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Abstract—Multimodal emotion recognition through
the fusion of facial and neurophysiological features plays
an important role in various applications, such as
advertising, the automeotive industry, wearable devices,
and human-computer interactions. Fusing human facial
expressions and neurophysiological signals traditionally
requires domain-specific knowledge and complex
preprocessing steps. However, with the advent of deep
learning, we can fully leverage the end-to-end capabilities
of these techniques for the intermediate integration of
facial and neurophysiological signals in emotion
recognition systems. As a result, we introduce a novel end-
to-end deep network that leverages transformers to learn
rich feature representations of neurophysiological signals,
integrated with a transformer-inspired technique for
facial expression recognition and emotion classification.
By integrating transformers and deep neural networks,
our approach successfully captures complex temporal and
spatial patterns in the data. This combination allows for
more robust analysis, enhancing the system's overall
performance in recognizing and classifying emotions
accurately. We validated our approach through
experiments on the well-known DEAP dataset, achieving
performance comparable to the state-of-the-art, with
accuracy rates of 97.64% for valence and 97.78% for
arousal.
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1. INTRODUCTION

Emotion recognition, which enables machines to respond
to human emotional states, has become a crucial component
of human-computer interaction. Using emotion recognition
systems, applications can be designed to enhance user
experience across various fields such as education, healthcare,
task monitoring, and the autonomous driving industry.
Emotion recognition can be explained by the dimensional
theory, which uses two dimensions: valence and arousal.
Valence measures pleasure (pleasant to unpleasant), while
arousal assesses energy levels (calm to energized). Emotions
are represented as combinations of these two dimensions. In
this research, we apply this theory to measure emotion.
Emotions play a key role in effective communication in social
contexts, consequently facilitating smooth human-computer
or human-robot interactions [1]. However, most computer
systems currently exhibit a significant deficiency in empathy
and emotional intelligence, limiting their ability to interact
authentically and effectively with humans. To address this
issue, we are developing a multimodal emotion recognition
system. Our work investigates two modalities of data for the
emotion recognition task, including neurophysiological

signals and vision. We used a deep neural network
architecture to extract features from each modality (bio-
sensing or vision). These features are then fused to produce
more accurate results. This system assesses the emotional
responses of users. It accurately recognizes their expressions
by classifying them using dimensional representation, which
can predict the full spectrum of emotions on the DEAP dataset

2].

Facial expression recognition has become a popular
technique with the advent of deep learning, as it allows for the
recognition of direct indicators of human emotions that are
easily captured by cameras. Convolutional Neural Networks
(CNNBs) and their variations are highly effective in processing
visual data for emotion recognition. For facial image
sequences or videos, advanced techniques such as Recurrent
Convolutional Neural Network (RCNN) [3], and a
combination of CNN and Long Short-Term Memory (LSTM)
are proficient in extracting spatial and temporal facial
expression features [4]. With the rise in popularity of
transformers in different applications [5], [6], new facial
expression recognition methods are being developed using
Mix Transformers [7].

Physiological and Dbio-sensing signals such as
electroencephalogram (EEQG), electrocardiogram (ECG), and
galvanic skin response (GSR) data are used for emotion
recognition. More recent advanced models have explored
transformers and graph-based methods. Hybrid models
combining CNNs with sparse autoencoders and deep neural
networks have demonstrated high accuracy [8]. Additionally,
models incorporating attention mechanisms and regional
feature extraction through graph convolutional networks have
shown promising results [9]. These studies underscore the
potential of sophisticated neural network architectures in
significantly advancing the field of emotion recognition from
EEG data.

While single-modality —approaches offer distinct
advantages, integrating multiple modalities can yield more
comprehensive and salient features. For instance, relying
solely on facial expression recognition may be problematic
due to the potential for deceptive expressions. However, when
combined with neurophysiological signals, which are not
subject to voluntary control, the reliability of the results is
significantly enhanced. Multimodal affective computing has
gained attention for its potential to improve emotion
recognition accuracy by leveraging the strengths of different
modalities. However, most of these methods use audio and
video to recognize emotion, while bio-sensing and vision have
received less attention. Our study addresses this gap by
employing a deep multimodal fusion approach that utilizes
both neurophysiological signals and vision modalities for
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Fig. 1. The multimodal architecture integrates neurophysiological and facial features for emotion prediction, utilizing transformers for neurophysiological
data and a facial expression extraction network. Feature vectors freyropnys and frace are passed into a fusion block to produce ffyg,, determining the

emotional dimensions.

emotion recognition. We utilize transformer, known for its
effectiveness in predicting time-series data, to process
neurophysiological data and capture fine-grained features.
Additionally, we introduce a novel facial feature extraction
method that leverages a transformer-inspired technique for
patch extraction.

