
  

  

Abstract— In this paper, we present a novel approach to classify 

motor tasks using electroencephalogram (EEG) data from 

participants with cervical spinal cord injury (SCI). Our method 

integrates advanced source localization techniques, including 

Minimum Norm Estimation (MNE), dipole fitting, and 

beamforming, with a customized Residual Convolutional Neural 

Network (ResNet-CNN) architecture. By leveraging these 

techniques, we enhance the spatial resolution and accuracy of 

EEG signal classification, which is crucial for developing 

assistive devices and neurorehabilitation strategies for 

individuals with SCI. We focus on six specific hand movements: 

pronation, supination, palmar grasp, lateral grasp, hand open, 

and a rest condition. The proposed approach achieved 

classification accuracies of 81.35% with Dipole fitting, 83.34% 

with MNE, and 83.36% with Beamforming, outperforming 

state-of-the-art methods in the sensor domain which reported 

accuracies ranging from 80.11% to 80.75%. Our ResNet-CNN 

model with source localization demonstrated F1-scores between 

75.16% and 84.72%, highlighting the importance of accurate 

spatial mapping in EEG analysis. The findings of this study 

underscore the potential of integrating source localization with 

deep learning to improve brain-computer interface (BCI) 

applications for individuals with SCI. This approach offers a 

promising direction for enhancing rehabilitation and daily 

assistance technologies. 

I. INTRODUCTION 

Electroencephalographic (EEG) signals are essential for 
brain-computer interfaces (BCIs), providing communication 
for individuals with neuromuscular disorders such as spinal 
cord injury (SCI) [1]. The complexity and noise of EEG 
signals necessitate advanced classifiers for single-trial 
classification [2], [3]. Convolutional neural networks (CNNs) 
have shown promise in classifying movement-related cortical 
potentials with high accuracy and minimal preprocessing [4]. 
Vision-based intention detection and soft-robotic gloves have 
enhanced activities of daily living (ADL) for stroke survivors 
by predicting hand postures [5]. Hybrid neuroprostheses 
combining functional electrical stimulation (FES) with motor 
imagery-based BCIs have restored upper extremity function 
in high SCI patients [6]. Riemannian geometry has improved 
decoding of multiclass Motor Imagery (MI) tasks for robotic 
arms and neural prosthetics [7]. Motor imagery-based BCIs 
controlling FES devices have proven effective for upper limb 
motor recovery [8]. BCIs using MRCP source features have 
successfully decoded complex grasping actions [9]. Recent 
studies have achieved online decoding of hand movements 
with average accuracies of 48% [10]. New models like TSCR-
Net and TSCIR-Net have reached accuracies of up 
to 71.11% and 67.87% in classifying EEG signals from SCI 

 
Research supported by National Science Foundation (NSF) CAREER 

Award HCC-2053498 and NSF IUCRC BRAIN CNS-2333292. 

 

patients[11]. 
In this study, we propose an innovative method for classifying 
motor tasks using EEG data from participants with cervical 
SCI, focusing on six specific hand movements: pronation, 
supination, palmar grasp, lateral grasp, hand open, and rest. 
Advancements in source localization techniques, such as 
MNE, dipole fitting, and beamforming, enhance our ability to 
pinpoint neural activity, aiding the development of targeted 
neurotherapies [12]. Therefore, we integrate advanced source 
localization techniques—MNE, dipole fitting, and beam- 
forming—with a CNN architecture to enhance classification 
accuracy by providing better spatial resolution and cortical 
activity representation. Our approach achieves classification 
accuracies of 81.35% (dipole fitting), 83.34% (MNE), and 
83.36% (beamforming), surpassing state-of-the-art sensor 
domain methods (80.11% to 80.75%). 

The main contributions of this paper include: 

• Integration of Advanced Techniques: Utilizing 
advanced source localization methods (MNE, dipole 
fitting, beamforming) within a deep learning 
framework to significantly improve EEG signal 
classification accuracy. This work demonstrates the 
application of advanced EEG classification methods 
in health point care technology, particularly in 
developing assistive devices and neurorehabilitation 
strategies for SCI patients. 

• Comprehensive Evaluation and Performance: A 
detailed evaluation showing that combining these 
techniques with deep learning enhances motor task 
classification, outperforming existing sensor domain 
methods, crucial for clinical applications in cervical 
SCI rehabilitation. 

The paper is structured as follows: Section II details the 
Methodology, including system description, data acquisition, 
source localization techniques, and CNN architecture. Section 
III presents the Results, comparing classification performance 
with and without source localization. Section IV concludes 
with key findings and future research directions. 

