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Abstract- Brain-computer interfaces (BCis) offer 
promising solutions for upper limb rehabilitation. Despite 
advancements in deep learning, traditional models for motor 
rehabilitation using electroencephalography (EEG) or 
electromyography (EMG) to control assistive devices require 
enhancement. This study aims to enhance motor control 
capabilities by integrating EEG and EMG signals using a 
Transformer-based deep learning model. Ten able-bodies 
subjects performed center-out tasks on a low-cost upper limb 
rehabilitation table, capturing 2D kinematic data, EEG, and 
EMG signals simultaneously. The tasks varied in complexity 
across four levels. Preprocessed EEG and EMG signals were 
fused and given as input to the proposed model, which was 
evaluated using three performance metrics. Results showed 
that the EEG-EMG combined model achieved 87.27% 
accuracy across all the four levels. Furthermore, the model's 
output successfully controlled a humanoid robot to replicate 
similar movements. These findings highlight the efficacy of 
combined EEG-EMG data in improving accuracy and 
performance in BCI applications, advancing assistive 
technologies and neurorehabilitation interventions. 

Keyword5-Brain-computer interface, deep learning, EEG­
EMG, transformer, humanoid robot, upper limb motor 
rehabilitation 

I. INTRODUCTION 

Stroke is a leading cause of disability and mortality 
among the elderly, second only to heart disease. 
Approximately 80% of stroke survivors experience motor 
impairment, typically affecting one side of the body [ 1 ] ,  [2] . 
Despite these impairments, many retain the ability to 
generate motor-related neural activities, similar to healthy 
individuals, but only a small fraction regains useful upper 
limb functions after prolonged physiotherapy. Enhanced 
upper limb function is crucial for post-stroke rehabilitation 
as many activities of daily living (ADLs) rely heavily on arm 
functions. As highlighted in [3], the projected increase in the 
stroke population will impose a significant economic burden 
on the society, underscoring the need for effective 
rehabilitation strategies. 

Recent advancements in machine learning and signal 
processing have enabled researchers to decode brain signals 
into actionable outputs, allowing control of devices like 
wheelchairs, assistive robots, and autonomous vehicles [4], 
[ 5] . This possibility for the brain to act upon an environment 
through an alternate pathway has drawn attention to the field 

Research supported by National Science Foundation CAREER Award 
HCC-2053498 and NSF IUCRC BRAIN CNS-2333292. 

P. Olikkal, H. Ali, R. Vinjamuri are with the Vinjamuri lab in the 
Department of Computer Science and Electrical Engineering, University 
of Maryland Baltimore County, Baltimore, MD, 21220, USA (email: 

979-8-3315-0964-4/24/$31.00 © 2024 IEEE 899 

INION 

Fig. 1 .  EEG electrode locations on the scalp is shown on the left side 
and EMG electrode locations on the dominant arm is shown on the 
right side. All 64 EEG channels were located at the frontal, central, 
parietal and occipital areas to record the brain activities during 
center-out target experiment. 8 EMG sensors were placed 
strategically on - (1) PM, (2) DeltA, (3) Delt.M, (4) Delt.L (5) B, 
(6) Brchl, (7) Tri. L, (8) Tri. Lat. 

of brain-computer interaction (BCI) [6], [7], as a promising 
tool in rehabilitation for patients with limited movement 
functionalities. One of the main challenges involved in BCis 
is decoding upper limb kinematics from brain signals. 
Studies have shown that invasive methods using arrays of 
microelectrodes directly in the motor cortex can successfully 
perform reach and grasp activities in primates [8] and 
individuals with upper limb motor disability [9] . Despite 
their potential, invasive approaches require surgery limiting 
its usage. Non-invasive methods, such as 
electroencephalography (EEG), involve applying 
conductive gel on electrodes to enhance the conductivity 
between the scalp and electrodes. However, the low signal­
to-noise ratio of EEG signals makes it difficult to decode 
hand movements. Another interactive bio-signal widely 
used is electromyography (EMG), where surface electrodes 
detect muscle activities during attempted movements, 
serving as a control signal for device interaction. EMG has 
been proven [ 10] ,  [ 1 1 ]  as a viable alternative to BCI for 
detection movements m individuals with motor 
impairments. 