Our main contribution is proposing a novel end-to-end
deep network for multi-modal emotion recognition using both
facial and neurophysiological signals. Our deep multi-modal
network employs Transformers to learn a rich feature
representation of neurophysiological signals, jointly with
unique facial expression recognition using a transformer-
inspired technique for emotion classification. By combining
both methods, we enhance the accuracy and reliability of
emotion recognition system. We performed experiments on
the well-known DEAP dataset, achieving performance
comparable to the state-of-the-art, with 97.64% and 97.78%
(valence/arousal).

A. Modeling Facial Emotion and Bio-sensing Signals

To formalize our approach, we define the input data and
model structure as follows. Assume that for the i, set of
facial emotion video frames, we have I; = {I|1, ..., n;},
where I, denotes the t,, image. Additionally, we have
neurophysiological signals, N; = {e; |1, ...,m;} where e,
signifies the t;, data point. The lengths of the video and
neurophysiological signals are represented by n; and m; ,
respectively. For the i, instance, the ground-truth annotation
y; indicates either a valence or arousal value. We train a
comprehensive model Gy using tuples {(I;,N;),y;: i €
[0,T]}, where y; € [0,1], and T is the total number of
instances in the dataset. Here, y; corresponds to low
valence/arousal, and high valence/arousal. During the
prediction phase, given a test video and neurophysiological
signal pair (I N ]-) as input, Gy estimates §; , which
approximates the ground-truth annotation y; as follows: §; =
Go((j,Nj); 0).

II. Multimodal Architecture

Our multimodal architecture is inspired by the DeepVaNet
model [4], utilizing both neurophysiological and facial

features to predict emotional states. As depicted in Figure 1,
the architecture of our model includes a transformer-based
neurophysiological feature extractor, a facial feature extractor,
and a fusion block. In this study, we utilize transformers for
neurophysiological signals, which have demonstrated their
significance in predicting time-series data. Additionally, we
employ a unique neural network that combines convolutional
layers for initial patch extraction and embedding, followed by
an LSTM for sequence processing to extract facial
expressions. Preprocessing steps involved downsampling to
128 Hz, removing electrooculography (EOG) artifacts,
segmentation, and baseline removal by subtracting each
subject's initial 3 seconds of resting-state data. The EEG data
was then divided into one-second intervals. For face
preprocessing, 5 frames per second were extracted, and image
cropping to a size of 64 x 64 pixels was performed based on
facial landmarks.

A. Neurophysiological Feature Extractor

The transformer model is designed for neurophysiological
feature extraction, leveraging the capabilities of transformer
architectures to  handle temporal dynamics in
neurophysiological signals. By projecting the input into a
higher-dimensional space, employing multi-head attention,
and utilizing residual connections with normalization, our
model has a robust feature extraction suitable for downstream
classification tasks. The data flow in the transformer-based
architecture for processing neurophysiological signals begins
with the input data, which has a shape of (40, 128),
representing 40 neurophysiological signals, including the
integration of thirty-two EEG (electroencephalogram) and
eight physiological signals (EOG: electrooculogram, GSR:
galvanic skin response, BVP: blood volume pulse, RSP:
respiration, EMG: electromyogram, SKT: skin temperature,
and pulse wave), all sampled at a rate of 128 Hz. This data can
be related to NLP, with 128 words and 40-word embeddings.
We apply this analogy to bio-sensing data to capture the
advantages of transformers in understanding complex
temporal patterns and contextual relationships. In our
implementation, the neurophysiological feature extractor
processes the data through an encoding process where the
tensor is permuted along the sequence length dimension (128,
40) as per our analogy. As depicted in Figure 1, the tensor is
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then sent to the input projection layer in transformer feature
extractor. This projected tensor is then passed through the
transformer encoder, which consists of layers of attention and
feedforward neural networks. The attention mechanism
allows the model to capture long-range dependencies within
the sequence. Finally, we flatten the output of the transformer
block, and a linear layer is mapped to get the desired number
of feature vectors, resulting in an output of neurophysiological
feature scores. This final output represents the encoded
features of the input neurophysiological data. This feature
vector, represented as a 1xul vector, is denoted as:

’P[l.l )

B. Facial Expression Feature Extractor

fneurophys = (P, Py, ...