II. METHODOLOGY 

A. System Description 

Our system is designed to classify motor tasks using EEG 

data from participants with cervical SCI illustrated in Fig. 1. 
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Participants are equipped with a high-density 61-channel 

EEG cap to record brain activity. The trial includes subject 

preparation, a class cue, and a movement attempt phase. The 

recorded EEG signals undergo preprocessing, including the 

selection of relevant data and plotting topographical maps 

(topoplots) to visualize EEG activity at specific time points. 

Advanced source localization techniques such as MNE, 

dipole fitting, and beamforming are employed to accurately 

identify cortical sources of the EEG signals. These localized 

signals are then fed into a Residual CNN designed to classify 

the EEG data into six distinct motor tasks, demonstrating the 

system's capability to effectively differentiate between 

various motor activities. 

B. Data Description and Methodology 

The dataset includes EEG data from 10 participants with 
cervical SCI, aged 20 to 69 years, primarily male, collected 
through offline paradigms. Through this paradigm, ten 
participants (P01-P10) performed or attempted specific hand 
movements (pronation, supination, palmar grasp, lateral grasp, 
or hand open) while seated in front of a computer screen. In 
addition to the five movement classes, rest trials were 
considered as the “rest condition” for the sixth class. Each trial 
lasted 5 seconds, beginning with a fixation cross and beep, 
followed by a visual cue for the movement. Participants 
completed nine runs of 40 trials each, totaling 72 trials per 
class, plus additional runs for eye movement and rest 
conditions. EEG was recorded using 61 electrodes, 
supplemented by electrooculogram (EOG) measurements, 
with signals sampled at 256 Hz and filtered between 0.01 Hz 
and 100 Hz. The experimental procedures involving human 
subjects described in this paper were approved by the 
Institutional Review Board in their respective institution [13]. 

C. Source Localization and Inverse Problem 

To enhance the spatial resolution of EEG signals in our 

study, we employed advanced source localization techniques 

including MNE, dipole fitting, and beamforming. MNE 

provides a distributed source model by estimating the current 

density across the entire cortex. Dipole fitting estimates the 

location and orientation of equivalent current dipoles 

representing the brain's activity. Beamforming enhances 

spatial resolution by focusing on specific regions of interest 

while suppressing activity from other areas [14][15][16]. 

These methods aim to reconstruct the cortical sources of EEG 

signals by solving the inverse problem using the New York 

Head (NYH) forward model [17]. 

 

                                      x(t) = L × qr (t)                              (1) 

In this equation, x(t) denotes the vector of scalp potentials at 

time t, L represents the lead field matrix, and qr (t) indicates 

the vector of current dipoles at cortical location r. 

D. Convolutional Neural Network Architecture 

The Customized ResNet-CNN model employed in this 

study features a combination of specialized layers to enhance 

the classification of EEG signals. The architecture begins with 

an initial convolutional layer that extracts low-level features 

using 32 filters, followed by a batch normalization layer, 

ReLU activation, and max pooling to reduce dimensionality. 

This is succeeded by Inception Modules, which apply 

multiple convolutional kernels of varying sizes to capture 

multi-scale features, and Residual Blocks, which include 

shortcut connections to mitigate the vanishing gradient 

problem. 

Further into the architecture, the model incorporates an 

attention mechanism that includes a global average pooling 

layer and a convolutional layer, allowing the network to focus 

on salient features. This setup is followed by fully connected 

dense layers that culminate in the final classification layer. 

The model employs dropout layers to prevent overfitting and 

uses the Adam optimizer for training. The architecture is 

evaluated using stratified 5-fold cross-validation, ensuring a 

robust assessment of its classification performance across 

metrics such as accuracy, precision, recall, and F1-score. In 

our analysis, 5-fold cross-validation is separately performed 

for each subject to assess the model’s performance 

consistently across different data subsets for each individual. 

This approach allows us to account for within-subject 

variability and ensures robustness in model evaluation. The 

results reported in this study represent the best performance 

metrics obtained from the cross-validation process for each 

individual subject. 