Research has demonstrated the classification of upper 
limb center-out reaching tasks using EEG [ 12] and reaching­
to-grasp tasks using EMG [13 ]  signals for prosthetic control. 
Most studies extract key features from EMG and EEG 
signals to train machine learning models, typically using 
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Fig. 2. Experiment setup. The subjects were asked to sit in front of 
the AnnAble™ table. Their dominant hand rested on the unilateral 
handle with a grip hold to maneuver the device based on the target 
locations. Four different levels with 2, 2, 4 and 8 targets spread around 
the center were displayed on the screen. Target position was set 
randomly to increase engagement of the subjects. 

facilitated home-based rehabilitation, offering reduced 
travel burdens and increased flexibility. Such setup also 
allows patients to receive remote feedback from therapists. 
Chen et al. in [23] elaborates various home-based 
technologies for stroke rehabilitation. In account of this 
aspect, we employ a cost-effective, non-motor-driven 
interactive arm training device, designed for post-stroke 
recovery, namely ArmAble™ (BeAble Health Pvt. Ltd. ,  
Telangana, India). This device utilizes interactive games to 
make upper limb rehabilitation more engaging and 
rewarding. 

To address these concerns, this study evaluates the 
performance of EEG-EMG during center-out tasks using 
deep learning methods. Utilizing ArmAble™, EEG and 
EMG signals were collected from subjects performing 
center-out task scenarios of increasing complexity. In this 
preliminary study, a novel hybrid framework using both 
muscle and neural signals to classify movements was 
developed. It is hypothesized that supplementing neural 
signals with muscle signals will outperform methods using 
only neural signals. This novel framework aims to 
significantly improve classification accuracy. The results 
from this multimodal framework model were used to control 
a humanoid robot that moves the handle of the ArmAble™ 
to the target locations based on the predictions. 

II. EXPERIMENTAL METHODS 

either EEG or EMG alone. While EEG signals are complex 
to decode and do not directly measure movement, EMG 
signals provide a direct measure but are limited by factors 
like muscle fatigue. Although non-invasive BCI offers a 
promising alternative, few studies have investigated fusing 
scalp EEG [ 14] and surface EMG [ 15] for movement 
classification using signal decoding. Hybrid multimodal 
fusion frameworks [ 16]-[1 9] have been proposed, but often 
involve small sample size, limited EEG electrodes, and 
manual feature extraction followed by classical machine 
learning methods. Fusion techniques usually develop 
separate classifiers for EEG and EMG, combining their 
results through balanced weights or Bayesian approaches 
[ 16] .  

A. Data Collection 

Deep learning algorithms have eliminated manual 
feature extraction, allowing preprocessed signals to directly 
classify movement tasks. By combining brain activity and 
muscle activity measurements, researchers can develop new 
technologies and therapies that assess changes in patients' 
brain and muscles during physiotherapy [20] . A practical 
framework combining EEG and EMG signals can help 
individuals with disabilities to perform ADL tasks with high 
precision through device or robot control. Although initial 
signal fusion show promise, the potential of deep learning 
for EEG and EMG fusion remains largely unexplored due to 
high computational complexity and data requirements for 
real-time movement recognition. Only few studies have 
thoroughly evaluated EEG and EMG efficacy for upper limb 
movement classification. While hybrid EEG-EMG-powered 
exoskeletons have shown considerable promise for gait 
movements [21 ] ,  [22], the application of deep learning 
methods to hybrid EEG-EMG systems for upper limb 
movements still requires extensive exploration. 

