposed to be unaware to them.

Loss L, suffices to train a predictive feature extractor. Notwith-
standing, the desired unawareness of modality and client informa-
tion cannot be ensured even if we discard them from the training
process. Such failure is attributed to the potential spurious correla-
tion in the collected data [8], and can lead to poor generalizability
of Ep, on tail modalities or those unseen during the training process
[41]. Therefore, it is crucial to incorporate an explicit design of
removing any modality- or client-specific information in this stage
towards a robust pre-training.

To eliminate the modality-specific information, we resort to ad-
versarial training [27, 40]. Specifically, as shown in Figure 5, we
introduce a modality discriminator D at each client that seeks to

1

Lce(‘ﬁ) = _N_k /

1l
—
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predict the data modality from the feature extracted by E,. Being
able to fool such a discriminator indicates that the extracted fea-
tures contain minimal modality information and only reflect their
shared common knowledge. Motivated by this, we can train the
discriminator D by minimizing:

N

1 .

= — )
La= 5 ;CE (D(E (D)), ome_hot (m),

where one_hot (m) denotes a one-hot vector with m-th entry as 1
and all other entries as 0.

Then the discriminator can predict the modality of the extracted
features. To push the discriminator towards ambiguous predic-
tions over all M modalities, we incorporate the following modality-
adversarial loss during encoder training

N
_ 1 ()yy M
&-M;@@mu»wJ, )

where 1,7/M is a vector with all entries takes A—I/I In other words,
after training, the discriminator will predict that any given feature
as equally likely to come from all possible modalities. The local
training process alternates between the modality-agnostic model (C
and Ep) and the discriminator D until the convergence is achieved.

Simultaneously, client-specific information can be further mini-
mized within a federated learning paradigm. In specific, the central
server aggregates updates from all clients and combines the knowl-
edge gained from each individual client. As a consequence, this
process helps the global model cancel out the uniqueness of indi-
vidual clients and is capable of achieving better generalizability
thereof.

This stage ensures that encoder Ej learns to extract features
devoid of modality- and client-specific information, providing a
robust initialization for further training.

3.5 Stage 2: Modality-specific Fine-tuning

The base encoder Ej, trained in stage 1 is capable of capturing funda-
mental common activity information from different modalities and
clients. However, modality-specific information cannot be ignored,
as it provides comprehensive insights into activity understanding,
enhancing model performance.

In practice, incorporating useful modality-specific information
can be challenging. First, due to the dynamic nature of the real
world, the number of modalities can grow rapidly, making it pro-
hibitive to maintain a powerful feature encoder for each modality,
especially if it is of considerable size. Second, certain modalities,
like LiDAR due to its high price [39], may be owned by only a
few clients. This poses a significant challenge for modality-specific
federated learning due to limited client participation.

To tackle the above two difficulties, we propose to obtain the
modality-specific component E, by fine-tuning the base encoder
Ej,, which is conducted in a parameter-efficient manner. By updating
only a small number of parameters in the encoder, the updated
encoder inherits much of the pre-trained knowledge. Notably, this
update can be achieved with significantly less modality-specific
data compared to the data required for Ey.



SenSys 24, November 4-7, 2024, Hangzhou, China

Feature Encoder
(Frozen)

EN EEEN
EEE NN
EEEENE
EHEN EEE .

w +—

Sensing Representation

Data

T

==_I EEN /
& - EEENEEN

(Trainable) dW ,
Figure 6: The working principle of modality-specific LoRA.

Our proposed parameter-efficient fine-tuning (PEFT) extends
Low-rank Adaption (LoRA) [16]. In specific, LoRA models the effi-
cient incremental updates of the pretrained model. As illustrated in
Figure 6, such an efficient incremental update of pretrained model
introduces two learnable low-rank matrices. Then the fine-tuned
weight W’ can be represented as:

W =W+A=W+dWg-dWy @)

where W € R™™ is the pretrained weights matrix, A € is
a low-rank incremental updates matrix parameterized by dWy €
R™™ and dWp € R™ with r < min(m, n). During the fine-
tuning, the lightweight matrices dWy and dWp are updated with
the pre-trained weight W kept frozen.

