
  

  

Abstract— Upper limb motor impairments resulting from 

stroke greatly limit daily activities and diminish quality of life, 

making effective rehabilitation essential. This study addresses 

this issue by classifying motor tasks using EEG data from acute 

stroke patients, focusing on left-hand motor imagery, right- 

hand motor imagery, and rest states. By using advanced source 

localization techniques combined with customized ResNetCNN 

architecture, we achieve superior spatial pattern recognition in 

EEG data. Our methodology results in classification accuracies 

of 91.03%, 89.07%, and 87.17%, compared to 55.57% to 72.21% 

achieved by traditional sensor domain methods. These findings 

demonstrate the potential of our approach to enhance brain-

computer interfaces (BCIs) for more effective and personalized 

neurorehabilitation, ultimately improving recovery outcomes 

and quality of life for stroke patients. The results underscore the 

importance of advanced EEG classification techniques in 

providing clinicians with precise tools for developing 

individualized therapy plans, potentially leading to significant 

improvements in motor function recovery and patient outcomes.   

I. INTRODUCTION 

Stroke is a leading cause of death and disability globally, 
causing significant morbidity despite advancements in 
therapies [1]. Most stroke patients experience upper limb 
motor impairment, limiting activities and burdening families 
[2]. Soft-robotic gloves aid rehabilitation by facilitating finger 
movements using biosignals [3]. Robot-based therapy has 
improved hand motor function and brain reorganization, 
emphasizing the need for neurophysiological studies for 
effective rehabilitation [4]. BMIs link brain circuitry to 
assistive devices like prostheses and wheelchairs [5]. EEG, 
MEG, fMRI, and NIRS are used for BCIs, with EEG being 
preferred for its non-invasive nature and cost [6]. EEG signals 
enable communication for individuals with severe 
neuromuscular disorders. Advances in brain function 
understanding have propelled BCI research, but signal 
complexity poses challenges, necessitating optimized 
classifiers [7], [8]. 

In recent years, classification algorithms for BCIs, 
including linear classifiers, neural networks, Bayesian 
classifiers, nearest neighbor classifiers, and combinations, 
have been reviewed to guide the design of BCI systems, with 
SVMs being particularly efficient for synchronous BCIs [9]. 
BMIs have shown promise in facilitating neuroplasticity and 
motor recovery in paralyzed stroke patients using noninvasive 
technologies like EEG, though further improvements are 
needed [10]. BCI-based therapy has shown promising results 
for post-stroke motor rehabilitation and holds potential for 
addressing non-motor deficits such as cognitive and emotional 
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impairments, emphasizing a holistic approach to post-stroke 
rehabilitation [11]. Despite previous studies emphasizing deep 
learning methods for EEG signal analysis, advanced source 
localization techniques such as electrophysiological source 
imaging (ESI) have significantly improved the accuracy of 
brain source imaging in clinical applications by providing high 
spatial resolution using noninvasive scalp measurements [12]. 
For instance, EEG recordings can decode hand motion 
preparation by solving the inverse problem through 
beamforming. A custom deep CNN trained on these EEG 
source epochs achieved accuracy rates up to 89.65% for hand 
close versus rest and 90.50% for hand open versus rest. This 
method identified key cortical areas involved in hand 
movement preparation, such as the central region and the right 
temporal zone of the premotor and primary motor cortex [13]. 

In this paper, we introduce a novel approach for classifying 
motor tasks using EEG data from acute stroke patients, 
focusing on three specific movements: left-hand motor 
imagery, right-hand motor imagery, and rest [14]. By applying 
advanced source localization techniques such as MNE, dipole 
fitting, and beamforming, we enhanced our ability to 
accurately identify cortical activity, which is crucial for 
developing targeted neurotherapies. Our methodology 
integrates these advanced techniques with a specially designed 
Residual Convolutional Neural Network (ResNet) architecture 
to capture spatial patterns in EEG data, significantly 
improving classification accuracy. Transforming EEG data 
from the sensor domain to the source domain allowed us to 
achieve more precise cortical activity representation, resulting 
in classification accuracies of 91.03% (dipole fitting), 89.07% 
(MNE), and 87.17% (beamforming). These results surpass 
state-of-the-art methods in the sensor domain, which typically 
achieve accuracies ranging from 55.57% to 72.21%. The main 
contributions of this paper include: 

• Enhanced Classification Accuracy: Demonstrating 
substantial improvements in classification accuracy 
by applying source localization techniques before 
CNN analysis, highlighting the potential for more 
precise and reliable BCIs in clinical applications. 