Stroke survivors often need to commute for 
physiotherapy sessions, and purchasing such devices for 
home use can place a significant financial burden on their 
families. Additionally, the lack of observable progress over 
time can diminish interest and motivation in continuing 
physiotherapy. Recent technology advancements have 
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Ten healthy subjects (4 female and 6 male subjects, age 
range: 20-33 yrs. ,  mean age 27.4) with no history of upper 
extremity deformity or other musculoskeletal disorders were 
selected for the experiment. Subjects were informed about 
the experiment, and they provided written consent. The 
procedures were in accordance with the Declaration of 
Helsinki and approved by the Institutional Review Board 
(IRB) ethical committee at the University of Maryland 
Baltimore County. 

To capture muscle activities, eight wireless Avanti EMG 
sensors (Delsys, Natick, USA) were placed on the eight most 
representative muscles of the dominant hand: pectoralis 
major (PM), anterior deltoid (Delt.A), middle deltoid 
(Delt.M), lateral deltoid (Delt.L), biceps brachii (B), 
brachialis (Brchl), triceps brachii lateral head (Tri. Lat), 
triceps brachii long head (Tri. L) as shown in Fig. 1 .  These 
muscle locations were strategically selected due to their 
active engagement while performing the experiment. The 
skin was wiped and cleaned with alcohol swabs prior to 
placing the EMG electrodes and muscle signals were 
recorded at a sampling rate of 2000 Hz. 

For neural activity, each subject wore an electrode cap to 
capture EEG signals recorded through an amplifier 
(g.Hiamp, g.tec medical engineering GmbH, Graz, Austria) 
a sampling rate of 600 Hz. The cap contained 64 electrodes 
(shown in Fig. 1 ), with the left ear lobe as the reference and 
the forehead as ground. 

Simultaneously, kinematic data were recorded while 
each subject controlled a unilateral handle of the 
ArmAble™, capturing the x-y coordinates of the cursor at a 
sampling rate of 50Hz, alongside the EMG and EEG (Fig.2) 
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TABLE I. EVALUATION METRICS OF EEG-EMG FUSED DATASET 

Level l Level 2 
Subs 

A Fl K A Fl K 

Sl 0.833 0.832 0.667 0.883 0.883 0.767 
S2 0.983 0.983 0.967 0.917 0.917 0.833 
S3 0.967 0.967 0.933 0.917 0.916 0.833 
S4 0.917 0.916 0.833 0.917 0.916 0.833 
S5 0.817 0 .814 0.633 0.9 0.899 0.8 
S6 0.883 0.883 0.767 0.867 0.867 0.733 
S7 0.933 0.933 0.867 0.933 0.933 0.867 
S8 0.9 0.9 0.9 0.833 0.833 0.667 
S9 0.967 0.967 0.933 0.933 0.933 0.867 
SlO 0.9 0.899 0.8 0.933 0.933 0.867 

Mean 0.91 0.909 0.83 0.903 0.903 0.807 

systems. Both EMG and EEG s1gnals were recorded usmg 
MATLAB and SIMULINK, whereas the center-out-task 
experiment was designed using Unity and the kinematic data 
was recorded through in-built tracking methods. 

B. Experimental Protocol 
Subjects were seated comfortably in front of the 

ArmAble™ table, gripping the unilateral handle with their 
dominant hand in the rest position (Fig. 2). EEG and EMG 

Fig. 3. Transformer Model Architecture. Input is EEG-EMG of c x 
samples. Here c is the number of channels, samples are the number 
of samples, seq Len is the sequence length, pSize is the length of 
each patch, pLen is the patch vector length of encoded patch, heads 
is the number of attention heads. 
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Level 3 Level 4 

A Fl K A Fl K 

0.789 0.787 0.72 0.833 0.829 0.805 
0.758 0.763 0.683 0.842 0.825 0.803 
0.841 0.84 0.788 0.813 0.796 0.767 
0.842 0.842 0.789 0.839 0.817 0.795 
0.867 0.868 0.823 0.84 0.838 0 .815 
0.917 0.916 0.889 0.804 0.8 0.771 
0.833 0.83 1 0.776 0.852 0.846 0.823 
0.875 0.874 0.832 0.844 0.838 0 .813 
0.892 0.866 0.822 0.804 0.796 0.768 
0.892 0.892 0.856 0.839 0.833 0.809 
0.851 0.848 0.798 0.827 0.822 0.797 

