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Abstract—  Brain-computer interfaces (BCls) offer
promising solutions for upper limb rehabilitation. Despite
advancements in deep learning, traditional models for motor
rehabilitation using electroencephalography (EEG) or
electromyography (EMG) to control assistive devices require
enhancement. This study aims to enhance motor control
capabilities by integrating EEG and EMG signals using a
Transformer-based deep learning model. Ten able-bodies
subjects performed center-out tasks on a low-cost upper limb
rehabilitation table, capturing 2D kinematic data, EEG, and
EMG signals simultaneously. The tasks varied in complexity
across four levels. Preprocessed EEG and EMG signals were
fused and given as input to the proposed model, which was
evaluated using three performance metrics. Results showed
that the EEG-EMG combined model achieved 87.27%
accuracy across all the four levels. Furthermore, the model’s
output successfully controlled a humanoid robot to replicate
similar movements. These findings highlight the efficacy of
combined EEG-EMG data in improving accuracy and
performance in BCI applications, advancing assistive
technologies and neurorehabilitation interventions.

Keywords—Brain-computer interface, deep learning, EEG-
EMG, transformer, humanoid robot, upper limb motor
rehabilitation

1. INTRODUCTION

Stroke is a leading cause of disability and mortality
among the elderly, second only to heart disease.
Approximately 80% of stroke survivors experience motor
impairment, typically affecting one side of the body [1], [2].
Despite these impairments, many retain the ability to
generate motor-related neural activities, similar to healthy
individuals, but only a small fraction regains useful upper
limb functions after prolonged physiotherapy. Enhanced
upper limb function is crucial for post-stroke rehabilitation
as many activities of daily living (ADLs) rely heavily on arm
functions. As highlighted in [3], the projected increase in the
stroke population will impose a significant economic burden
on the society, underscoring the need for effective
rehabilitation strategies.

Recent advancements in machine learning and signal
processing have enabled researchers to decode brain signals
into actionable outputs, allowing control of devices like
wheelchairs, assistive robots, and autonomous vehicles [4],
[5]. This possibility for the brain to act upon an environment
through an alternate pathway has drawn attention to the field
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Fig. 1. EEG electrode locations on the scalp is shown on the left side
and EMG electrode locations on the dominant arm is shown on the
right side. All 64 EEG channels were located at the frontal, central,
parietal and occipital areas to record the brain activities during
center-out target experiment. 8 EMG sensors were placed
strategically on — (1) PM, (2) Delt.A, (3) Delt.M, (4) Delt.L (5) B,
(6) Brehl, (7) Tri. L, (8) Tri. Lat.

of brain-computer interaction (BCI) [6], [7], as a promising
tool in rehabilitation for patients with limited movement
functionalities. One of the main challenges involved in BCIs
is decoding upper limb kinematics from brain signals.
Studies have shown that invasive methods using arrays of
microelectrodes directly in the motor cortex can successfully
perform reach and grasp activities in primates [8] and
individuals with upper limb motor disability [9]. Despite
their potential, invasive approaches require surgery limiting
its  usage.  Non-invasive  methods, such  as
electroencephalography ~ (EEG),  involve  applying
conductive gel on electrodes to enhance the conductivity
between the scalp and electrodes. However, the low signal-
to-noise ratio of EEG signals makes it difficult to decode
hand movements. Another interactive bio-signal widely
used is electromyography (EMG), where surface electrodes
detect muscle activities during attempted movements,
serving as a control signal for device interaction. EMG has
been proven [10], [11] as a viable alternative to BCI for
detection movements in individuals with motor
impairments.

Research has demonstrated the classification of upper
limb center-out reaching tasks using EEG [12] and reaching-
to-grasp tasks using EMG [13] signals for prosthetic control.
Most studies extract key features from EMG and EEG
signals to train machine learning models, typically using
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Fig. 2. Experiment setup. The subjects were asked to sit in front of
the ArmAble™ table. Their dominant hand rested on the unilateral
handle with a grip hold to maneuver the device based on the target
locations. Four different levels with 2, 2, 4 and 8 targets spread around
the center were displayed on the screen. Target position was set
randomly to increase engagement of the subjects.
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either EEG or EMG alone. While EEG signals are complex
to decode and do not directly measure movement, EMG
signals provide a direct measure but are limited by factors
like muscle fatigue. Although non-invasive BCI offers a
promising alternative, few studies have investigated fusing
scalp EEG [14] and surface EMG [15] for movement
classification using signal decoding. Hybrid multimodal
fusion frameworks [16]-[19] have been proposed, but often
involve small sample size, limited EEG electrodes, and
manual feature extraction followed by classical machine
learning methods. Fusion techniques usually develop
separate classifiers for EEG and EMG, combining their
results through balanced weights or Bayesian approaches
[16].

