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Abstract—Multimodal emotion recognition through 
the fusion of facial and neurophysiological features plays 
an important role in various applications, such as 
advertising, the automotive industry, wearable devices, 
and human-computer interactions. Fusing human facial 
expressions and neurophysiological signals traditionally 
requires domain-specific knowledge and complex 
preprocessing steps. However, with the advent of deep 
learning, we can fully leverage the end-to-end capabilities 
of these techniques for the intermediate integration of 
facial and neurophysiological signals in emotion 
recognition systems. As a result, we introduce a novel end-
to-end deep network that leverages transformers to learn 
rich feature representations of neurophysiological signals, 
integrated with a transformer-inspired technique for 
facial expression recognition and emotion classification. 
By integrating transformers and deep neural networks, 
our approach successfully captures complex temporal and 
spatial patterns in the data. This combination allows for  
more robust analysis, enhancing the system's overall 
performance in recognizing and classifying emotions 
accurately. We validated our approach through 
experiments on the well-known DEAP dataset, achieving 
performance comparable to the state-of-the-art, with 
accuracy rates of 97.64% for valence and 97.78% for 
arousal. 

Keywords— Multimodal Emotion Recognition, Affective 

Computing, Deep learning, Emotion Detection, Transformer 

I. INTRODUCTION 

Emotion recognition, which enables machines to respond 
to human emotional states, has become a crucial component 
of human-computer interaction. Using emotion recognition 
systems, applications can be designed to enhance user 
experience across various fields such as education, healthcare, 
task monitoring, and the autonomous driving industry. 
Emotion recognition can be explained by the dimensional 
theory, which uses two dimensions: valence and arousal. 
Valence measures pleasure (pleasant to unpleasant), while 
arousal assesses energy levels (calm to energized). Emotions 
are represented as combinations of these two dimensions. In 
this research, we apply this theory to measure emotion. 
Emotions play a key role in effective communication in social 
contexts, consequently facilitating smooth human-computer 
or human-robot interactions [1].  However, most computer 
systems currently exhibit a significant deficiency in empathy 
and emotional intelligence, limiting their ability to interact 
authentically and effectively with humans. To address this 
issue, we are developing a multimodal emotion recognition 
system. Our work investigates two modalities of data for the 
emotion recognition task, including neurophysiological 

signals and vision. We used a deep neural network 
architecture to extract features from each modality (bio-
sensing or vision). These features are then fused to produce 
more accurate results. This system assesses the emotional 
responses of users. It accurately recognizes their expressions 
by classifying them using dimensional representation, which 
can predict the full spectrum of emotions on the DEAP dataset 
[2]. 

Facial expression recognition has become a popular 
technique with the advent of deep learning, as it allows for the 
recognition of direct indicators of human emotions that are 
easily captured by cameras. Convolutional Neural Networks 
(CNNs) and their variations are highly effective in processing 
visual data for emotion recognition. For facial image 
sequences or videos, advanced techniques such as Recurrent 
Convolutional Neural Network (RCNN) [3], and a 
combination of CNN and Long Short-Term Memory (LSTM) 
are proficient in extracting spatial and temporal facial 
expression features [4]. With the rise in popularity of 
transformers in different applications [5], [6], new facial 
expression recognition methods are being developed using 
Mix Transformers [7]. 

Physiological and bio-sensing signals such as 
electroencephalogram (EEG), electrocardiogram (ECG), and 
galvanic skin response (GSR) data are used for emotion 
recognition. More recent advanced models have explored 
transformers and graph-based methods. Hybrid models 
combining CNNs with sparse autoencoders and deep neural 
networks have demonstrated high accuracy [8]. Additionally, 
models incorporating attention mechanisms and regional 
feature extraction through graph convolutional networks have 
shown promising results [9]. These studies underscore the 
potential of sophisticated neural network architectures in 
significantly advancing the field of emotion recognition from 
EEG data. 

While single-modality approaches offer distinct 
advantages, integrating multiple modalities can yield more 
comprehensive and salient features. For instance, relying 
solely on facial expression recognition may be problematic 
due to the potential for deceptive expressions. However, when 
combined with neurophysiological signals, which are not 
subject to voluntary control, the reliability of the results is 
significantly enhanced. Multimodal affective computing has 
gained attention for its potential to improve emotion 
recognition accuracy by leveraging the strengths of different 
modalities. However, most of these methods use audio and 
video to recognize emotion, while bio-sensing and vision have 
received less attention. Our study addresses this gap by 
employing a deep multimodal fusion approach that utilizes 
both neurophysiological signals and vision modalities for 
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emotion recognition.  We utilize transformer, known for its 
effectiveness in predicting time-series data, to process 
neurophysiological data and capture fine-grained features. 
Additionally, we introduce a novel facial feature extraction 
method that leverages a transformer-inspired technique for 
patch extraction.  

