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The microhydrodynamics of particle suspensions in polymeric fluids has a wide range
of applications in industry and biology. To discern the dynamics of particles in such
systems, it is important to analyze the stress response of the suspension to applied flow
fields. While such investigations have been theoretically done for suspensions of rigid
spheres in weakly viscoelastic fluids, the effect of nonsphericity of particles on the stress
remains relatively unexplored. The interplay between the response of the polymeric fluid
and the particle orientation yields rich physics. The viscoelastic torques make the particle
inhabit a preferred orientation in a given flow, resulting in time-dependent stresses. In this
paper, we determine the average extra stress in a dilute suspension of rigid, non-Brownian
spheroids in a second-order fluid subject to shear and extensional flows. We perform this
task by examining the flow around a single spheroid in the limit of small Weissenberg
number (Wi � 1) and perform an ensemble average of the stress tensor over all particle
configurations. There are two contributions to the extra stress: one from the force dipole
on the particles (stresslet) and another from the fluctuations in the velocity in the bulk fluid
(fluid-induced particle stress), the latter of which does not arise in a zero Reynolds number
Newtonian fluid. We present results for the O(φWi) corrections to the long-time effective
shear viscosity, normal stress coefficients, and extensional viscosities in the suspension in
shear, uniaxial extensional, and planar extensional flows, where φ is the particle volume
fraction. To elucidate the effect of particle shape on the effective viscosity, we repeat
this analysis for different aspect ratios (AR) for prolate (needlelike) and oblate (disklike)
spheroids.

DOI: 10.1103/PhysRevFluids.10.053302

I. INTRODUCTION

Suspensions—i.e., particles embedded in liquids—are common in our everyday lives, as they are
found in pharmaceutical drugs, biological fluids, foods, paints, and coatings. Suspensions often flow
differently than simple fluids like water and air, and thus, it is important to characterize their flow
behavior to better engineer and process them. For example, the effective viscosity of a suspension
is a key variable of interest in designing microfluidic devices since phenomena like separation and
flow focusing [1,2] hinge on the knowledge of the effective viscosity of the suspending medium.
Homogenization is a useful tool for finding the effective material properties of a suspension through
ensemble averaging. This topic has been studied for years for the case when particles are embedded
in a simple Newtonian fluid like water. However, when the particles are inside a complex fluid like a
polymer solution (polyvinylpyrrolidone, polyacrylamide, polyisobutylene, etc.), little is understood
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on how to calculate the effective material properties. In this paper, we will address such topics and
investigate the role of particle shape on the effective stress in polymeric suspensions.

For a Newtonian fluid like water, the stress is given by the well-known equation σ = −pI + 2μE,
where σ is the stress tensor, p is the pressure, μ is the viscosity, and E is the rate of strain tensor. The
presence of particles in a fluid provides an additional resistance to flow and induces an extra stress
in the suspension. One of the earliest attempts to quantify extra stress in a Newtonian suspension
due to the presence of particles was made by Einstein [3]. He posed that, for very dilute suspensions
(particle fraction φ < 0.05) of rigid spheres in a Newtonian fluid, the effective viscosity is given
by μ(1 + 2.5φ), where μ is the zero-shear viscosity of the fluid. Einstein’s work was extended to
systems with nonspherical particles by Jeffery [4] following the investigations of Edwardes [5] and
Oberbeck [6]. Authors of numerous other studies also built on Einstein’s theories [7,8]; however, a
rigorous formal mathematical treatment of the homogenization procedure was put forth by Batchelor
[9]. In this theory, the extra stress in a suspension with rigid particles arises from the average force
dipole acting on the particles. A force dipole is a system of equal and opposite forces separated
by a distance. When the forces act along the line separating them, they give rise to a stresslet, and
when the force acts perpendicular to the line, they give rise to a couplet. The stresslet tries to pull
apart or push into the particle, whereas the couplet tends to rotate the particle in the clockwise
or anticlockwise direction. By virtue of the its rigidity, the particle tries to resist these deforming
forces acting on it and thereby induces a stress in the suspension. Thus, Batchelor [9] established a
relationship between the macroscopic bulk stress and the microscopic particle-scale force dipoles.

This research opened up avenues for exploring the rheology of more complex systems which
emulate more realistic situations as seen in nature by relaxing the assumptions made by Batchelor
[9] one by one. To study the effect of higher concentrations on the effective viscosity, it is imperative
to understand hydrodynamic interactions between particles [10–12]. Brady and Bossis [13] stud-
ied the variation of effective viscosity with particle volume fraction for concentrated suspension
(φ ∼ 0.1) of spheres in a simple shear flow. Their analysis revealed that hydrodynamic forces
promote clustering of particles and increase effective viscosity, whereas short-range interparticle
repulsive forces tend to prevent clustering and contribute negatively to the effective viscosity. They
also provided a scaling law relation for the size of clusters. Rheology of suspensions has also been
studied for other types of flow like plane Poiseuille flow [14] and pressure-driven flows [15]. The
shape of suspended particles also influences the dynamics of the suspension. In this context, rodlike
particle suspensions [16–18] have received significant attention. Spheroidal particles have also been
investigated recently in several studies [2,19–22].

Batchelor’s [9] study was restricted to particles in Newtonian fluids. However, many suspensions
that we encounter daily are polymeric fluids. Polymeric fluids display unique flow behavior. For
example, polymeric solutions exhibit viscoelasticity, behaving like a solid for flow timescales
smaller than the polymer relaxation time and like a liquid for flow timescales longer than the
polymer relaxation time [23]. When a polymeric fluid is sheared, it also experiences normal stresses
in the flow that are not seen in purely viscous fluids. These normal stresses arise due to stretching
of polymers in the flow direction, which generate tension along streamlines [24]. Lastly, polymeric
fluids exhibit shear thinning, which is the decrease in effective viscosity of a fluid with an increase
in shear rate. So far, the effective stress response of particles embedded in polymeric fluids is at
its infancy [25], even though such knowledge would be important in many industrial applications.
Authors of recent studies have examined the effective stress of a dilute suspension of rigid spheres in
weakly viscoelastic polymer fluids. Here, the effective viscosity of the suspension was determined
as well as expressions for the normal stress coefficients [26–28]. However, the effect of nonspherical
particle shapes (e.g., rods and disks) in such fluids has yet to be examined, even though in many
applications like fracking, it is common to see rodlike [17] and disklike particles [29] in polymer
solutions. Authors of some studies have also investigated the orientation behavior of active particles
in suspensions [30]. We anticipate that the rheology of nonspherical particles in polymer solutions
will be interesting for many reasons. First, normal stresses in the solution will no longer make a
particle tumble in a simple shear flow but instead orient to a preferred direction [2,17,20,31,32]. The
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FIG. 1. Dilute suspension of spheroids in a second-order fluid under a linear flow field.

tendency of elongated particles to slowly assume a steady orientation will yield a time-dependent
stress response. Secondly, the orientation of the particle can amplify the normal and extensional
stresses seen in the solution compared with spheres, the effect to which has not been quantified.

This paper is structured in the following order. In Sec. II of this paper, we will discuss the
problem setup (Sec. II A), followed by descriptions of background constitutive fluid (Sec. II B)
and governing equations (Sec. II C). In Sec. III, we will perform homogenization techniques to
determine expressions for the extra stress when particles are present in a viscoelastic fluid, and
in Sec. IV, we will discuss numerical methods to evaluate this quantity. Section V summarizes the
orientation behavior of prolate and oblate particles in viscoelastic fluids, and Sec. VI provides results
for viscometric functions (e.g., shear viscosity, extensional viscosity, and normal stress coefficients)
in shear, planar extensional, and uniaxial extensional flows. Section VII follows with conclusions.

