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Abstract—Emotion recognition can significantly enhance in-
teractions between humans and robots, particularly in shared
tasks and collaborative processes. Facial Expression Recognition
(FER) allows affective robots to adapt their behavior in a socially
appropriate manner. However, the potential of efficient Trans-
formers for FER remains underexplored. Additionally, leveraging
self-attention mechanisms to create segmentation masks that
accentuate facial landmarks for improved accuracy has not been
fully investigated. Furthermore, current FER methods lack com-
putational efficiency and scalability, limiting their applicability in
real-time scenarios. Therefore, we developed the robust, scalable,
and generalizable EmoFormer model, incorporating an efficient
Mix Transformer block along with a novel fusion block. Our
approach scales across a range of models from EmoFormer-B(
to EmoFormer-B2. The main innovation lies in the fusion block,
which uses element-wise multiplication of facial landmarks to
emphasize their role in the feature map. This integration of
local and global attention creates powerful representations. The
efficient self-attention mechanism within the Mix Transformer
establishes connections among various facial regions. It enhances
efficiency while maintaining accuracy in emotion classification
from facial landmarks. We evaluated our approach for both
categorical and dimensional facial expression recognition on
four datasets: FER2013, AffectNet-7, AffectNet-8, and DEAP.
Our ensemble method achieved state-of-the-art results, with
accuracies of 77.35% on FER2013, 67.71% on AffectNet-7, and
65.14% on AffectNet-8. For the DEAP dataset, our method
achieved 98.07% accuracy for arousal and 97.86% for valence,
demonstrating the robustness and generalizability of our models.
As an application of our method, we implemented EmoFormer in
an affective robotic arm, enabling the human-robot interaction
system to adjust its speed based on the user’s facial expressions.
This was validated through a user experiment with six subjects,
demonstrating the feasibility and effectiveness of our approach
in creating emotionally intelligent human-robot interactions.
Overall, our results demonstrate that EmoFormer is a robust,
efficient, and scalable solution for FER, with significant potential
for advancing human-robot interaction through emotion-aware
robotics.

Index Terms—Affective computing, deep learning, facial ex-
pression recognition, human-robot interaction, transformer.

I. INTRODUCTION

MOTIONS play a crucial role in human-robot interac-
tion, enabling universal social communication and aiding
decision-making in robotic machines. Nonverbal elements con-
vey emotional messages in human communication. Therefore,

This research was supported by the National Science Foundation (CAREER
Award HCC-2053498).
Corresponding author: Ramana Vinjamuri.
F, Safavi, K. Patel, and R. Vinjamuri are with the Department of Electrical and
Computer Science, University of Maryland, Baltimore County, MD 21250,
USA (e-mail:rvinjam1 @umbc.edu)

Fig. 1.

Row (A) shows the original images, and Row (B) shows the
EmoFormer facial landmark identifications on the AffectNet Dataset. The
blue dots represent facial landmarks detected by our new EmoFormer model.
EmoFormer identifies key facial features, such as regions around the eyes
and mouth, marking these areas with light blue while excluding less relevant
regions like the hair and jawline.

understanding affective states such as facial expressions or
emotions expressed via bodily gestures provides valuable
information to an emotional robot about human intent. In this
work, we exclusively developed a robust facial expression
recognition model for human-robot interaction. The main
objective of facial expression recognition is to identify the
emotional state of a person by extracting relevant facial
features from images and videos. FER classifies emotions into
two types of representations. First, categorical representations
divide emotions into distinct states such as happy, sad, angry,
etc [1]. On the other hand, dimensional representations map
emotions onto a multi-dimensional space, offering a con-
tinuous measure of arousal and valence. Valence, which is
a pleasantness continuum, indicates whether the emotion is
positive or negative, while arousal refers to the intensity of
the emotion [2]. In this research, we test our model across
both categorical and dimensional datasets.

The main challenges that FER systems inherently face
include substantial intra-class variations and minimal inter-
class differences [3]. FER is highly sensitive to intra-class
variations, such as differences in age, gender, illumination,
and facial pose [4]. Additionally, the small inter-class differ-
ences hinder the system’s ability to accurately differentiate
between distinct emotions. To address these issues, we propose
applying the self-attention mechanism in our EmoFormer
network, which establishes connections among various facial
regions, such as the mouth, eyes, and nose. EmoFormer directs
attention to the areas most involved in conveying emotions by
detecting facial landmarks. This method identifies the most
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Fig. 2. This schematic illustrates the process flow of our HRI system, where user emotions directly influence the operational dynamics of a robotic arm.
Key stages include: Stage (A) real-time facial recognition; Stage (B) emotion categorization via the advanced EmoFormer model; and Stage (C) responsive
adjustment of the automated arm’s movement speed based on detected emotional cues. Emotion recognition begins with Stage (A), which involves face
detection and cropping. Following this, the EmoFormer segments the face and extracts facial landmarks in Stage (B), ultimately culminating in the application
of emotion classification. The system changes behavior based on recognized emotions in Stage (C) emotional interaction. Additionally, the system halts the

arm’s function if no face is detected for a predefined duration in Stage (C).

significant regions for expression recognition. As observed in
Figure 1, the blue dots represent facial landmarks detected by
our new EmoFormer model. These landmarks are primarily
located in facial areas crucial for emotion recognition, such as
the mouth, nose, and eyes. Notably, they are not situated in less
relevant areas for facial expressions, like the hair or jawline,
focusing instead on the regions most indicative of emotions.

With the advent of deep learning models in recent years,
Convolutional Neural Networks (CNNs) such as VGG [5]
and ResNet [6] have served as backbones for FER systems.
However, most of these architectures lack the integration
of attention mechanisms, which are crucial for extracting
more informative features from images in FER systems [3].
Although some models have incorporated pixel-level attention
mechanisms, they often result in very large models, sacrificing
efficiency for accuracy [7]-[9]. Additionally, these methods
are not scalable, limiting their practical application, especially
on mobile and computationally efficient embedded edge de-
vices. To address these challenges, we have developed the
EmoFormer series. This architecture is designed to adjust
its size according to specific needs, balancing efficiency and
accuracy while remaining adaptable for deployment in various
scenarios.

With the popularity of Transformers [10] in natural language
processing, there has been a recent surge in applying Trans-
formers to computer vision tasks. Similar to transformer token
embedding, facial images can be embedded into sequences
of patches as visual words [11]. This approach allows for
expression recognition from a global perspective. However,
current FER methods based on Transformers are still inferior
to those relying on CNN backbones in terms of classification

accuracy, model size, and training cost [11]. While previous
state-of-the-art methods primarily used attention and residual
networks for FER, we explored the ability of the Mix Trans-
former for the first time in this domain. We leveraged the
self-attention mechanism of the Mix Transformer, which can
capture long-range relationships between patches. The main
innovation, however, lies in the use of a fusion block in the
EmoFormer architecture. The fusion block uses element-wise
multiplication of facial landmarks, which are the outputs of
the last layers, to emphasize the role of facial landmarks on
the feature map. This fusion block assigns high importance
to these facial landmarks in the transformed feature map
produced by the Mix Transformer block. Additionally, the
fusion block aggregates information from different layers,
thereby integrating both local attention and global attention
to render powerful representations.

