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ABSTRACT The fusion of facial and neurophysiological features for multimodal emotion detection is vital
for applications in healthcare, wearable devices, and human-computer interaction, as it enables a more
comprehensive understanding of human emotions. Traditionally, the integration of facial expressions and
neurophysiological signals has required specialized knowledge and complex preprocessing. With the rise
of deep learning and artificial intelligence (AI), new methodologies in affective computing allow for the
seamless fusion of multimodal signals, advancing emotion recognition systems. In this paper, we present
a novel multimodal deep network that leverages transformers to extract comprehensive features from
neurophysiological data, which are then fused with facial expression features for emotion classification. Our
transformer-based model analyzes neurophysiological time-series data, while transformer-inspired methods
extract facial expression features, enabling the classification of complex emotional states. We compare single
modality with multimodal systems, testing our model on Electroencephalography (EEG) signals using the
DEAP and Lie Detection datasets. Our hybrid approach effectively captures intricate temporal and spatial
patterns in the data, significantly enhancing the system’s emotion recognition accuracy. Validated on the
DEAP dataset, our method achieves near state-of-the-art performance, with accuracy rates of 97.78%,
97.64%, 97.91%, and 97.62% for arousal, valence, liking, and dominance, respectively. Furthermore,
we achieved a precision of 97.9%, a ROC AUC score of 97.6%, an Fl-score of 98.1%, and a recall of
98.2%, demonstrating the model’s robust performance. We demonstrated the effectiveness of this method,
specifically for EEG caps with a limited number of electrodes, in emotion detection for wearable devices.

INDEX TERMS Affective computing, emotion detection, deep learning, multimodal emotion recognition,
transformer.

I. INTRODUCTION

Emotion recognition is becoming an essential aspect of
digital health, allowing machines to understand and react
to human emotional states. This technology is integral
to Al-based clinical decision support systems and digital
health applications. Enhancing user experiences in health-
care, supports task monitoring, patient well-being, mental
health assessment, and even personalized medicine by pro-
viding healthcare solutions based on individual emotional
states. To recognize emotion, there are two main emotion
recognition representations: categorical and dimensional.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zahid Akhtar

The categorical approach classifies emotions into eight dis-
tinct categories including happiness, sadness, surprise, fear,
anger, disgust, contempt, and neutral. While the dimensional
theory explains emotion recognition using two axes: valence
(ranging from pleasant to unpleasant) and arousal (ranging
from calm to energized) [1]. Emotions are combinations of
these two dimensions in 2D space. Our study utilizes dimen-
sional theory to measure emotions.

A. MOTIVATION

Despite advancements in digital health, many digital
health applications lack emotional intelligence, hinder-
ing their ability to enable authentic and effective human
interaction. Personalized systems capable of understanding
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and responding to human emotions are essential for improv-
ing user experiences in social settings. For example, during
contagious situations such as pandemics, robots can be
deployed to minimize direct human contact while ensur-
ing care quality. Emotionally intelligent robots, capable of
understanding and responding to emotional cues, can assist
patients and healthcare workers more effectively, providing
personalized and empathetic support [2]. In mental health
monitoring, our model could assist therapists by detecting
shifts in a patient’s emotional state through EEG and facial
cues. Similarly, in immersive gaming and adaptive learn-
ing, systems could dynamically adjust content based on user
engagement and emotions, improving user experience.

While advances in deep learning and representation learn-
ing have greatly improved emotion recognition through
individual modalities—such as computer vision for facial
expression recognition—there remains a lack of attention to
the integration of neurophysiological signals and emotional
perception. To address this limitation, we are developing
a multimodal emotion recognition system that combines
neurophysiological features (e.g., EEG signals) with facial
expressions. Our approach employs a deep neural net-
work architecture to extract features from each modality
(bio-sensing and vision) and fuse them for more accurate
results. The system evaluates users’ emotional responses and
identifies their expressions through a dimensional representa-
tion. We validate our proposed multimodal system using the
DEAP dataset [3], demonstrating its effectiveness in predict-
ing emotional states accurately.

B. CONTRINUTIONS

In this work, we present a comprehensive approach to multi-
modal emotion recognition by leveraging deep learning tech-
niques and integrating facial and neurophysiological signals
to address key challenges in emotion recognition systems.

First, we propose a novel end-to-end deep network for
multi-modal emotion recognition that integrates both facial
and neurophysiological signals. This deep network is rig-
orously validated on the DEAP dataset [3] using standard
evaluation metrics such as accuracy, F1-score, sensitivity, and
ROC-AUC.

Second, we introduce a Transformer-based architecture
to capture intricate patterns in neurophysiological data.
Our approach effectively learns a comprehensive feature
representation by handling the simultaneous nature of
multi-channel EEG signals. This model captures nuanced
patterns across both temporal and spatial dimensions, signif-
icantly improving the granularity and accuracy of emotion
recognition. To further enhance performance, we employ a
transformer-inspired technique for facial expression recog-
nition. The proposed architecture demonstrates superior
performance on the DEAP dataset [3] and is also validated
on the LieWaves dataset [4], highlighting its robustness and
versatility compared to traditional methods.