The facial expression feature extractor network is
designed to process a sequence of facial images and extract
meaningful features for fusion. This network combines the
strengths of Convolutional Neural Networks (CNNs) and
sequence models. The process begins with the input images,
which are preprocessed and individually passed through a
pretrained CNN on the AEFW dataset [10]. This CNN
processes each image to produce feature maps with reduced
spatial dimensions. The model then processes this sequence of
feature maps to capture temporal dependencies across the
sequence of images. We use a unique technique inspired by
transformers in the architecture of our facial expression
extractor, which employs a convolutional embedding to
reduce the spatial dimensions and then handle the temporal
sequence. The output is flattened and passed into an LSTM.

After processing, the output features are passed through a fully
connected layer to reduce the dimensionality to the desired
feature size. The final output is a feature vector capturing the
essential facial features from the input image sequence. This
feature vector, represented as a 1xu2 vector, is denoted as:

fface = (Ey Ey, "-'Euz ).
C. Fusion Block

The fusion block is designed to fuse facial and bio-sensing
data for tasks such as emotion prediction. It incorporates two
main feature extractors: a facial feature extractor and a
neurophysiological extractor. The facial feature extractor
reduces spatial dimensions using convolutional embedding
and captures essential facial features. The neurophysiological
extractor is implemented using a transformer model, which
processes bio-sensing data by capturing long-range
dependencies within the sequence and encoding it into a
feature vector. For feature-level fusion, the face appearance
feature frqcoand the neurophysiological feature f,eyropnys
are concatenated to generate a multi-modal feature vector
fruse = frace ® freuropnys- This combined feature vector is
passed through a multi-layer classifier that sequentially
reduces the dimensionality and applies activation functions,
culminating in a sigmoid function to produce the final output..
This fusion approach leverages the data's spatial and temporal
aspects, making it highly effective for complex and dynamic
tasks, particularly in emotion prediction from multi-modal
inputs.

III. Experiment Setup

A. DEAP Dataset

Dataset for emotion Analysis using physiological signals
dataset is a widely used multimodal dataset designed to
analyze human emotional states. This dataset comprises

physiological data collected from 32 participants (16 males
and 16 females) while they watched 40 music videos, each
selected for its potential to elicit a range of emotional
responses. EEG signals were recorded using a 32-channel
electrode cap conforming to the “10-20” international
standard at a sampling frequency of 512 Hz. For emotion
classification, the DEAP dataset provides labels for valence
and arousal, enabling the categorization of emotional states
into distinct classes. In addition to EEG data, video recordings
of facial expressions were made for 22 of the 32 participants,
providing a rich dataset for multimodal emotion analysis. The
DEAP dataset offers a comprehensive resource for
investigating the neural and physiological correlates of
emotion, facilitating the development and evaluation of

emotion recognition models across various modalities.

B. Training and Validation

We use binary cross-entropy as the loss function. We
consider the training batch size, the target emotion label, and
the predicted score. The loss is calculated based on these
elements. We pass the test video and physiological signal
during inference through our proposed network to obtain a
fusion score. Based on this score, the final prediction is made:
if the score is greater than 0.5, the prediction is "High";
otherwise, it is "Low". We train and test our model on each
subject, a process referred to as a per-subject experiment. Our
model undergoes 10-fold cross-validation, and the average
testing accuracy is used to measure performance. For
validation, we utilize the mean recognition accuracy of both
valence and arousal. The feature size for face appearance and
neurophysiological signals is 64.