The ensemble strategy for FER has been explored to
enhance accuracy, with the network ensemble emerging as
a notable approach. This technique entails ensembling indi-
vidual networks by averaging their output predictions [12].
For instance, the Residual Masking Network [7], combined
with seven other CNNs using a non-weighted sum average
ensemble, achieved state-of-the-art accuracy for the FER2013
dataset [13]. Hence, we utilize the ensemble method in our
research to boost accuracy and to achieve state-of-the-art
(SOTA) results.

We conducted a case study by deploying our new model,
EmoFormer, in the emotionally intelligent robotic arm. Our
FER model captures the user’s emotions and uses this infor-
mation to control the speed of an automated arm’s movement.
As shown in Figure 2, our robotic arm incorporates affective
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Fig. 3. Row (A) presents the original faces; Row (B) emphasizes the intricate pixel-level facial segmentation achieved by EmoFormer, utilizing the MiT
Segmentation block on AffectNet dataset. It highlights the key facial areas identified by our EmoFormer model for emotion classification.

computing into our framework. The affective perception sys-
tem in the robotic arm begins with face detection and cropping,
followed by sending the cropped faces to EmoFormer, a
transformer-based architecture, for emotion recognition. Emo-
tions are classified as either positive or negative. If a positive
emotion, such as a happy face, is detected, the robotic arm
speeds up. Conversely, if a negative emotion, like a sad face,
is perceived, the arm slows down. If the system doesn’t detect a
face or see any movement for a certain period, the robot stops
operating. Additionally, our framework supports multimodal
emotion recognition and can incorporate other modalities to
control the robotic arm. Overall, the main contributions of our
work can be outlined as follows:

1) We propose the robust and scalable EmoFormer series
(BO to B2), validated across both categorical and dimen-
sional FER datasets. To the best of our knowledge, we
are the first to apply Mix Transformer [14] for FER and
incorporate a novel fusion block.

2) We extensively analyzed our architecture’s accuracy and
efficiency, including computational complexity, latency,
and the number of parameters. EmoFormer-BO, our
lightweight model, substantially outperforms heavier
methods in efficiency while maintaining similar accu-
racy.

3) We validate EmoFormer series networks on DEAP [15],
FER2013, and AffectNet, which show competitive per-
formance with state-of-the-art benchmarks. Our Emo-
Former ensemble with CNN methods achieved state-
of-the-art results on FER2013 [13], AffectNet-7, and
AffectNet-8 [16].

4) We conducted a case study using FER for the affec-
tive HRI system and validated emotionally intelligent
human-robot interaction through a user experiment with
six subjects.

The remainder of this article is organized as follows: Section
IT covers related work. Section III provides a detailed overview
of our proposed methodology and delves into the underlying
scientific principles of our approach. In Section IV, we de-
scribe the experimental setup, discuss the datasets used, and
outline the accuracy and efficiency metrics implemented in
our method. Section V discusses the results and offers further
analysis. The article concludes in Section VI.

II. RELATED WORK
A. Facial Expression Recognition

Facial expression recognition has been a classic problem
in affective computing for decades. To tackle this problem,
researchers have traditionally employed a variety of hand-
crafted features, including Local Binary Patterns (LBPs) [17]
and Histogram of Oriented Gradients (HOGs) [18], among
others [19], [20], to develop facial expression feature rep-
resentations. In recent years, researchers have turned their
attention to deep features for accurately extracting discrimina-
tive features [5], [6], [21]. Extracting features and achieving
significant improvements in CNNs have gradually progressed
over the last decade [22]. Researchers have investigated CNN
models because these models capture not only low-level tex-
ture details but also high-level abstract representations from
facial imagery. They discovered that incorporating attention
mechanisms into deep CNNs can extract more informative
features from images [3]. Consequently, many FER methods
use a global self-attention mechanism with CNNs to identify
facial expressions and highlight discriminative regions [23],
[24]. The intuition behind using the attention mechanism stems
from the fact that the essence of facial expressions lies in key
regions of the face.

Facial expressions predominantly depend on certain facial
regions, such as the eyes and mouth. On the other hand,
regions like the hair and jawline play a minimal role in
conveying emotions [7]. Certain architectures achieve pixel-
level facial landmark detection by integrating segmentation
modules within their structure. The Residual Masking Network
[7], [8] boosts CNNs in facial expression detection by creating
segmentation masks that highlight the most informative facial
regions. These UNet-style masks are embedded within the lay-
ers of residual networks, enhancing network performance by
increasing pixel-level attention to the facial landmarks. There-
fore, using segmentation blocks to enhance pixel-level land-
mark masks for facial expressions can lead to increased model
accuracy. After conducting extensive research on semantic
segmentation [25]-[27], we integrated a 'Mix Transformer’
block into our EmoFormer model. MiT blocks, derived from
the SegFormer [14] architecture, serve as our segmentation
module. As depicted in Figure 3, facial segmentation is clearly
visible in the second row of the images. This segmentation
block plays a crucial role in detecting pixel-level landmarks,
which is essential for the classification processes in facial
emotion recognition. Specifically, self-attention mechanism
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within the MiT blocks enables the network to concentrate on
the most pertinent facial regions, improving the accuracy of
FER model.

Many studies show that feature fusion can strengthen the
representational and generalization capabilities of entire net-
works, thereby boosting recognition performance. Therefore,
various feature fusion methods have been proposed to further
enhance expression performance [28]-[30]. The primary aim
of fusion methods is to combine these feature maps through
concatenation. They squeeze unnecessary information and
produce correlated weight maps from both local and global
perspectives [11], [31]. For instance, CBAM [32], enhances
accuracy by integrating channel attention and spatial attention
mechanisms, capturing richer information through a unified
framework. As a result, we leverage a novel fusion approach
in our EmoFormer to improve the network’s accuracy.

There has been much less work investigating scalability
and lightweight networks for FER. Most researches primarily
applying established CNN architectures for use on mobile de-
vices [33], [34]. Some researchers have explored a method that
uses a lightweight local-feature extractor and a channel-spatial
modulator with depthwise convolution to improve accuracy
[35]. To achieve a simpler and more powerful architecture for
FER tasks, POSTER++ uses a window-based cross-attention
mechanism and prune the network by removing extra branches
in the two-stream design [36]. However, these methods often
involve trade-offs between accuracy and efficiency, making
them less scalable across different scenarios. This is partic-
ularly challenging when considering the use of FER model
for both high computational platforms and resource-limited
systems

B. Transformers in Facial Expression Recognition

In recent years, the remarkable performance of transformers
in natural language processing has catalyzed their application
in other domains. Notably, the Vision Transformer (ViT) [37]
pioneered the use of transformers in computer vision. The
ViT framework exhibits excellent performance in classifica-
tion tasks by segmenting each image into a sequence of
patches, which are subsequently processed through multiple
transformer layers for classification. With the rising popularity
of ViT, numerous FER systems incorporating transformers
have emerged. ViT-FER, introduced as the first ViT model for
FER, focuses on learning local representations with relational
awareness [38]. It utilizes Vision Transformers (ViT) to estab-
lish complex relationships between different local patches by
incorporating both local and global scopes in representation
learning. This approach enhances FER performance. More-
over, the multi-head self-attention mechanism in ViT allows
simultaneous attention to features from various information
subspaces at different positions, fostering relationships among
diverse local patches.