Third, we demonstrate the importance of combining
bio-signals with facial features for emotion recognition,
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particularly in the context of wearable devices. Our experi-
ments reveal that while transformers applied to single or dual
EEG channels may exhibit lower accuracy due to reduced
signal information, integrating these channels with facial fea-
tures substantially improves the overall performance. This
fusion is especially critical for wearable devices that utilize
only one or two EEG electrodes, where accuracy typically
declines. The proposed approach enables real-time emotion
recognition, making it highly suitable for applications in
human-computer interaction and medical scenarios involving
social robots. In summary, our key contributions of this paper
include:

o Development of a multi-modal deep network integrat-
ing facial and neurophysiological signals, tested on the
DEAP dataset [3].

« Introduction of a Transformer-based model for EEG data
to capture nuanced temporal patterns, validated on the
DEAP [3] and LieWaves datasets [4].

o Proposal of an effective fusion strategy for combining
EEG and facial features to enhance model accuracy and
efficiency, demonstrating its applicability in wearable
EEG systems for emotion recognition.

C. ORGANIZATION

The remainder of this paper is organized as follows: Section II
reviews related works on emotion recognition, covering
advancements in facial expression analysis, EEG-based
approaches, and multimodal techniques that integrate neu-
rophysiological and visual data. Section III provides the
mathematical formulation of the proposed model for fusion
of facial and bio-sensing signals. Section IV introduces
the proposed multimodal architecture, detailing the integra-
tion of facial and neurophysiological signals for emotion
recognition. This is followed by subsections describing the
neurophysiological feature extractor and facial feature extrac-
tor, outlining the methodologies for extracting features from
EEG signals and facial images and fusion block, which com-
bines features from both modalities to enhance prediction
accuracy. Section V elaborates on the experimental setup,
describing datasets, preprocessing steps, and model training
procedures. Section VI highlights the results, providing per-
formance comparisons with existing methods and evaluating
the effectiveness of the proposed system. In Section VII,
the discussion interprets the results, addressing the signifi-
cance and applications of multimodal emotion recognition.
Finally, Section VIII concludes the paper by summarizing key
contributions and outlining future directions for research in
affective computing and emotion recognition.

Il. RELATED WORKS

A. FACIAL EXPRESSION RECOGNITION

The recognition of facial expressions has gained significant
attention with the rise of deep learning, as it enables the iden-
tification of human emotions through visual cues captured
by cameras. Convolutional Neural Networks (CNNs) and
their variants are particularly viable solutions at processing
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FIGURE 1. The multimodal architecture integrates neurophysiological and facial features using transformers and a facial expression network, fusing

freurophys and frgce into fryqe, to predict emotional dimensions.

visual data for this purpose. For analyzing facial image
sequences or videos, advanced methods such as Recurrent
Convolutional Neural Networks (RCNN) [5] and the com-
bination of CNN with Long Short-Term Memory (LSTM)
networks excel at extracting both spatial and temporal fea-
tures of facial expressions [6]. Additionally, the increasing
popularity of transformers has led to the development of
innovative facial expression recognition techniques utilizing
Mix Transformers [7].

B. NEUROPHYSIOLOGICAL SIGNALS

Emotion recognition leverages neurophysiological and
bio-sensing signals such as electroencephalogram (EEG),
electrocardiogram (ECG), and galvanic skin response (GSR)
data. Advanced models have begun exploring transformers
and graph-based methods for this purpose [8], [9]. Hybrid
models that combine CNNs with sparse autoencoders and
deep neural networks have achieved high accuracy. Addition-
ally, incorporating attention mechanisms and regional feature
extraction through graph convolutional networks has yielded
promising results [10]. These studies highlight the potential
of advanced neural network architectures to significantly
enhance emotion recognition from EEG data.

C. FUSION OF FACIAL AND NEUROPHYSIOLOGICAL
SIGNALS

While single-modality approaches offer certain advantages,
integrating multiple modalities can lead to more compre-
hensive and accurate emotion recognition. Relying solely on
facial expressions can be problematic due to the potential for
deceptive cues and using wearable EEG devices with only
one or two electrodes’ limits accuracy. However, combining
facial recognition with neurophysiological signals, which are
involuntary, significantly enhances both the reliability and
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accuracy of emotion detection. Multi-modal affective com-
puting has gained significant interest due to its ability to
enhance emotion recognition accuracy by leveraging diverse
types of data. Most contemporary methods focus on using
audio and video inputs, as noted in studies [11], [12], [13].
In these methods, audio data is often converted into Mel-
spectrograms, which are treated as images, and selected
video frames are processed through CNNs. The features
extracted from these inputs are then fused to improve emo-
tion prediction. These architectures consistently suggest that
multimodality is the most effective approach for predicting
emotions.

D. RECENT MULTIMODAL EMOTION RECOGNITION
Recent advancements in multimodal emotion recognition
have significantly enhanced the accuracy and comprehensive-
ness of affective computing systems. A novel transformer-
based architecture improves upon traditional late-fusion
methods by incorporating ‘““fusion bottlenecks™ at multiple
layers, enabling early and efficient information exchange
between modalities like vision and audio [14]. Similarly, the
TransFuser framework utilizes a transformer-based network
to fuse visual and LiDAR perception for autonomous driving,
demonstrating the applicability of transformers in extracting
synergistic functionalities from diverse inputs [14].

Zhang et al. proposed the MART framework, which
addresses the challenge of obtaining sufficient training
data in video emotion analysis (VEA) by introducing a
masked affective representation learning approach [15].
Siriwardhana et al. introduced a transformer-based fusion
mechanism that incorporates self-attention to combine high-
dimensional features from text, audio, and videos [16].