• Advanced Health Technology: Presenting a 
comprehensive framework that combines advanced 
preprocessing, source localization, and deep learning 
techniques offering a robust solution for improved 
EE signal analysis in neurorehabilitation, thereby 
facilitating more effective and personalized therapies 
for stroke patients. 
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The rest of the paper is structured as follows: Section II 
outlines the Methodology, including system description, data 
acquisition, preprocessing, source localization techniques, and 
CNN architecture. Section III presents the Results, 
highlighting the classification performance achieved using 
source localization techniques compared to traditional sensor 
domain methods across various motor imagery tasks. Section 
IV provides the Conclusion, summarizing the key findings and 
discussing the potential impact on neurorehabilitation and 
future research directions. 

II. METHODS 

A. System Description 

This study investigates the neural correlates of motor 

imagery (MI) in acute stroke patients using EEG recordings 

from 50 patients at Xuanwu Hospital. Participants, seated 80 

cm from a screen with an EEG cap, underwent three stages: 

instruction, motor imagery, and rest. Visual and audio cues 

guided them to imagine left- or right-hand movements. Figure 

1 (B) shows the 29 EEG and 2 EOG electrodes used, with CPz 

as the reference and FPz as the ground. For analysis, one-

second trials were selected to focus on motor imagery tasks, 

generating topographic plots of cortical activity. Figure 1 (C) 

presents topographic maps for the left-hand movement task, 

showing cortical activity and beta frequency (15-25 Hz). 

Advanced source localization techniques like Minimum 

Norm Estimation (MNE), dipole fitting, and beamforming 

were used. These methods provided accurate cortical 

localization, enhancing understanding of neural mechanisms 

during motor tasks. The topographic maps depict the 

distribution of neural activity, and the lower part of (C) shows 

detailed source localization images. These images highlight 

specific brain areas activated during the task, such as the 

premotor cortex and primary motor cortex, which are crucial 

for motor planning and execution. This precise localization 

offers a better understanding of the cortical dynamics 

involved in motor imagery. Figure 1 (D) illustrates the 

classification process using ResNet, which classified EEG 

data into left-hand movement, right-hand movement, and rest. 

This architecture achieves high classification accuracy, 

making it effective for EEG analysis and BCI applications. 

B. Data Description and Methodology 

The dataset includes EEG data from 50 acute stroke 
patients, aged 31 to 77 years, collected through motor imagery 
(MI) tasks. Each patient performed 40 trials of MI tasks, with 
each trial lasting 8 seconds [14]. The EEG system used a 
wireless multichannel acquisition setup with 29 EEG 
recording electrodes and 2 electrooculography (EOG) 
electrodes placed according to the international 10-10 system, 
with the reference electrode at CPz and the grounding 
electrode at FPz. Preprocessing of the data, performed using 
the EEGLAB toolbox in MATLAB (R2019b), involved 
baseline removal, time-domain filtering from 0.5 to 40 Hz, and 
segmentation into ‘trials × channels × time-samples’ format. 
The preprocessed data were then ready for source localization 
and further analysis. The experimental procedures involving 
human subjects described in this paper were approved by the 
Institutional Review Board in their respective institution. 

C. Source Localization and Inverse Problem 

To enhance the spatial resolution of EEG signals in our 

study, we employed advanced source localization techniques 

including MNE, dipole fitting, and beamforming. MNE 

provides a distributed source model by estimating the current 

density across the entire cortex. Dipole fitting estimates the 

location and orientation of equivalent current dipoles 

representing the brain's activity. Beamforming enhances 

spatial resolution by focusing on specific regions of interest 

while suppressing activity from other areas [15][16][17]. 

These methods aim to reconstruct the cortical sources of EEG 

signals by solving the inverse problem using the New York 

Head (NYH) forward model [18]. 