The utilization of transformers for FER excels by incorpo-
rating a selective fusion block [11]. This transformer-based
architecture effectively handles recognition tasks by capturing
long dependencies between input sequences through the global
self-attention mechanism. This global self-attention enables

the model to overlook information-deficient regions and rec-
ognize expressions from a global perspective, even in cases of
occlusions or varying poses. Transformers have also been used
such that multiple non-overlapping attention regions extract
data from different parts of faces [39]. The dual-direction
attention models in transformers identify long-range depen-
dencies, allowing for the capture of holistic and contextual
facial information [3]. Consequently, in our work, the self-
attention mechanism in MiT proved empirically effective in
learning global information from facial images.

C. Affective Human-Robot Interaction

The primary objective of an emotionally intelligent robot is
to enhance the quality of human-robot interaction (HRI) [40].
Numerous industrial informatics studies have incorporated
emotional states for intelligent interaction-based industrial sys-
tems. For instance, a specific research study utilizes detected
facial expressions as a direct feedback control mechanism in
a learning control strategy for air conditioning to mitigate
human sleepiness [41]. Additionally, Electroencephalogram
(EEG)-based fatigue detection emphasizes the integration of
emotions into robotic interfaces, offering a solution to en-
hance safety measures within the transportation industry [42].
Simultaneously, the evolution of social robotics has resulted
in the development of robots adept at interpreting human
emotions through social cues. For example, the social robot
Ryan employs artificial emotional intelligence to aid older
adults with depression and dementia [43]. By recognizing
facial expressions and other cues, it discerns user emotions and
responds with affective dialogues. Consequently, robots that
can perceive and understand basic human emotions enhance
interactions within human environments, boosting operational
effectiveness and productivity in industry. Facial expressions
are a primary medium for conveying emotions during inter-
actions, reflecting users’ attitudes and responses in HRI. For
seamless and prompt communication, a reliable and precise
FER technique is essential.

III. METHODOLOGY

In the following sections, we describe the various compo-
nents of our affective HRI system, illustrated in Figure 2. This
system enables real-time adjustment of movements based on
detected user facial expressions. We examine the following
subsections, which explain the architecture and all methods
used in this experiment: EmoFormer Architecture, EmoFormer
for Dimensional Classification, Ensemble Method, and Affec-
tive Robotic Arm.

A. EmoFormer Architecture

As illustrated in Figure 4, we outline the structure of
our novel EmoFormer model, designed for Facial Expression
Recognition (FER) predictions. We have developed a series
of EmoFormer models — EmoFormer-BO, EmoFormer-B1,
and EmoFormer-B2 — all of which share the same basic
architecture. These models differ in terms of their underly-
ing MiT variants [14], resulting in variations in depth and
computational complexity.
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Fig. 4. Diagram of the EmoFormer model series, including EmoFormer BO, B1, and B2, each employing the same architecture featuring hierarchical MiT
blocks and an advanced fusion mechanism. This design, incorporating Transformer blocks 1 through 4 and a fusion block, merges multiscale features, aiming

to enhance accuracy in FER predictions.

Additionally, we introduce an enhanced fusion mechanism,
as illustrated in the fusion block in Figure 4, that concatenates
multiscale feature maps along the channel dimension. We
then utilize the output of this fusion block to element-wise
score the importance of the final output from the Transformer
block 4. This augmented fusion mechanism combines high-
resolution coarse features with low-resolution fine features,
improving accuracy for classification tasks. In the following
subsections, we describe the architecture of Mix Transformer
and the Fusion Blocks.

1) Mix Transformer Blocks: Integrating the lightweight
MiT, which functions as the encoder block within the Seg-
Former [14] semantic segmentation framework, is central to
our design. Our MiT variants range from the lightweight BO
version to the more extended versions B1 and B2. These
networks produce four hierarchical feature maps and are
denoted as Fj;. To explain the network flow, an input image
with dimensions H x W x 3 is first divided into n patches of
size 4 x4 pixels (Patchyx4). These patches are then processed
through Mix Transformer Blocks, which generate multi-level
feature maps as outlined in Equation 1.

F; = MiT(n x Patchyxq) fori=1,2,34 (1)

These feature maps capture a spectrum of features, from
coarse to fine-grained, as shown in Figure 4. As illustrated
in Table II, the transformer-based architecture generates four
feature maps, and as a result, ¢ spans the values in the set
{1, 2, 3, 4}. The resolutions of the resulting feature maps are
downscaled to 1, 1, -k and 35 of the original image size.
For an input image with dimensions 224 x 224 x 3, the MiT
model produces hierarchical feature maps F; with resolutions
represented as H; x W; x C;11. As seen in the output size
B1, B2 column in Table II, the output dimensions H; and
W, take values from {56, 28, 14, 7}, inspired by the design
principles of the ResNet architecture [6]. The number of output
channels C;;1 is {64, 128, 256, 512} for both Bl and B2.

The primary reason for choosing these specific numbers is to
follow the structure of ResNet, which offers advantages such
as efficient feature extraction at different stages and a proven
balance of performance and efficiency. As seen in the output
size BO column in Table II, the values {32, 64, 160, 256}
are chosen for BO to cater to real-time applications due to its
lower computational cost. The number of output channels for
the subsequent Transformer Blocks, C; 1, are always greater
than the corresponding previous C; values. This reflects the
design principle of deep networks where increased depth is
used to capture more complex features. As shown in the Detail
column of Table II, we adhere to the MiT block [14] principles
by defining Ker, S, and P, where Ker denotes kernal size, S
is the stride between adjacent patches, and P indicates the
padding size.

As depicted in Figure 4, each Transformer block comprises
overlapping patch embedding and a Transformer Encoder,
which contains the attention mechanism, attention heads, and
the Multi-Layer Perceptron (MLP). As shown in Table I, the
basic structure of the spatial reduction ratio in the attention
mechanism (R), the number of attention heads (N), and the
MLP expansion ratio (E) in the Transformer block are the
same in the series of EmoFormer-B0O, B1, and B2. However,
the main difference lies in the number of layers and output
channels within the Transformer blocks among these three
models. B2 is deeper than the BO and B1 models, as illustrated
in Table I, and the difference between BO and B1 is based on
the number of output channels, shown in TABLE II.

The MiT blocks spatial dimensions are reduced for com-
putational efficiency and to build a hierarchical representation
of the input. Moreover, Overlapped Patch Merging, Efficient
Self-Attention, and Mix-FFN [14], are essential components
for enhancing the efficiency of the vision transformer and
increasing the effective receptive fields. The Overlapped Patch
Merging operation reduces the size of feature maps while pre-
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TABLE I
COMPARISON OF THE NUMBER OF LAYERS IN EMOFORMER MODELS BO,
B1, AND B2 ACROSS DIFFERENT STAGES.