Li et al. proposed the Dual-level Disentanglement Mecha-
nism (DDM) to disentangle modality and utterance features,
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along with the Contribution-aware Fusion Mechanism (CFM)
and Context Refusion Mechanism (CRM) to handle the
fusion of multimodal and contextual information [17].
Another study by Li et al. introduced the HiLo model, which
incorporates holistic interaction and labeling protocols with
concerns to modality and utterance level using different
attentions [18].

The PanoSent benchmark introduces new subtasks for mul-
timodal conversational ABSA, including Panoptic Sentiment
Sextuple Extraction and Sentiment Flipping Analysis [19].
The Latent Emotion Memory network (LEM) addresses
multi-label emotion classification by learning latent emotion
distribution without external knowledge [20].

A non-autoregressive encoder-decoder framework has
been proposed for end-to-end Aspect-based Sentiment Triplet
Extraction (ASTE), modeling it as an unordered triplet pre-
diction problem [21]. Fei et al. proposed the Three-hop Rea-
soning (THOR) framework based on chain-of-thought (CoT)
reasoning for implicit sentiment analysis [22].

In a separate study, Fei et al. suggested a multi-pronged
strategy for improving the resilience of Aspect-Based Sen-
timent Analysis (ABSA) from model, data, and train-
ing perspectives [23]. Lastly, the Finsta tool enhances
video-language representations through fine-grained struc-
tural spatiotemporal alignment, improving performance on
various video-language tasks [24].

These studies collectively highlight the importance of mul-
timodal approaches, transformer architectures, and advanced
fusion techniques in emotion recognition and sentiment anal-
ysis. They provide valuable insights for integrating various
modalities for enhanced emotion detection and sentiment
understanding, particularly in the context of human-computer
interaction and affective computing [25].

E. RESEARCH GAP AND SOLUTIONS

A potential drawback is that cues from audio and facial
expressions can be deliberately manipulated, making them
less reliable. In contrast, the use of neurophysiological
signals, such as EEG, is non-invasive and cannot be eas-
ily manipulated. This makes them a more accurate and
dependable source of data for emotion recognition. By inte-
grating neurophysiological signals with traditional audio-
visual inputs, multi-modal approaches can achieve higher
accuracy and robustness in emotion prediction. While the
combination of bio-sensing and visual data has been less
explored, our study aims to fill this gap by employing a deep
multimodal fusion approach that incorporates both neuro-
physiological signals and visual data for emotion recognition.
We utilize transformers, which are highly effective in process-
ing time-series data, to analyze neurophysiological signals
and capture detailed features. Transformers are well-suited
for this task because of their ability to handle sequential
data and identify complex patterns within it. Additionally,
we introduce a new facial feature extraction method that
uses a transformer-inspired technique for patch extraction.
This method enhances our ability to detect subtle facial
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expressions and integrate them with physiological data for
a more accurate and comprehensive emotion recognition
system.

IIl. MODELING FACIAL AND BIO-SENSING SIGNLAS
Consider a scenario where we have a set of facial emotion
video frames for the iy, instance, denoted I; = {I; |1, ... ,n;},
where I;representing the ¢y image. Additionally, we have
neurophysiological signals N; = 1, ...,m;, where e; repre-
sents the ¢4, data point. The lengths of these video frames and
neurophysiological signals are n; and m;, respectively. For
the iginstance, the ground-truth labelfor iy, indicates either
a valence, arousal, liking or dominance.

Our objective is to train a comprehensive model Gyusing
tuples {(I;, N;) , y;i € [0,T1}, wherey; € [0, 1], and Tis the
total number of instances in the dataset. Here, y; indicate the
levels of valence, arousal, liking or dominance, with 0 being
low and 1 being high. During the prediction phase, when
given a test video and corresponding neurophysiological sig-
nal pair (I;, Nj), the trained model Gy generates an estimated
output J;, This estimate J; aims to closely match the actual
ground-truth annotation y;. Formally, the prediction process
is represented as:

$i =Gy (I, Nj) :©) (1
This process allows the model to effectively predict emo-

tional states by leveraging both visual and neurophysiological
data.

IV. MULTIMODAL ARCHITECTURE

Our multimodal architecture is inspired by the DeepVaNet
model [6] and our previous work on a deep multimodal
emotion recognition model [26], utilizing both neurophys-
iological and facial features to predict emotional states.
As depicted in Figure 1, the architecture of our model
includes a transformer-based neurophysiological feature
extractor, a facial feature extractor, and a fusion block. In this
study, we utilize transformers for neurophysiological signals,
which have demonstrated their significance in predicting
time-series data such as text translation and speech recog-
nition. Additionally, we employ a unique neural network
that combines convolutional layers for initial patch extrac-
tion and embedding, followed by an LSTM for sequence
processing, to extract facial expressions. Preprocessing steps
involved downsampling to 128 Hz, removing electrooculog-
raphy (EOG) artifacts, segmentation, and baseline removal
by subtracting the initial 3 seconds of resting-state data for
each subject. The EEG data was then divided into one-second
intervals. For face preprocessing, 5 frames per second were
extracted, and image cropping to a size of 64 x 64 pixels was
performed based on facial landmarks.

