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Abstract— In this paper, we present a novel approach to classify
motor tasks using electroencephalogram (EEG) data from
participants with cervical spinal cord injury (SCI). Our method
integrates advanced source localization techniques, including
Minimum Norm Estimation (MNE), dipole fitting, and
beamforming, with a customized Residual Convolutional Neural
Network (ResNet-CNN) architecture. By leveraging these
techniques, we enhance the spatial resolution and accuracy of
EEG signal classification, which is crucial for developing
assistive devices and neurorehabilitation strategies for
individuals with SCI. We focus on six specific hand movements:
pronation, supination, palmar grasp, lateral grasp, hand open,
and a rest condition. The proposed approach achieved
classification accuracies of 81.35% with Dipole fitting, 83.34%
with MNE, and 83.36% with Beamforming, outperforming
state-of-the-art methods in the sensor domain which reported
accuracies ranging from 80.11% to 80.75%. Our ResNet-CNN
model with source localization demonstrated F1-scores between
75.16% and 84.72%, highlighting the importance of accurate
spatial mapping in EEG analysis. The findings of this study
underscore the potential of integrating source localization with
deep learning to improve brain-computer interface (BCI)
applications for individuals with SCI. This approach offers a
promising direction for enhancing rehabilitation and daily
assistance technologies.

I. INTRODUCTION

Electroencephalographic (EEG) signals are essential for
brain-computer interfaces (BCls), providing communication
for individuals with neuromuscular disorders such as spinal
cord injury (SCI) [1]. The complexity and noise of EEG
signals necessitate advanced classifiers for single-trial
classification [2], [3]. Convolutional neural networks (CNNs)
have shown promise in classifying movement-related cortical
potentials with high accuracy and minimal preprocessing [4].
Vision-based intention detection and soft-robotic gloves have
enhanced activities of daily living (ADL) for stroke survivors
by predicting hand postures [5]. Hybrid neuroprostheses
combining functional electrical stimulation (FES) with motor
imagery-based BClIs have restored upper extremity function
in high SCI patients [6]. Riemannian geometry has improved
decoding of multiclass Motor Imagery (MI) tasks for robotic
arms and neural prosthetics [7]. Motor imagery-based BCls
controlling FES devices have proven effective for upper limb
motor recovery [8]. BCIs using MRCP source features have
successfully decoded complex grasping actions [9]. Recent
studies have achieved online decoding of hand movements
with average accuracies of 48% [10]. New models like TSCR-
Net and TSCIR-Net have reached accuracies of up
to 71.11% and 67.87% in classifying EEG signals from SCI
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patients[11].

In this study, we propose an innovative method for classifying
motor tasks using EEG data from participants with cervical
SCI, focusing on six specific hand movements: pronation,
supination, palmar grasp, lateral grasp, hand open, and rest.
Advancements in source localization techniques, such as
MNE, dipole fitting, and beamforming, enhance our ability to
pinpoint neural activity, aiding the development of targeted
neurotherapies [12]. Therefore, we integrate advanced source
localization techniques—MNE, dipole fitting, and beam-
forming—with a CNN architecture to enhance classification
accuracy by providing better spatial resolution and cortical
activity representation. Our approach achieves classification
accuracies of 81.35% (dipole fitting), 83.34% (MNE), and
83.36% (beamforming), surpassing state-of-the-art sensor
domain methods (80.11% to 80.75%).

The main contributions of this paper include:

o Integration of Advanced Techniques: Utilizing
advanced source localization methods (MNE, dipole
fitting, beamforming) within a deep learning
framework to significantly improve EEG signal
classification accuracy. This work demonstrates the
application of advanced EEG classification methods
in health point care technology, particularly in
developing assistive devices and neurorehabilitation
strategies for SCI patients.

o Comprehensive Evaluation and Performance: A
detailed evaluation showing that combining these
techniques with deep learning enhances motor task
classification, outperforming existing sensor domain
methods, crucial for clinical applications in cervical
SCI rehabilitation.

The paper is structured as follows: Section II details the
Methodology, including system description, data acquisition,
source localization techniques, and CNN architecture. Section
III presents the Results, comparing classification performance
with and without source localization. Section IV concludes
with key findings and future research directions.

II. METHODOLOGY

A. System Description

Our system is designed to classify motor tasks using EEG
data from participants with cervical SCI illustrated in Fig. 1.
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Fig. 1. Flowchart of the proposed framework. (A) Participant Setup: The trial includes preparation at -2s, a cue at Os, and a movement phase until 3s. The
participant with SCI wears a 61-channel EEG cap. (B) EEG Data Acquisition: Shows the 61 electrode locations and the recorded signals. (C) Data Analysis:
Topographical plots visualize EEG data. Source localization techniques such as MNE, dipole fitting, and beamforming identify cortical sources. (D)
Classification: Localized EEG data are fed into a Residual CNN for task classification, distinguishing six motor tasks.

Participants are equipped with a high-density 61-channel
EEG cap to record brain activity. The trial includes subject
preparation, a class cue, and a movement attempt phase. The
recorded EEG signals undergo preprocessing, including the
selection of relevant data and plotting topographical maps
(topoplots) to visualize EEG activity at specific time points.
Advanced source localization techniques such as MNE,
dipole fitting, and beamforming are employed to accurately
identify cortical sources of the EEG signals. These localized
signals are then fed into a Residual CNN designed to classify
the EEG data into six distinct motor tasks, demonstrating the
system's capability to effectively differentiate between
various motor activities.