II. PROBLEM FORMULATION

A. Setup

Figure 1 shows the problem setup. We consider a non-Brownian suspension of force-free, torque-
free spheroids in a polymeric fluid under the action of an external linear flow. We would like to
determine the average stress of the suspension. Since the suspension is considered dilute (volume
fraction φ � 1), one can examine the dynamics of a single particle and perform averaging over a
representative volume V = φ−1Vp, where Vp is the particle volume. In Sec. III, we will discuss the
averaging procedure in detail. Figure 2 shows the schematic of the individual particle dynamics.
Here, we consider a particle in a background flow with an average rate of strain tensor 〈E〉 and

FIG. 2. Background flow fields for (a) uniaxial extension, (b) planar extension, and (c) shear flows.
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FIG. 3. Orientation angles for prolate and oblate geometries: θ is the polar angle defined between the z axis
and the orientation vector, φ is the azimuthal angle defined between the x axis and the orientation vector.

average rate of rotation vector 〈�〉. The notation 〈. . . 〉 represents an ensemble average;

u∞ = 〈E〉 · x + 〈�〉 × x. (1)

Three different linear flows are considered with characteristic shear rate/extension rate γ̇c:
(1) Shear flow: u∞

x = γ̇cy, u∞
y = u∞

z = 0:

〈E〉 = γ̇c

2

⎡
⎢⎣0 1 0
1 0 0
0 0 0

⎤
⎥⎦, 〈�〉 = − γ̇c

2

⎡
⎢⎣00
1

⎤
⎥⎦; (2)

(2) Planar extensional flow: u∞
x = γ̇cx, u∞

y = −γ̇cy, u∞
z = 0:

〈E〉 = γ̇c

⎡
⎢⎣1 0 0
0 −1 0
0 0 0

⎤
⎥⎦, 〈�〉 = 0; (3)

(3) Uniaxial extensional flow u∞
x = γ̇cx, u∞

y = − 1
2 γ̇cy, u

∞
z = − 1

2 γ̇cz:

〈E〉 = γ̇c

2

⎡
⎢⎣2 0 0
0 −1 0
0 0 −1

⎤
⎥⎦, 〈�〉 = 0. (4)

Figure 3 shows definitions of the spheroid geometry. The spheroid has semiaxis lengths a, b, and
c, with b = c. For the prolate spheroid, a is the longest semiaxis (a > b = c), while for the oblate
particle, a is the shortest semiaxis (a < b = c). The aspect ratio is defined as AR = a/b for a prolate
spheroid and AR = b/a for the oblate spheroid, such that AR is always �1. The orientation vector
p is defined by the direction along the a axis and is characterized by angles (θ, φ), where θ is the
polar angle and φ is the azimuth angle. Here, θ is measured from the z axis to the orientation vector,
and φ is measured from the x axis to the projection of the orientation vector on the x-y plane. The
vector p is written as

p = [sin θ cosφ, sin θ sin φ, cos θ ]. (5)
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TABLE I. Examples of second-order fluids.

Composition Molecular wt. Viscosity Relaxation time

Polyvinylpyrolidone (PVP) (3% by wt.) [2] 360 KDa 0.16 Pa s at 25 ◦C 2.3 × 10−3 s
Polyethylene oxide (PEO) (0.1% by wt.) [33,34] 4000 KDa 0.004 Pa s at 25 ◦C 0.02 s

B. Constitutive fluid model

Ordered fluid models are commonly used to describe small deviations from Newtonian behavior.
In these models, the stress is expressed as a perturbation expansion about the known Newtonian
stress equation in terms of the rate of strain [23]. These models are valid for small values of rate
of strain—i.e., slow and nearly steady flow. An expansion up to second order leaves us with the
second-order fluid model, the constitutive equation of which is below:

σ f = σN + σpoly, (6)

where σ f is the fluid stress, broken into a Newtonian contribution σN and a non-Newtonian
contribution σpoly:

σN = 2μE − pI, σpoly = −ψ1

∇
E + 4ψ2E · E, (7)

where

E = ∇u + (∇u)T

2
, (8)

∇
E = DE

Dt
− (∇u)T · E − E · ∇u. (9)

In the above equation, u is the velocity field, p is the pressure, E is the rate of strain tensor, μ is the
fluid viscosity, and ψ1 and ψ2 are the first and second normal stress coefficients, respectively. The

term
∇
E is called the upper-convected derivative, which is calculated in a frame of reference which

translates and deforms with the fluid. This ensures that the constitutive equation is valid irrespective
of the frame of reference in which it is evaluated.

The second-order fluid under a steady shear flow u∞
x = γ̇ y predicts a shear stress σ

f
xy = μγ̇

and normal stress differences σ
f
xx − σ

f
yy = ψ1γ̇

2, σ f
yy − σ

f
zz = ψ2γ̇

2. In other words, the viscosity μ

and normal stress coefficients {ψ1, ψ2} do not exhibit shear thinning (i.e., a Boger fluid). The fluid
has one relaxation time defined as λ = ψ1/(2μ). At low strain rates, all constitutive models for
polymeric fluids reduce to the second-order fluid model. An example of such is shown in Table I.

C. Governing equations

We will solve the steady flow around a spheroid in the polymeric fluid and use this information to
compute the average stress in the suspension. Unless noted otherwise, all equations will be written
in dimensionless form. We scale all lengths by the equivalent radius Rc = (abc)1/3 of the spheroid,
all times by the inverse characteristic shear rate γ̇ −1

c , all velocities by Rcγ̇c, and all pressures and
stresses by μγ̇c. The governing equations are the continuity and momentum equations:

∇ · u = 0, ∇ · σ f = 0, (10)

where the constitutive equation for the stress tensor is

σ f = σN + Wiσpoly, (11a)

σN = 2E − pI, σpoly = −2
∇
E + 8αE · E. (11b)
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In the above equation, there are two dimensionless numbers: a Weissenberg number Wi representing
the ratio of polymer relaxation time to the flow timescale and a normal stress coefficient ratio α:

Wi = λγ̇c = ψ1γ̇c

2μ
, α = ψ2

ψ1
. (12)

The equations are solved subject to the condition that the particle exhibits rigid body motion on
its surface:

u = Up + �p × x, x ∈ S, (13)

where Up and �p are the translational and rotational velocities to be solved. The particle is force
and torque free

Fext = −
∫

(σ f · n)dS = 0,

Text = −
∫

x × (σ f · n)dS = 0, (14)

where n is the normal vector pointing into the fluid phase. Lastly, far away from the particle,
the velocity is the average background flow in the suspension. Since we are interested in dilute
suspension rheology, one performs averaging over a characteristic volume V = φ−1Vp that contains
on average one particle. We thus enforce the boundary condition at a radius r = RV = φ−1/3:

u → u∞ = 〈E〉 · x + 〈�〉 × x at r = RV = φ−1/3. (15)

In general, one must enforce the boundary condition at this boundary rather than infinity to avoid
divergences when volume averaging. However, if one is careful in the averaging procedure (as is
done in this paper), one can apply the boundary condition at infinity and still obtain correct results
(see Appendix 1).

Equations (10)–(15) are nonlinear and in general cannot be solved for arbitrary Weissenberg
number Wi. Since the second-order fluid model is strictly valid only for Wi � 1, we will solve the
problem perturbatively. We expand the velocity and pressure fields as follows:

u − u∞ = u(0) + Wiu(1), p = p(0) + Wip(1), (16)

and perform a similar expansion for the translational and rotational velocities Up = Up,(0) +
WiUp,(1), �p = �p,(0) + Wi�p,(1). We get the following equations at O(1) and O(Wi):

(1) O(1) equations: The O(1) equations are the Stokes equations

∇2u(0) − ∇p(0) = 0, ∇ · u(0) = 0, (17)

subject to the conditions that the particle is force and torque free, the disturbance field is zero at the
far-field boundary, and the disturbance field equal to u(0) = Up,(0) + (�p,(0) − 〈�〉) × x − 〈E〉 · x
on the particle surface. The solution to this problem is well known (see Ref. [35]).

(2) O(Wi) equations: At O(Wi), the equations are the Stokes equations with an inhomogeneous
body force

∇2u(1) − ∇p(1) = −∇ · σpoly,D, ∇ · u(1) = 0, (18)

where σpoly,D = σpoly(u(0) + u∞) − σpoly(u∞) is the O(1) disturbance field for the polymeric
stress—i.e., the polymeric stress evaluated at u(0) + u∞ minus the quantity evaluated at u∞. The
above equation is subject to the conditions that the particle is force and torque free, the velocity
decays to zero at the far-field surface, and the velocity is equal to u(1) = Up,(1) + �p,(1) × x on the
particle surface.

In the next section, we will show that, to compute the average stress toO(Wi), we do not need the
full solution to theO(Wi) velocity field. We need theO(1) velocity field and theO(Wi) contributions
to translational velocity Up, rotational velocity �p, and particle stresslet Sp. The latter contributions
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can be obtained from the O(1) velocity fields using the reciprocal theorem. Details are provided in
the next section.

III. HOMOGENIZATION

We are interested in determining the macroscopic average stress at any point in the suspension.
The macroscopic stress can be related to the microscopic quantities by performing an ensemble
average, that is, an average over all possible particle configurations. We will first write an expression
for the ensemble average of the stress in terms of average and fluctuating components of the
velocity field. We will then evaluate the expressions by replacing the ensemble averages with
volume averages. In the following derivations, we will use index notation (i.e., Einstein notation)
for convenience.