Block | (R, N, E) | BO, Bl Layers | B2 Layers
1 8,1, 8) 2 3
2 4,2, 8) 2 3
3 2,5,4) 2 6
4 (1,8, 4) 2 3

serving their local continuity. Furthermore, it enables patches
to merge into a compact vector. This is achieved through
convolution to extract patches, flattening and transposing to
organize patches into sequences, and normalization to stabilize
and enhance the representation. This transformation allows for
a more efficient and compact representation of the image data.
The Self-Attention block reshapes and transforms a sequence
of K elements into K’, reorganizing and compressing the
computational complexity associated with the self-attention
mechanism, as outlined in Equation 2 [14].

Q K/T
\% dhead

Ultimately, Mix-FFN employs a combination of MLP (Multi-
Layer Perceptron) and a 3x3 Convolutional layer in its feed-
forward network rather than relying on positional embeddings
[14].

The MiT [14] present a more compact alternative to con-
ventional vision transformers (ViT) [44]. The efficient self-
attention mechanism enables our proposed method to be espe-
cially well-suited for extracting facial representations, particu-
larly for segmenting facial areas that determine emotions. Un-
like the ViT, the proposed vision transformer omits positional
embeddings, enhancing the efficiency of FER classification
without sacrificing accuracy. Meanwhile, MiT is capable of
capturing relationships between sequences of patches as visual
words, providing global context information with attention to
facial landmarks. Subsequently, we employ our novel fusion
method to combine feature maps of different spatial sizes.

2) Fusion Block: This block combines the feature maps
F; to encompass fine features at low resolution and coarse
features at high resolution. As depicted in Figure 4, we initially
employ max pooling operations with varying kernel and stride
sizes of 8, 4, and 2 to downsample the feature maps F}, Fb,
and F3. Subsequently, these downsampled feature maps, along
with Fj, are concatenated, and the channel count is reduced
using a 1 x 1 convolutional layer, resulting in the creation
of I'r. We anticipate that F'rp will contribute to enhancing
the accuracy of the feature maps. Consequently, we utilize
the output of the fusion block Fr to element-wise score the
importance of the final output of the Transformer blocks Fjy
using the following operation, as outlined in Equation 3:

Attention(Q, K', V) = Softmax ( ) 1% ()

Fy=F,+F,®Fg 3)

This augmented fusion mechanism gives more weight to the
features extracted by F4, which are facial landmarks. In this
novel mechanism, we emphasize regions that have a greater
impact on facial expressions. Additionally, FR contains both

fine-grained and coarse features. These features are derived
from four feature maps, which originate from transformer
blocks. In the concluding step, Fy undergoes an average pool-
ing operation followed by a fully connected layer. This layer
includes a dropout component with a dropout rate of 0.4, as
well as a linear transformation specifically designed to map the
input to distinct output classes. For FER2013 and AffectNet-7,
it translates to 7 unique classes, whereas AffectNet-8 consists
of 8. The network employs an average pooling layer, followed
by a fully connected layer with SoftMax activation. This final
layer yields outputs corresponding to distinct facial expression
states.

B. EmoFormer for Dimensional Classification

The EmoFormer method is used for the dimensional clas-
sification of arousal and valence per subject in the videos in
the DEAP dataset. We used our EmoFormer as a facial feature
extractor to process a sequence of facial images and extract
meaningful features. The process begins with input images,
which are preprocessed and individually passed through Emo-
Former. EmoFormer processes each image to produce feature
maps with reduced spatial dimensions.

Since we have a video per subject, we use a unique
technique inspired by [45] to reduce the spatial dimensions
and then handle the temporal sequence. The model processes
the sequence of feature maps from EmoFormer to capture
temporal dependencies across the sequence of images for
higher accuracy [45]. The final output is a feature vector
capturing the essential facial features from the input image
sequence. This feature vector, represented as a 1 X uo vector,
is denoted as frace = (E1, Ea, ..., E,,). Following the Deap-
VaNet architecture [15], the size of the feature vector is 16 in
our experiment.

Finally, this feature vector is passed through a multi-layer
classifier that sequentially reduces the dimensionality and ap-
plies activation functions, culminating in a sigmoid function to
produce the final output. In this approach, we use EmoFormer
as the facial feature extractor for the dimensional classification
of emotions.

C. Ensemble Method

Ensemble methods significantly enhance prediction accu-
racy by integrating multiple models. In our study, we illus-
trate this by integrating EmoFormer with various CNNs and
transformer-based networks through a straightforward non-
weighted average ensemble. This method amalgamates the
predictive outcomes of different CNNs and deep transformer
networks, relying on an equal contribution from each model.
Generating ensemble results involves deploying multiple mod-
els and merging their predictions using a weighted averaging
approach [7]. Let M = {my, ms,..., m,} represent the set
of models, each producing a result vector r;. The aggregated
results vector R’ is computed as:

R = Zn:pi T )
i=1
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TABLE 11
CONFIGURATION SETTINGS OF EMOFORMER SERIES

Layer name Output Size Output Size BO Output Size B1, B2 Detail
Transformer Block 1 F=Cp x % X % Cl =32 32 X 56 x 56 Cl =064 64 X 56 x 56 Ker=7,S=4,P=3
Transformer Block 2 Fy =C3 X % X % C2 =064 64 x 28 x 28 C2 =128 128 x 28 x 28 Ker=3,8S=2,P=1
Transformer Block 3 F3 =C3 x % X l—v‘é C3 =160 160 x 14 x 14 | C3 =256 | 256 x 14 x 14 Ker=3,8S=2,P=1
Transformer Block 4 Fy =Cy4 x % X % C4 =256 256 x 7 x 7 C4 =512 512 x 7 x 7 Ker=3,S=2,P=1

Fusion Block Fr=0C4 X 3% X % C4 =256 256 x 7 x 7 C4 =512 512 x 7 x 7 MaxPool2, Concat

Average pooling Cy x1x1 C4 =256 256 x 1 x 1 C4 =512 512 x 1 x 1 Adaptive Average Pooling

FC, Softmax number of classes = 7 for FER2013 and AffectNet-7, 8 for AffectNet-8 Dropout (p=0.4)

where p; = 1 for all 7 in the given script. Given the true targets

T = {t1,to,...,tr}, the predicted class for each test instance
is:
Cj = argmax(R}), forj=1,2,....k 5)
Finally, accuracy A is calculated as:
1k
A= EZ]I(C]- =Tj) x 100 (6)
j=1

Subsequently, we assess the ensemble’s accuracy by com-
paring its predictions to the ground truth labels. The goal
is to evaluate the performance of various models within an
ensemble configuration and investigate the ensemble model’s
impact on accuracy, aiming to achieve state-of-the-art results.
where I is the indicator function, and & is the total number of
test instances.

D. Affective Robotic Arm

In the case study of EmoFormer, we developed an affective
robotic arm that responds and adapts its actions based on the
user’s facial expressions. Similar to many other robots, our
robotic arm is equipped with a camera that captures images.
This integrated camera can capture images, which can then be
passed as a sequence into EmoFormer for facial expression
recognition. By integrating FER with robotic control, we
created an emotionally responsive human-robot interaction
system. This setup is used to evaluate the user experience by
allowing human facial expressions and emotions to directly
influence the robot’s behavior. We employed the Kinova Gen3
Lite robotic arm as the primary platform in our research study,
seamlessly integrating the emotion recognition system into its
control framework.

