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Abstract— Upper limb motor impairments resulting from
stroke greatly limit daily activities and diminish quality of life,
making effective rehabilitation essential. This study addresses
this issue by classifying motor tasks using EEG data from acute
stroke patients, focusing on left-hand motor imagery, right-
hand motor imagery, and rest states. By using advanced source
localization techniques combined with customized ResNetCNN
architecture, we achieve superior spatial pattern recognition in
EEG data. Our methodology results in classification accuracies
0f91.03%, 89.07%, and 87.17%, compared to 55.57% to 72.21%
achieved by traditional sensor domain methods. These findings
demonstrate the potential of our approach to enhance brain-
computer interfaces (BCIs) for more effective and personalized
neurorehabilitation, ultimately improving recovery outcomes
and quality of life for stroke patients. The results underscore the
importance of advanced EEG classification techniques in
providing clinicians with precise tools for developing
individualized therapy plans, potentially leading to significant
improvements in motor function recovery and patient outcomes.

I. INTRODUCTION

Stroke is a leading cause of death and disability globally,
causing significant morbidity despite advancements in
therapies [1]. Most stroke patients experience upper limb
motor impairment, limiting activities and burdening families
[2]. Soft-robotic gloves aid rehabilitation by facilitating finger
movements using biosignals [3]. Robot-based therapy has
improved hand motor function and brain reorganization,
emphasizing the need for neurophysiological studies for
effective rehabilitation [4]. BMIs link brain circuitry to
assistive devices like prostheses and wheelchairs [5]. EEG,
MEG, fMRI, and NIRS are used for BCIs, with EEG being
preferred for its non-invasive nature and cost [6]. EEG signals
enable communication for individuals with severe
neuromuscular disorders. Advances in brain function
understanding have propelled BCI research, but signal
complexity poses challenges, necessitating optimized
classifiers [7], [8].

In recent years, classification algorithms for BCls,
including linear classifiers, neural networks, Bayesian
classifiers, nearest neighbor classifiers, and combinations,
have been reviewed to guide the design of BCI systems, with
SVMs being particularly efficient for synchronous BClIs [9].
BMIs have shown promise in facilitating neuroplasticity and
motor recovery in paralyzed stroke patients using noninvasive
technologies like EEG, though further improvements are
needed [10]. BCI-based therapy has shown promising results
for post-stroke motor rehabilitation and holds potential for
addressing non-motor deficits such as cognitive and emotional
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impairments, emphasizing a holistic approach to post-stroke
rehabilitation [11]. Despite previous studies emphasizing deep
learning methods for EEG signal analysis, advanced source
localization techniques such as electrophysiological source
imaging (ESI) have significantly improved the accuracy of
brain source imaging in clinical applications by providing high
spatial resolution using noninvasive scalp measurements [12].
For instance, EEG recordings can decode hand motion
preparation by solving the inverse problem through
beamforming. A custom deep CNN trained on these EEG
source epochs achieved accuracy rates up to 89.65% for hand
close versus rest and 90.50% for hand open versus rest. This
method identified key cortical areas involved in hand
movement preparation, such as the central region and the right
temporal zone of the premotor and primary motor cortex [13].

In this paper, we introduce a novel approach for classifying
motor tasks using EEG data from acute stroke patients,
focusing on three specific movements: left-hand motor
imagery, right-hand motor imagery, and rest [14]. By applying
advanced source localization techniques such as MNE, dipole
fitting, and beamforming, we enhanced our ability to
accurately identify cortical activity, which is crucial for
developing targeted neurotherapies. Our methodology
integrates these advanced techniques with a specially designed
Residual Convolutional Neural Network (ResNet) architecture
to capture spatial patterns in EEG data, significantly
improving classification accuracy. Transforming EEG data
from the sensor domain to the source domain allowed us to
achieve more precise cortical activity representation, resulting
in classification accuracies of 91.03% (dipole fitting), 89.07%
(MNE), and 87.17% (beamforming). These results surpass
state-of-the-art methods in the sensor domain, which typically
achieve accuracies ranging from 55.57% to 72.21%. The main
contributions of this paper include:

e Enhanced Classification Accuracy: Demonstrating
substantial improvements in classification accuracy
by applying source localization techniques before
CNN analysis, highlighting the potential for more
precise and reliable BClIs in clinical applications.