IV. Results and Discussion

To evaluate the performance of our proposed model on
emotion recognition, we compared it with recent techniques
of single modality and multimodality in the same DEAP
Dataset. Table I provides a performance evaluation of these
models. To compare our model to single modality facial
expression recognition, we utilized Emonet [11], a deep neural
network architecture specifically designed to analyze facial
affect under naturalistic conditions with high accuracy. Two
distinct methods were employed to evaluate Emonet accuracy.
The first method involves using a fixed threshold, where the
labels are based on ratings equal to or above 5; we call it
Emonet V1 in Table I. The second method, in contrast,
employs the mean of the distribution as a dynamic threshold
while applying a similar rating-based approach for the
determination of labels; we called it Emonet V2 in Table I.
Our results in Table I demonstrate the significant gap between
the average accuracies of facial expression recognition
(53.52% and 53.72% obtained from versions V1 and V2 of
Emonet) and our multimodal fusion model, which achieved an
average accuracy of 97.71%. This result indicates a significant
improvement when using multimodal fusion compared to
single-modal facial expression recognition.

Table I shows models that have solely used EEG data to
predict emotions. Our model, with an accuracy of 97.64%,
outperforms the EEG Graph-based model (60.18% accuracy,
59.19% arousal) [11], the CNN multispectral model (90.62%
accuracy, 86.13% arousal) [12], and the 3D CNN model
(96.61% accuracy, 96.43% arousal) [13]. It also surpasses the
DCNN model, which has a valance accuracy of 87.84% and
arousal of 87.69% [14]. This evidence confirms the
superiority of multimodal fusion over single-modality
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TABLE I
PERFORMANCE EVALUATION OF NETWORKS ON DEAP

EEG Models Valance | Arousal Average
EEG Graph-based 60.18 59.19 59.68
CNN multispectral 90.62 86.13 88.38
3D CNN 96.61 96.43 96.52
DCNN 87.84 87.69 87.76
Facial Models

Emonet V1 48.16 58.87 53.52
Emonet V2 51.26 56.19 53.72
Fusion Models

3D CNN ensemble 96.13 96.79 96.46
CNN and attention 96.63 98.18 97.40
Our Model 97.64 97.78 97.71

Table I evaluates EEG-based, facial expression-based, and fusion
models. Integrating facial and neurophysiological features, our model
achieves the highest average accuracy, surpassing all other models.

approaches. In addition, our fusion model, with an accuracy
of 98.18%, outperforms the 3D CNN ensemble model
(96.13% valence, 96.79% arousal) [3] and the CNN and
attention model (96.63% valence, 98.18% arousal) [15]. The
superiority of our proposed model can be attributed to the
following reasons. First, our model uses a transformer-based
architecture for EEG data to capture complex spatial and
temporal patterns effectively. In addition, the multi-head
attention block contributes to capturing different data
dependencies, allowing for more comprehensive feature
extraction. Moreover, the facial expression extractor, utilizing
a unique technique inspired by transformers, obtains
meaningful spatial features from images, and LSTM further
refines these features to capture temporal dependencies.
Finally, the integration of the transformer-based model for
EEG data and the transformer-inspired facial emotion
recognition, followed by the fusion of their extracted features,
provides a robust framework for emotion prediction. This
architecture effectively captures and integrates diverse aspects
of neurophysiological and visual data, resulting in improved
accuracy and reliability of emotion prediction. As presented
in Table I, our proposed model exhibits superior accuracy
compared to the evaluated methods, resulting in enhanced
performance in emotion recognition tasks. Furthermore,
incorporating both facial and EEG data demonstrates an
enhancement in performance over using EEG data or facial
expression data separately.

V. Conclusion

This research presents a novel multimodal emotion
recognition system that leverages neurophysiological signals
and vision to enhance accuracy and reliability. The network
accepts face image sequences and neurophysiological signals
(e.g., EEG, EOG, ECG, GSR, etc.) as input, yielding valence-
arousal labels for emotion recognition. By integrating
transformers and deep neural networks, our approach
successfully captures the data's complex temporal and spatial
patterns. Experiments on the DEAP dataset show that our
model outperforms existing single-modality methods and is
comparable to state-of-the-art multimodal methods. These
results underscore the potential of multimodal fusion in
advancing emotion recognition technology, paving the way
for more empathetic and emotionally intelligent human-
computer interactions and enhanced usability in wearable
technology. Additionally, the limited availability of datasets
containing both facial and EEG signals presents a significant
challenge for research in this area, which is one of the areas
we can work on to advance the field further.
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