The total stress is composed of the fluid stress outside the particle and the particle stress inside
the particle. Let χ be an indicator function

χ =
{
1, inside particle,

0, outside particle.
(19)

In a suspension, the average stress is

〈σi j〉 = 〈(1 − χ )σ f
i j (u,∇u)

〉+ 〈χσ
p
i j (u,∇u)

〉 = 〈σ f
i j (u,∇u)

〉+ 〈χσ
p
i j (u,∇u)

〉
, (20)

where σ
f
i j (u,∇u) is the stress in the fluid evaluated at (u,∇u) and σ

p
i j (u,∇u) is the stress in the

particle evaluated at (u,∇u), and 〈. . . 〉 represents an ensemble average. In the above equations,
we make explicit that the fluid and particle stress fields are functions of the velocity u and velocity
gradient ∇u in the suspension. In going from the first to the second equality, we note that fluid stress
σ

f
i j = 0 in the particle phase since the rate of strain is zero in a rigid particle.
Now we are interested in the extra stress in the suspension, which is the average stress minus

the stress when the particles are absent. When particles are absent, the stress field everywhere is
σ

f
i j (〈u〉, 〈∇u〉)—i.e., the fluid stress evaluated at the mean velocity fields. Thus, the expression for

the average extra stress in the suspension is〈
σ ex
i j

〉 = 〈σ fluct
i j

〉+ 〈χσ
p
i j

〉
, (21)

where 〈
σ fluct
i j

〉 = 〈σ f
i j (u,∇u)

〉− σ
f
i j (〈u〉, 〈∇u〉). (22)

There are two contributions to the extra stress. There is a contribution from the particle phase
called the extra particle stress 〈χσ

p
i j〉 and a term 〈σ fluct

i j 〉 arising from the fluctuations in the velocity
field in the fluid, called the fluctuating extra stress or the fluid-induced particle stress. In a Newtonian
fluid, the latter stress is zero since the fluid stress in linear in the velocity gradient, and thus, the
right-hand side in Eq. (22) vanishes. However, when the fluid stress is nonlinear, fluctuations in
the velocity field can give rise to a nonzero 〈σ fluct

i j 〉, analogous to a Reynolds stress in turbulence.
The next subsections show expressions for both of these terms.

A. Fluctuating extra stress 〈σfluct
i j 〉

In a second-order fluid under a steady flow, the expression for the dimensionless fluid stress is

σ
f
i j (u,∇u) = 2Ei j − pδi j − 2Wi

(
uk

∂Ei j

∂xk
− ∂u j

∂xk
Eik − ∂ui

∂xk
E jk

)
+ 8αWiEikEk j . (23)
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Evaluating the ensemble average of this stress gives

〈
σ

f
i j (u,∇u)

〉 = 2μ〈Ei j〉 − 〈p〉δi j − 2Wi

(〈
uk

∂Ei j

∂xk

〉
−
〈
∂u j

∂xk
Eik

〉
−
〈
∂ui
∂xk

E jk

〉)

+ 8αWi〈EikEk j〉. (24)

Similarly, evaluating the stress at the average velocity field yields

σ
f
i j (〈u〉, 〈∇u〉) = 2μ〈Ei j〉 − 〈p〉δi j − 2Wi

(
〈uk〉

〈
∂Ei j

∂xk

〉
−
〈
∂u j

∂xk

〉
〈Eik〉 −

〈
∂ui
∂xk

〉
〈Ejk〉

)

+ 8αWi〈Eik〉〈Ek j〉. (25)

We now subtract these two quantities to obtain the fluctuating stress 〈σ fluct
i j 〉. The rate of strain

can be written as the average rate of strain, i.e., the rate of strain of the background flow field, plus
the fluctuating component that arises due to the particle:

Ei j = 〈Ei j〉 + E ′
i j, (26)

where 〈Ei j〉 is the average rate of strain and E ′
i j is the fluctuating component—i.e., 〈E ′

i j〉 = 0.
Similarly, the velocity gradient can also be written as

∂ui
∂x j

=
〈
∂ui
∂x j

〉
+ ∂u′

i

∂x j
. (27)

Subtracting Eq. (25) from Eq. (24) yields

〈
σ fluct
i j

〉 = −2Wi

(〈
u′
k

∂E ′
i j

∂xk

〉
−
〈
∂u j

′

∂xk
E ′
ik

〉
−
〈
∂ui ′

∂xk
E ′

jk

〉)
+ 8αWi〈E ′

ikE
′
k j〉. (28)

The fluctuating extra stress is expressed as a function of the average of velocity fluctuations, like
the Reynolds stress in turbulence.

We will now convert the ensemble average to a volume average. We average over a characteristic
volume V = φ−1Vp, where Vp is the particle volume, since this volume contains on average one
particle. Thus, the average of any quantity is

〈 f 〉 = 1

V

∫
f dV = φ

Vp

∫
V
f dV. (29)

One can show that the first term in Eq. (28) is zero—i.e., 〈u′
k

∂E ′
i j

∂xk
〉 = 0—due to the divergence

theorem and the decay of the fluctuating velocity fields (see Appendix 2). Thus, the fluctuating stress
is

〈
σ fluct
i j

〉 = 2Wi

(〈
∂u j

′

∂xk
E ′
ik

〉
+
〈
∂ui ′

∂xk
E ′

jk

〉)
+ 8αWi〈E ′

ikE
′
k j〉. (30)
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We now simplify the above expression further. We will break the averages into integrals over the
particle phase and the fluid phase:

〈 f 〉 = 〈χ f 〉 + 〈(1 − χ ) f 〉, (31a)

〈χ f 〉 = φ

Vp

∫
Vp

f dV, 〈(1 − χ ) f 〉 = φ

Vp

∫
Vf

f dV. (31b)

In the particle phase, the particle undergoes a rigid body motion with rotation rate �p. Thus, the
velocity gradient is ∂ui

∂x j
= εik j


p
k . Subtracting the average velocity gradient tensor 〈 ∂ui

∂x j
〉 = 〈Ei j〉 +

εik j〈
k〉 from this quantity gives the fluctuating component

∂u′
i

∂x j
= ∂ui

∂x j
−
〈
∂ui
∂x j

〉
= −〈Ei j〉 + εik j

(



p
k − 〈
k〉

)
,

E ′
i j = −〈Ei j〉, in particle.

Substituting these expressions into Eq. (30) gives the particle phase contribution to the fluctuating
stress〈

χσ fluct
i j

〉 = 2φWi
[
(2 + 4α)〈Eik〉〈Ek j〉 + εikm〈Ek j〉

〈

p

m − 
m
〉+ ε jkm〈Eki〉

〈

p

m − 
m
〉]
. (32)

If one wants to obtain this expression to O(Wi), it is sufficient to evaluate the average particle
rotation rate relative to background flow 〈�p − �〉 to the leading order. One can use the relationship
〈
p − 
〉m = M
E

mk j〈Ek j〉 for a force-free, torque-free particle, where M
E
mk j is the Stokes flow

mobility tensor, and plug it into the above equation.
To evaluate the fluid phase contribution to the fluctuating stress—i.e., 〈(1 − χ )σ fluct

i j 〉—we
evaluate the averages in Eq. (30) using integrals over the fluid phase. This yields

〈
(1 − χ )σ fluct

i j

〉 = 2Wiφ

Vp

∫
Vf

(
∂u j

′

∂xk
E ′
ik + ∂ui ′

∂xk
E ′

jk + 4αE ′
ikE

′
k j

)
dV. (33)

If one wants to obtain dilute suspension rheology—i.e., evaluate the extra stress to O(φ)—the
fluctuating velocity field u′

i is simply the disturbance field around a single particle. Thus, it suffices to
use the leading-order disturbance velocity field u(0) in Sec. II C to get the O(φWi) correction to the
average stress. One has to solve the disturbance field u(0) in the finite control volumeV = φ−1Vp and
then evaluate the above integral over the fluid region of the control volume. However, in Appendix 1,
we demonstrate that correct results can be obtained by solving the disturbance field in an unbounded
fluid (i.e., let V → ∞) and evaluating the integral in Eq. (25) over the unbounded domain.

B. Particle extra stress 〈χσ
p
i j〉

To determine the particle extra stress 〈χσ
p
i j〉, we will replace the ensemble average with a volume

average. We perform volume averaging over a characteristic volume V = φ−1Vp, which yields

〈
χσ

p
i j

〉 = 1

V

∫
Vp

σ
p
i j dV = φ

Vp

∫
Vp

σ
p
i j dV. (34)

Since there are no body forces in the particle, the particle stress is divergence free ∂σ
p
ik

∂xk
= 0.

Thus, following the classic derivation from Batchelor [9], one can replace the volume integral with
a surface integral

∫
Vp

σ
p
i j dV = ∫Vp

∂
∂xk

(σ p
ikx j ) dV = ∫Sp nkσ p

ikx j dS, where Sp is the particle surface
and nk is the normal vector pointing into the fluid. This yields the expression for the particle extra
stress 〈

χσ
p
i j

〉 = φ

Vp

(
Sp
i j + �pδi j + 1

2
εi jkT

ext
k

)
, (35)
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where Sp
i j is the particle stresslet, �

p is the particle pressure, and T ext
k is the external torque on the

particle [see Eq. (14) for the expression for torque]. The definitions of the stresslet and particle
pressure are below, where fi = σ

p
iknk is the traction on the particle surface:

Sp
i j = 1

2

∫
Sp

( fix j + f jxi ) dS − 1

3

∫
Sp

fkxkδi j dS, (36)

�p = 1

3

∫
Sp

fkxk dS. (37)

In our analysis, we examine a torque-free particle T ext
k = 0 and neglect the isotropic portion

of the extra stress as it is absorbed into a pressure. Thus, one only needs to compute the particle
stresslet Sp

i j .
Since we are interested in the extra stress up to O(φWi), we need to compute the stresslet on an

individual particle up to O(Wi). We perform a perturbation expansion below:

Sp
i j = Sp,(0)

i j + WiSp,(1)
i j , (38)

where Sp,(0)
i j is the stresslet of an individual particle in a Newtonian fluid (published in Ref. [35]),

and Sp,(1)
i j is the non-Newtonian correction. The traditional method for obtaining Sp,(1)

i j is to solve the
O(Wi) flow equations in Eq. (18) for velocity and pressure, compute the tractions at the interface,
and substitute it into the integral in Eq. (36). However, using an integral transform technique known
as the reciprocal theorem [35,36], one can write the stresslet expression using quantities that only
depend on the O(1) solution. Details of the derivation are provided in Appendix 3, and the final
expressions are shown below.