This approach often achieves accuracy similar to that of fine-
tuning the entire pre-trained model directly. By training only the
small trainable components, LoRA ensures efficient computation,
making it an attractive solution for fine-tuning models. More im-
portantly, it requires only the communication of the trainable com-
ponents between clients and the server, thereby reducing commu-
nication overhead in federated learning settings [45, 54].

The parameter-efficient nature of LoRA makes it suitable for
learning modality-specific encoder E, from limited data in a light-
weight way. With the base encoder E, frozen, we only need to train
and communicate the modality-specific components E,;, which
requires only a few parameters. However, clients usually have lim-
ited computing and storage resources, and may not afford to learn
A with large rank r for every modality. Therefore, it is crucial to
decide how to allocate the budget wisely.

Importance-Aware Budget Allocation. To tackle the alloca-
tion issue, we propose an adaptive way to allocate LoRA on each
modality a proper budget (namely, the matrix rank r) based on its
importance. Here a modality is important if it is of high quality.
Inspired by previous findings that features extracted from sensing
data can be decomposed into an activity-related part that is shared
by all modalities plus some random noises that are specific to each
modality [52], we measure the importance of a modality by how
much activity information it carries out. If a modality is dominated
by such information, we consider it important and assign more bud-
get to learn it. In contrast, if a modality rarely agrees with others,
then most of its information is likely noise, and the modality is less
important. We note that the modality importance can differ across
different clients, and allow each to determine its own importance,
which is defined as follows.

First, we extract the modality-agnostic feature of activity sample
i from client k with the pre-trained base encoder Ej, by averaging

Rnxm
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feature Ey, (x( D ) agrees with g ) by their inner product
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In words, ¢, quantifies the importance of modality m in activity i

on client k. We next compute the importance score of each modality

()

by normalizing Cp i OVEr My modalities

(i)

k,m
M ()
Zm 1 k m
Finally, we assign each modality an overall importance score on
client k by averaging over all activity samples 1 < i < N

m __
km —

N
1 $()

Sk,m = Nk k m

and the computation budget of chent k, denoted by R, is distributed
over My modalities. Namely, to obtain E,, on modality m, client k
tunes LoRA with rank ry, = [ sy ,,R], where | -] rounds the input to
the nearest interger.

Heterogeneity-aware Aggregation. According to the
importance-aware allocation, a client is allowed to fine-tune
each modality-aware E; with LoRA using different ranks.
Notwithstanding, these varying local rank assignments result in
heterogeneous updates within each modality, making the global
aggregation of modality updates from different clients challenging.

To address this issue, we propose a novel aggregation strategy.
Inspired by [56], for each client, we first assign budgets (rank)
to different modalities based on their local importance. Then, we
parameterize the update matrices A using singular value decompo-
sition (SVD). This approach enables us to aggregate local updates
from different clients on a singular value-vector pair basis.

Formally, the incremental update matrix in Eqn. 2 can be ex-
pressed:

W =W+A=W+P-A-Q (4)
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Figure 8: Illustration of proposed multi-modal fusion and hierarchical training design.

where P € R and Q € RK*™ represent the left and right singu-
lar vectors of A, respectively, and the diagonal matrix A € Rkxk
contains the singular values {;},<;<x. We refer to each singular
value and its corresponding singular vectors as a triplet. During
execution, LoRA updates are conducted by learning P, A, Q, respec-
tively. To ensure the orthogonality of P and Q, we add the following
regularizer:

R(P,Q) = |IPTP - 1|% + 100" - 1|3 )

Before sending the singular vectors and singular values to the
server, each client sorts the triplets based on the magnitude of the
corresponding singular values. This sorting ensures a consistent
order across updates. The server then aggregates these ordered
triplets based on rank overlapping and distributes the aggregated
values according to each client’s preset ranks, as shown in Figure 7.
This approach ensures efficient and effective aggregation despite
the heterogeneity in local rank assignments.

Efficient Adaptation to New Modalities. In real-world appli-
cations, new modalities may be introduced in the system. Rather
than retraining the entire system, our hierarchical design offers
a more efficient solution. By disentangling common and unique
aspects among sensing modalities, we can leverage a pre-trained
modality-agnostic model as a foundation and fine-tune modality-
specific delta weights for new modalities. This approach saves
significant time and computational resources, ensuring the system
can seamlessly accommodate new modalities.