We implemented a real-time speed adjustment mechanism
that dynamically modulates the arm’s movements in response
to the recognized emotions in the user. This mechanism
aims to integrate affective computing technologies to enhance
human-robot interactions and evaluate user comfort and overall
satisfaction during collaborative interactions. We use Emo-
Former for facial expression recognition and inferring emo-
tional modes. As provided in Algorithm 1, the most frequently
observed expression within a rolling time window determines
the arm’s movement speed. Before processing emotions, the
system first checks for the presence of a face. If no face is
detected, it ceases operation. Assuming a face is detected,
we assigned distinct speed settings for positive and negative

Algorithm 1 Affective Robotic Arm
Require: User’s Facial Expression
Result: Kinova Gen 3 robotic arm movement speed

1: Determine the user’s expression by EmoFormer

2: Initialize rolling time window for emotion observation

3: Determine the most frequently observed emotion in the

window

4: if no face detected then

5:  Cease the operation
6: end if
7
8
9

: if emotion € {happiness, neutrality} then
Set robotic arm speed to 15 rpm
- Expect heightened responsiveness and engagement
10: else if emotion € {sadness, fear, anger, disgust} then
11:  Set robotic arm speed to 5 rpm
12:  Expect to provide calming and reassuring interaction
13: end if

emotions to investigate their impact on the user’s perception
and experience. For positive emotions, including happiness
and neutrality, the robotic arm operated at a speed of 15
revolutions per minute (rpm). We hypothesized that this faster
arm movement would align with the user’s positive emotional
state. Fast movements heightened sense of responsiveness and
engagement [46]. In contrast, for negative emotions including
sadness, fear, anger, and disgust, the robotic arm operated
at a reduced speed of 5 rpm. Slower movements, potentially
alleviating any discomfort or unease associated with negative
emotional states and promoting a calming and reassuring in-
teraction [47]. This approach represents a novel and innovative
exploration of emotion-aware robotic manipulation. It demon-
strating its potential to enhance human-robot collaboration
across various emotional contexts.

E. Experiment Setup
1V. EXPERIMENT

We conducted extensive experiments on four frequently
used datasets: FER2013 [13], AffectNet-7, AffectNet-8 [16],
and DEAP [15]. These datasets provide a variety of scenarios
to verify the generalizability and robustness of our method. For
instance, the AffectNet dataset is collected in the wild, which
may suffer from different illuminations and occlusions. We
compared the new EmoFormer model in terms of accuracy and
efficiency and performed a thorough analysis. In this section,
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we describe the details of the datasets used in the experiments,
the efficiency and accuracy metrics, and the experimental setup
for our work.

A. FER2013

In this study, we employed the FER2013 dataset [13] as a
reference dataset to assess the performance of various FER
models in terms of accuracy. This dataset consists of 33,572
grayscale facial images with dimensions of 48x48 pixels. The
dataset is divided into seven standard categories: Angry (4,953
images), Disgust (547 images), Fear (5,121 images), Happy
(8,989 images), Sad (6,077 images), Surprise (4,002 images),
and Neutral (6,198 images). Notably, FER2013 achieves a
level of accuracy comparable to that of humans, approximately
65+5%, and the most effective algorithm achieves an accuracy
rate of 76.82% in correctly identifying facial expressions [7].

B. AffectNet

To assess the efficacy of our proposed model across various
datasets and its adaptability to real-world scenarios for facial
emotion recognition, we utilized the AffectNet dataset [16] for
training. The comprehensive nature of the AffectNet dataset,
which encompasses diverse facial expressions in authentic
environments, is noteworthy. The dataset comprises images
manually labeled into eight distinct emotional states, known
as AffectNet-8, which include neutral, happy, angry, sad,
fear, surprise, disgust, and contempt. The seven expression
categories, referred to as AffectNet-7, include the same ex-
pressions except for contempt. Our training process utilized
287,657 images sourced from the AffectNet dataset. For
evaluation, we employed the official test set containing 4,000
images, evenly distributed with 500 images per emotional
category.

C. DEAP

Database for emotion Analysis using physiological signals
dataset is a widely used multimodal dataset designed to
analyze human emotional states. This dataset comprises frontal
face videos of 22 subjects while they watched 40 music videos,
each selected for its potential to elicit a range of emotional re-
sponses. For emotion classification, the DEAP dataset provides
labels for valence and arousal, with participants rating their
emotions on a discrete 9-point scale for valence and arousal.
It enables the categorization of emotional states into distinct
classes. In addition to video recordings of face, physiological
data was collected from 32 participants (16 males and 16
females), providing a comprehensive dataset for multimodal
emotion analysis. The DEAP dataset offers a detailed analysis
based on facial expressions captured in real-time and enables
comparisons of FER performance with other modalities such
as electroencephalography (EEG) signals.

D. Implementation Details

For FER2013, the training images were resized to 224 x 224
pixels and data augmentation methods included flipping and

rotation. The training was conducted for 50 epochs with Cross-
Entropy Loss as the loss function. The learning rate was set
to 1074,

To assess our model’s generalizability, we also tested our
models on the AffectNet dataset. In the AffectNet experiments,
images were preprocessed and resized to 224 x 224 pixels.
We utilized the Adam optimizer, adjusting training parameters
over eight epochs. Initially, for the first three epochs, the
learning rate was set to 1073, focusing exclusively on the
weights of the last layer of the EmoFormer. In the subsequent
five epochs, the entire network was trained with a learning
rate of 107

For DEAP dataset, images were preprocessed and resized
to 224 x 224 pixels. We use binary cross-entropy as the loss
function. During inference, we pass the test images through
our proposed network to obtain a FER score. Based on this
score, the final binary prediction is made for arousal and
valance: if the score is greater than 0.5, the prediction is
“High”; otherwise, it is "Low”. We train and test our model on
each individual subject for 22 subjects, a process referred to as
a per-subject experiment. Our model undergoes 10-fold cross-
validation, and the average testing accuracy is used to measure
performance. For validation, we utilize the mean recognition
accuracy of both valence and arousal. All EmoFormer models
are trained on a single system equipped with an NVIDIA
GeForce RTX 3090 GPU and an Intel Core 19 processor.

E. Accuracy Evaluation

To gauge the accuracy of our classification models, we
employ the following formula [7]:
TP+TN

A Acc) = !
ccuracy (Acc) TP+TN+ FP+ FN @

Here, the correctly predicted pixels are denoted as true pos-
itives (TP), while those correctly identified as not belonging to
a specific class are referred to as true negatives (TN). Pixels
that belong to the category but are incorrectly predicted as
a different type are categorized as false negatives (FN), and
finally, the pixels mistakenly indicated as belonging to the
class are termed false positives (FP).

F. Efficiency Metrics

To evaluate the efficiency of our models, we consider three
key metrics: the number of trainable parameters, computa-
tional complexity (Flops), and inference time (as outlined in
TABLE I).