Deep learning algorithms have eliminated manual
feature extraction, allowing preprocessed signals to directly
classify movement tasks. By combining brain activity and
muscle activity measurements, researchers can develop new
technologies and therapies that assess changes in patients’
brain and muscles during physiotherapy [20]. A practical
framework combining EEG and EMG signals can help
individuals with disabilities to perform ADL tasks with high
precision through device or robot control. Although initial
signal fusion show promise, the potential of deep learning
for EEG and EMG fusion remains largely unexplored due to
high computational complexity and data requirements for
real-time movement recognition. Only few studies have
thoroughly evaluated EEG and EMG efficacy for upper limb
movement classification. While hybrid EEG-EMG-powered
exoskeletons have shown considerable promise for gait
movements [21], [22], the application of deep learning
methods to hybrid EEG-EMG systems for upper limb
movements still requires extensive exploration.

Stroke survivors often need to commute for
physiotherapy sessions, and purchasing such devices for
home use can place a significant financial burden on their
families. Additionally, the lack of observable progress over
time can diminish interest and motivation in continuing
physiotherapy. Recent technology advancements have

facilitated home-based rehabilitation, offering reduced
travel burdens and increased flexibility. Such setup also
allows patients to receive remote feedback from therapists.
Chen et al. in [23] elaborates various home-based
technologies for stroke rehabilitation. In account of this
aspect, we employ a cost-effective, non-motor-driven
interactive arm training device, designed for post-stroke
recovery, namely ArmAble™ (BeAble Health Pvt. Ltd.,
Telangana, India). This device utilizes interactive games to
make upper limb rehabilitation more engaging and
rewarding.

To address these concerns, this study evaluates the
performance of EEG-EMG during center-out tasks using
deep learning methods. Utilizing ArmAble™, EEG and
EMG signals were collected from subjects performing
center-out task scenarios of increasing complexity. In this
preliminary study, a novel hybrid framework using both
muscle and neural signals to classify movements was
developed. It is hypothesized that supplementing neural
signals with muscle signals will outperform methods using
only neural signals. This novel framework aims to
significantly improve classification accuracy. The results
from this multimodal framework model were used to control
a humanoid robot that moves the handle of the ArmAble™
to the target locations based on the predictions.

II. EXPERIMENTAL METHODS

A. Data Collection

Ten healthy subjects (4 female and 6 male subjects, age
range: 20-33 yrs., mean age 27.4) with no history of upper
extremity deformity or other musculoskeletal disorders were
selected for the experiment. Subjects were informed about
the experiment, and they provided written consent. The
procedures were in accordance with the Declaration of
Helsinki and approved by the Institutional Review Board
(IRB) ethical committee at the University of Maryland
Baltimore County.

To capture muscle activities, eight wireless Avanti EMG
sensors (Delsys, Natick, USA) were placed on the eight most
representative muscles of the dominant hand: pectoralis
major (PM), anterior deltoid (Delt.A), middle deltoid
(Delt.M), lateral deltoid (Delt.L), biceps brachii (B),
brachialis (Brchl), triceps brachii lateral head (Tri. Lat),
triceps brachii long head (Tri. L) as shown in Fig. 1. These
muscle locations were strategically selected due to their
active engagement while performing the experiment. The
skin was wiped and cleaned with alcohol swabs prior to
placing the EMG electrodes and muscle signals were
recorded at a sampling rate of 2000 Hz.

For neural activity, each subject wore an electrode cap to
capture EEG signals recorded through an amplifier
(g-Hlamp, g.tec medical engineering GmbH, Graz, Austria)
a sampling rate of 600 Hz. The cap contained 64 electrodes
(shown in Fig. 1), with the left ear lobe as the reference and
the forehead as ground.