Our main contribution is proposing a novel end-to-end 
deep network for multi-modal emotion recognition using both 
facial and neurophysiological signals. Our deep multi-modal 
network employs Transformers to learn a rich feature 
representation of neurophysiological signals, jointly with 
unique facial expression recognition using a transformer-
inspired technique for emotion classification. By combining 
both methods, we enhance the accuracy and reliability of 
emotion recognition system. We performed experiments on 
the well-known DEAP dataset, achieving performance 
comparable to the state-of-the-art, with 97.64% and 97.78% 
(valence/arousal). 

A. Modeling Facial Emotion and Bio-sensing Signals 

To formalize our approach, we define the input data and 

model structure as follows. Assume that for the   set of 

facial emotion video frames, we have   |, … ,  , 

where  denotes the   image. Additionally, we have 

neurophysiological signals,     |, … ,  where  

signifies the   data point. The lengths of the video and 

neurophysiological signals are represented by   and  , 
respectively. For the  instance, the ground-truth annotation 

 indicates either a valence or arousal value. We train a 

comprehensive model  using tuples , ,  ∶   ∈
 ,  , where   ∈  , ,  and T is the total number of 

instances in the dataset. Here,  corresponds to low 

valence/arousal, and high valence/arousal. During the 

prediction phase, given a test video and neurophysiological 

signal pair ,   as input,  estimates ŷ , which 

approximates the ground-truth annotation  as follows: ŷ 
 , ;  . 

II. Multimodal Architecture 

Our multimodal architecture is inspired by the DeepVaNet 
model [4], utilizing both neurophysiological and facial 

features to predict emotional states. As depicted in Figure 1, 
the architecture of our model includes a transformer-based 
neurophysiological feature extractor, a facial feature extractor, 
and a fusion block. In this study, we utilize transformers for 
neurophysiological signals, which have demonstrated their 
significance in predicting time-series data. Additionally, we 
employ a unique neural network that combines convolutional 
layers for initial patch extraction and embedding, followed by 
an LSTM for sequence processing to extract facial 
expressions. Preprocessing steps involved downsampling to 
128 Hz, removing electrooculography (EOG) artifacts, 
segmentation, and baseline removal by subtracting each 
subject's initial 3 seconds of resting-state data. The EEG data 
was then divided into one-second intervals. For face 
preprocessing, 5 frames per second were extracted, and image 
cropping to a size of 64 x 64 pixels was performed based on 
facial landmarks. 

A. Neurophysiological Feature Extractor 

The transformer model is designed for neurophysiological 
feature extraction, leveraging the capabilities of transformer 
architectures to handle temporal dynamics in 
neurophysiological signals. By projecting the input into a 
higher-dimensional space, employing multi-head attention, 
and utilizing residual connections with normalization, our 
model has a robust feature extraction suitable for downstream 
classification tasks.  The data flow in the transformer-based 
architecture for processing neurophysiological signals begins 
with the input data, which has a shape of (40, 128), 
representing 40 neurophysiological signals, including the 
integration of thirty-two EEG (electroencephalogram) and 
eight physiological signals (EOG: electrooculogram, GSR: 
galvanic skin response, BVP: blood volume pulse, RSP: 
respiration, EMG: electromyogram, SKT: skin temperature, 
and pulse wave), all sampled at a rate of 128 Hz. This data can 
be related to NLP, with 128 words and 40-word embeddings. 
We apply this analogy to bio-sensing data to capture the 
advantages of transformers in understanding complex 
temporal patterns and contextual relationships.  In our 
implementation, the neurophysiological feature extractor 
processes the data through an encoding process where the 
tensor is permuted along the sequence length dimension (128, 
40) as per our analogy. As depicted in Figure 1, the tensor is 

 
 
Fig. 1. The multimodal architecture integrates neurophysiological and facial features for emotion prediction, utilizing transformers for neurophysiological 

data and a facial expression extraction network. Feature vectors  and   are passed into a fusion block to produce  , determining the 

emotional dimensions. 
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then sent to the input projection layer in transformer feature 
extractor. This projected tensor is then passed through the 
transformer encoder, which consists of layers of attention and 
feedforward neural networks. The attention mechanism 
allows the model to capture long-range dependencies within 
the sequence. Finally, we flatten the output of the transformer 
block, and a linear layer is mapped to get the desired number 
of feature vectors, resulting in an output of neurophysiological 
feature scores. This final output represents the encoded 
features of the input neurophysiological data.  This feature 
vector, represented as a 1×μ1 vector, is denoted as: 
   , , … ,  . 