3.6 Stage 3: Personalized Fine-tunig

After effectively fine-tuning the model for each modality, there re-
mains significant potential for improving the system in real-world
human activity recognition tasks. Typically, each client exhibits
unique statures and action habits, which can degrade the perfor-
mance of the global model trained through federated learning. To
mitigate this issue, personalized fine-tuning emerges as an effective
strategy. Similar to the modality-specific fine-tuning step, we in-
struct the client to freeze the shared weights Ej, modality-specific
delta-weights E;;, learned earlier, and focus on client-specific Ej
using LoRA.

To obtain a multi-modal classifier for each client, sensor fusion
has proven effective in achieving a comprehensive understanding
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of human activities [28, 49, 51, 52]. Among various sensor fusion
methods, self-attention based fusion [52] aligns well with our goal
of identifying correlations among features captured by different
sensing modalities. Unlike the approach of learning a global fea-
ture vector from scratch as seen in [52], we propose a new fusion
strategy tailored to our unique system design as shown in Figure
8(a). Similar to modality importance capture described in Section
3.5, we directly utilize the modality-agnostic encoder to capture the
global feature representation. This eliminates the need to train the
global feature vector from scratch, significantly speeding up the lo-
cal fine-tuning process. However, unlike in Eqn. 3, the correlations
here are calculated between the fine-tuned feature vectors and the
global feature vector. The correlation for modality m of client k is
as follows:

o) = Eemx ). g0

= By (D) + Em(x)) + B (D), g7

1)>

where the base encoder Ej (-) and the modality-specific component
Em(+) are kept frozen while the client-specific component Ey (-) are
trainable as shown in Figure 8(b).

Next, we rescale the correlation scores using Softmax and then
fuse the multi-modal features by performing a weighted sum. This
parameter-efficient fine-tuning process achieves a balance between
customization and computational efficiency, allowing for the effec-
tive integration of information from multiple modalities.

4 Experiment

4.1 Datasets and Models

We apply FedHKD to two representative public multi-modal HAR
datasets and one self-collected dataset to show the generality of the
proposed method. Table 1 summarizes the details of these datasets.
Please note that these datasets are collected individually by each
human subject. We adopt the data partitioning scheme introduced
by FEMNIST [7] and naturally treat each subject as a client in
following federated learning experiments. This approach highlights
the non-IID nature of real-world applications, where user data is
often skewed by user behavior.
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(a) Experiment setup (b) Room1

(c) Room2

(d) Room3

Figure 9: Our real-world multi-modal sensor testbed for human activity recognition incorporates three sensor modalities:
mmWave radar, depth camera, and smartphone for ultrasound sensing. These nodes are deployed across three distinct
environments: a large conference room, a laboratory, and a small conference room.

Table 1: Statistical information of datasets (W: WiFi, M:
mmWave, L: LiDAR, D: depth camera, Y: eye-tracking, G:
EMG, B: body-tracking, A: acoustic)

Dataset Sensors # Clients # Samp les # Classes
per client

MM-Fi [50] W+M+L+D 40 154 14

ActionSense [11] Y+G+B 10 400 21

MMHAR M+D+A 10 204 17

Dataset #1: MM-Fi. MM-Fi [50] is a multi-modal, non-intrusive
4D human activity dataset designed to bridge the gap between wire-
less sensors and high-level human perception tasks, featuring 25
categories of daily or rehabilitation actions. This dataset includes
more than 320k synchronized frames across five modalities col-
lected from 40 participants. These participants were divided into
four groups evenly, each corresponding to a different environmental
setting. For our evaluation, we selected 14 classes of daily activi-
ties, and four privacy-oriented modalities: WiFi, mmWave Radar,
LiDAR, and depth camera. Each sample was evenly segmented
into 11 units, with 8 units randomly chosen for training and the
remaining 3 reserved for testing.