A. NEUROPHYSIOLOGICAL FEATURE EXTRACTOR

The transformer model is designed for neurophysiological
feature extraction, leveraging the capabilities of trans-
former architectures to capture long-range dependencies
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in neurophysiological signals. The data flow in the
transformer-based architecture for processing neurophys-
iological signals begins with the input data, which has
a shape of (40, 128), representing 40 neurophysiologi-
cal signals including the integration of thirty-two EEG
(electroencephalogram) and eight physiological signals
(EOG: electro-oculogram, GSR: galvanic skin response,
BVP: blood volume pulse, RSP: respiration, EMG: elec-
tromyogram, SKT: skin temperature, and pulse wave). With
a sampling rate of 128 Hz, this data can be analogous
to NLP, with 128 data points assumed to be words and
40 channels assumed to be word embeddings, like sentences.
We apply this analogy to bio-sensing data to capture the
advantages of transformers in understanding complex pat-
terns and contextual relationships. In our implementation,
the neurophysiological feature extractor processes the data
through an encoding process where the tensor is permuted
along the sequence length dimension to be (128, 40) as per
our analogy. The transformer can effectively learn important
spatial patterns within the EEG data, dynamically adjusting
its focus based on the relevance of different points and
channels. As depicted in Figure 1, this input is passed
through the linear projection layer. In our model, posi-
tional encoding was omitted because it did not empirically
enhance performance during our experiments. Prior studies
on similar recognition tasks, as well as our ablation stud-
ies [7], [27], consistently demonstrated that the inclusion
or exclusion of positional encoding had negligible impact
on the model’s accuracy. We selected 2 encoder layers for
this task. After extensive research on real-time segmen-
tation models [27], [28] and deep multimodal fusion [26],
we applied the Transformer model based on [29], which uti-
lizes the self-attention mechanism. Self-attention mechanism
enables the model to simultaneously attend to different parts
of an input sequence or multiple sequences, dynamically
weighting their importance based on context and capturing
cross-channel dependencies.

The structure of the neurophysiological extractor incor-
porates residual connections, feed-forward layers, and layer
normalization. It employs six heads in its multiheaded atten-
tion mechanism, with a learning rate of 0.001, a dropout rate
of 0.1, and ReLU activation. Finally, we flatten the output
of the transformer block, and a linear layer is mapped to
get the desired number of feature vectors, resulting in an
output of neurophysiological feature scores. This final output
represents the encoded features of the input neurophysiolog-
ical data. This feature vector, represented as a 1 x 1 vector,
is denoted as:

fneurophys = (P, P2, ... ,Pp.l) (2)
(

B. FACIAL FEATURE EXTRACTOR

The facial expression feature extractor network is designed to
process a sequence of facial images and extract meaningful
features for fusion. The use of Convolutional LSTM [30]
helps us grasp the spatial and temporal features from CNNs
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and LSTMs, respectively. The actual facial recordings are of
a length of 1 minute. In this case, we try to extract 5 frames
every second. We preprocess each frame based on facial land-
marks to crop the image to the size of (64, 64). The process
begins with the input images of dimensions (batch_size, 5, 3,
64, 64), where 5 denotes the frames per second. These frames
are preprocessed and individually passed through a pretrained
CNN on the AEFW dataset [31].

The CNN model consists of 4 convolutional layers. Each
of the first 3 layers has a kernel size of 3 x 3 and is followed
by ReLU activation and max pooling with a stride of 2 x 2.
The last convolutional layer has padding of 1, a kernel size
of 3 x 3, and a stride of 3 x 3, resulting in an output shape
of (batch_size, 5, 768, 2, 2). To extract the temporal features,
an LSTM is deployed, where all the extracted features are
flattened to a dimension of (batch_size, 5, 3072). The hidden
size of the LSTM is 128. The architecture of network [30] is
comprised of following key components:

Input Gate:
ir = 0 (Wiiayxe + Winyhie—1y + biin) (©)
Forget Gate:
fi = o (Winxe + Wayhu—1y + biiry) “)
Cell Gate:

&= tan h (Wiigyxi + biigy + Wing -1y + b)) - (5)

Output Gate:
0p =0 (W{io}x; + Winoyh—1y + b{io}) 6)
Cell State:
a=h0Ocp—1y+irOg @)
Hidden State
hy = oy © tanh (¢y) ®)

In this context, A; is the hidden state, c;is the cell state,
x; is the input, Ay _1y is the previous hidden state, o is the
sigmoid function, and © denotes element-wise multiplica-
tion. These gates and their interactions enable the LSTM
to effectively manage long-term dependencies in sequence
data. After processing, the output features are passed through
a fully connected layer to reduce the dimensionality to the
desired feature size. The final output is a feature vector
capturing the essential facial features from the input image
sequence. This feature vector, represented as a 1xu2 vector,
is denoted as:

fface = (Els Ey, ... 7E;,L2) )

C. FUSION BLOCK

The fusion block is designed to fuse facial and neuro-
physiological data for tasks such as emotion prediction.
It incorporates two main feature extractors: a facial fea-
ture extractor and a neurophysiological extractor. The facial
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feature extractor reduces spatial dimensions using convolu-
tional embedding and captures essential facial features. The
neurophysiological extractor is implemented using a trans-
former model, which processes bio-sensing data by capturing
long-range dependencies within the sequence and encoding
it into a feature vector. For feature-level fusion, the face
appearance feature ff,c. and the neurophysiological feature
JSneurophys are concatenated to generate a multi-modal feature
VeCtor fluse = fface ® fneurophys- This combined feature vector
is passed through a multi-layer classifier that sequentially
reduces the dimensionality and applies RELU activation
functions, culminating in a sigmoid function to produce the
final output. This fusion approach leverages both spatial and
temporal aspects of the data, making it highly effective for
complex and dynamic tasks, particularly in emotion predic-
tion from multi-modal inputs.