 

                                      x(t) = L × qr (t)                              (1) 

 

In this equation, x(t) denotes the vector of scalp potentials 

at time t, L represents the lead field matrix, and qr (t) indicates 

the vector of current dipoles at cortical location r. 

EEG signals were recorded using a 29-electrode high-

density cap, covering the frontal, central, parietal, and 

temporal areas. The forward model was applied to these 

preprocessed signals to project the contributions of cortical 

 

Fig. 1. Flowchart of the proposed framework. (A) Participant Setup: The trial timing includes subject preparation at 0s, a class cue at 2s, and a motor imagery 
phase until 6s, followed by a rest phase. The participant is equipped with a 32-channel EEG cap. (B) EEG Data Acquisition: Displays the 29 active electrode 
locations and 2 EOG electrodes according to the international 10-10 system, along with sample EEG signals recorded from these electrodes. The reference 
electrode is located at CPz and the grounding electrode at FPz. (C) Data Analysis: Topographical plots (topoplots) visualize the EEG data at defined time 
points. Source localization techniques such as MNE, dipole fitting, and beamforming identify cortical sources, with detailed source localization images 
highlighting the specific brain areas activated during the left-hand movement task. (D) Classification: The localized EEG data are fed into a ResNet-CNN 
for task classification, effectively distinguishing between left-hand movement, right-hand movement, and rest. 
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sources onto the scalp sensors. The inverse problem was then 

solved using MNE, dipole fitting, and beamforming 

techniques, allowing us to precisely localize the cortical 

activity associated with various hand movements. This 

approach provided a more accurate understanding of the 

neural mechanisms underlying the EEG signals recorded from 

the participants. 

D. Residual Convolutional Neural Network Architecture 

The localized signals were subsequently processed using a 

customized ResNet, designed to classify the EEG data into 

three distinct motor tasks: left-hand movement, right-hand 

movement, and rest. The proposed CNN model begins with 

an input layer for EEG signal data shaped into images, 

followed by convolutional layers for feature extraction. The 

first convolutional layer uses 32 filters to capture low-level 

features, stabilized by batch normalization and reduced in 

dimension by max-pooling and dropout layers to prevent 

overfitting. 

A notable feature of the model is the incorporation of 

inception modules and residual blocks. Inception modules 

process input through multiple convolutional layers with 

different kernel sizes, capturing various feature levels. 

Residual blocks address the vanishing gradient problem, 

allowing the training of deeper networks with shortcut 

connections. Additionally, an attention mechanism enhances 

the model's focus on informative features. The final fully 

connected dense layers integrate the learned features and 

output the classification results, with dropout ensuring robust 

learning. This architecture, combining inception modules, 

residual blocks, and attention mechanisms, achieves high 

classification accuracy, making it effective for EEG signal 

analysis and BCI applications. 

III. RESULTS & DISCUSSION 

In this study, we focused on the classification of MI EEG 
data, specifically distinguishing between left-hand, right-hand, 
and rest states. Previous studies have employed various 
classification methods such as CSP + LDA and FBCSP + 
SVM, achieving moderate accuracy. Additionally, methods 
based on Riemannian geometry, including MDRM, TSLDA, 
Fisher discriminant geodesic filtering followed by MDRM 
classification (DGFMDRM), and a decision fusion method 

combining TSLDA and DGFMDRM, have shown promising 
results. However, our approach outperforms by applying 
advanced source localization techniques to enhance 
classification performance.  

Table Ⅰ presents the average classification accuracy, kappa, 
precision, and sensitivity for the cited methods. These results 
provide a benchmark for evaluating our source localization 
techniques. In our study, we employed dipole fitting, MNE, 
and beamforming to precisely localize cortical activity 
associated with MI tasks. This approach allowed us to achieve 
significantly higher classification performance compared to 
traditional sensor domain methods. As shown in Table Ⅰ, 
dipole fitting achieved an average accuracy of 91.03%, kappa 
of 0.8655, precision of 0.9106, and sensitivity of 0.9103. MNE 
and beamforming also demonstrated high classification 
performance with average accuracies of 89.07% and 87.17%, 
respectively. These results highlight the potential of source 
localization methods for enhancing BCI applications by 
improving classification accuracy. Figure 2 illustrates the 
confusion matrices for dipole fitting, MNE, and beamforming 
methods. These matrices provide a visual representation of the 
classification performance, indicating the number of correct 
and incorrect predictions for each class (left hand, right hand, 
and rest). The high values along the diagonal of each matrix 
indicate a strong agreement between the predicted and actual 
classes, further demonstrating the effectiveness of source 
localization techniques in MI classification tasks. 