electrodes were carefully placed on the scalp and muscles. 
The experiment followed a center-out protocol using the 
ArmAble™ system with a computer screen. Subjects 
manipulated the handle to control a cursor moving from the 
start position to the center and then to multiple targets 
around the center. The experiment had four levels: the first 
and second levels had two targets each, the third level had 
four targets, and the fourth level had eight targets. Each level 
included 35 repetitions, with each repetition lasting 5-20 
seconds, followed by a 5-second break. After completing 
each level, a 5-minute break was provided to prevent fatigue 
and maintain data quality. Targets were randomized to 
enhance engagement and attention. 

C. Data Preprocessing 
For each subject, four sets of EEG, EMG, and cursor 

coordinate data corresponding to the four levels were 
collected. EEG and EMG signals were recorded using 
MA TLAB and SIMULINK, while cursor coordinates were 
tracked using built-in methods. A custom timestamp 
method synchronized the EEG and EMG data with cursor 
coordinates. ArmAble™ started recording kinematic data 
when the subject moved the handle from the rest position to 
the center target (refer Fig.2) and stopped when the subject 
completed the level. This study focused on the data from 
the center to the target. Therefore, the raw EEG and EMG 
data were meticulously trimmed based on the timestamps of 
each subject's movements. 

For EEG preprocessing, raw EEG data were passed 
through a 5th order high-pass filter with a cutoff frequency 
of0.5 Hz, and the resulting 64-channel signals were cleaned 
using the ATAR algorithm [24] with soft-thresholding (� = 
0 .5) as it has shown its promise to subdue artifacts using 
wavelet decomposition. For EMG preprocessing, raw data 
were passed through a 4th order butter worth bandpass filter 
(25-SOOHz) and a notch filter at 60Hz to eliminate power 
line interference. The root mean square (RMS) of the 
filtered signals was calculated and further subjected to 
Gaussian smoothing. 

During the experiment, errors were observed when 
subjects reached incorrect targets, resulting in timeouts or 
quick target switches. To keep the consistency of the dataset 
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for all the subjects, 30 out of 35 repetitions per level were 
selected, excluding those instances of incorrect target reach. 
To create the EEG-EMG fusion, preprocessed EEG signals 
were vertically concatenated with preprocessed EMG 
signals. EMG signals were down-sampled to match the 
length of EEG signals, resulting in a fused dataset with 64-
channel EEG and 8-channel EMG data contributing to 72 
channels for 30 repetitions per level. To prepare the data for 
analysis, z-score standardization was applied as expressed 
in Eq. (1) .  

(1) 
Here t, c represents the number of samples and channels, Xc 
represents the sample 's mean on channel c, and Cic 
represents the sample's standard deviation on channel c .  

D. Proposed Model Architecture 
To address the complexity of raw EEG and EMG signals, 

we employed advanced deep learning techniques. Our 
model architecture is inspired by the original Transformer 
[25], adapted to handle multi-channel EEG-EMG data. This 
adaptation leverages attention mechanisms to transform the 
data into highly distinguishing representations, capturing 
spatiotemporal pattens across EEG and EMG channels. 

The core architecture comprises three key components: 
Patch Encoding, Positing Encoding, and a Single 
Transformer Encoder (Fig. 3). The Transformer Encoder 
uses multiple heads corresponding to the number of EEG­
EMG channels. The output from the encoder is then fed into 
a fully connected layer for final predictions. 

Patch Encoding: Similar to word embedding in natural 
language processing (NLP), this component encodes each 
path of the fusion data to capture underlying patterns. EEG­
EMG signals, initially structured as channels X samples, 
were transformed into patches of size patchSize, resulting 
in a matrix of channels X seq Len X patchSize. This 
methodical division captures local patterns. The patches are 
then encoded using a linear layer, producing patch vectors 
oflength patchLen, preserving intricate temporal dynamics 
across channels. 