Dataset #2: ActionSense. ActionSense [11] is a multimodal
dataset and recording framework designed to capture wearable
sensing data in a kitchen setting. It features eye tracking with a
first-person perspective camera, EMG sensors for forearm muscle
activity, and a body-tracking system utilizing 17 inertial sensors.
The dataset includes recordings of 20 different activities performed
by 10 participants. Each client has at least 400 segments, with 80%
allocated for training and the remaining segments left for testing.

Real-world Evaluation (MMHAR)! To further validate the
robustness and generalizability of the proposed method, we build
our own multi-modal HAR testbed by incorporating the ultrasound
as an additional sensing modality and collect the data in a realistic
setting. As depicted in 9(a), our experimental setup incorporates
three privacy-preserving sensors: a mmWave radar [1], a depth
camera [5], and a smartphone [4] (for ultrasound sensing purposes).
The testbed is designed to collect synchronized multi-modal data,
which is stored for further evaluation. We carefully selected these
three sensors to capture human activity from diverse dimensions
while preserving user privacy. Importantly, we intentionally enlarge

1All the data collection was approved by IRB of the authors’ institution.
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Table 2: Details of the Transformer architecture.

Hyperparameters Values
# Layers 3
# Attention heads 2
Model dimension 768
Feed-forward network hidden dimension  768*2

the availability gap among the sensors. Smartphones are ubiquitous
in daily life, while the other two sensors may be less common,
reflecting the issue of modality missing in our daily lives. This
deliberate variation in sensor availability allows us to explore and
address challenges related to modality-heterogeneity problems.

To capture the main moving part of the human subject, we posi-
tion the depth camera and smartphone on two tripods. The three
sensing devices are placed at similar heights ranging from 1.1 me-
ters to 1.4 meters, which may vary depending on the specific experi-
mental environment. Ten subjects participated in the data collection,
conducting activities in different rooms: four in room 1, three in
room 2, and three in room 3. The multi-modal data are synchronized
using the system clock and annotated using depth videos. The sam-
pling rates of the mmWave radar, depth camera, and smartphone
are 44.1 kHz, 30 Hz, and 44.1 kHz, respectively. We preprocess each
sensing modality data separately. For radar data, we use a series of
FFT preprocessing steps [35] to generate time-doppler heatmaps.
For ultrasound signals, upon receiving the reflected pure tone signal,
we first demodulate the acoustic signals using a coherent detec-
tor [38], then apply STFT on the processed data to generate DFS
profiles containing velocity information. Finally, we segment all
data into 3-second time windows with synchronized timestamps
to obtain paired multi-modal data. This results in 12 segments per
class, further divided into 9 for training and 3 for testing.

Model. FedHKD aims to enable parameter sharing across differ-
ent modalities. To achieve this, we need a unified backbone neural
architecture for all modalities. Given the Transformer’s dominant
performance across various modalities and its proven effectiveness
in previous multi-modal studies [21, 29, 37], we choose it as the
primary component of our model, which consists of three identical
layers. The detailed architecture is outlined in Table 2.

Since the data from each modality have different dimensions, we
add a lightweight embedding layer for each modality before passing
the data into the encoder. These modality-specific embedding layers
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Figure 10: Modality distribution in MM-Fi dataset for two levels of modality heterogeneity setups (client #1 to #16 with all
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Figure 11: Histograms of modality number per client in MM-
Fi dataset for two levels of modality missing setups (per ev-
ery ten clients). The red line denotes the average number of
modalities per client.

are trained locally and not involved in federated learning, thus
avoiding any additional communication overhead. Initially, these
layers are trained from scratch, and in subsequent stages, they are
fine-tuned in a full fine-tuning manner. As part of a multi-stage
training scheme, the classifiers are retrained multiple times, as they
are essential for assisting the training of the encoders. To reduce
the unnecessary training workload associated with the classifiers,
similar to the embedding layers, they do not need to be retrained
from scratch each time. In Stage 2, each modality fine-tunes its
classifier using the base classifier developed in the first Stage. In
the last Stage, the modality-specific classifiers are averaged, and
the resulting classifier is then slightly fine-tuned.