e Advanced Health Technology: Presenting a
comprehensive framework that combines advanced
preprocessing, source localization, and deep learning
techniques offering a robust solution for improved
EE signal analysis in neurorehabilitation, thereby
facilitating more effective and personalized therapies
for stroke patients.
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Fig. 1. Flowchart of the proposed framework. (A) Participant Setup: The trial timing includes subject preparation at Os, a class cue at 2s, and a motor imagery
phase until 6s, followed by a rest phase. The participant is equipped with a 32-channel EEG cap. (B) EEG Data Acquisition: Displays the 29 active electrode
locations and 2 EOG electrodes according to the international 10-10 system, along with sample EEG signals recorded from these electrodes. The reference
electrode is located at CPz and the grounding electrode at FPz. (C) Data Analysis: Topographical plots (topoplots) visualize the EEG data at defined time
points. Source localization techniques such as MNE, dipole fitting, and beamforming identify cortical sources, with detailed source localization images
highlighting the specific brain areas activated during the left-hand movement task. (D) Classification: The localized EEG data are fed into a ResNet-CNN
for task classification, effectively distinguishing between left-hand movement, right-hand movement, and rest.

The rest of the paper is structured as follows: Section II
outlines the Methodology, including system description, data
acquisition, preprocessing, source localization techniques, and
CNN architecture. Section III presents the Results,
highlighting the classification performance achieved using
source localization techniques compared to traditional sensor
domain methods across various motor imagery tasks. Section
IV provides the Conclusion, summarizing the key findings and
discussing the potential impact on neurorchabilitation and
future research directions.

II. METHODS

A. System Description

This study investigates the neural correlates of motor
imagery (MI) in acute stroke patients using EEG recordings
from 50 patients at Xuanwu Hospital. Participants, seated 80
cm from a screen with an EEG cap, underwent three stages:
instruction, motor imagery, and rest. Visual and audio cues
guided them to imagine left- or right-hand movements. Figure
1 (B) shows the 29 EEG and 2 EOG electrodes used, with CPz
as the reference and FPz as the ground. For analysis, one-
second trials were selected to focus on motor imagery tasks,
generating topographic plots of cortical activity. Figure 1 (C)
presents topographic maps for the left-hand movement task,
showing cortical activity and beta frequency (15-25 Hz).
Advanced source localization techniques like Minimum
Norm Estimation (MNE), dipole fitting, and beamforming
were used. These methods provided accurate cortical
localization, enhancing understanding of neural mechanisms
during motor tasks. The topographic maps depict the
distribution of neural activity, and the lower part of (C) shows
detailed source localization images. These images highlight
specific brain areas activated during the task, such as the
premotor cortex and primary motor cortex, which are crucial
for motor planning and execution. This precise localization
offers a better understanding of the cortical dynamics
involved in motor imagery. Figure 1 (D) illustrates the
classification process using ResNet, which classified EEG
data into left-hand movement, right-hand movement, and rest.
This architecture achieves high classification accuracy,
making it effective for EEG analysis and BCI applications.

B. Data Description and Methodology

The dataset includes EEG data from 50 acute stroke
patients, aged 31 to 77 years, collected through motor imagery
(MI) tasks. Each patient performed 40 trials of MI tasks, with
each trial lasting 8 seconds [14]. The EEG system used a
wireless multichannel acquisition setup with 29 EEG
recording electrodes and 2 electrooculography (EOG)
electrodes placed according to the international 10-10 system,
with the reference electrode at CPz and the grounding
electrode at FPz. Preprocessing of the data, performed using
the EEGLAB toolbox in MATLAB (R2019b), involved
baseline removal, time-domain filtering from 0.5 to 40 Hz, and
segmentation into ‘trials x channels x time-samples’ format.
The preprocessed data were then ready for source localization
and further analysis. The experimental procedures involving
human subjects described in this paper were approved by the
Institutional Review Board in their respective institution.