Simultaneously, kinematic data were recorded while
each subject controlled a wunilateral handle of the
ArmAble™, capturing the x-y coordinates of the cursor at a
sampling rate of 50Hz, alongside the EMG and EEG (Fig.2)
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TABLE L EVALUATION METRICS OF EEG-EMG FUSED DATASET
Level 1 Level 2 Level 3 Level 4
Subs
A F1 K A F1 K A F1 K A F1 K
S1 0.833 0.832 0.667 0.883 0.883 0.767 0.789 0.787 0.72 0.833 0.829 0.805
S2 0.983 0.983 0.967 0.917 0.917 0.833 0.758 0.763 0.683 0.842 0.825 0.803
S3 0.967 0.967 0.933 0.917 0916 0.833 0.841 0.84 0.788 0.813 0.796 0.767
S4 0917 0916 0.833 0917 0916 0.833 0.842 0.842 0.789 0.839 0.817 0.795
S5 0.817 0.814 0.633 0.9 0.899 0.8 0.867 0.868 0.823 0.84 0.838 0.815
S6 0.883 0.883 0.767 0.867 0.867 0.733 0917 0.916 0.889 0.804 0.8 0.771
S7 0.933 0.933 0.867 0.933 0.933 0.867 0.833 0.831 0.776 0.852 0.846 0.823
S8 0.9 0.9 0.9 0.833 0.833 0.667 0.875 0.874 0.832 0.844 0.838 0.813
S9 0.967 0.967 0.933 0.933 0.933 0.867 0.892 0.866 0.822 0.804 0.796 0.768
S10 0.9 0.899 0.8 0.933 0.933 0.867 0.892 0.892 0.856 0.839 0.833 0.809
Mean 0.91 0.909 0.83 0.903 0.903 0.807 0.851 0.848 0.798 0.827 0.822 0.797

systems. Both EMG and EEG signals were recorded using
MATLAB and SIMULINK, whereas the center-out-task
experiment was designed using Unity and the kinematic data
was recorded through in-built tracking methods.

B. Experimental Protocol

Subjects were seated comfortably in front of the
ArmAble™ table, gripping the unilateral handle with their
dominant hand in the rest position (Fig. 2). EEG and EMG

electrodes were carefully placed on the scalp and muscles.
The experiment followed a center-out protocol using the
ArmAble™ system with a computer screen. Subjects
manipulated the handle to control a cursor moving from the
start position to the center and then to multiple targets
around the center. The experiment had four levels: the first
and second levels had two targets each, the third level had
four targets, and the fourth level had eight targets. Each level
included 35 repetitions, with each repetition lasting 5-20

seconds, followed by a 5-second break. After completing
each level, a 5-minute break was provided to prevent fatigue

" e adearit and maintain data quality. Targets were randomized to
Ve dnei enhance engagement and attention.
it e B AT e e, ot ey,
sampies

C. Data Preprocessing

For each subject, four sets of EEG, EMG, and cursor
coordinate data corresponding to the four levels were
collected. EEG and EMG signals were recorded using
MATLAB and SIMULINK, while cursor coordinates were

EEG-EMG Patches ¢ X seqlen X pSize

“1 s —

¢ X seqlen X pLen segLen X pLen N\ tracked using built-in methods. A custom timestamp

‘ /) method synchronized the EEG and EMG data with cursor
. ™ . . .

e T coordinates. ArmAble'™ started recording kinematic data

T ] when the subject moved the handle from the rest position to
the center target (refer Fig.2) and stopped when the subject
completed the level. This study focused on the data from
the center to the target. Therefore, the raw EEG and EMG
data were meticulously trimmed based on the timestamps of
each subject’s movements.

For EEG preprocessing, raw EEG data were passed
through a 5" order high-pass filter with a cutoff frequency
of 0.5 Hz, and the resulting 64-channel signals were cleaned
using the ATAR algorithm [24] with soft-thresholding (B =
0.5) as it has shown its promise to subdue artifacts using
wavelet decomposition. For EMG preprocessing, raw data
were passed through a 4 order butter worth bandpass filter
(25-500Hz) and a notch filter at 60Hz to eliminate power
line interference. The root mean square (RMS) of the
filtered signals was calculated and further subjected to
Gaussian smoothing.

During the experiment, errors were observed when
subjects reached incorrect targets, resulting in timeouts or
quick target switches. To keep the consistency of the dataset

Restack all channels

Single Transformer Encoder

ﬁansformer Model

a4 |
! LN

Fig. 3. Transformer Model Architecture. Input is EEG-EMG of ¢ x
samples. Here c is the number of channels, samples are the number
of samples, seqLen is the sequence length, pSize is the length of
each patch, pLen is the patch vector length of encoded patch, heads
is the number of attention heads.

\
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for all the subjects, 30 out of 35 repetitions per level were
selected, excluding those instances of incorrect target reach.
To create the EEG-EMG fusion, preprocessed EEG signals
were vertically concatenated with preprocessed EMG
signals. EMG signals were down-sampled to match the
length of EEG signals, resulting in a fused dataset with 64-
channel EEG and 8-channel EMG data contributing to 72
channels for 30 repetitions per level. To prepare the data for
analysis, z-score standardization was applied as expressed
in Eq. (1).