4.2 Experimental Setup

Baselines. To demonstrate the effectiveness of FedHKD, we com-
pare it with the following baseline methods, each providing a dis-
tinct perspective on heterogeneous MMFL sensing systems:

e Standalone: In this approach, each client independently trains
its model using only its local data, without any collaboration
with other clients. This method serves as a basic benchmark
to evaluate the performance of collaborative methods against
individual learning efforts.

e Client-wise FL [47]: Client-wise FL restricts collaboration to
clients with identical sets of sensing modalities, by focusing on
homogeneous groups of clients.

e Modality-wise FL [59]: Modality-wise FL extends collaboration
beyond homogeneous groups by aggregating all feature encoders
for the same sensing modality to be aggregated regardless of
client-level matching (e.g., between a uni-modal client and a
multi-modal client).
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e Harmony [32]: Building upon the principles of Modality-wise
FL, Harmony incorporates additional collaborative training on
the classifier to mitigate potential biases introduced during fea-
ture fusion. These additional collaborations are limited to multi-
modal clients with the same set of sensors.

For a fair comparison, all baselines will utilize the same encoder
backbone as ours.

Heterogeneous MMFL Setup. By default, for the MM-Fi
dataset, the client distribution is proportionally set at 4:3:2:1 for
clients with all modalities, and those missing one, two, and three
modalities, respectively. For the other two datasets, which have
only three sensing modalities, the client distribution is proportion-
ally set at 4:3:3 for clients with all modalities, and those missing
one and two modalities, respectively.

To comprehensively study the heterogeneous MMFL scenarios,
we design the distribution of modalities among clients to vary at
two orthogonal levels:

o Level of Modality Heterogeneity. In a heterogeneous MMFL
system, a client may miss some sensing modalities locally, ei-
ther missing the same modality or different ones. Therefore,
we design two levels of modality heterogeneity. In the low
modality-heterogeneous case, clients miss the same type of
modalities given a specific number of missing modalities. In the
high modality-heterogeneity case, clients miss different types of
modalities, which are randomly assigned, as shown in Figure 10.
Level of Modality Missing. Besides varying in modality het-
erogeneity, the severity of modality missing also impacts perfor-
mance. To study this factor, we set two levels of modality missing
as shown in Figure 11. Figure 11(a) represents the mild modality
missing case, where the number of clients follows the ratio of
4:3:2:1 for clients with all modalities, and those missing one, two,
and three modalities, respectively. This mild case results in an
average of three sensing modalities per client. Conversely, we set
the ratio to 1:2:3:4 for the severe modality missing case, leading
to an average of two sensing modalities per client.

Unless otherwise specified, evaluations are conducted under con-
ditions of low modality heterogeneity and mild modality missing.

4.3 System Implementation

Given that our goal is to provide an optimal local model for each
client, and considering the limited size of the datasets we use, we
include all clients in the federated learning training process, similar
to the approach taken by our baseline [32]. We adopt FedAvg [30]
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Figure 12: Local model performance on different heterogeneous MMFL setups (Low / High: Low / High modality-heterogeneity;

Mild / Severe: Mild / Severe modality missing).

as our aggregation scheme, as it is the most widely used method in
federated learning.

During the federated learning process, each training client con-
ducts 5 local training epochs per communication round during
stages 1, and 2 local training epochs for stage 2. The neural network
is implemented using PyTorch [33] and trained using the Adam
optimizer [22]. The learning rates for the three training stages are
set to 1073, 1073, and 1075, respectively. The LoRAs in the final
two stages are trained with an average rank of 64 for each modal-
ity. Training is performed with a batch size of 16 on a server with
NVIDIA A6000 GPU [3] and Intel Xeon Gold 6254 CPU [2]. The
inference is conducted on the same machine. Each experiment is
repeated three times using different random seeds, and the aver-
aged results are presented in the following results sections. We
report the best test accuracy of our method and baselines in 100
communication rounds.