C. Source Localization and Inverse Problem

To enhance the spatial resolution of EEG signals in our
study, we employed advanced source localization techniques
including MNE, dipole fitting, and beamforming. MNE
provides a distributed source model by estimating the current
density across the entire cortex. Dipole fitting estimates the
location and orientation of equivalent current dipoles
representing the brain's activity. Beamforming enhances
spatial resolution by focusing on specific regions of interest
while suppressing activity from other areas [15][16][17].
These methods aim to reconstruct the cortical sources of EEG
signals by solving the inverse problem using the New York
Head (NYH) forward model [18].

x() =L X g (t) (1)

In this equation, x(t) denotes the vector of scalp potentials
at time t, L represents the lead field matrix, and q, (t) indicates
the vector of current dipoles at cortical location r.

EEG signals were recorded using a 29-electrode high-
density cap, covering the frontal, central, parietal, and
temporal areas. The forward model was applied to these
preprocessed signals to project the contributions of cortical

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 17,2025 at 04:07:19 UTC from IEEE Xplore. Restrictions apply.



TABLE I. COMPARISON OF AVERAGE CLASSIFICATION PERFORMANCE OF VARIOUS METHODS. THE FIRST FOUR METHODS, CSP + LDA, FBCSP + SVM,
TSLDA + DGFMDRM, AND TWFB + DGFMDRM, REPRESENT STATE-OF-THE-ART TECHNIQUES FOR EEG-BASED MOTOR IMAGERY
CLASSIFICATION AS CITED IN [14]. THE LAST THREE ROWS PRESENT OUR PROPOSED SOURCE LOCALIZATION METHODS, DIPOLE FITTING, MNE,
AND BEAMFORMING, DEMONSTRATING SIGNIFICANT IMPROVEMENTS IN CLASSIFICATION ACCURACY, KAPPA, PRECISION, AND SENSITIVITY.

METHOD AVERAGE ACCURACY (%) KaArpPA PRECISION SENSITIVITY
CSP + LDA [14] 55.57 0.1114 0.5619 0.5707
FBCSP + SVM [14] 57.57 0.1514 0.5690 0.5668
TSLDA + DGFMDRM [14] 61.20 0.2240 0.6160 0.6111
TWFB + DGFMDRM [14] 72.21 0.4442 0.7543 0.7845
DIPOLE FITTING 91.03 0.8655 0.9106 0.9103
MNE 89.07 0.8360 0.8916 0.8907
BEAMFORMING 87.17 0.8075 0.8734 0.8717

sources onto the scalp sensors. The inverse problem was then
solved using MNE, dipole fitting, and beamforming
techniques, allowing us to precisely localize the cortical
activity associated with various hand movements. This
approach provided a more accurate understanding of the
neural mechanisms underlying the EEG signals recorded from
the participants.

D. Residual Convolutional Neural Network Architecture

The localized signals were subsequently processed using a
customized ResNet, designed to classify the EEG data into
three distinct motor tasks: left-hand movement, right-hand
movement, and rest. The proposed CNN model begins with
an input layer for EEG signal data shaped into images,
followed by convolutional layers for feature extraction. The
first convolutional layer uses 32 filters to capture low-level
features, stabilized by batch normalization and reduced in
dimension by max-pooling and dropout layers to prevent
overfitting.

A notable feature of the model is the incorporation of
inception modules and residual blocks. Inception modules
process input through multiple convolutional layers with
different kernel sizes, capturing various feature levels.
Residual blocks address the vanishing gradient problem,
allowing the training of deeper networks with shortcut
connections. Additionally, an attention mechanism enhances
the model's focus on informative features. The final fully
connected dense layers integrate the learned features and
output the classification results, with dropout ensuring robust
learning. This architecture, combining inception modules,
residual blocks, and attention mechanisms, achieves high
classification accuracy, making it effective for EEG signal
analysis and BCI applications.