V. EXPERIMENT SETUP

A. DEAP DATASET

The Database for emotion analysis using physiological sig-
nals (DEAP dataset) is a frequently employed multimodal
dataset intended for the analysis of human emotional states.
This dataset comprises physiological data collected from
32 participants (16 males and 16 females) while they watched
40 music videos, each selected for its potential to elicit a
range of emotional responses. EEG signals were recorded
using a 32-channel electrode cap conforming to the “10-20”
international standard at a sampling frequency of 512 Hz.
For emotion classification, the DEAP dataset provides labels
for valence, arousal, likin, and dominance enabling catego-
rization of emotional states into distinct classes. In addition
to EEG data, video recordings of facial expressions were
made for 22 of the 32 participants, providing a rich dataset
for multimodal emotion analysis. The DEAP dataset offers
a comprehensive resource for investigating the neural and
physiological correlates of emotion, facilitating the develop-
ment and evaluation of emotion recognition models across
various modalities.

B. LieWAVES DATASET

The performance of the Transformer classifier was tested on
an EEG dataset with a limited number of channels using the
LieWaves dataset [4]. This dataset includes both truth and lie
trials, with detailed timestamps indicating when each subject
answered each question. During data collection, each subject
was asked a set of 10 questions, with each question answered
twice—once truthfully and once deceitfully. The raw data
consists of 160 samples, recorded at a sample rate of 1000 Hz,
with 2 EEG channels.

C. TRAINING AND VALIDATION

We employ binary cross-entropy as our loss function. For
training, we use a batch size of 64, considering the target
emotion label and the predicted score. During inference,
we input the test video and physiological signal into our
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proposed network, which generates a fusion score. This score
determines the final prediction: a score above 0.5 results in
a “High” prediction, while a score of 0.5 or below leads to
a “Low” prediction. We train and test our model on each
individual subject, a process referred to as a per-subject and
inter-subject experiments. For the inter-subject experiment,
data from all subjects is used to train and test a multimodal
network, with the goal of evaluating the generalization abil-
ity of our proposed network. This approach is applied to
both per-subject and inter-subject experiments. Our model
undergoes 10-fold cross-validation, and the average testing
accuracy is used to measure performance. For validation,
we utilize the mean recognition accuracy of both valence
and arousal. The facial features extracted are 16, whereas the
neurophysiological features extracted are 64.

D. EVALUATION METRICS

Accuracy: To thoroughly evaluate the model’s ability to pre-
dict emotional states, we utilized subject-specific evaluation
metrics. This metric assesses the model’s performance for
each individual subject. It is determined by calculating the
average accuracy across all folds within a 10-fold cross-
validation for each subject.

(TP; + TN;)

1
A . = - E 10
ccuracysub]ect (n) (TP; + TNl + FP; —+ FNZ) ( )

Precision: the proportion of true positive predictions among
all positive predictions made by the model.
. (TP)
Precision = ————— (11
(TP + FP)
Recall: the proportion of true positive predictions among all
positive predictions made by the model.
(TP)
Recall; = ——— (12)
(TP + FN)

F1-Score: The F1-score is a measure that combines Precision
and Recall into a single metric by calculating their weighted
average.

Fl, = 2 (precisionxRecall)

13
precision + Recall (13)
ROC_AUC: Receiver Operating Characteristic — Area
Under Curve, measures a classification model’s performance
across different thresholds.

E. HYPER-PARAMETER TUNNING
Fine-tuning hyperparameters required careful modifications.
Notably, our conclusion on the ideal feature count aligned
with the DeepVanet [6] paper’s conclusion. We found that
using 64 EEG features and 16 face features yielded the
best optimal results during testing and cross-validation by
methodical grid search from {16, 32, 64, 128, 256, 512}
features.

To determine the optimal configurations, we started by
selecting a reasonable default architecture for the model,
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FIGURE 2. The mean accuracies for valence, arousal, dominance, and liking across all subjects, determined through 10-fold cross-validation, are
presented. The error black bars illustrate the standard deviation across trials for each subject.

TABLE 1. Comparsion of EEG vs. proposed transformer for EEG
classification.

Model Valence % Arousal % Average %
Graph-based 60.18 59.19 59.68
LSTM 84.75 82.16 83.46
CNN+HMM 79.77 83.09 81.43
HOLO-FM 76.61 77.72 77.17
ERTNet 73.31 80.99 77.15
STS-Transformer 89.86 86.83 88.35
CNN multispectral 90.62 86.13 88.38
DCNN 87.84 87.69 87.77
EEG Classification 91.42 92.98 92.20

TABLE 2. Comparsion of existing fusion models vs. proposed fusion
feature classification.