1) Learnable Parameters (Parm): This metric quantifies
the complexity of a model by counting the total number of
learnable parameters within a feed-forward neural network.

2) FLOPs (Floating-Point Operations): FLOPs measure
the total number of calculations required to complete a single
forward pass.

3) Inference Time (Time): Inference time is calculated on a
single RTX 3090 GPU using CUDA 11.7 and PyTorch 1.13.0.
After initializing the GPU with dummy examples, the network
is executed 300 times with an input resolution of 224 x 224
and a batch size of 48. The resulting average time is then
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TABLE III
PERFORMANCE EVALUATION OF NETWORKS ON FER2013
Models FLOPs Params Time Acc(%)
MobileNetV3 0.23B 5.48M 7.48ns 64.78
§ MobiExpressNet 1.08M 14.4M - 67.96
S Imp-MobileNetV3 0.19B 1.29M 11.68ns 68.14
% RASN 1.82B 75.08K - 71.44
EmoFormer-B0 0.425B 3.45M 7.74ns 7347
- Ad-Corre 4.55B 21.38M - 72.63
,§ ResAttNet56 6.33B 29.77M 17.69ns 72.63
é Densenet121 2.89B 6.96M 19.57ns 73.16
L: Resnet152 11.60B 58.16M 23.66ns 73.22
2 Cbam_resnet50 4.14B 26.05M 16.94ns 73.39
ResMaskingNet 26.76B 142.9M 17.63ns 74.14
LHC-Net - 32.4M - 74.42
EmoFormer-B1 1.63B 13.6TM 7.43ns 74.14
EmoFormer-B2 3.17B 24.72M 13.94ns 74.48
Ensemble Model - 77.35

reported. For real-time model consideration, the standard video
streaming rate is set at 24 frames per second (fps), meaning
that if a model processes an image in less than 41ms, it
qualifies as a real-time model.

V. RESULTS AND DISCUSSION
A. Accuracy and Efficiency of EmoFormer

To evaluate our method’s performance, we initially con-
ducted a two-fold analysis of the FER2013 public dataset to as-
certain the method’s accuracy and efficiency. We then extended
the network classification to include three datasets: FER2013,
AffectNet, and DEAP. The results for all these experiments are
provided in Tables III, IV, and V. Firstly, we concentrated on
networks known for their high accuracy on FER2013, which
included Ad-corre [48], ResmaskingNet [7], Resnetl51 [49],
Densenet121 [50], RessAttNet56 [51], Cbam_resnet50 [52]
and LHC-Net [53]. Secondly, we examined recent efficient
networks, specifically MobileNetV3 [54], MobiExpressNet
[55], Improved MobileNetV3 (imp-MobileNetV3) [56], and
RASN [57]. As illustrated in Table III, within the non-efficient
group of methods evaluated on the FER2013 dataset, our ap-
proach EmoFormer-BO consistently demonstrated the highest
efficiency across all efficiency metrics, including FLOPs, the
number of learnable parameters, and inference time. Moreover,
among the lightweight models listed in the upper section
of Table III, EmoFormer-BO achieved the highest accuracy
while maintaining comparable efficiency. EmoFormer infer-
ence times are significantly faster than the requirements for
video streaming, making them suitable for FER in video
streaming.

By effectively utilizing transformer blocks in a compact
hierarchical design and excluding positional embeddings from
the original vision transformer structure, following the Seg-
Former architecture [14], our EmoFormer-B0O model was able
to achieve a low FLOPs value of 425 million as provided
in Table III. This resulted in high accuracy with minimal
computational overhead, putting it on par with lightweight
methods like MobileNetV3 [54]. Similarly, our EmoFormer-
BO deep network excelled in terms of efficiency, with an
efficiency score of only 3.45 learnable parameters, which was
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Fig. 5. Plot of accuracy vs number of learnable parameters. The different
networks are represented as follows: i) ResAttNet56, ii) Resnet152, iii) Cbam-
resnet50, iv) ResMaskingNet, v) MobileNetV3, vi) MobiExpressNet, vii)
Imp-MobileNetV3, viii) RASN, ix) EmoFomer-BO, x) EmoFormer-B1, xi)
EmoFormer-B2.

TABLE IV
PERFORMANCE EVALUATION OF NETWORKS ON AFFECTNET
8-CLASS AND AFFECTNET 7-CLASS

Model FLOPs | Params | AffectNet-8 (%) | AffectNet-7 (%)
Poster++ 8.4B 43.7M 63.77 67.49
DDAM 0.5B 4.0M 64.25 67.03
DAN 2.2B 19.0M 62.09 65.69
MA-Net 3.65B 50.54M 60.29 64.53
EfficientFace 0.154B 1.28M 59.89 63.70
EmoFormer-BO 0.425B 3.45M 60.91 64.51
EmoFormer-B1 1.63B 13.67M 61.51 64.62
EmoFormer-B2 3.17B 24.72M 62.01 65.48
Ensemble Model - 65.14 67.71

41 times lower than that of ResMaskingNet and comparable to
contemporary lightweight models like RASN [57]. By adopt-
ing a compact model with fewer parameters, our proposed
method reduced memory requirements and computational bur-
den. Furthermore, our model exhibited impressive inference
speed, with an average inference time of 7.74 nanoseconds
(ns), making it well-suited for real-time applications, akin
to lightweight approaches such as MobileNetV3 and Imp-
MobileNetV3 [56].

In addition to its efficiency, our proposed networks achieved
high accuracy rates: EmoFormer-B0 at 73.47%, EmoFormer-
Bl at 74.14%, and EmoFormer-B2 at 74.48%. Further-
more, an ensemble model, comprising the MiT-based mod-
els and supplemented with ResMasking, BAM_ResNet50,
and ResNet152, achieved state-of-the-art performance on the
FER2013 dataset with an accuracy of 77.35%. Figure 5
presents a plot of accuracy versus the number of learnable
parameters, serving as one of the metrics of efficiency. In the
plot, our models are marked in red, while all other models
are marked in blue. It is evident from Figure 5 that our
models demonstrate efficiency by maintaining high accuracy
with fewer learnable parameters in comparison to the other
models.

Another notable dataset used to evaluate our model’s per-
formance is the AffectNet dataset. The results are shown in
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Fig. 6. The graphs represent 2D t-SNE visualizations of the extracted high-dimensional features of EmoFormer-B2 on the AffectNet-7, AffectNet-8, and

FER2013 datasets.

TABLE V
AcCURACY OF EEG AND FUSION(EEG + FACE) BASED MODELS FOR
VALENCE AND AROUSAL DETECTION ON DEAP DATASET

Models Valence Arousal

EEG

DCNN + ConvLSTM 87.84 87.69

DCNN 90.62 86.13

Deep Residual Network 97.75 99.03

EEG + Face

3D-CNN 96.13 96.79

CNN 96.69 97.15

CNN + Bi-LSTM 95.03 94.94

(Our model) Face

EmoFormer-B0 97.86 98.07
TABLE VI

ACCURACY OF EMOTIONS USING EMOFORMER TRAINED ON FER2013

Models Ang Dis Fear  Hap Sad Sur Neu
EmoFormer-BO | 63.1 764 585 902 61.8 844 743
EmoFormer-B1 648 727 59.7 90.6 63.6 834 746
EmoFormer-B2 | 67.2  80.0 57.6 91.5 614 858 749

Table IV, where we compare our model with some of the
most recent models, namely Poster++ [36], DDAM [58], DAN
[59], MA-Net [60], and EfficientFace [61]. EmoFormer-BO is
comparable to EfficientFace and has the second lowest FLOPs
and parameters, with 0.425B and 3.45M, respectively.