Ry = D= 2e ®

Here t, ¢ represents the number of samples and channels, X,
represents the sample’s mean on channel ¢, and o,
represents the sample's standard deviation on channel c.

D. Proposed Model Architecture

To address the complexity of raw EEG and EMG signals,
we employed advanced deep learning techniques. Our
model architecture is inspired by the original Transformer
[25], adapted to handle multi-channel EEG-EMG data. This
adaptation leverages attention mechanisms to transform the
data into highly distinguishing representations, capturing
spatiotemporal pattens across EEG and EMG channels.

The core architecture comprises three key components:
Patch Encoding, Positing Encoding, and a Single
Transformer Encoder (Fig. 3). The Transformer Encoder
uses multiple heads corresponding to the number of EEG-
EMG channels. The output from the encoder is then fed into
a fully connected layer for final predictions.

Patch Encoding: Similar to word embedding in natural
language processing (NLP), this component encodes each
path of the fusion data to capture underlying patterns. EEG-
EMG signals, initially structured as channels X samples,
were transformed into patches of size patchSize, resulting
in a matrix of channels X seqLen X patchSize. This
methodical division captures local patterns. The patches are
then encoded using a linear layer, producing patch vectors
of length patchLen, preserving intricate temporal dynamics
across channels.

Position Encoding: To incorporate temporal information,
position encoding is employed, inspired by conventional
Transformer techniques. This process reshapes the data to
channels X seqlLen X patchLen and adds temporal
context, reorganizing the data into a 2D representation
(seqLen X channels X patchLen). This matrix is
provided as input to the Transformer encoder, enhancing the
model’s comprehension of temporal dynamics in the EEG-
EMG data.

Single Transformer Encoder: At the core of our model, the
Transformer encoder processes multi-channel EEG-EMG
data. Each channel’s information is processed
independently, allowing a distinct understanding of diverse
neural activities. Our encoder utilizes a single block, unlike
the original Transformer’s six blocks. The Transformer
encoder employs heads corresponding to the number of
EEG-EMG channels, enabling simultanecous attention to
various aspects of the input data. This sophisticated attention

mechanism significantly enhances the model’s ability to
anticipate complex spatiotemporal patterns within the EEG-
EMG data.

E. Scoring Performance

From the confusion matrix obtained, three indicators
were employed to conduct a comprehensive evaluation for
each level: accuracy, fl-score, and cohen-kappa score.
These indicators provide a detailed analysis of the model’s
performance. The evaluation metrics are defined as follows:

Accuracy (A): Calculated as the mean accuracy of the
sum of 10-fold cross-validation for each individual subject
expressed in Eq. (2) as

(TP; + TN;) 5
(TP, + TN; + FP, + FN,) @

Where TP; is True Positive, TN;is True Negative, FP; is
False Positive and FN; is False Negative of the i‘"fold.

F1-Score (F1): The harmonic mean of precision and
recall, providing a balanced measure of the model’s
performance. It is expressed in Eq. (3) as a mean of the sum
across 10-fold cross-validation as

2 X Precision X Recall

Accuracygy,, ject =

subject = (precision + Recall) ®

Cohen-Kappa Score (kx): Measures the inter-rater
agreement for the true labels and predicted labels. Based on
the measured score, the level of agreement can be a credible
indicator to the model’s performance.

The results obtained were then used to control a
humanoid robot, Mitra (Invento Research Inc. Plano, TX,
USA) [26], [27] with 21 degrees of freedom (Fig. 4).

III. RESULTS

In this study, 64-channel EEG and 8-channel EMG data
were collected from ten subjects performing center-our tasks
on an upper limb rehabilitation device across four levels of
increasing complexity, with each subject completing 30
trials per level. After preprocessing, a hybrid method,
involving the vertical concatenation of down-sampled EMG
signals with EEG data, was used to evaluate the performance
of the fusion model. Three performance metrics were
employed, and 10-fold cross-validation was conducted on
the normalized dataset to ensure unbiased results. Table I
represents the performance results for the classification of 2,
2, 4, 8 targets using EEG-EMG. The results indicates that
the proposed model classifies the input fused EEG-EMG
data with high accuracy.