4.4 Overall Performance

4.4.1 Impact of Modality-heterogeneity Level on Performance. First,
we compare the inference accuracy of FedHKD with all the base-
lines in both low and high-modality-heterogeneous situations using
different datasets. FedHKD consistently outperforms the baselines
in both scenarios. Specifically, in the low modality-heterogeneity
setting, the performance with the standard deviation across clients
in Figure 12(a), 12(b), and 12(c) shows that FedHKD improves
inference accuracy of the highest-performing baseline by 1.78%,
0.59%, and 1.35% on MM-Fi, ActionSense, and MMHAR, respec-
tively. When modality heterogeneity increases, the performance
gaps become more pronounced, with improvements of 3.58%, 2.54%,
and 2.77% on these datasets, respectively. These results demon-
strate the effectiveness of FedHKD in handling heterogeneous
MMEL systems. Furthermore, the larger performance gaps in high
modality-heterogeneity scenarios indicate that the commonality
among modalities is underutilized in existing methods for modality-
heterogeneous clients. From a dataset perspective, FedHKD en-
hances inference accuracy more on MM-Fi compared to the other
two datasets due to the greater number of sensing modalities in MM-
Fi. As the number of sensing modalities in the system increases, the
likelihood of higher modality-heterogeneity also rises. With more
modalities, FedHKD’s advantages are more pronounced. For the
following evaluations, all results are tested on the MM-Fi dataset.
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4.4.2  Impact of Modality Missing Level on Performance. We com-
pare the inference accuracy of all methods at mild and severe modal-
ity missing levels using the MM-Fi dataset while maintaining a
high modality-heterogeneity setting. As shown in the Figure 12(d),
FedHKD outperforms Standalone, Client-wise FL, Modlaity-wise
FL, and Harmony by 11.72%, 6.36%, 8.15%, 3.58%, respectively, in
mild modality missing scenarios. When more modalities are miss-
ing, the performance gaps widen to 12.91%, 8.62%, 9.02%, and 4.85%,
respectively. In cases of severe modality missing, it becomes crucial
for clients with more modalities to help those with fewer modalities.
Addressing this challenge requires sharing modality-specific knowl-
edge and collaboratively learning modality-agnostic knowledge for
effective transfer in modality-heterogeneous environments.

4.4.3 LoRA Hyper-parameter Study. A crucial hyper-parameter in
our system design is the rank of our low-rank adaptation method.
A higher rank generally improves inference accuracy but also in-
creases storage requirements and communication overhead during
the federated learning process. Therefore, there is a tradeoff be-
tween effectiveness and efficiency. To determine the optimal rank
that balances these factors, we compare model performance at dif-
ferent ranks, evaluating inference accuracy, storage footprint, and
communication overhead.

Specifically, we vary the rank with values of 4, 16, 64, and 256.
For comparison, we also conduct fine-tuning across the full param-
eter scope. The results in Figure 13(a) demonstrate that accuracy
increases with a larger rank during the fine-tuning process, but
this improvement reaches a point of saturation at a rank of 64.
Allocating additional resources beyond this point does not yield
further accuracy gains and may even cause a slight decline. This
occurs because the modality-agnostic knowledge learned by the
base model during the first stage is at risk of being forgotten during
fine-tuning due to overfitting [23].

In terms of storage, we reduce footprint by sharing a base en-
coder across modalities, which is more efficient than using separate
encoders. Specifically, with ranks of 4, 16, 64, and 256, the parameter-
sharing model reduces the storage footprint by factors of 2.87x,
2.74X%, 2.29%, 1.39X%, respectively, compared to the split encoder
approach.

Another advantage of adopting LoRA in a federated learning
system is its communication efficiency. For the encoder, we freeze
all the pretrained parameters and only train a few newly introduced
parameters. Consequently, only these lightweight components need
to be aggregated and distributed during federated learning, signifi-
cantly reducing the communication overhead. As shown in Figure
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13(c), with ranks of 4, 16, 64, and 256, the LoRA-based fine-tuning
method reduces communication overhead per round by factors of
7.78%, 6.84X, 4.62X%, 2.01X%, respectively, compared to full-model
fine-tuning.

Based on the evaluation of different ranks, we ultimately selected
a rank of 64 for each modality-specific fine-tuning process. This
choice strikes an optimal balance, offering significant reductions
in both storage footprint and communication overhead without
compromising model performance. In practical deployment, storage
requirements can be directly determined based on the rank value
and system architecture, allowing each client to select the highest
rank that it can accommodate.