III. RESULTS & DISCUSSION 

In this study, we evaluated the performance of a deep ResNet-

CNN in classifying six distinct hand movement tasks 

(pronation, supination, palmar grasp, lateral grasp, hand open, 

and rest condition) for individuals with SCI. We utilized three 

different source localization methods: Dipole Fitting, MNE, 

 

Fig. 1. Flowchart of the proposed framework. (A) Participant Setup: The trial includes preparation at -2s, a cue at 0s, and a movement phase until 3s. The 
participant with SCI wears a 61-channel EEG cap. (B) EEG Data Acquisition: Shows the 61 electrode locations and the recorded signals. (C) Data Analysis: 
Topographical plots visualize EEG data. Source localization techniques such as MNE, dipole fitting, and beamforming identify cortical sources. (D) 
Classification: Localized EEG data are fed into a Residual CNN for task classification, distinguishing six motor tasks. 

14

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 17,2025 at 04:11:30 UTC from IEEE Xplore.  Restrictions apply. 



  

and Beamforming, and compared their performance against 

state-of-the-art deep CNN models in the sensor domain as 

reported in reference [12]. 

1) Classification with Dipole Fitting Source 

Localization: Table Ⅰ shows the performance 

metrics for the proposed deep CNN model using 

Dipole Fitting source localization. The results 

indicate that the accuracy ranges from 78.80% to 

83.56%, with Subject 1 achieving the highest 

accuracy. Precision, recall, and F1-score metrics are 

also consistently high, demonstrating the reliability 

of the model in classifying the hand movement tasks 

using Dipole Fitting source localization. 

2) Classification with MNE Source Localization: 

Table Ⅱ, presents the performance of the proposed 

deep CNN model using MNE source localization. 

The accuracy for this method ranges from 79.72% to 

84.44%, with Subject 6 achieving the highest 

accuracy. The metrics indicate that MNE source 

localization provides a robust framework for 

classifying hand movements in SCI patients, with 

consistently high precision, recall, and F1-score 

values. 

3) Classification with Beamforming Source 

Localization: The performance metrics for the 

proposed deep CNN model using Beamforming 

source localization summarized in Table Ⅲ. The 

results show that the accuracy ranges from 81.25% 

to 84.72%, with Subject 10 achieving the highest 

accuracy. Precision, recall, and F1-score metrics are 

also high, indicating the effectiveness of 

Beamforming in accurately classifying the hand 

movement tasks. 

4) Comparison and Discussion: Table Ⅳ, compares 

the average classification accuracy obtained by the 

source localization methods with state-of-the-art 

recent methods. The proposed method using 

Beamforming source localization achieved the 

highest average accuracy of 83.36%, outperforming 

other methods such as Dipole Fitting (81.35%) and 

MNE (83.34%). In contrast, the state-of-the-art 

methods in the sensor domain, including the 

Modified EEGNet model, TSCR-Net, and TSCIR-

Net, reported lower average accuracies ranging from 

80.11% to 80.75%. Moreover, the confusion 

matrices for the SCI dataset (subject 10) using 

different source localization methods is shown in 

Figure 2. 

The results show that incorporating source localization 

significantly enhances the classification performance of the 

deep CNN model for SCI reach and grasp tasks. Among the 

methods, Beamforming achieved the highest average 

accuracy, demonstrating its superiority in capturing cortical 

activity. 

• Improved Spatial Resolution: Techniques like 

Beamforming, MNE, and Dipole Fitting enhance 

the spatial resolution of EEG signals, leading to 

better capture of neural activity and higher 

classification accuracy. 

TABLE I.  PERFORMANCE OF THE PROPOSED DEEP CNN FOR 

DIPLOE FITTING SOURCE LOCALIZATION IN TERMS OF 

RECALL, PRECISION, F1-SCORE, AND ACCURACY FOR 

THE SCI REACH AND GRASP CLASSIFICATION TASKS. 

SUBJECT ACCURACY 

(%) 
PRECISION 

(%) 
RECALL 

(%) 
F1-
SCORE 

(%) 
SUBJECT 1 83.56 83.86 83.56 83.58 
SUBJECT 2 78.80 78.98 78.70 78.65 
SUBJECT 3 82.85 83.32 82.85 82.91 
SUBJECT 4 80.79 80.88 80.79 80.80 
SUBJECT 5 82.87 83.03 82.87 82.88 
SUBJECT 6 80.79 80.96 80.79 80.79 
SUBJECT 7 79.40 79.53 79.40 79.40 
SUBJECT 8 80.56 80.68 80.56 80.51 
SUBJECT 9 83.33 83.50 83.33 83.36 
SUBJECT 10 80.56 80.73 80.56 80.58 

 

TABLE IV.  COMPARISON OF AVERAGE CLASSIFICATION 

ACCURACY OBTAINED BY THE SOURCE LOCALIZATION 

METHODS AND STATE-OF-THE-ART RECENT METHODS. 