Position Encoding: To incorporate temporal information, 
position encoding is employed, inspired by conventional 
Transformer techniques. This process reshapes the data to 
channels X seqLen X patchLen and adds temporal 
context, reorganizing the data into a 2D representation 
(seqLen X channels X patchLen). This matrix is 
provided as input to the Transformer encoder, enhancing the 
model's comprehension of temporal dynamics in the EEG­
EMG data. 

Single Transformer Encoder: At the core of our model, the 
Transformer encoder processes multi-channel EEG-EMG 
data. Each channel's information is processed 
independently, allowing a distinct understanding of diverse 
neural activities. Our encoder utilizes a single block, unlike 
the original Transformer's six blocks. The Transformer 
encoder employs heads corresponding to the number of 
EEG-EMG channels, enabling simultaneous attention to 
various aspects of the input data. This sophisticated attention 

mechanism significantly enhances the model's ability to 
anticipate complex spatiotemporal patterns within the EEG­
EMG data. 

E. Scoring Performance 
From the confusion matrix obtained, three indicators 

were employed to conduct a comprehensive evaluation for 
each level: accuracy, fl -score, and cohen-kappa score. 
These indicators provide a detailed analysis of the model's  
performance. The evaluation metrics are defined as follows: 

Accuracy (A) : Calculated as the mean accuracy of the 
sum of 10-fold cross-validation for each individual subject 
expressed in Eq. (2) as 

""' (TP; + TN;) 
Accuracysubject = L (TP; + TN; + FP; + FN;) (2) 
Where TP; is True Positive, TN;is True Negative, FP; is 

False Positive and FN; is False Negative of the ithfold. 
Fl-Score (Fl): The harmonic mean of precision and 

recall, providing a balanced measure of the model's 
performance. It is expressed in Eq. (3) as a mean of the sum 
across 10-fold cross-validation as 

2 x Precision x Recall 
Flsubject = ( . . ll) 

(3) 
Prenswn + Reca 

Cohen-Kappa Score (K) : Measures the inter-rater 
agreement for the true labels and predicted labels. Based on 
the measured score, the level of agreement can be a credible 
indicator to the model's performance. 

The results obtained were then used to control a 
humanoid robot, Mitra (Invento Research Inc. Plano, TX, 
USA) [26], [27] with 2 1  degrees of freedom (Fig. 4). 

Ill. RESULTS 

In this study, 64-channel EEG and 8-channel EMG data 
were collected from ten subjects performing center -our tasks 
on an upper limb rehabilitation device across four levels of 
increasing complexity, with each subject completing 30 
trials per level. After preprocessing, a hybrid method, 
involving the vertical concatenation of down-sampled EMG 
signals with EEG data, was used to evaluate the performance 
of the fusion model. Three performance metrics were 
employed, and 10-fold cross-validation was conducted on 
the normalized dataset to ensure unbiased results. Table I 
represents the performance results for the classification of 2, 
2, 4, 8 targets using EEG-EMG. The results indicates that 
the proposed model classifies the input fused EEG-EMG 
data with high accuracy. 

As observed in Table I, the model demonstrates high 
binary classification accuracy, fl-score and kappa scores in 
Levels 1 and 2 across most subjects. The mean accuracy for 
Level l is 91% and for Level 2, it is approximately 90%. The 
fl-scores and kappa scores follow similar high trends. This 
indicates that the model performs exceptionally well in 
simpler tasks where the targets are fewer and easier to reach. 
As the task complexity increases in Levels 3 and 4, a slight 
decline in performance metrics is observed. For Level 3, the 
mean accuracy drops to 85%, and for Level 4, it further 
reduces to around 83%. fl-scores and cohen-kappa scores 
also follows a similar trend, indicating increased difficulty 
in accurately predicting the target positions as the number of 
targets and task complexity increases. 
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IV. DISCUSSION 

This study presents a novel deep learning Transformer 
model that uses EEG-EMG signals to classify center-out 
tasks performed on a low-cost upper limb rehabilitation 
table. Initially, the study was conducted on healthy subjects 
to ensure device safety, functionality, and model predictive 
capabilities before exploring its potential application in 
rehabilitation. 