4.5 New Modality Adaptation Performance

One of the key benefits of our hierarchical design is its flexibility,
which proves especially valuable when incorporating a new modal-
ity into the system. Existing works such as [32, 47, 59, 60] do not
adequately address this challenge; they typically require retraining
the entire network from scratch or at least completely retraining
the modality-specific encoder. In contrast, our approach allows
for reusing the base model trained during the first stage for new
modality adaptation. For a new modality that did not participate
in the initial training stage, we compare fine-tuning from the pre-
trained encoder to retraining the encoder from scratch. As shown
in Figure 13(d), our approach converges with significantly less com-
munication overhead while achieving similar final testing accuracy
compared to the training-from-scratch method. This comparison
highlights the efficiency of our hierarchical design in adaptation,
which is crucial for enhancing the scalability of federated learning
systems.

4.6 Ablation Study

To understand the contribution of each module in FedHKD, we
perform an ablation study to assess the individual effectiveness of
each component.

4.6.1 Importance-aware Budget Allocation. Firstly, we scrutinized
the performance of our dynamic budget allocation strategy on LoRA
in comparison to a unified budget allocation approach. The findings,
detailed in Table 3 underscore the efficacy of our importance-aware
budget allocation technique, showcasing a notable 1.33% enhance-
ment in final testing accuracy. Importantly, this improvement is
achieved without incurring any additional communication over-
head compared to the unified budget allocation method. Further-
more, when contrasted with full model fine-tuning, our approach
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Table 3: Ablation study results.

Method Accuracy! (%) (1) Q\E:ec;?er::ilzn 1(1&/1[’;;())1(1@
full model fine-tuning 93.18 402.20
unified rank assignment 93.31 87.11

w/o adversarial training 93.65 -

w/o attentive fusion 92.21 -
FedHKD 94.64 87.11

! mean accuracy of all clients’ local model performance

2 per communication round for a single client

not only yields larger performance gains but also significantly re-
duces communication overhead. These results underscore the dual
benefits of our design, emphasizing both its effectiveness and effi-
ciency in the context of federated learning.

4.6.2 Adversarial Training. To ensure the feature extracted from
the base model does not include any modality-specific information,
we implement adversarial training in the first stage. To demonstrate
the effectiveness of this approach, we compare it to a standard train-
ing scenario that employs a unified encoder across modalities but
does not incorporate adversarial training. The results show a 0.99%
improvement in final testing accuracy with adversarial training.
This indicates that adversarial training effectively enhances the
encoder’s ability to learn common knowledge shared among modal-
ities.

4.6.3 Attentive Fusion. To understand the performance gain of
our dedicated attentive fusion design, we compare our method
with a simple fusion approach where the multi-modal features are
averaged. It’s also trained with LoRA. The results show a 2.43%
improvement in final testing accuracy, indicating the efficacy of
our approach in efficiently assigning weights based on modality
correlation and ultimately enhancing performance.

5 Related work

Multi-modal Federated Learning Multi-modal federated learn-
ing (MMFL) [10, 26] enables model training over distributed multi-
modal data without disclosing private data. However, most existing
approaches do not consider the modality heterogeneity among
clients [36, 47]. [59] aggregates feature encoders at the modality
level. Harmony [32] disentangles training into modality-wise and
federated fusing learning stages and incorporates a balance-aware
resource allocation mechanism. However, they [32, 59] ignore
the importance of learning modality-agnostic knowledge between
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modality-heterogeneous clients, which leads to suboptimal perfor-
mance in a federated learning framework. AutoFed [60] leverages
multimodal sensory data through pseudo-labeling, data imputation,
and client selection mechanisms. Nevertheless, their modality im-
putation requires the use of a public dataset which is not always
feasible in real-world applications. MultimodalHD [57] encodes
multimodal sensor data into high-dimensional hypervectors and
uses an attentive fusion module. Nonetheless, their primary focus is
on optimizing encoder-level training efficiency, which is orthogonal
to our work. Moreover, their study is limited to sensor types like
accelerometers and gyroscopes, which do not adequately represent
severe modality heterogeneity.