Deep Models Arousal Valance Average
3D CNN Ensemble 96.13 96.79 96.46
CNN and Attention 96.63 98.18 97.40
Proposed Model 97.64 97.78 97.71

which included 4 encoder blocks, ReLLU activation, and
a dropout rate of 0.2. Next, we conducted a grid beam
search over the learning rate and the number of features.
The learning rates tested were {0.01, 0.001, 0.0001, 0.005,
0.05, 0.005}, and the feature sizes explored were {16, 32,
64, 128, 256, 512}. From this search, we identified that a
learning rate of 0.001, combined with 16 facial features and
64 neurophysiological features, yielded good results over
10 epochs. Following this, we performed another grid search,
this time focusing on the number of encoder blocks, activation
functions, and dropout rates. We found that using 2 encoder
blocks, ReLU activation, and a dropout rate of 0.1 produced
the best results.

VI. RESULTS

A. MULTIMODAL FUSION RESULTS

By employing our feature-level fusion method, we attained
the average recognition accuracy across two specific cate-
gories: Arousal and Valence as shown in TABLE 1.

67440

As illustrated in TABLE 2, Multi-modal methods have
demonstrated superior accuracy compared to similar fusion
models from previous studies. We have run both inter-subject
and per-subject models on our multimodal fusion model,
achieving average accuracies of 97.71% and 97.94%, respec-
tively, for inter-subject and per-subject evaluations. In addi-
tion, the model achieved 97.91% for Liking and 97.62%
for Dominance. Despite the relatively low complexity of
our fusion mechanism, it surpasses previous models. For
instance, our fusion model outperforms the 3D CNN ensem-
ble model [3], which achieved 96.13% accuracy for valence
and 96.79% for arousal. The 3D CNN ensemble model
employed a 3D CNN for face recognition and Mask R-CNN
for face detection, experimenting with two fusion techniques
and determining that stacking yielded the best performance,
with accuracies of 96.13% for valence and 96.70% for
arousal. Additionally, the CNN attention model [20] uses
a pre-trained CNN combined with an attention mechanism
to extract refined features, while a CNN is applied to
extract EEG signals. After fusing the features, they are pro-
cessed through a feed-forward block. This model achieved
accuracies of 96.63% for valence and 97.15% for arousal
classification on the DEAP dataset.

As illustrated in TABLE 3, the results demonstrate a sig-
nificant progression in model performance across various
architectures for the given task. Traditional models such as
LGGNET-H [32], SVM [33], and BOOST [33] achieved
F1 scores of 72.5,74.8, and 77.7, respectively, indicating their
moderate efficacy. Deep learning models such as LSTM [34]
and DBN [35] showed notable improvements with F1 scores
of 82.4 and 86.8, showcasing the potential of advanced neural
architectures. The CNN-LSTM [36] model further raised the
benchmark, achieving an impressive F1 score of 95.6. How-
ever, our proposed model outperformed all others, achieving
a remarkable F1 score of 98.1, demonstrating its superior
ability to capture and learn complex patterns in the data,
setting a new standard for performance in this domain.

To further evaluate our fusion model, we achieved a pre-
cision of 0.979, a ROC AUC score of 0.976, an F1 score
of 0.981, and a recall of 0.982, demonstrating the model’s
robust performance.
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FIGURE 3. 2D t-SNE Visualization of DEAP Dataset Features: Subject 4's Emotional Landscape - Valence, Arousal, Liking, and Dominance Explored.

TABLE 3. Different evaluation metrics for fusion model.

Models F1
LGGNET-H 72.5
SVM 74.8
BOOST 71.7
LSTM 82.4
DBN 86.8
CNN-LSTM 95.6
Ours Model 98.1

B. TRANSFORMER-BASED EEG CLASSIFICATION
TABLE 1 shows models that have solely used EEG data
to predict emotions and compared the performance of our
Transformer-based EEG classification. The CNN- multi-
spectral [12] captures spatial and temporal features using
multi-spectral images derived from EEG data. This model
achieved accuracies of 90.62% for valence, 86.13% for
arousal, 88.48% for dominance, and 86.23% for liking.
A DCNN model [37], which combines a DCNN module
with a ConvLSTM module, achieved accuracies of 87.84%
for valence and 87.69% for arousal. our model surpasses
the performance of all benchmark models, including an
LSTM model, the CNN+HMM model [38] which combines
convolutional neural networks (CNN) and hidden Markov
models (HMM), the HOLO-FM model [39] which extracts
holographic and topographic feature maps from EEG data
and processes them through a CNN, the Ertnet model [40]
which uses both CNNs and transformers to capture topolog-
ical and spatio-temporal features, and the STS-Transformer
model [41] which takes raw EEG data as input and uses a
transformer architecture. Our Transformer-based EEG clas-
sifier performs comparably to single-modality approaches.
This is significant because it demonstrates that we can lever-
age the Transformer-based approach for EEG classification.
To further test our model, we have run our model on
another lie detection dataset. For the dataset in the lie detec-
tion task, our Transformer-based model achieved a precision
of 0.9284, a recall of 0.9581, an F1 score of 0.9430, and an
accuracy of 94.68%. The confusion matrix showed 373 true
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negatives, 30 false positives, 17 false negatives, and 389 true
positives. Additionally, the model recorded a ROC AUC score
of 0.9418, indicating strong discriminative performance.

VII. DISCUSSION

A. FUSION MODEL PERFORMANCE ON EEG DATA

Our extensive experiments underscore the remarkable capa-
bilities of our proposed fusion model in accurately recogniz-
ing emotions from EEG data. Figure 2 illustrates the average
accuracies obtained for each subject in the DEAP dataset.
It shows that the emotional dimensions—valence arousal,
liking, and dominance—perform consistently well, with stan-
dard deviations of the accuracies ranging from 1.31 to 1.96.
This indicates the robustness of the model’s architecture
in capturing various details in the data. Additionally, the
accuracy range is similar across all subjects, further demon-
strating the model’s reliability and consistency in emotion
recognition.