The O(Wi) correction to the particle stresslet satisfies the following equation:

Sp,(1)
i j = RSU

i jkU
p,(1)
k + RS


i jk

p,(1)
k + Spolyi j , (39)

where RSU
i jk and RS


i jk are the resistance tensors in Stokes flow connecting stresslet (S) with transla-

tional (U) and rotational (
) velocities, [U p,(1)
i ,


p,(1)
i ] are the O(Wi) corrections to the translational

and rotational velocities, and Spolyi j is an additional contribution from the polymeric torque defined
below:

Spolyi j = sym

[∫
Sp

xiσ
poly,∞
jm nmdS

]
+
∫
V

∂vstrain
ki j

∂xm
σ
poly,D
km dV. (40)

In the above expression, the first integral is the force dipole on the particle using the polymeric
stress evaluated at u∞—i.e., σpoly,∞ = σpoly(u∞). The expression sym represents the symmetric,
traceless portion of a tensor—i.e., sym(Ai j ) = 1

2 (Ai j + Aji ) − 1
3Akkδi j . The second integral is a

volumetric integral outside of the particle. Here, vstrain
ki j is the disturbance velocity field in Stokes

flow in the k direction from a unit rate of strain ei j , with analytical expressions given by Kim
and Karrila [35]. The quantity σpoly,D is the O(1) disturbance polymeric stress—i.e., σpoly,D =
σpoly(u∞ + u(0) ) − σpoly(u∞). The disturbance fields and volumetric integral can be evaluated in
the unbound domain to the level of approximation needed for the theory.

To obtain the correction to the translational and rotational velocities of the particle, one needs to
solve the following system of equations:

[
RFU
i j RF


i j

RTU
i j RT


i j

][
U p,(1)

j



p,(1)
j

]
=
[
F poly
i

T poly
i

]
. (41)
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In the above equation, the resistance tensors (RFU
i j ,RF


i j ,RTU
i j ,RT


i j ) connect the external force (F)
and torque (T) to the translational (U) and rotational (
) velocities in Stokes flow. The right-hand
side is the contribution from the polymeric stress, with expressions written below:

F poly
k = −

∫
V

∂vtrans
ik

∂x j
σ
poly,D
i j dV, (42a)

T poly
k = −

∫
V

∂vrot
ik

∂x j
σ
poly,D
i j dV. (42b)

Just like for the additional contribution to the stresslet in Eq (40), the volume integrals are evaluated
outside the particle and can be performed in an unbounded domain. The quantities vtrans

ik and vrot
ik are

disturbance velocity fields in Stokes flow in the i direction from unit translation and unit rotation
in the k direction. Expressions for these quantities are given in Kim and Karrila [35]. The quantity
σpoly,D is the O(1) disturbance polymeric stress discussed earlier.

IV. NUMERICAL METHODS

This section gives an overview of the numerical methods implemented to perform homogeniza-
tion. First, we obtain orientation dynamics of the particle. The center of mass xc and the orientation
vector p evolve over time according to the following differential equations:

dxc
dt

= Up,
dp
dt

= �p × p, (43)

where Up = Up,(0) + WiUp,(1) and �p = �p,(0) + Wi�p,(1) are the translational and rotational ve-
locities expanded up to O(Wi). The O(1) terms are calculated from known solutions (Jeffrey orbit
solution [4]), while the O(Wi) contributions are calculated from the reciprocal theorem in Eqs. (41)
and (42).We evolve the ordinary differential equations using a stiff Runge-Kutta (8,9) scheme with
variable time stepping (function ode89 in MATLAB with tolerance 1e-8).

For a given particle orientation p(t ), we compute the extra stress 〈σ ex
i j 〉 by calculating the fluc-

tuating extra stress, given by Eqs. (32) and (33), and the particle stresslet, given by Eqs. (39)–(42).
We then average 〈σ ex

i j 〉 over an appropriate set of orientations. The orientations we consider are
the orientations the particle occupies in the long-time limit (t → ∞). We then compute long-time
viscometric functions such as shear viscosity, extensional viscosities, and normal stress coefficients
(details of which are described in Sec. VI).

When computing the rigid body motion and the extra stress, one must compute several volume
and surface integrals. These integrals are evaluated as follows. First, we transform all variables in
the flow coordinates to the particle coordinates using the following rotation matrix:

J =

⎛
⎜⎝cosφ sin θ − sin φ − cosφ cos θ

sin φ sin θ cosφ − sin φ cos θ

cos θ 0 sin θ

⎞
⎟⎠

T

. (44)

We then evaluate integrals in the particle frame of reference and then transform back into the
flow coordinates. In the particle frame, the position coordinates in the outside flow are given by

x = [x, y, z] = [ra sin θ cosφ; rb sin θ sin φ; rc cos θ ], (45)

where r is the radial distance from the center of the particle and a, b, c are the semiaxes of the
particle. The integral of a function f (r, θ, φ) over the volume outside the particle is∫

Vf

f (r, θ, φ) =
∫ 2π

0

∫ π

0

∫ ∞

1
f (r, θ, φ) r2a b c sin θ dr dθ dφ. (46)
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TABLE II. Mesh sizes for volume integrals.

Particle Aspect ratio Mesh size Nr × Nθ × Nφ

Prolate 3 35 × 25 × 75
Prolate 5 40 × 30 × 80
Prolate 6 50 × 40 × 90
Oblate 3 30 × 20 × 70
Oblate 5 40 × 30 × 80
Oblate 6 50 × 40 × 90

Similarly, the surface integral of the function f (θ, φ) over the particle is∫
Sp

f (θ, φ) dS =
∫ 2π

0

∫ π

0
f (θ, φ) g(θ, φ) sin θ dθ dφ, (47a)

g(θ, φ) =
√
b2c2 sin2 θ cos2 φ + a2c2 sin2 θ sin2 φ + a2b2 cos2 θ. (47b)

These integrals are evaluated using Gaussian quadrature. Using the following transformations

η = 2

r
− 1, u = cos θ, v = φ

π
− 1, (48)

the integrals are approximated via the quadrature summations

∫ 2π

0

∫ π

0
f (θ, φ) sin θdθdφ = π

∫ 1

−1

∫ 1

−1
f (u, v) du dv ≈ π

Nφ∑
i=1

Nθ∑
j=1

f (u j, vi )w
u
jw

v
i , (49)

∫ ∞

1
f (r)r2dr = 8

∫ 1

−1
f (η) (η + 1)−4 dη ≈ 8

Nr∑
k=1

f (ηk )(ηk + 1)−4w
η

k , (50)

where Nr,Nθ ,Nφ are the number of quadrature points in the r, θ, φ directions and wη,wu,wv are
the corresponding weights for Gaussian quadrature. The number of quadrature points used in all
integrals for inspecting orientation dynamics for aspect ratio AR = 3 particles are Nr = 15,Nθ =
10,Nφ = 35. Evaluation of the polymeric stresslet requires finer mesh sizes with growing aspect
ratios. Hence, for average stress calculations, we have used mesh sizes as provided in Table II.
We have performed convergence studies to show that results are insensitive to larger number of
quadrature points and have presented results for the finest mesh size tested. For aspect ratios >6,
we found that sharpness of edges at the poles create large velocity gradients resulting in problems
with convergence of volume integrals.

V. RESULTS—ORIENTATION DYNAMICS IN VISCOELASTIC FLUID

Before we discuss the results of the extra stress, we will discuss the orientation dynamics of
spheroids in weakly viscoelastic fluids and compare against known results in Newtonian fluids.

A. Newtonian fluid

In a Newtonian fluid, the orientation dynamics of a spheroidal particle satisfies Jeffery’s
equation [4]:

dp
dt

= 〈�〉 × p + �(I − pp) · 〈E〉 · p, (51)
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where p is the orientation vector, 〈�〉 is the rate of rotation vector, and 〈E〉 is the rate of strain tensor.
The quantity � = a2−b2

a2+b2 is a function of the semiaxes a and b, taking the values � = 0 for a sphere,
0 < � < 1 for prolate particles, and −1 < � < 0 for oblate particles.