The inclusion of the rest state in our classification task, 
along with the application of advanced source localization 
methods, has significantly enhanced the accuracy and 
reliability of our MI classification. This work has substantial 
implications for the development of BCIs and 
neurorehabilitation technologies. By moving beyond 
traditional sensor domain methods and incorporating source 
localization techniques, we can achieve more precise and 
robust detection of neural activity patterns associated with 
motor imagery. 

TABLE I.  COMPARISON OF AVERAGE CLASSIFICATION PERFORMANCE OF VARIOUS METHODS. THE FIRST FOUR METHODS, CSP + LDA, FBCSP + SVM, 
TSLDA + DGFMDRM, AND TWFB + DGFMDRM, REPRESENT STATE-OF-THE-ART TECHNIQUES FOR EEG-BASED MOTOR IMAGERY 

CLASSIFICATION AS CITED IN [14]. THE LAST THREE ROWS PRESENT OUR PROPOSED SOURCE LOCALIZATION  METHODS, DIPOLE FITTING, MNE, 
AND BEAMFORMING, DEMONSTRATING SIGNIFICANT IMPROVEMENTS IN CLASSIFICATION ACCURACY, KAPPA, PRECISION, AND SENSITIVITY. 

METHOD AVERAGE ACCURACY (%) KAPPA PRECISION SENSITIVITY 

CSP + LDA [14] 55.57 0.1114 0.5619 0.5707 

FBCSP + SVM [14] 57.57 0.1514 0.5690 0.5668 

TSLDA + DGFMDRM [14] 61.20 0.2240 0.6160 0.6111 

TWFB + DGFMDRM [14] 72.21 0.4442 0.7543 0.7845 

DIPOLE FITTING 91.03 0.8655 0.9106 0.9103 

MNE 89.07 0.8360 0.8916 0.8907 

BEAMFORMING 87.17 0.8075 0.8734 0.8717 
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In the context of health technology, these findings can lead 
to improved BCI systems for stroke rehabilitation, facilitating 
more effective and personalized therapy by accurately 
interpreting patients' motor intentions. This can accelerate the 
recovery process by providing real-time feedback and adaptive 
training protocols based on the patients' neural activity. The 
enhanced classification accuracy also improves the reliability 
of assistive technologies, such as prosthetic control, allowing 
for more natural and intuitive interactions for users. 
Understanding the detailed neural mechanisms underlying MI 
through source localization can offer insights into brain 
function and plasticity, contributing to developing new 
treatments and interventions for various neurological 
conditions. 

IV. CONCLUSION 

In this study, we implemented advanced source localization 

techniques combined with a ResNet CNN architecture, 

significantly improving the classification of MI tasks in acute 

stroke patients. Our approach achieved classification 

accuracies of 91.03% with dipole fitting, 89.07% with MNE, 

and 87.17% with beamforming, outperforming traditional 

sensor domain methods, which range from 55.57% to 

72.21%. These results highlight the advantage of 

transforming EEG data from the sensor domain to the source 

domain for more precise cortical activity representation. Our 

findings suggest a significant advancement in BCI technology 

for neurorehabilitation, offering precise detection of neural 

activity patterns related to motor imagery. This approach can 

lead to the development of personalized therapy plans, 

enhancing motor function recovery and quality of life for 

stroke patients. Future work should explore the practical 

integration of these techniques into BCI systems and assess 

their long-term effectiveness in rehabilitation. 

⎯ Code availability Custom code will be available on 

request to the corresponding author. 
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Fig. 2. Confusion matrices for (a) dipole fitting, (b) MNE, and (c) beamforming methods. The matrices show the number of correct and incorrect 
predictions for each class (left hand, right hand, and rest), highlighting the effectiveness of source localization techniques in improving classification 
accuracy for motor imagery tasks. 
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