The advantages of multimodality over single modality are
evident in facial expression recognition. Our experiments
with EmoNet, a deep neural network designed for facial
feature analysis, show low average accuracies of 53.52% (V1)
and 53.72% (V2) on the DEAP dataset. V1 uses a fixed
threshold for labels, while V2 employs a dynamic threshold
based on the distribution. These results highlight the difficulty
of recognizing emotions in the DEAP dataset, where subtle
facial expressions make it challenging for models to per-
form well. Similarly, single-modality EEG classification on
the DEAP dataset achieves an average accuracy of 92.20%.
By integrating additional modalities, such as neurophysio-
logical signals and temporal information, we significantly
improve emotion recognition accuracy, achieving 97.71%
with our fusion model. Our fusion model, which deeply inte-
grates neurophysiological and facial features, is crucial for
enhanced emotion detection, especially for wearable devices
in human-machine interaction.

B. COMPARISON WITH SIMILAR MODELS
When we compare our model with similar fusion models,
it performs exceptionally well. The superiority of our
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proposed model can be attributed to the following reasons.
First, the use of a transformer-based architecture for EEG
data in our model allows for the effective capture of complex
spatial and temporal patterns. In addition, the multi-head
attention block contributes to capture different dependen-
cies in the data, allowing for more comprehensive feature
extraction. Moreover, the facial expression extractor, utilizing
a unique technique inspired by transformers, obtains mean-
ingful spatial features from images, and LSTM further refines
these features to capture temporal dependencies. Finally, the
integration of the transformer-based model for EEG data
and the transformer-inspired facial emotion recognition, fol-
lowed by the fusion of their extracted features, provides a
robust framework for emotion prediction. This architecture
effectively captures and integrates diverse aspects of neuro-
physiological and visual data, resulting in improved accuracy
and reliability of emotion prediction. Overall, as presented in
Result section our proposed model exhibits superior accuracy
compared to the evaluated methods, resulting in enhanced
performance in emotion recognition tasks.

C. PERFORMANCE WITH LIMITED EEG CHANNELS

The high performance of the Transformer-based architecture
is due to the fact that the features extracted by the Transformer
model are more discriminative than handcrafted features,
which is crucial for wearable devices with fewer channels.
Upon investigating our Transformer-based EEG classifier,
we found that it performs exceptionally well using only
the FP1 and FP2 frontal channels of the EEG cap in the
DEAP dataset, achieving over 85% accuracy. We also noticed
that this accuracy can be improved by fusing these features
with facial expression recognition, leveraging the strengths
of both modalities to achieve significantly higher accuracy,
exceeding 90%, compared to using a single modality. This
is especially important for wearable devices with fewer
EEG channels, where integrating computer vision and facial
expression analysis can enhance the emotion recognition
capabilities of our models.

D. VISUALIZATION OF MULTIMODAL FEATURES

As illustrated in Figure 3, we use 2D t-SNE to reduce the
feature dimensions into a two-dimensional space for visual-
ization. t-SNE is a non-linear clustering algorithm that aims
to preserve the relative structure and pair-wise similarities of
the data when projecting it onto a lower-dimensional space.
This technique is employed to visualize higher-dimensional
datasets, allowing us to understand their clustering and the
patterns associated with the data. The HIGH and LOW
class features distinctly form two clusters within this space.
In the fusion modal, these clusters are almost clearly sepa-
rated. This observation underscores the effectiveness of our
multimodal features, demonstrating their salience and dis-
criminative power.

E. APPLICATIONS IN DIGITAL HEALTH AND HEALTHCARE
The emotion recognition capabilities achieved by our
fusion model have significant applications in digital health,
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healthcare, and human-computer interactions. The ability to
measure emotional states through neurophysiological and
facial recognition is poised to facilitate mental health diag-
nosis and treatment. Our experiments demonstrate that deep
multimodal fusion of EEG data, even with a limited number
of channels (such as the frontal channels in our case), can
extract features that, when fused with facial data, improve
emotion detection. Our model has the potential to be seam-
lessly integrated into wearable devices, offering continuous,
non-invasive monitoring for individuals with mood disor-
ders or anxiety. By analyzing subtle shifts in EEG patterns,
these devices could provide real-time feedback, granting indi-
viduals profound insights into their emotional triggers and
empowering them to proactively manage their mental health.
For clinicians, access to this precise data would improve per-
sonalized treatment plans, enhance the tracking of therapeutic
efficacy, and enable the early detection of mood fluctuations.

F. IMPACT ON HUMAN-COMPUTER INTERACTION (HCI)
Our model significantly impacts the field of affective com-
puting by advancing systems that can accurately recognize,
interpret, and respond to human emotions. This progress
transforms human-computer interaction (HCI), enabling
adaptive interfaces, emotionally intelligent virtual agents,
and personalized gaming experiences. For instance, it allows
online learning platforms to adjust lesson difficulty based
on a student’s detected frustration or boredom, optimiz-
ing engagement and retention. Video games can adapt in
real-time to the player’s excitement, ensuring a consistently
thrilling experience. Additionally, virtual reality environ-
ments can use emotion recognition to modify stimulus
intensity, enhancing immersion and tailoring experiences to
individual preferences.