Parameter-efficient Fine-tuning Parameter-efficient fine-
tuning (PEFT) [13, 46, 48] typically introduces a small number
of trainable parameters into pre-trained models to adapt them to
specific tasks. Prompt-based methods [25] add extra soft tokens to
the initial input, which is unsuitable for human activity recogni-
tion tasks and sensitive to initialization. Adapter-based methods
[14, 15] inject additional trainable modules into the original frozen
backbone, introducing additional computation delay during infer-
ence. LoRA and its variants [16, 56] apply low-rank matrices to
approximate weight changes during fine-tuning and can merge
with pre-trained weights prior to inference, thereby not adding any
extra inference burden.

6 Discussion

6.1 Overhead of Adversarial Training

Adversarial training introduces additional overhead in terms of
computational resources and local training time. However, the first
stage of adversarial training only needs to be performed once. This
effort yields significant benefits in the long run. The resulting base
model established during this initial training phase serves as a solid
foundation for subsequent lightweight fine-tuning. This means
that rather than starting from scratch, we can leverage the pre-
trained base model, making it easier and faster to adapt to new
modalities or user requirements as they arise. Thus, although the
initial overhead may seem considerable, it is more than justified by
the long-term efficiency gains and flexibility it brings to the overall
system. Ultimately, this approach allows for a more responsive and
adaptable model that can effectively meet evolving demands in
real-world applications.

6.2 Varying Client Participation

Clients in federated learning may contribute inconsistently to
the training process due to technical limitations or user behav-
ior. This variation in client participation across communication
rounds presents a major challenge in multi-modal federated learn-
ing, particularly when dealing with modality heterogeneity. When
different clients have access to different sets of sensors or modali-
ties, it can lead to inconsistencies in the training data, complicating
the learning process and potentially degrading model performance.
Fortunately, our approach explicitly disentangles modality-agnostic
information that can be shared among all clients, regardless of their
individual modality combinations. By identifying and extracting
this common knowledge, we ensure that even when some clients
are unavailable or participating inconsistently, the model can still
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leverage this shared information. This design not only enhances
the robustness of the learning process but also effectively mitigates
the adverse effects associated with fluctuating client participation.
As a result, the overall system maintains high accuracy and sta-
bility, even in challenging scenarios where client availability is
unpredictable.

6.3 System Scalability

Scalability is a crucial aspect of a federated learning system. Our
model’s design of parameter-efficient fine-tuning enhances scal-
ability by significantly reducing both communication overhead
and computational costs. In the pretraining stage, as the number
of clients continues to grow, it becomes essential to incorporate
client selection to further improve scalability. As highlighted in
Section 6.2, our method demonstrates considerable promise in ac-
commodating sporadic client participation schemes. By designing
our approach to effectively handle varying levels of client engage-
ment, we can maintain system performance and reliability, even as
the network expands. Overall, our system ensures practicality and
efficiency in larger-scale deployments, ultimately paving the way
for more comprehensive multi-modal federated learning applica-
tions.

6.4 Potential Applications

While this paper primarily focuses on human activity recognition,
the principles and methodologies developed through multi-modal
federated learning systems have broad implications across vari-
ous domains beyond HAR. In autonomous vehicles, these systems
can integrate data from cameras, LiDAR, and radars to enhance
object detection, route planning, and driving behavior, all while pre-
serving data privacy across vehicles [60]. Similarly, in healthcare,
federated learning can support remote monitoring and personalized
medicine by combining data from wearables and diagnostic tools,
improving patient outcomes without compromising sensitive data
[6]. In finance, multi-modal federated learning can utilize transac-
tion records, device information, and market trends to bolster fraud
detection and credit scoring while ensuring data privacy [18]. These
diverse applications demonstrate the transformative potential of
multi-modal federated learning to balance efficiency and privacy
across a wide range of industries.

7 Conclusion

In this paper, we propose FedHKD, a novel heterogeneous multi-
modal federated learning sensing system. FedHKD disentangles
common and unique features at both the modality and client lev-
els through a multi-stage training design. Extensive experiments
demonstrate that FedHKD outperforms state-of-the-art baselines
in accuracy and reduces storage requirements. Additionally, when
adapting to new sensing modalities, it significantly reduces com-
munication overhead.
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