In a shear flow [see Eq. (2)], the orientation vector p follows a periodic solution known as a
Jeffery orbit. If one writes p = [sin θ cosφ, sin θ sin φ, cos θ ] using the angles (θ, φ) illustrated in
Fig 3, one gets the following solution:

tan φ = −
√
1 − �

1 + �
tan

[
1

2
γ̇c

√
1 − �2(t − t0)

]
, tan θ =

√
1 − � tan θ0√
1 − � cos(2φ)

, (52)

where the initial condition is φ = 0, θ = θ0 at time t = t0. The particle traces different orbits
depending on the initial condition. The time period of the orbits is T = 4π√

1−�2 γ̇
−1
c = 2π (AR +

A−1
R )γ̇ −1

c , which increases linearly with aspect ratio AR for AR � 1.
In pure extensional flows (i.e., 〈�〉 = 0), the particle orientation evolves to a steady solution.

Technically, several steady solutions are possible, each corresponding to the eigenvectors of 〈E〉.
However, only certain eigenvectors are stable equilibria. In general, the stable orientation that
is observed is the direction corresponding to the largest eigenvalue of �〈E〉. This orientation is
the direction that minimizes the particle length along the compressional axes. Thus, for a planar
extensional flow in Eq. (3), the long-time orientation is

Planar extension p(t → ∞) =
{
x̂ (prolate)
ŷ (oblate)

. (53)

In terms of the angles (θ, φ), these orientations are

φ =
{
0◦ (prolate)
90◦ (oblate)

, θ =
{
90◦ (prolate)
90◦ (oblate)

. (54)

In a uniaxial extensional flow in Eq. (4), the stable eigenvector for�〈E〉 is the extension direction
x̂ for prolate particles and any vector lying in the y-z compressional plane for oblate particles. Thus,
there are many different long-time orientations for oblate particles. It turns out the final orientation
is the initial orientation p0 projected onto the y-z plane and normalized. In summary, the long-time,
stable orientations are

Uniaxial extension p(t → ∞) =
⎧⎨
⎩
x̂ (prolate)

p0·(I−x̂x̂)√
p0·(I−x̂x̂)·p0

(oblate)
. (55)

In terms of angles (θ, φ), these correspond to

φ =
{
0◦ (prolate)
90◦ (oblate)

, cos θ =
⎧⎨
⎩
0 (prolate)

cos θ0√
sin2 θ0 sin2 φ0+cos2 θ0

(oblate)
. (56)

B. Viscoelastic fluid

When a spheroid is in a weakly viscoelastic fluid (Wi � 1), Jeffries Eq. (51) will contain aO(Wi)
correction. This correction significantly modifies the orientation dynamics in a shear flow but does
not appreciably modify the behavior in pure extensional flows.

Figures 4 and 5 show the motion of prolate and oblate particles in a shear flow. In a Newtonian
fluid, the spheroids undergo Jeffery orbit motion—i.e., periodic tumbling whose path depends on
the initial orientation. However, when weak viscoelasticity is present, prolate particles drift slowly
to a steady alignment along the vorticity direction (i.e., ẑ or θ = 0◦), known as log-rolling in the
literature [20]. The timescale of this drift is slow—on the order of t ∼ O(Wi−1). For oblate particles,
the viscoelasticity causes all particles—regardless of initial orientation—to drift into the flow-shear
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FIG. 4. Evolution of polar angle θ with dimensionless time t γ̇ for a prolate particle in a shear flow with
AR = 3 in (a) viscoelastic fluid with Wi = 0.125 showing eventual alignment in the vorticity direction and
(b) Newtonian fluid (Wi = 0) depicting periodic tumbling representing the Jeffery Orbit motion [4].

gradient plane (i.e., x-y plane or θ = 90◦) and tumble periodically. The drift for this case also
occurs over a slow timescale t ∼ O(Wi−1). D’avino et al. [37] numerically studied the orientation
dynamics of prolate spheroids in shear flow suspended in Giesekus and the Phan-Thien-Tanner
fluids, respectively. At low Deborah numbers (De), these models behave like a second-order fluid.
In the low De limit, they show that a prolate spheroid with aspect ratio AR = 4 settles in a log-rolling
motion, which supports our theory.

When particles are in a pure extensional flow (planar or uniaxial), the particles in a viscoelastic
fluid drift to the same steady orientation as the Newtonian case. Viscoelasticity slows the dynamics
toward a steady state for prolate spheroids but hastens the dynamics for oblate spheroids. Figures 6
and 7 show examples of prolate and oblate particles in a planar extensional flow, with other examples
(uniaxial extensional flow) shown in Appendix 4.

Figures 8 and 9 summarize the long-time orientation behavior of prolate and oblate spheroids
in viscoelastic fluids. We will examine the effective stress of a suspension of these particles in this
long-time limit.

FIG. 5. Evolution of polar angle θ with dimensionless time t γ̇ for an oblate particle in a shear flow with
AR = 3 in (a) viscoelastic fluid with Wi = 0.125 showing eventual end-to-end tumbling in the flow-shear plane
and (b) Newtonian fluid (Wi = 0) depicting periodic tumbling representing the Jeffery Orbit motion [4].
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FIG. 6. Evolution of (a) polar angle θ and (b) azimuthal angle φ with dimensionless time t ε̇ for a prolate
particle in a planar extensional flow with AR = 3 and Wi = 0.1, portraying alignment in the extension (x)
direction. Newtonian dynamics (Wi = 0) are validated using Jeffery’s results [4].

VI. RESULTS—EFFECTIVE RHEOLOGICAL PROPERTIES

In this section, we discuss the rheological properties such as the effective viscosities and the
effective first and second normal stress coefficients of the suspension. We will present results
evaluated at the long-time orientations of the particle discussed in Sec. V.

A. Uniaxial extensional flow

In a uniaxial extensional flow [Eq. (4)], the extensional viscosity is defined as

ηeff = σxx − 1
2 (σyy + σzz )

ε̇
, (57)

FIG. 7. Evolution of (a) polar angle θ and (b) azimuthal angle φ with dimensionless time t ε̇ for an
oblate particle in a planar extension flow with AR = 3 and Wi = 0.1, portraying alignment in compression
(y) direction. Newtonian dynamics (Wi = 0) are validated using Jeffery’s results [4].
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FIG. 8. Long-time orientations of a prolate particle with AR = 3 suspended in a viscoelastic fluid with
viscoelastic ratio ψ2

ψ1
= − 1

6 in (a) uniaxial extensional flow at Wi = 0.1, exhibiting alignment in the extension
direction, (b) planar extensional flow at Wi = 0.1, showing alignment in the extension direction, and (c) shear
flow at Wi = 0.125, undergoing log-rolling in the vorticity direction.

where σxx, σyy, σzz are the diagonal components of the total average stress and γ̇c = ε̇ is the
elongation rate. The effective viscosity can also be written as

ηeff = η∗ + 3kμφ, (58)

where η∗ = 3μ[1 + Wi(1 + 2α)] is the effective viscosity of the polymeric fluid in the absence of
particles and k is the dimensionless factor by which the effective viscosity is enhanced due to the
particles. In a Newtonian fluid (Wi = 0), the value of k has been reported for spheroids [9]. When
the fluid is viscoelastic (Wi �= 0), results have been reported only for spheres [26,27]. For spheres,
k = 2.5 + 75

28Wi(1 + 2α). In this section, we report variation of the enhancement factor k with the
Weissenberg (Wi) number and particle aspect ratio.

FIG. 9. Long-time orientations of an oblate particle with AR = 3 suspended in a viscoelastic fluid with vis-
coelastic ratio ψ2

ψ1
= − 1

6 in (a) uniaxial extensional flow at Wi = 0.1, exhibiting alignment in the compression
(y-z) plane, (b) planar extensional flow at Wi = 0.1, showing alignment in the compression (y) direction, and
(c) shear flow at Wi = 0.125, undergoing end-to-end tumbling in the flow-flow gradient plane (i.e., x-y plane).
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Wi

FIG. 10. Enhancement factor k for extensional viscosity of prolate particles in a uniaxial extensional flow
at their long-time orientation (p = x̂). (a) Viscoelastic fluid with α = ψ2

ψ1
= − 1

6 for different Weissenberg
numbers Wi and particle aspect ratios AR. Results are also plotted for spheres as reported by Koch and
Subramanian [26]. (b) The results for different aspect ratios in a Newtonian fluid (Wi = 0) are validated by
comparison with the benchmark study of Batchelor [9].