The accuracies of EmoFormer-BO, EmoFormer-B1, and
EmoFormer-B2 consistently increase as the number of pa-
rameters increases. Despite having almost 14 times fewer
parameters, EmoFormer-BO comfortably outperforms MA-Net
[60], highlighting the efficiency of our model. The accuracies
of EmoFormer-BO, EmoFormer-B1, and EmoFormer-B2 are
60.91%, 61.51%, and 62.01%, respectively, on AffectNet-8.
Similarly, EmoFormer-BO, EmoFormer-B1, and EmoFormer-
B2 achieved accuracies of 64.51%, 64.62%, and 65.48% on
the AffectNet-7 task, respectively. We achieved new state-of-
the-art accuracy of 65.14% on the AffectNet-8 through an
ensemble model comprising of EmoFormer-B0O, EmoFormer-
B1, EmoFormer-B2, complimented with DDAM, Poster++,
EfficientNet-BO and EfficientNet-B2 [62]. Furthermore, we
also achieved a cutting edge accuracy of 67.71% on the
AffectNet-7, the ensemble models including EmoFormer-B0,
EmoFormer-B1, EmoFormer-B2, and Poster++. These results
underscore the importance of integrating Transformers for
higher accuracy in FER.

TABLE VII
ACCURACY OF EMOTIONS USING EMOFORMER ON AFFECTNET.
Models Neu | Hap | Sad | Sur | Fear | Dis | Ang | Cont
EmoFormer-BO | 53.6 | 69.6 | 59.2 | 57.6 | 68.0 | 61.2 | 54.0 | 64.13
EmoFormer-B1 | 534 | 698 | 642 | 672 | 61.4 | 58.0 | 58.8 | 59.32
EmoFormer-B2 | 57.8 | 73.8 | 63.6 | 63.6 | 57.8 | 60.6 | 58.0 | 63.32

Moreover, our models exhibited strong performance on the
DEAP dataset, a widely used dataset for the detection of
human emotion states, which contains video facial recordings
and neurophysiological signals. We applied the EmoFormer-
B0 model to the facial features to predict valence and arousal.
Valence represents the rating of how good or bad an emotion
is, while arousal indicates the intensity of the emotion. Our
most efficient model, EmoFormer-B0, achieved accuracies of
97.86% and 98.07% on valence and arousal affective states,
respectively. This significant achievement is highlighted in
Table V, which showcases various models that consider only
neurophysiological signals like DCNN + ConvLSTM [63],
DCNN [64] and Deep Residual Network [65] and the fusion
models combining Neurophysiological and Facial features like
3D-CNN [66], CNN [67], CNN + Bi-LSTM [68]. Transfer
learning was employed from the FER2013 EmoFormer-BO
while training on the DEAP dataset. It is noteworthy that
EmoFormer-BO outperforms the state-of-the-art fusion and
EEG-based models, highlighting the model’s versatility and
its strong capability to be adapted for emotional analysis on
diverse image datasets.

This superior accuracy can be attributed to our hierarchical
Transformer Blocks with a larger effective receptive field and
our novel fusion block, striking a balance between efficiency
and accuracy. Our model distinguished itself for its efficiency
in terms of FLOPs, the number of parameters, and inference
time, offering low complexity, a compact footprint, and swift
inference while maintaining competitive accuracy on all three
datasets—FER?2013, AffectNet, and DEAP.

B. Granular Emotion Performance Analysis

Table VI demonstrates the performance of three different
models (EmoFormer-BO, B1, and B2) on the FER dataset
across seven distinct facial expressions: Anger (Ang), Disgust
(Dis), Fear, Happiness (Hap), Sadness (Sad), Surprise (Sur),
and Neutral (Neu). Table VII extends the evaluation to the
AffectNet dataset, covering eight facial expressions, including
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Contempt (Cont). Similar to the FER dataset, the accuracy
varies across expressions and models.

As observed in Figure 6, Table VI, and Table VII, there is
a direct correlation between the 2D t-SNE visualization and
the accuracies associated with recognizing facial expressions.
Categories with well-defined clusters tend to have higher
accuracies. For instance, the “Happiness” cluster in the 2D
t-SNE visualization is well-defined, resulting in the highest
accuracy of 91.5% on the FER2013 dataset and 73.8% on
the AffectNet-8 dataset. In contrast, the ”Fear” cluster is not
clearly defined, with data points scattered throughout the plot,
leading to the lowest accuracies of 57.6% on FER2013 and
57.8% on the AffectNet-8 dataset.

The models tend to have higher accuracy in recognizing
certain expressions. The visibility and distinctiveness of facial
features contribute to the varying accuracy in emotion recog-
nition across different emotions. Happiness is the emotion
that yields the best results across multiple datasets. The
superiority of EmoFormer for happiness has shown 91.5%
accuracy on FER2013 and 73.8% on AffectNet. Many different
studies confirm that even when using various FER datasets
and models, happiness consistently produces the best results
[31, [7], [11], [36] . This is because happiness is associated
with clear and distinctive facial movements, such as wide
smiles, visibility of teeth, and prominent mouth and cheek
expressions, making it easier for models to recognize.

Similarly, the superior accuracy of surprise in our FER2013
dataset, with the second highest accuracy of 85.8%, is associ-
ated with features such as an open mouth and raised eyebrows,
which clearly indicate surprise and are confirmed in other
studies [3], [7], [11]. On the other hand, certain emotions,
such as fear, have comparatively lower accuracy rates. Fear
involves more subtle and less uniform facial expressions,
which vary more between individuals and are more challeng-
ing for recognition systems to accurately capture and classify.
Consequently, improving the recognition of these emotions
could significantly enhance the overall model performance.

The EmoFormer-B2 model often outperforms the
EmoFormer-BO and EmoFormer-BI models in most
categories. When comparing the performance, the

EmoFormer-B2 model, which has a deeper architecture
than BO and BI1, consistently shows better performance
across datasets. This indicates that sacrificing efficiency for
better accuracy is a major issue in deep networks. Deeper
networks provide better results on large datasets and are
more generalizable. Therefore, developing scalable methods
such as EmoFormer is crucial for adaptability, especially for
resource-limited platforms.