Although various fusion techniques have been proposed 
in other studies [ 14  ]-[1 8], [28], this research uniquely 
integrates EMG and EEG vertically and evaluates the 
classification performance using a light weight Transformer 
model with only one encoder compared to the traditional six 
encoder. Comprehensive reviews on various deep learning 
models for BCI using EEG data are detailed in [29]-[3 1 ] .  
Compared to models applied on similar datasets in [32], 
such as convolutional neural networks (CNN), long-short 
tern memory networks (L S TM), and EEG-Net, our proposed 
Transformer model shows superior performance. While 
CNN and EEG-Net achieved 93% and 70% accuracy for 
classifying 2 and 6 targets respectively, our model attained 
98.3% accuracy for binary classification, 9 1 .7% for 4-class 
classification, and 85.2% for 8-class classification - the 
highest among subjects. For 6-class classification, EEG-Net 
obtained 36% accuracy, whereas for 4-class, it achieved 
6 1%. In comparison, our model achieved 85% and 83% for 
4-class and 8-class, respectively, across subjects. In another 
study on decoding hand motor imagery tasks using EEG, the 
proposed CNN EEG-Net model [33] achieved 78.46% 
accuracy for 2-class classification and 76.72% for 3-class 
classification. Our Transformer-based model outperformed 
these results, achieving 9 1% accuracy for 2-class and 85. 1%  
for 4-class classification. Aggregating performance metrics 
using EEG-EMG across four levels, our model achieved 
87.27% accuracy, 87.05% fl -score, and 80.58% kappa 
score. 

LEFT RIGHT 

�.-, ..... 

�··.� 
. . -

DIAG 1 DIAG 2 

The model weights with the highest accuracy from the 
cross-validation were saved during the training phase. Three 
random trials from each of the four levels were selected for 
each subject. These saved weights were loaded into the 
Transformer model for each level, and the model classified 
these trials for each subject. The results from the 
classification were then used to control the left hand of Mitra 
to the corresponding position as shown in Fig 4. 

These results indicates that our proposed model not only 
surpasses the accuracy of existing models like CNN, 
LSTM, and EEG-Net for binary and multi-class 
classifications but also demonstrates a marked 
improvement in handling more complex classification 
tasks. The high performance across different classification 
level suggest that the integration of EEG and EMG signals 
and the use of a Transformer model enhance the robustness 
and reliability of the classification process, making it a 
promising approach for BCI technology for robot assistive 
rehabilitation settings. 

V. CONCLUSION 

This study proposes a novel transformer-based deep 
learning architecture for hand movements classification 
using EEG-EMG data. Ten subjects participated in data 
collection phase where they performed center-out tasks on 
a low-cost rehabilitation table. EEG and EMG signals were 
collected, preprocessed, and fused to create a combined 
dataset. The performance of the proposed model was 
evaluated using fused EEG-EMG data for binary (accuracy : 
9 1%  and 90.3% for level 1 and 2) 4-class (accuracy : 85. 1%  
for level 3) and 8-class (accuracy : 82.7% for level 4) 
classification tasks. These results achieved superior 
accuracy compared to existing research employing similar 
datasets. Building on these promising findings, future work 

UP DOWN 

DIAG 3 DIAG 4 
Fig.4. Three random trials were selected from EEG-EMG dataset and evaluated using the model at different levels. The outcomes from these 
evaluations were employed to guide the humanoid robot Mitra in reaching designated target locations. This illustration focuses on the scenario of 
Level 4, which involves eight target locations. The red circles denote the positions of the targets and utilizing EEG-EMG data as inputs, Mitra 
successfully navigated to each of these locations. 
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will include data collected from individuals undergoing 

upper limb rehabilitation. This framework has a potential to 

help individuals control robotic or assistive devices using 
EEG-EMG signals. The study also demonstrates the 
capability of a lightweight deep learning model to 

efficiently utilize both EMG and EEG data for device 
control. Further stages of this research will focus on refining 
the proposed model for real-time application and employing 

other fusion methods. 
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