1. Prolate spheroid

In Fig. 10, the enhancement factor k increases with an increase in Weissenberg number Wi
for all aspect ratios of the prolate particle. This implies that as viscoelasticity or elongation rate
increases, the O(φ) contribution to effective viscosity also increases. This can be attributed to
two reasons. First, increasing Wi increases polymer stretching in the disturbance velocity field,
increasing the fluctuating polymer stress. It also increases the stress on the particle, increasing the
particle stresslet. We also note that, for the same Wi, the effective viscosity is higher for the particle
with a higher aspect ratio AR. When the particle is pointing in the extension direction, its length
along this direction increases for an increase in aspect ratio. This results in an increase in force
dipole on the particle, and as a result, the stresslet increases, which in turn increases the effective
viscosity. Figure 10(a) shows that our results match the results for spheres in viscoelastic fluids
found by Koch and Subramanian [26], while Fig. 10(b) shows that the results quantitatively match
the results for spheroids in a Newtonian fluid [9].

2. Oblate spheroid

When one applies uniaxial extensional flow to a suspension of randomly oriented oblate
spheroids, the final orientation of the particles can take many angles [see Eqs. (55) and (56)]. Thus,
one must perform ensemble averaging over all these possible directions to obtain the long-time
extensional viscosity. Thus, for an initial orientation p0, we calculate the final orientation p f in
Eq. (56) and compute the extensional viscosity at this angle ηeff(p f |p0). We then average over all
initial angles to get the ensemble average of ηeff:

〈ηeff〉 =
∫

ηeff(p f |p0)p(p0)dp0. (59)

We assume the initial probability distribution is random—i.e., p(p0)dp0 = 1
4π sin θdθdφ. The

integral above is computed using the Gaussian quadrature. After this procedure is performed, we
obtain the correction factor k as described in Eq. (58).

Figure 11 shows the trend of the enhancement factor k for different aspect ratios and Wi. The
average enhancement factor k increases with the Weissenberg number Wi for all aspect ratios of
the oblate particle, following the same physical arguments as before. Akin to the prolate case, for

053302-17



APTE, ARDEKANI, AND NARSIMHAN

Wi

FIG. 11. Enhancement factor k for extensional viscosity of oblate particles in a uniaxial extensional
flow, starting from an initial random distribution of orientations and averaging over all final orientations
(a) Viscoelastic fluid with α = ψ2

ψ1
= − 1

6 for different Weissenberg numbers Wi and particle aspect ratios AR.
Results are also plotted for spheres as reported by Koch and Subramanian [26]. (b) The results for different
aspect ratios in a Newtonian fluid (Wi = 0) are validated by comparison with the benchmark study of Batchelor
[9].

the same Wi, the effective viscosity is higher for the particle with a higher aspect ratio AR. Figures
11(a) and 11(b) also include benchmarks for spherical particles in a viscoelastic fluid [26] and
spheroidal particles in a Newtonian fluid [9].

B. Planar extensional flow

For planar extensional flow [Eq. (3)], there are two effective viscosities defined as

η1,eff = σxx − σyy

ε̇
, (60a)

η2,eff = σzz − σyy

ε̇
, (60b)

where σxx, σyy, σzz are the diagonal components of the total average stress and γ̇c = ε̇ is the
elongation rate. The first and second planar effective viscosities can also be written as

η1,eff = η∗
1 + 4k1μφ, (61a)

η2,eff = η∗
2 + 2k2μφ, (61b)

where η∗
1 = 4μ and η∗

2 = 2μ[1 − 2Wi(1 + 2α)] are extensional viscosities in the absence of par-
ticles, and k1 and k2 are dimensionless contributions from the particles. As stated before, results
have been previously reported for spheroids in Newtonian fluids (Wi = 0) and spheres in weakly
viscoelastic fluids (Wi �= 0) [9,26,27]. For a sphere, k1 = 2.5 and k2 = 2.5 − 75

14Wi(1 + 2α). This
section studies the variation of k1 and k2 with Weissenberg number Wi for nonspherical particles.
We will examine results in the long-time limit [i.e., p = x̂ for prolate particles and p = ŷ for oblate
particles, see Eqs. (53) and (54)].

1. Prolate spheroid

In Fig. 12(a), k1 increases with both Wi and aspect ratio AR for a prolate particle. The system
experiences an increase in the first planar effective viscosity due to stretching of polymers in the
fluid phase as the shear rate/viscoelasticity increases as well as an increase in length (i.e., force
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Wi Wi

FIG. 12. (a) Enhancement factor k1 for first planar viscosity and (b) enhancement factor k2 for second
planar viscosity for prolate particles with different aspect ratios AR and Weissenberg numbers Wi at their
long-time orientation (p = x̂). The normal stress ratio is α = ψ2

ψ1
= − 1

6 . The results for spheres (AR = 1) are
validated by comparison with the benchmark study of Koch and Subramanian [26].

dipole) along the extension direction with an increase in aspect ratio. Thus, the resistance to the
flow in the flow-compression (x-y) plane increases with Wi and AR. In Fig. 12(b), the second planar
effective viscosity decreases with Wi and AR.

Figure 13 shows the enhancements in first and second planar effective viscosities in a Newtonian
fluid for various aspect ratios validated by comparison with the benchmark study of Batchelor [9].

2. Oblate spheroid

In a planar extensional flow, an oblate particle orients its shortest axis along the compression
direction (y direction) and has its two longest axes lying in the x-z plane. In this state [Fig. 14(a)], k1
increases with both Wi and aspect ratio AR, for similar reasons discussed above. In Fig. 14(b), the
second planar effective viscosity decreases with Wi but, unlike the prolate case, has a nonmonotonic

FIG. 13. Enhancement factors k1 and k2 for the first and second planar viscosities for a prolate particle with
different aspect ratios AR at its long-time orientation (p = x̂) in a Newtonian fluid (Wi = 0). The results are
validated by comparison with the benchmark study of Batchelor [9].
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Wi Wi

FIG. 14. (a) Enhancement factor k1 for first planar viscosity and (b) enhancement factor k2 for second
planar viscosity for oblate particles with different aspect ratios AR and Weissenberg numbers Wi at their
long-time orientation (p = ŷ). The normal stress ratio is α = ψ2

ψ1
= − 1

6 . The results for spheres (AR = 1) are
validated by comparison with the benchmark study of Koch and Subramanian [26].

dependence on the aspect ratio AR. Figure 15 benchmarks the code against known results for a
Newtonian fluid.

C. Shear flow

In a shear flow [Eq. (2)], the viscometric functions are the shear viscosity

ηeff = σxy

γ̇
(62)

and the first and second normal stress coefficients

ψ1,eff = σxx − σyy

γ̇ 2
, (63a)

ψ2,eff = σyy − σzz

γ̇ 2
, (63b)

FIG. 15. Enhancement factors k1 and k2 for the first and second planar viscosities for an oblate particle
with different aspect ratios AR at its long-time orientation (p = ŷ) in a Newtonian fluid (Wi = 0). The results
are validated by comparison with the benchmark study of Batchelor [9].
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FIG. 16. Enhancement in effective shear viscosity and first and second normal stress coefficients for a
prolate particle in a second-order fluid at its long-time orientation (p = ẑ). The normal stress ratio is ψ2

ψ1
= − 1

6 .
At this orientation, k0 = k1.

where σxx, σyy, and σxy are the components of the average stress tensor and γ̇c = γ̇ is the shear rate.
These viscometric functions can be rewritten as

ηeff = μ(1 + k0φ), (64a)

ψ1,eff = ψ1(1 + k1φ), (64b)

ψ2,eff = ψ2(1 + k2φ), (64c)

where (k0, k1, k2) are contributions from the presence of particles. Author of previous studies
published results for spheres in viscoelastic fluids and found that k0 = k1 = 5

2 and k2 = 75
28 + 5

56α
−1

up to O(Wi) [26,27]. Here, we will examine what occurs for nonspherical particles.

1. Prolate spheroid

We find that the viscometric functions (k0, k1, k2) do not vary linearly with Wi at a given particle
orientation. Since at a long time, a prolate particle aligns in one specific direction (the vorticity
direction p = ẑ), the long-time viscometric functions do not depend on Wi up to O(Wi). Note, there
may be a higher-order dependence on Wi, but in this paper, we cannot capture such behavior due
to the applicability of the second-order fluid model. Einarsson et al. [27] have suggested that, at
O(Wi2), the suspension shear-thickens for an Oldroyd-B fluid.

Figure 16 plots how factors k0, k1, and k2 for the shear viscosity and first and second normal
stress coefficients depend on the particle aspect ratio AR. The shear viscosity and effective first
and second normal stress coefficients decrease with aspect ratio. The enhancement factors for the
shear viscosity and first normal stress coefficient are equal for this long-time orientation. Up to the
level of approximation in our theory, the enhancement factor k0 for shear viscosity is the same as
in a Newtonian fluid (Einstein correction), with results published in many manuscripts [9,35]. We
note that the contribution to the viscometric functions due to the stresslet has been numerically
evaluated by D’Avino et al. [37] in shear flow for a prolate spheroid. They considered the Giesekus
and Phan-Thien-Tanner models for their analysis. In the low Deborah number De regime, these
models behave like a second-order fluid model. However, they did not account for the effects of the
particle-induced fluid stress in the stress equation.