C. Mix Transformer vs. Vision Transformer: Landmark Detec-
tion Analysis

In this section, we evaluate the performance of the MiT
model over the ViT model in facial expression recognition,
leveraging saliency maps for deeper insight. After conducting a
comprehensive analysis of various real-time semantic segmen-
tation models [25], [26], we identified MiT [14] blocks as an
ideal choice for extracting facial expression features, function-
ing similarly to segmentation masks in FER systems [7]. MiT

Fig. 7. Row (A) displays the original images from the AffectNet dataset,
followed by Row (B) showing the saliency map from the MiT-based model,
where EmoFormer identifies light blue dots around critical facial regions such
as the eyes, nose, eyebrows, and mouth. Row (C) shows the saliency map from
the ViT model, which lacks the distinctive light blue dots seen in Row (B).

blocks contain efficient self-attention blocks, a characteristic
that enables the network to capture global facial semantic rela-
tional representations. Moreover, these efficient self-attention
blocks effectively address computational complexity issues.
Additionally, the hierarchical structure of MiT blocks adeptly
extracts fine-grained and coarse features to capture both local
and global attributes of the face. As demonstrated in Figure
7, our analysis reveals the superior effectiveness of MIT’s
architecture compared to ViT in identifying facial features.
This underlines the importance of employing the MiT for
enhanced facial expression recognition.

The relationship between facial features and the expres-
sion of emotions is well-documented in scientific literature
[69]. The Facial Action Coding System (FACS) describes all
visually distinguishable facial activities based on 44 unique
action units (AUs), each associated with particular emotions.
For example, the Inner Brow Raiser (Frontalis, Pars Medialis)
is associated with expressions of surprise and concern, while
the Lip Corner Puller (Zygomatic Major) is typically seen in
expressions of happiness or amusement [69]. These specific
action units highlight the importance of critical facial regions
such as the eyes, eyebrows, and mouth in the anatomy and
physiology of the face in expressing emotions. As depicted
in Figure 6, in the MiT-based model, light blue dots are
distinctly visible around the critical facial regions in the middle
row of the image, while these action units are much less
identified in the ViT model. These visual observations are
consistent with the actual accuracy metrics, as the MiT-based
model consistently outperforms the ViT-based model. This is
further underscored in Table II, which compares the MiT to the
VIiT-BASE model. This demonstrates that focusing on critical
facial regions, identified by specific action units, enhances the
accuracy of emotion recognition models. It is worth noting
that in MiT-based models, the input image is segmented into
smaller patches, each measuring 4x4 pixels, compared to the
larger patch sizes of 16 or 32 pixels used in ViT models.
This smaller patch size might be a contributing factor to the
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TABLE VIII TABLE IX

QUESTIONS FOR USER RESPONSES ON ROBOTIC ARM INTERACTION SCALE AND RESPONSES ON ROBOTIC ARM INTERACTION
Q Questionnaire Scale 1or2 3 4 or5
Ql How engaged did you feel during the collaboration with the robotic arm? QI: 1 = Not Engaged, 5 = Highly Engaged 0 0 6
Q2 How well do you feel the robotic arm responded to your emotional Q2: 1 = Poor, 5 = Excellent 0 2 4

expressions? Q3: 1 = No, not at all, 5 = Yes, Significantly 0 0 6
Q3 | Did the responsiveness of the robotic arm enhance your overall engage- Q4: 1 = Very Slow, 5 = Very Fast 0 4 2

ment with the task? Q5: 1 = No correlation, 5 = Strongly correlated 0 1 5
Q4 How would you describe the speed of the robotic arm’s movements Q6: 1 = Uncomfortable, 5 = Very Comfortable 0 1 5

during the task? Q7: 1 = Very Dissatisfied, 5 = Very Satisfied 0 0 6
Q5 | How would you describe the impact of your emotional expression on the Q8: 1 = Never, 5 = Almost All time 0 2 4

speed of the robotic arm’s movements?

Q6 | How comfortable did you feel expressing your emotions during the
collaboration with the robotic arm?

Q7 How satisfied were you with the overall collaboration experience?

Q8 | How often did the speed of the robotic arm change during the task based
on your emotional expression?

superior accuracy, a hypothesis that merits further research.

D. User Experience for Affective Robotic Arm

To assess the efficacy of the affective robotic arm using
EmoFormer, we conducted a qualitative evaluation involving
six participants. Each participant engaged in a collaborative
task with the robotic arm, and their feedback was collected
through a series of questions aimed at understanding their
experience. The questions presented to the participants are
summarized in Table VI.

The speed of a robotic arm is adjusted based on hu-
man emotions, the responsiveness and speed of interaction
are crucial components of an interactive system. Real-time
interaction, which provides immediate feedback, is highly
valued as it enhances the user’s perception of immersion and
responsiveness [46]. We design our system by incorporating
behaviors of robots based on the expression method in human-
robot interactions [70]. When a robot detects a happy face,
it moves more dynamically. This makes the interaction more
engaging and responsive. On the other hand, When it detects
negative emotions in the user’s face, it slows down. This
reflects cautious or hesitant movements. These behaviors can
be programmed to simulate realistic emotional responses from
the affective robotic arm. Specific design measures ensure the
safe operation of our emotion-driven robotic arm. If no facial
detection occurs, the system defaults to 'non-operation’ mode
for safety and improved user experience.

We evaluated the feedback from the participants. As shown
in Table VII, almost all noticed frequent changes in the
arm’s speed based on their emotional cues. Every participant
reported feeling highly engaged during their interaction. Par-
ticipants found the robotic arm responsive to their emotional
expressions, with many observing that the robot’s responsive-
ness greatly enhanced their overall engagement with the task.
The majority of participants felt there was a strong correlation
between their emotional state and the speed of the robotic
arm’s movements. However, perceptions of the arm’s speed
varied. Some found it just right, while others felt it was too
fast. Participants were comfortable expressing their emotions
while interacting with the robot. The unanimous satisfaction
with the overall collaboration experience highlights the poten-
tial advantages of the affective robotic arm.

EmoFormer is used for affective Human-Robot Interaction.
We evaluated the emotion-aware robotic arm through user
experience. This showcases the potential of EmoFormer to
enhance human-robot interactions. Furthermore, it opens the
door to a multitude of future applications where emotion
awareness can be harnessed to create more empathetic and
affective robotic systems.

VI. CONCLUSION

In this research, we introduced the EmoFormer model for
facial expression recognition, effectively addressing challenges
related to accuracy and efficiency by leveraging Mix Trans-
former blocks and a novel fusion block. This method enables
the model to create powerful representations and establish effi-
cient connections among various facial regions, ensuring high
accuracy in emotion classification. Our evaluation of Emo-
Former on four datasets—FER2013, AffectNet-7, AffectNet-
8, and DEAP—demonstrates its state-of-the-art performance.
Specifically, our ensemble method achieved accuracies of
77.35% on FER2013, 67.71% on AffectNet-7, and 65.14%
on AffectNet-8. For the DEAP dataset, the method achieved
98.07% accuracy for arousal and 97.86% for valence. A key
application of our method involved implementing EmoFormer
in an affective robotic arm. This implementation allows the
system to adjust its speed based on the user’s facial expres-
sions. We validated this approach through a user experiment
with six subjects. The results demonstrate the feasibility and
effectiveness of our approach in creating emotionally intelli-
gent human-robot interactions. Our system is capable of uti-
lizing FER and integrating other modalities. Our future work
aims to incorporate neurophysiological signals for multimodal
emotion recognition, further advancing multimodal affective
computing and significantly enhancing the field of affective
HRI.
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