METHOD ACCURACY (%) 
MODIFIED EEGNET MODEL [12] 80.28 
TSCR-NET [12] 80.11 
TSCIR-NET [12] 80.75 
DIPOLE FITTING 81.35 
MNE 83.34 
BEAMFORMING 83.36 

 

 

TABLE III.  PERFORMANCE OF THE PROPOSED DEEP CNN FOR 

BEAMFORMING SOURCE LOCALIZATION IN TERMS OF 

RECALL, PRECISION, F1-SCORE, AND ACCURACY FOR 

THE SCI REACH AND GRASP CLASSIFICATION TASKS. 

SUBJECT ACCURACY 

(%) 
PRECISION 

(%) 
RECALL 

(%) 
F1-
SCORE 

(%) 
SUBJECT 1 83.56 84.15 83.56 83.66 
SUBJECT 2 84.03 84.21 84.03 84.08 
SUBJECT 3 81.25 81.67 81.25 81.34 
SUBJECT 4 82.87 82.99 82.87 82.87 
SUBJECT 5 82.18 82.24 82.18 82.18 
SUBJECT 6 83.33 83.60 83.33 83.37 
SUBJECT 7 84.26 84.48 84.26 84.31 
SUBJECT 8 83.61 84.02 83.61 83.71 
SUBJECT 9 83.80 84.20 83.80 83.85 
SUBJECT 10 84.72 84.83 84.72 84.72 

 

 

TABLE II.  PERFORMANCE OF THE PROPOSED DEEP CNN FOR 

MNE SOURCE LOCALIZATION IN TERMS OF RECALL, 
PRECISION, F1-SCORE, AND ACCURACY FOR THE SCI 

REACH AND GRASP CLASSIFICATION TASKS. 

SUBJECT ACCURACY 

(%) 
PRECISION 

(%) 
RECALL 

(%) 
F1-
SCORE 

(%) 
SUBJECT 1 79.72 81.78 79.72 79.86 
SUBJECT 2 83.06 83.22 83.06 83.07 
SUBJECT 3 83.89 84.64 83.89 84.02 
SUBJECT 4 82.12 84.03 82.12 82.37 
SUBJECT 5 84.28 85.50 85.28 85.27 
SUBJECT 6 84.44 85.79 84.44 84.70 
SUBJECT 7 84.00 85.19 84.00 85.01 
SUBJECT 8 83.89 85.32 83.89 84.15 
SUBJECT 9 84.43 84.47 84.43 84.45 
SUBJECT 10 83.56 84.02 83.56 86.65 
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• Enhanced Feature Representation: 

Transforming data from the sensor to the source 

domain provides a precise representation of 

cortical activity, improving neural pattern capture. 

• Beamforming Superiority: Beamforming 

achieved the highest average accuracy of 83.36%, 

outperforming methods in the sensor domain with 

average accuracies of 80.11% to 80.75%. 

Overall, incorporating source localization techniques 

significantly enhances the CNN model's ability to classify 

hand movements in individuals with SCI, outperforming 

state-of-the-art methods. In EEG-based BCIs, even small 

accuracy improvements are crucial, especially in clinical 

applications where every percentage point can impact 

usability and effectiveness.  

IV. CONCLUSION 

This paper presents a novel framework for classifying motor 

tasks using EEG data from individuals with cervical SCI. By 

integrating advanced source localization techniques (MNE, 

dipole fitting, beamforming) with a customized Residual 

CNN, classification accuracy significantly improved. 

Beamforming achieved the highest accuracy at 83.36%, 

followed by MNE at 83.34%, and dipole fitting at 81.35%, 

surpassing state-of-the-art methods in the sensor domain 

(80.11%-80.75%). The CNN model with source localization 

attained F1-scores between 79.86% and 84.72%. This study 

highlights the potential of source localization and deep 

learning in enhancing BCI systems for SCI rehabilitation, 

suggesting future research to refine the CNN architecture and 

explore additional techniques for improved performance. 
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Fig. 2. Confusion matrices for the SCI dataset (subject 10) using different source localization methods. Confusion matrices for the SCI dataset using 
beamforming, MNE, and dipole fitting methods, displaying classification results for Task 1 (Pronation), Task 2 (Supination), Task 3 (Palmar Grasp), Task 
4 (Lateral Grasp), Task 5 (Hand Open), and Task 6 (Rest). The matrices highlight the number of correctly and incorrectly classified instances for each task. 
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