As observed in Table I, the model demonstrates high
binary classification accuracy, fl-score and kappa scores in
Levels 1 and 2 across most subjects. The mean accuracy for
Level 1is 91% and for Level 2, it is approximately 90%. The
fl-scores and kappa scores follow similar high trends. This
indicates that the model performs exceptionally well in
simpler tasks where the targets are fewer and easier to reach.
As the task complexity increases in Levels 3 and 4, a slight
decline in performance metrics is observed. For Level 3, the
mean accuracy drops to 85%, and for Level 4, it further
reduces to around 83%. fl-scores and cohen-kappa scores
also follows a similar trend, indicating increased difficulty
in accurately predicting the target positions as the number of
targets and task complexity increases.
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IV. DIscuUsSION

This study presents a novel deep learning Transformer
model that uses EEG-EMG signals to classify center-out
tasks performed on a low-cost upper limb rehabilitation
table. Initially, the study was conducted on healthy subjects
to ensure device safety, functionality, and model predictive
capabilities before exploring its potential application in
rehabilitation.

Although various fusion techniques have been proposed
in other studies [14]-[18], [28], this research uniquely
integrates EMG and EEG vertically and evaluates the
classification performance using a light weight Transformer
model with only one encoder compared to the traditional six
encoder. Comprehensive reviews on various deep learning
models for BCI using EEG data are detailed in [29]-[31].
Compared to models applied on similar datasets in [32],
such as convolutional neural networks (CNN), long-short
tern memory networks (LSTM), and EEG-Net, our proposed
Transformer model shows superior performance. While
CNN and EEG-Net achieved 93% and 70% accuracy for
classifying 2 and 6 targets respectively, our model attained
98.3% accuracy for binary classification, 91.7% for 4-class
classification, and 85.2% for 8-class classification — the
highest among subjects. For 6-class classification, EEG-Net
obtained 36% accuracy, whereas for 4-class, it achieved
61%. In comparison, our model achieved 85% and 83% for
4-class and 8-class, respectively, across subjects. In another
study on decoding hand motor imagery tasks using EEG, the
proposed CNN EEG-Net model [33] achieved 78.46%
accuracy for 2-class classification and 76.72% for 3-class
classification. Our Transformer-based model outperformed
these results, achieving 91% accuracy for 2-class and 85.1%
for 4-class classification. Aggregating performance metrics
using EEG-EMG across four levels, our model achieved
87.27% accuracy, 87.05% fl-score, and 80.58% kappa
score.

LEFT

DIAG 2

DIAG 1

The model weights with the highest accuracy from the
cross-validation were saved during the training phase. Three
random trials from each of the four levels were selected for
each subject. These saved weights were loaded into the
Transformer model for each level, and the model classified
these trials for each subject. The results from the
classification were then used to control the left hand of Mitra
to the corresponding position as shown in Fig 4.

These results indicates that our proposed model not only
surpasses the accuracy of existing models like CNN,
LSTM, and EEG-Net for binary and multi-class
classifications but also demonstrates a marked
improvement in handling more complex classification
tasks. The high performance across different classification
level suggest that the integration of EEG and EMG signals
and the use of a Transformer model enhance the robustness
and reliability of the classification process, making it a
promising approach for BCI technology for robot assistive
rehabilitation settings.

V. CONCLUSION

This study proposes a novel transformer-based deep
learning architecture for hand movements classification
using EEG-EMG data. Ten subjects participated in data
collection phase where they performed center-out tasks on
a low-cost rehabilitation table. EEG and EMG signals were
collected, preprocessed, and fused to create a combined
dataset. The performance of the proposed model was
evaluated using fused EEG-EMG data for binary (accuracy:
91% and 90.3% for level 1 and 2) 4-class (accuracy: 85.1%
for level 3) and 8-class (accuracy: 82.7% for level 4)
classification tasks. These results achieved superior
accuracy compared to existing research employing similar
datasets. Building on these promising findings, future work

DIAG 3

Fig.4. Three random trials were selected from EEG-EMG dataset and evaluated using the model at different levels. The outcomes from these
evaluations were employed to guide the humanoid robot Mitra in reaching designated target locations. This illustration focuses on the scenario of
Level 4, which involves eight target locations. The red circles denote the positions of the targets and utilizing EEG-EMG data as inputs, Mitra
successfully navigated to each of these locations.

DIAG 4
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will include data collected from individuals undergoing
upper limb rehabilitation. This framework has a potential to
help individuals control robotic or assistive devices using
EEG-EMG signals. The study also demonstrates the
capability of a lightweight deep learning model to
efficiently utilize both EMG and EEG data for device
control. Further stages of this research will focus on refining
the proposed model for real-time application and employing
other fusion methods.
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