B. Facial Expression Feature Extractor 

The facial expression feature extractor network is 
designed to process a sequence of facial images and extract 
meaningful features for fusion. This network combines the 
strengths of Convolutional Neural Networks (CNNs) and 
sequence models. The process begins with the input images, 
which are preprocessed and individually passed through a 
pretrained CNN on the AEFW dataset [10]. This CNN 
processes each image to produce feature maps with reduced 
spatial dimensions. The model then processes this sequence of 
feature maps to capture temporal dependencies across the 
sequence of images. We use a unique technique inspired by 
transformers in the architecture of our facial expression 
extractor, which employs a convolutional embedding to 
reduce the spatial dimensions and then handle the temporal 
sequence. The output is flattened and passed into an LSTM. 

After processing, the output features are passed through a fully 
connected layer to reduce the dimensionality to the desired 
feature size. The final output is a feature vector capturing the 
essential facial features from the input image sequence. This 
feature vector, represented as a 1×μ2 vector, is denoted as: 
   , , … ,  . 

C. Fusion Block 

The fusion block is designed to fuse facial and bio-sensing 
data for tasks such as emotion prediction. It incorporates two 
main feature extractors: a facial feature extractor and a 
neurophysiological extractor. The facial feature extractor 
reduces spatial dimensions using convolutional embedding 
and captures essential facial features. The neurophysiological 
extractor is implemented using a transformer model, which 
processes bio-sensing data by capturing long-range 
dependencies within the sequence and encoding it into a 
feature vector. For feature-level fusion, the face appearance 
feature   and the neurophysiological feature  

are concatenated to generate a multi-modal feature vector 
   ⊕ . This combined feature vector is 

passed through a multi-layer classifier that sequentially 
reduces the dimensionality and applies activation functions, 
culminating in a sigmoid function to produce the final output.. 
This fusion approach leverages the data's spatial and temporal 
aspects, making it highly effective for complex and dynamic 
tasks, particularly in emotion prediction from multi-modal 
inputs. 

III. Experiment Setup 

A. DEAP Dataset 

Dataset for emotion Analysis using physiological signals 
dataset is a widely used multimodal dataset designed to 
analyze human emotional states. This dataset comprises 

physiological data collected from 32 participants (16 males 
and 16 females) while they watched 40 music videos, each 
selected for its potential to elicit a range of emotional 
responses. EEG signals were recorded using a 32-channel 
electrode cap conforming to the “10-20” international 
standard at a sampling frequency of 512 Hz. For emotion 
classification, the DEAP dataset provides labels for valence 
and arousal, enabling the categorization of emotional states 
into distinct classes. In addition to EEG data, video recordings 
of facial expressions were made for 22 of the 32 participants, 
providing a rich dataset for multimodal emotion analysis. The 
DEAP dataset offers a comprehensive resource for 
investigating the neural and physiological correlates of 
emotion, facilitating the development and evaluation of 

emotion recognition models across various modalities. 

B. Training and Validation 

We use binary cross-entropy as the loss function. We 
consider the training batch size, the target emotion label, and 
the predicted score. The loss is calculated based on these 
elements. We pass the test video and physiological signal 
during inference through our proposed network to obtain a 
fusion score.  Based on this score, the final prediction is made: 
if the score is greater than 0.5, the prediction is "High"; 
otherwise, it is "Low". We train and test our model on each 
subject, a process referred to as a per-subject experiment. Our 
model undergoes 10-fold cross-validation, and the average 
testing accuracy is used to measure performance. For 
validation, we utilize the mean recognition accuracy of both 
valence and arousal. The feature size for face appearance and 
neurophysiological signals is 64. 