2. Oblate spheroid

At long time, an oblate particle in a shear flow tumbles in the flow-shear gradient plane. Thus,
for a randomly distributed set of oblate spheroids at t = 0, the long-time orientations at t → ∞ will
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FIG. 17. Enhancement in average shear stress and first and second normal stress coefficients as a variation
of aspect ratio AR for an oblate particle in a second-order fluid with viscoelastic ratio

ψ2
ψ1

= − 1
6 at the long-time

orientation θ = 90◦ with tumbling in a flow-shear plane averaged over φ ∈ [0, 2π ].

be uniformly distributed in the flow/shear gradient plane. We thus perform an ensemble averaging
over φ ∈ [0, 2π ] and θ = π

2 . For example,

〈ψ1,eff〉 = 1

2π

∫ 2π

0
ψ1,eff(φ, θ = π/2) dφ. (65)

Figure 17 plots the viscometric functions. We find that the viscometric functions are independent
of Wi but depend on aspect ratio AR. To understand this observation, we can decompose the extra
stress tensor 〈σ ex

i j 〉 as follows: 〈
σ ex
i j

〉 = φσ̃
(0)
i j + φWiσ̃ (1)

i j . (66)

The enhancements in the viscometric functions are thus

k0 = σ̃
(0)
12 + Wiσ̃ (1)

12 , (67)

k1 = 1

2Wi

[
σ̃
(0)
11 − σ̃

(0)
22

]+ 1

2

[
(σ̃ (1)

11 − σ̃
(1)
22

]
, (68)

k2 = 1

2αWi

[
σ̃
(0)
11 − σ̃

(0)
22

]+ 1

2α

[
σ̃
(1)
11 − σ̃

(1)
22

]
. (69)

At a given orientation, the effective viscosity should only be an even function of shear rate, i.e.,
σ̃
(1)
12 = 0. Thus, k0 does not depend onWi up toO(Wi). If we perform an ensemble average of σ̃ (0) in

the shear/shear gradient plane, one can show that this is proportional to 〈Ei j〉, which has no normal
stress contributions. Thus, the averaged k1 and k2 are also independent of Wi.

VII. CONCLUSIONS

In this paper, we examined the orientation of spheroids in weakly viscoelastic fluids under three
canonical flow fields: (a) shear, (b) planar extensional, and (c) uniaxial extensional flows. The long-
time orientation information was then used to determine the effective stress in a dilute suspension of
non-Brownian spheroids. We computed theO(φ) (i.e., Einstein) corrections to viscometric functions
(e.g., shear viscosity, extensional viscosities, first and second normal stress coefficients) in the weak
viscoelastic limit. The main conclusions are stated below:

(1) In a Newtonian fluid, spheroids in a shear flow undergo periodic tumbling whose path
depends on the initial condition (Jeffrey orbits). In a weak viscoelastic fluid, normal stresses alter
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this behavior. Prolate particles slowly settle into a log-rolling motion along the vorticity direction
(p = ẑ), while oblate particles drift to the flow/shear gradient plane and tumble.

(2) In pure extensional flows, the orientation dynamics are not appreciably different in New-
tonian and weakly viscoelastic fluids. The spheroids transition to a steady orientation, with the
final orientation minimizing the length spanned in the compressional direction. Since many such
orientations exist for an oblate particle in a uniaxial extensional flow, the final orientation in this
case is a function of the initial orientation.

(3) The average stress in a viscoelastic fluid is a sum of two contributions: one from the force
dipole on the particles (stresslet) and one from the fluctuations in velocity in the bulk fluid (fluid-
induced particle stress). The latter contribution is unique to viscoelastic fluids due to the nonlinearity
of the constitutive model.

(4) The viscometric functions in extensional flows exhibit the following trends. In a uniaxial
extensional flow, the effective viscosity is enhanced by the presence of the particle by a factor
which increases with an increase in aspect ratio and Weissenberg number, suggesting that particles
aid in extensional thickening. In a planar extensional flow, the O(φ) contribution to the first planar
extensional viscosity increases with Wi, while the contribution to the second planar effective
viscosity decreases with Wi, suggesting that particles help thicken the former quantity and thin
the latter quantity.

These trends can be explained as follows. In uniaxial extensional flow, the effective viscosity
increases with the Weissenberg number because increasing the elasticity in the fluid increases
the bulk stresses and particle tractions, thus increasing both the fluid induced particle stress and
the particle stresslet. For both a prolate and oblate particle, with an increase in aspect ratio AR,
the particle occupies a larger length along the extension direction resulting in a greater force
dipole on its surface and consequently a larger stresslet. These arguments also hold for the first
planar extensional viscosity. For the second planar extensional viscosity, the normal stress in the
z direction is smaller than that in the y direction because of the way E · E is defined for this
flow. Consequently, the O(φ) contribution to the second planar effective viscosity is negative. As
viscolelasticity increases, this term becomes more negative, and hence, the second planar effective
viscosity decreases with increasing Wi.

(5) In a shear flow, at long time, the prolate particles exhibit a log-rolling state, while oblate
particles tumble in the shear flow plane. At these respective orientations, the effective viscosity and
the effective normal stresses for both these particles have no linear dependence on the Weissenberg
number up to the level of approximation studied. For a prolate particle, the shear viscosity and first
and second normal stress coefficients decrease with aspect ratio. For an oblate particle, the normal
stress coefficients decrease with aspect ratio; however, the O(φ) contribution to the shear viscosity
exhibits a nonmonotonic trend with aspect ratio.

In this paper, we examined nonspherical particles in the limit of weak viscoelasticity (small
Weissenberg numbers). In the future, there can be other avenues to explore. A natural extension
would be to examine the rheology of suspensions at higher values of Wi—i.e., stronger viscoelastic
fluids or stronger shear rates. This has been done previously for spheres [27] in an Oldroyd-B fluid
for effective shear viscosities up to O(Wi2), which helped elucidate how particles alter the shear
thinning behavior in viscoelastic fluids. Another avenue to explore would be to relax the dilute
solution assumption. Hydrodynamic interactions between spheres in Newtonian fluids have been
studied for concentrated suspensions (φ ∼ 0.1) [12]. At high concentrations, O(φ2) and higher
terms become significant. Lastly, we neglected the effect of inertia in our analysis. When the
Reynolds number Re ∼ O(1), inertial forces become prominent. There are many applications where
one sees inertial and normal stress effects to be comparable; one example is microfluidic devices
for particle separations [38]. For example, in shear flows, normal stresses tend to orient particles
to minimize their length in the shear gradient direction [39], while fluid inertia gives the opposite
behavior [40]. The coupling between these two will alter the time-dependent orientation of spheroids
and the resulting rheological behavior, which has yet to be explored.
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APPENDIX

1. Averaging stress by evaluating volume integral in bounded vs unbounded domains

In this subsection, we show that one can evaluate the disturbance velocity field u(0) in an
unbounded domain rather than the control volume V = φ−1Vp and obtain the average stress correct
to O(φWi).

Let u(0) denote the disturbance velocity solved within the finite control volume V = φ−1Vp and
uD represent the disturbance velocity solved in an unbounded domain. The difference between these
two fields is the correction velocity field uc:

uc = u(0) − uD, (A1)

where the correction field is zero on the particle surface and equal to −uD on the outer surface of
the finite control volume, which is at radius r = RV = φ−1/3. Since in the far field, uD ∼ O(r−2)
due to the particle being force and torque free, uc ∼ O(R−2

V ) ∼ O(φ2/3) on the outer surface. Thus,

u(0) = uD + φ2/3ũc, (A2)

where ũc is an O(1) quantity.
When evaluating the fluctuating stress and the particle stresslet, we often come across integrals

that are quadratic combinations of the disturbance field. They take the form

Iikm j =
∫ RV

r=rs

r−n ∂u(0)i

∂xk

∂u(0)m

∂x j
dV, (A3)

where n � 0, and the integration is from the particle surface r = rs to the radius r = RV . If we
substitute u(0) = uD + φ2/3ũc, we get the following:

Iikm j =
∫ ∞

r=rs

r−n ∂uDi
∂xk

∂uDm
∂x j

dV + correction, (A4)

where the correction is

correction = −
∫ ∞

r=RV

r−n ∂uDi
∂xk

∂uDm
∂x j

dV + φ2/3
∫ RV

r=rs

r−n

(
∂uDi
∂xk

∂ ũcm
∂x j

+ ∂ ũci
∂xk

∂uDm
∂x j

)
dV

+ φ4/3
∫ RV

r=rs

r−n

(
∂ ũci
∂xk

∂ ũcm
∂x j

)
dV. (A5)

One can show that the first term is O(φ1+n/3), while the second and third terms are at most
O(φ2/3) and O(φ4/3). Thus, the correction is subdominant compared with the leading term in
Eq. (A4). Thus, in our derivations, we can solve the disturbance field in an unbounded domain
rather than the control volume V = φ−1Vp and evaluate integrals using this field over an unbounded
domain as well.