G. APPLICATIONS IN SOCIAL ROBOTICS

An emotion recognition system paves the way for social
robots with emotional intelligence, enabling them to perceive
and respond to human emotions in real-time. These emo-
tionally intelligent robots enhance assistance for the elderly,
offering emotional support and social interaction. In ther-
apeutic settings, robots equipped with advanced emotion
recognition capabilities can deliver personalized interven-
tions for children with autism spectrum disorder, significantly
enhancing their ability to understand and express emotions.
For example, a robot can guide a child through calming
breathing exercises or relaxation techniques upon detecting
signs of anxiety or frustration, fostering emotional regulation
skills.

H. AFFECTIVE COMPUTING VIA NEUROPHYSIOLOGY

We also introduce a Transformer-based architecture to cap-
ture features in neurophysiological data, validating its perfor-
mance across both the DEAP and Lie Detection datasets. Our
experiment demonstrates that the Transformer is able to gen-
eralize well for the classification of EEG signals. To further
test its generalizability for affective design tasks, we trained
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our model on both the DEAP and Lie Detection datasets,
achieving high results across all investigated metrics.

Finally, this research enriches our comprehension of the
neural mechanisms underlying emotion. By identifying the
intricate patterns in facial and neurophysiological data that
distinguish emotional states, we enhance the foundational
knowledge in bio-sensing, and these insights have the poten-
tial to deepen our understanding of multimodal emotion
recognition and apply this system to various applications
such as healthcare, wearable devices, and human-computer
interactions.

I. LIMITATIONS AND FUTURE WORK

Recognizing emotions through EEG signals is inherently
complex due to the high variability in individual emotional
responses. A “‘one-size-fits-all”” approach may not yield reli-
able results, even with a large, diverse dataset. To address
this, we applied our model across different datasets and
conducted experiments in both per-subject and inter-subject
settings. The personalized nature of EEG signals underscores
the need for high-quality hardware to ensure accurate neuro-
physiological signal detection, which is crucial for advancing
affective computing. As future work, it is essential to explore
personalized models that account for individual variability in
emotional responses. Additionally, hybrid approaches com-
bining population-based models with real-time calibration
should be investigated to achieve improved adaptability and
performance.

The DEAP dataset assumes a stable emotional state over
the duration of an entire music video, approximately one
minute long. However, it is likely that arousal and valence
levels fluctuate within shorter time frames, as brain signal
responses are often dynamic and can stabilize within seconds.
This mismatch in temporal granularity poses a challenge for
accurately linking EEG responses to emotional states across
the video length. Therefore, in the future, a key focus should
be to develop models capable of capturing dynamic changes
in emotional states over shorter time frames to align with EEG
signal fluctuations. This includes incorporating time-series
analysis techniques and adaptive segmentation to better rep-
resent temporal dynamics.

A significant limitation in this domain is the scarcity of
datasets that include both neurophysiological signals and
videos simultaneously. Overcoming this limitation requires
concerted efforts to curate and share high-quality, syn-
chronized datasets, paving the way for more robust and
generalizable emotion recognition systems. Therefore, a key
future direction is to curate high-quality, synchronized mul-
timodal datasets that integrate neurophysiological signals,
videos, and facial expressions.

VIil. CONCLUSION

This research presents a novel multimodal emotion recogni-
tion system integrating neurophysiological signals and facial
data to enhance accuracy and reliability. The system pro-
cesses face image sequences alongside EEG, EOG, GSR,
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BVP, RSP, EMG, SKT, and pulse wave signals to predict
valence-arousal, liking, and dominance labels. Leveraging
transformers and deep neural networks, it captures complex
temporal and spatial patterns in the data. Experiments on
the DEAP dataset, conducted on both per-subject and inter-
subject bases, demonstrate superior performance compared
to single-modality methods and parity with state-of-the-art
multimodal approaches. The model achieved accuracy rates
of 97.78% (arousal), 97.64% (valence), 97.91% (liking),
and 97.62% (dominance), along with a precision of 0.979,
ROC AUC of 0.976, F1 score of 0.981, and recall of 0.982,
showcasing robust performance. A Transformer-based EEG
classifier was also introduced, tested on the DEAP and Lie
Detection datasets, demonstrating strong generalizability and
effective performance with fewer EEG channels—a signifi-
cant advantage for wearable devices. These findings highlight
the potential of multimodal fusion in advancing emotion
recognition technology, enabling empathetic and emotion-
ally intelligent human-computer interactions and improving
wearable technology usability.

IX. LIST OF ABBREVIATIONS
A list of the abbreviations introduced in this article is tabu-
lated in TABLE 4.

TABLE 4. List of abbreviations.

Acronym Full Name

Al Artificial Intelligence

AEFW Acted Facial Expressions in the Wild

BVP Blood Volume Pulse

CNN Convolutional Neural Network*

DEAP Database for Emotion Analysis using
Physiological signals*

EOG Electro-Oculogram*

EMG Electromyogram*

GSR Galvanic Skin Response*

HMM Hidden Markov Model*

LSTM Long Short-Term Memory*

ROC AUC | Receiver Operating Characteristic Area
Under Curve*

RSP Respiration*

SKT Skin Temperature*

t-SNE t-distributed Stochastic Neighbor
Embedding*

ERTNet Explainable and Reliable Transformer
Network™
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