IV. Results and Discussion 

To evaluate the performance of our proposed model on 
emotion recognition, we compared it with recent techniques 
of single modality and multimodality in the same DEAP 
Dataset. Table I provides a performance evaluation of these 
models. To compare our model to single modality facial 
expression recognition, we utilized Emonet [11], a deep neural 
network architecture specifically designed to analyze facial 
affect under naturalistic conditions with high accuracy. Two 
distinct methods were employed to evaluate Emonet accuracy. 
The first method involves using a fixed threshold, where the 
labels are based on ratings equal to or above 5; we call it 
Emonet V1 in Table I. The second method, in contrast, 
employs the mean of the distribution as a dynamic threshold 
while applying a similar rating-based approach for the 
determination of labels; we called it Emonet V2 in Table I. 
Our results in Table I demonstrate the significant gap between 
the average accuracies of facial expression recognition 
(53.52% and 53.72% obtained from versions V1 and V2 of 
Emonet) and our multimodal fusion model, which achieved an 
average accuracy of 97.71%. This result indicates a significant 
improvement when using multimodal fusion compared to 
single-modal facial expression recognition. 

Table I shows models that have solely used EEG data to 
predict emotions. Our model, with an accuracy of 97.64%, 
outperforms the EEG Graph-based model (60.18% accuracy, 
59.19% arousal) [11], the CNN multispectral model (90.62% 
accuracy, 86.13% arousal) [12], and the 3D CNN model 
(96.61% accuracy, 96.43% arousal) [13]. It also surpasses the 
DCNN model, which has a valance accuracy of 87.84% and 
arousal of 87.69% [14]. This evidence confirms the 
superiority of multimodal fusion over single-modality 
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approaches. In addition, our fusion model, with an accuracy 
of 98.18%, outperforms the 3D CNN ensemble model 
(96.13% valence, 96.79% arousal) [3] and the CNN and 
attention model (96.63% valence, 98.18% arousal) [15]. The 
superiority of our proposed model can be attributed to the 
following reasons. First, our model uses a transformer-based 
architecture for EEG data to capture complex spatial and 
temporal patterns effectively. In addition, the multi-head 
attention block contributes to capturing different data 
dependencies, allowing for more comprehensive feature 
extraction. Moreover, the facial expression extractor, utilizing 
a unique technique inspired by transformers, obtains 
meaningful spatial features from images, and LSTM further 
refines these features to capture temporal dependencies. 
Finally, the integration of the transformer-based model for 
EEG data and the transformer-inspired facial emotion 
recognition, followed by the fusion of their extracted features, 
provides a robust framework for emotion prediction. This 
architecture effectively captures and integrates diverse aspects 
of neurophysiological and visual data, resulting in improved 
accuracy and reliability of emotion prediction. As presented 
in Table I, our proposed model exhibits superior accuracy 
compared to the evaluated methods, resulting in enhanced 
performance in emotion recognition tasks.  Furthermore, 
incorporating both facial and EEG data demonstrates an 
enhancement in performance over using EEG data or facial 
expression data separately. 

V. Conclusion 

This research presents a novel multimodal emotion 
recognition system that leverages neurophysiological signals 
and vision to enhance accuracy and reliability. The network 
accepts face image sequences and neurophysiological signals 
(e.g., EEG, EOG, ECG, GSR, etc.) as input, yielding valence-
arousal labels for emotion recognition. By integrating 
transformers and deep neural networks, our approach 
successfully captures the data's complex temporal and spatial 
patterns. Experiments on the DEAP dataset show that our 
model outperforms existing single-modality methods and is 
comparable to state-of-the-art multimodal methods. These 
results underscore the potential of multimodal fusion in 
advancing emotion recognition technology, paving the way 
for more empathetic and emotionally intelligent human-
computer interactions and enhanced usability in wearable 
technology. Additionally, the limited availability of datasets 
containing both facial and EEG signals presents a significant 
challenge for research in this area, which is one of the areas 
we can work on to advance the field further. 
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TABLE I 
PERFORMANCE EVALUATION OF NETWORKS ON DEAP 

EEG Models Valance Arousal Average 

EEG Graph-based 
CNN multispectral 

3D CNN 

DCNN 

60.18 
90.62 

96.61 

87.84 

59.19 
86.13 

96.43 

87.69 

59.68 
88.38 

96.52 

87.76 

Facial Models 

Emonet V1 

Emonet V2 

48.16 

51.26 

58.87 

56.19 

53.52 

53.72 

Fusion Models 

3D CNN ensemble 
CNN and attention 

Our Model 

96.13 
96.63 

97.64 

96.79 
98.18 

97.78 

96.46 
97.40 

97.71 

Table I evaluates EEG-based, facial expression-based, and fusion 
models. Integrating facial and neurophysiological features, our model 

achieves the highest average accuracy, surpassing all other models. 
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