III. RESULTS & DISCUSSION

In this study, we focused on the classification of MI EEG
data, specifically distinguishing between left-hand, right-hand,
and rest states. Previous studies have employed various
classification methods such as CSP + LDA and FBCSP +
SVM, achieving moderate accuracy. Additionally, methods
based on Riemannian geometry, including MDRM, TSLDA,
Fisher discriminant geodesic filtering followed by MDRM
classification (DGFMDRM), and a decision fusion method

1

combining TSLDA and DGFMDRM, have shown promising
results. However, our approach outperforms by applying
advanced source localization techniques to enhance
classification performance.

Table I presents the average classification accuracy, kappa,
precision, and sensitivity for the cited methods. These results
provide a benchmark for evaluating our source localization
techniques. In our study, we employed dipole fitting, MNE,
and beamforming to precisely localize cortical activity
associated with MI tasks. This approach allowed us to achieve
significantly higher classification performance compared to
traditional sensor domain methods. As shown in Table I,
dipole fitting achieved an average accuracy of 91.03%, kappa
0f 0.8655, precision 0f 0.9106, and sensitivity of 0.9103. MNE
and beamforming also demonstrated high -classification
performance with average accuracies of 89.07% and 87.17%,
respectively. These results highlight the potential of source
localization methods for enhancing BCI applications by
improving classification accuracy. Figure 2 illustrates the
confusion matrices for dipole fitting, MNE, and beamforming
methods. These matrices provide a visual representation of the
classification performance, indicating the number of correct
and incorrect predictions for each class (left hand, right hand,
and rest). The high values along the diagonal of each matrix
indicate a strong agreement between the predicted and actual
classes, further demonstrating the effectiveness of source
localization techniques in MI classification tasks.

The inclusion of the rest state in our classification task,
along with the application of advanced source localization
methods, has significantly enhanced the accuracy and
reliability of our MI classification. This work has substantial
implications for the development of BCIs and
neurorehabilitation technologies. By moving beyond
traditional sensor domain methods and incorporating source
localization techniques, we can achieve more precise and
robust detection of neural activity patterns associated with
motor imagery.
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Fig. 2. Confusion matrices for (a) dipole fitting, (b) MNE, and (c) beamforming methods. The matrices show the number of correct and incorrect
predictions for each class (left hand, right hand, and rest), highlighting the effectiveness of source localization techniques in improving classification

accuracy for motor imagery tasks.

In the context of health technology, these findings can lead
to improved BCI systems for stroke rehabilitation, facilitating
more effective and personalized therapy by accurately
interpreting patients' motor intentions. This can accelerate the
recovery process by providing real-time feedback and adaptive
training protocols based on the patients' neural activity. The
enhanced classification accuracy also improves the reliability
of assistive technologies, such as prosthetic control, allowing
for more natural and intuitive interactions for users.
Understanding the detailed neural mechanisms underlying MI
through source localization can offer insights into brain
function and plasticity, contributing to developing new
treatments and interventions for various neurological
conditions.

IV. CONCLUSION

In this study, we implemented advanced source localization
techniques combined with a ResNet CNN architecture,
significantly improving the classification of MI tasks in acute
stroke patients. Our approach achieved classification
accuracies of 91.03% with dipole fitting, 89.07% with MNE,
and 87.17% with beamforming, outperforming traditional
sensor domain methods, which range from 55.57% to
72.21%. These results highlight the advantage of
transforming EEG data from the sensor domain to the source
domain for more precise cortical activity representation. Our
findings suggest a significant advancement in BCI technology
for neurorehabilitation, offering precise detection of neural
activity patterns related to motor imagery. This approach can
lead to the development of personalized therapy plans,
enhancing motor function recovery and quality of life for
stroke patients. Future work should explore the practical
integration of these techniques into BCI systems and assess
their long-term effectiveness in rehabilitation.

— Code availability Custom code will be available on

request to the corresponding author.
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