2. Vanishing of 〈u′
k

E′
i j

∂xk
〉

In the derivation of the fluctuating stress, we stated that 〈u′
k
E ′
i j

∂xk
〉 = 0. To show this, let us first

write the left-hand side as 〈 ∂
∂xk

(u′
kE

′
i j )〉 = 0 since ∂u′

k
∂xk

= 0. We then write this in terms of a volume
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average, performing integration over a volume V = φ−1Vp:〈
∂

∂xk
(u′

kE
′
i j )

〉
= φ

Vp

∫
V

∂

∂xk
(u′

kE
′
i j )dV = φ

Vp

∫
SV

u′
kE

′
i jnkdS. (A6)

In the last step, we used the divergence theorem to convert the volume integral to a surface integral
over the far-field surface S at radius r = RV = φ−1/3. In the far field, the disturbance velocity and
strain rate scale as O(r−2) and O(r−3), respectively, due to the particle being force and torque free.
Consequently, on the surface of the control volume, they scale as O(R−2

V ) and O(R−3
V ), respectively.

Thus, the above surface integral is O(R−3
V ) ∼ O(φ), which makes the above Eq. (A6) O(φ2) and

hence unimportant in dilute solution rheology.

3. Derivation of stresslet correction using reciprocal theorem

Suppose we have two velocity fields in the same control volume V of a liquid. Both velocity
fields satisfy the Stokes equations with a body force, i.e.,

∂ui
∂xi

= 0,
∂σN

i j

∂x j
+ bi = 0, (A7)

where σN
i j = 2Ei j − −pδi j is the Newtonian stress tensor, and bi is a body force. We will add

superscripts to the symbols above to demarcate the two flow fields: (β ) is flow field one, while
(χ ) is flow field two. These flow fields are related to each other via Green’s second identity, which
states that ∫

S
u(β )i σ

N,(χ )
i j noutj dS +

∫
V
u(β )i b(χ )

i dV =
∫
S
u(χ )
i σ

N,(β )
i j noutj dS +

∫
V
u(χ )
i b(β )i dV. (A8)

In the above expression, S is the surface of the control volume and nouti is the outward pointing
normal vector for the control volume. Let us choose the two flow fields to be the following:

Flow 1: O(Wi) flow around the particle. Let flow one (with superscript β) be the O(Wi) flow
around a spheroid in Eq. (18). Thus, we let

u(β )i = u(1)i , (A9a)

σ
N,(β )
i j = σ

N,(1)
i j , (A9b)

b(β )i = ∂

∂x j

(
σ
poly,D
i j

)
. (A9c)

On the particle surface, the particle translates with the O(Wi) contribution to the rigid body
motion, i.e., u(1)i = U p,(1)

i + εi jk

p,(1)
j xk .

Flow 2: Stokes flow around the particle under straining motion. We will let flow two (with
superscript χ ) be the disturbance field around the particle in a straining flow. Here,

u(χ )
i = vi, (A10a)

σ
N,(χ )
i j = �i j, (A10b)

b(χ )
i = 0, (A10c)

where vi and �i j are the velocity and stress fields around the particle. On the particle surface,
vi = Vi + εi jkω jxk − ei jx j , where xk is the position vector from the center of mass of the particle,
while Vi and ωi are the translational and rotational speeds, and ei j is the straining field. The
external force and torque on the particle will be F aux

i and T aux
i , i.e., F aux

i = − ∫Sp �i jn jdS and

T aux
i = − ∫Sp εi jkx j�kmnmdS, where Sp is the particle surface and nm points into the fluid phase.
These will be related to the translational and rotational speed through known resistance relation-
ships.
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We substitute the two flows into the integral expression in Eq. (A8) above. We choose the control
volumeV to be the volume outside of the particle. Since we are dealing with disturbance quantities,
the contribution from the surface far away from the particle vanishes. We obtain∫

Sp

u(1)i �i jn jdS =
∫
Sp

viσ
N,(1)
i j n jdS +

∫
V

vi
∂

∂x j

(
σ
poly,D
i j

)
dV, (A11)

where Sp is particle surface and ni is the normal vector pointing into the fluid (this is the inward
pointing vector for the control volumeV ). Performing integration by parts on the last integral yields∫

Sp

u(1)i �i jn jdS =
∫
Sp

vi
(
σ
N,(1)
i j + σ

poly,D
i j

)
n jdS −

∫
V

∂vi

∂x j
σ
poly,D
i j dV. (A12)

We note that the total stress tensor at O(Wi) is σ
(1)
i j = σ

N,(1)
i j + σ

poly,D
i j + σ

poly,∞
i j , where σ

poly,∞
i j

is the polymeric stress evaluated at the far-field velocity u∞. Thus, the above expression becomes∫
Sp

u(1)i �i jn jdS −
∫
Sp

viσ
(1)
i j n jdS = −

∫
Sp

viσ
poly,∞
i j n jdS −

∫
V

∂vi

∂x j
σ
poly,D
i j dV. (A13)

The next step in the derivation is to substitute the velocity fields on the particle surface onto
the left-hand side, i.e., ui = U p,(1)

i + εi jk

p,(1)
j xk and vi = Vi + εi jkω jxk − ei jx j . Substituting these

expressions gives

−U p,(1)
i F aux

i − 

p,(1)
i T aux

i + Sp,(1)
i j ei j = −

∫
Sp

viσ
poly,∞
i j n jdS −

∫
V

∂vi

∂x j
σ
poly,D
i j dV. (A14)

In obtaining the above expression, we noted that the particle is force and torque free, i.e., F (1)
i =

− ∫Sp σ
(1)
i j n jdS = 0, T (1)

i = ∫Sp εi jkx jσ
(1)
km nmdS = 0.

For the last step of the derivation, we note that the auxiliary force F aux
i , auxiliary torque T aux

i ,
and the auxiliary velocity field vi are linear in the fields (Vi, ωi, ei j ). We substitute on the left-hand
side of Eq. (A14) the resistance relationships for the auxiliary force and torque

F aux
i = RFU

i j Vj + RF

i j ω j + RFE

i jk e jk, (A15a)

T aux
i = RTU

i j Vj + RT

i j ω j + RTE

i jk e jk . (A15b)

FIG. 18. Evolution of (a) polar angle θ and (b) azimuthal angle φ with nondimensional time t ε̇ for a prolate
particle in uniaxial extensional flow with AR = 3 andWi = 0.1 portraying alignment in the extension direction.
Newtonian dynamics (Wi = 0) are validated using Jeffery’s results [4].
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FIG. 19. Evolution of azimuthal angle φ with nondimensional time t ε̇ for an oblate particle in uniaxial
extensional flow with AR = 3 and Wi = 0.1, portraying alignment in the compression plane. Newtonian
dynamics (Wi = 0) are validated using Jeffery’s results [4].

In the above expressions, the tensors R are the resistance tensors in Stokes flow. The superscripts
indicate linear relationships between forces (F), torques (T), and stresslets (S) to translation (U),
rotation (
), and rate of strain (E). We note that these tensors follow the symmetry properties

RFU
i j = RFU

ji , RT

i j = RT


ji , RF

i j = RTU

ji , RFE
i jk = RSU

jki , RTE
i jk = RS


jki . (A16)

On the right-hand side of Eq. (A14), we substitute that the auxiliary velocity field is

vi = Vi + εi jkω jxk − ei jx j, x ∈ Sp, (A17a)

vi = vtrans
i j Vj + vrot

i j ω j + vstrain
i jk e jk, x ∈ V, (A17b)

where vtrans
i j , vrot

i j , and vstrain
i jk are the disturbance velocity fields in the fluid from unit translation in the

j direction, unit rotation in the j direction, and unit rate of strain in the jk directions.
After performing these substitutions [i.e., substituting Eqs. (A15) and (A17) into Eq. (A14) and

using the symmetry properties of the resistance tensors in Eq. (A16)], one obtains Eqs. (40)–(42).
We note that σ

poly,∞
i j is force and torque free, so no surface integrals appear using this quantity in

Eq. (42).

4. Results for orientation dynamics in uniaxial extension flow

Figure 18 illustrates the development of θ and φ for uniaxial extensional flow starting from
the initial condition θ = 45◦ and φ = 10◦ for a prolate particle. In uniaxial extension, the prolate
spheroid aligns its major axis in the extension direction (θ reaches 90◦, whereas φ goes to 0◦) at long
times [see Fig. 8(a)]. This transition is slightly faster in the Newtonian fluid than the viscoelastic
fluid.

Figure 19 illustrates the development of θ and φ for uniaxial extensional flow starting from
the initial condition θ = 45◦ and φ = 10◦ for an oblate particle. The particle aligns its minor axis
in the compression plane (φ = 90◦). The long-time θ depends on the initial orientation of the
oblate particle. Therefore, at long timescales, different particles are oriented at different θ in the
compression plane [see Fig. 9(a)]. To evaluate the effective rheological properties at long-time,
we will perform an ensemble average over different initial θi and φi as discussed in the previous
sections.
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