B. Data Description and Methodology

The dataset includes EEG data from 10 participants with
cervical SCI, aged 20 to 69 years, primarily male, collected
through offline paradigms. Through this paradigm, ten
participants (PO1-P10) performed or attempted specific hand
movements (pronation, supination, palmar grasp, lateral grasp,
or hand open) while seated in front of a computer screen. In
addition to the five movement classes, rest trials were
considered as the “rest condition” for the sixth class. Each trial
lasted 5 seconds, beginning with a fixation cross and beep,
followed by a visual cue for the movement. Participants
completed nine runs of 40 trials each, totaling 72 trials per
class, plus additional runs for eye movement and rest
conditions. EEG was recorded using 61 electrodes,
supplemented by electrooculogram (EOG) measurements,
with signals sampled at 256 Hz and filtered between 0.01 Hz
and 100 Hz. The experimental procedures involving human
subjects described in this paper were approved by the
Institutional Review Board in their respective institution [13].

C. Source Localization and Inverse Problem

To enhance the spatial resolution of EEG signals in our
study, we employed advanced source localization techniques
including MNE, dipole fitting, and beamforming. MNE
provides a distributed source model by estimating the current
density across the entire cortex. Dipole fitting estimates the
location and orientation of equivalent current dipoles
representing the brain's activity. Beamforming enhances
spatial resolution by focusing on specific regions of interest
while suppressing activity from other areas [14][15][16].
These methods aim to reconstruct the cortical sources of EEG

signals by solving the inverse problem using the New York
Head (NYH) forward model [17].

x(t) =L > qr (1) (1
In this equation, x(t) denotes the vector of scalp potentials at
time t, L represents the lead field matrix, and g, (t) indicates
the vector of current dipoles at cortical location r.

D. Convolutional Neural Network Architecture

The Customized ResNet-CNN model employed in this
study features a combination of specialized layers to enhance
the classification of EEG signals. The architecture begins with
an initial convolutional layer that extracts low-level features
using 32 filters, followed by a batch normalization layer,
ReLU activation, and max pooling to reduce dimensionality.
This is succeeded by Inception Modules, which apply
multiple convolutional kernels of varying sizes to capture
multi-scale features, and Residual Blocks, which include
shortcut connections to mitigate the vanishing gradient
problem.

Further into the architecture, the model incorporates an
attention mechanism that includes a global average pooling
layer and a convolutional layer, allowing the network to focus
on salient features. This setup is followed by fully connected
dense layers that culminate in the final classification layer.
The model employs dropout layers to prevent overfitting and
uses the Adam optimizer for training. The architecture is
evaluated using stratified 5-fold cross-validation, ensuring a
robust assessment of its classification performance across
metrics such as accuracy, precision, recall, and F1-score. In
our analysis, 5-fold cross-validation is separately performed
for each subject to assess the model’s performance
consistently across different data subsets for each individual.
This approach allows us to account for within-subject
variability and ensures robustness in model evaluation. The
results reported in this study represent the best performance
metrics obtained from the cross-validation process for each
individual subject.

III. RESULTS & DISCUSSION

In this study, we evaluated the performance of a deep ResNet-
CNN in classifying six distinct hand movement tasks
(pronation, supination, palmar grasp, lateral grasp, hand open,
and rest condition) for individuals with SCI. We utilized three
different source localization methods: Dipole Fitting, MNE,
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and Beamforming, and compared their performance against to 84.72%, with Subject 10 achieving the highest

state-of-the-art deep CNN models in the sensor domain as accuracy. Precision, recall, and F1-score metrics are
reported in reference [12]. also high, indicating the effectiveness of
1) Classification with Dipole Fitting Source Beamforming in accurately classifying the hand
Localization: Table I shows the performance movement tasks.
metrics for the proposed deep CNN model using
DiP()le Fitting source localization. The results TABLE IIl. PERFORMANCE OF THE PROPOSED DEEP CNN FOR
indicate that the accuracy ranges from 78.80% to BEAMFORMING SOURCE LOCALIZATION IN TERMS OF
83.56% Wlth Subject 1 achieving the highest RECALL, PRECISION, F1-SCORE, AND ACCURACY FOR

.. . THE SCI REACH AND GRASP CLASSIFICATION TASKS.
accuracy. Precision, recall, and F1-score metrics are

also consistently high, demonstrating the reliability SUBJECT ?O%URACY (P%CISION 5}5)&*“ Ecl(')RE
. . . o 0 o
of the model in classifying the hand movement tasks (%)
using Dipole Fitting source localization. SUBJECT | 83.56 84.15 83.56 83.66
SUBJECT 2 84.03 84.21 84.03 84.08
SUBJECT 3 81.25 81.67 81.25 81.34
TABLE I. PERFORMANCE OF THE PROPOSED DEEP CNN FOR SUBJECT 4 82.87 82.99 82.87 82.87
DIPLOE FITTING SOURCE LOCALIZATION IN TERMS OF SUBJECT 5 82.18 82.24 82.18 82.18
RECALL, PRECISION, F1-SCORE, AND ACCURACY FOR SUBJECT 6 83.33 83.60 83.33 83.37
THE SCI REACH AND GRASP CLASSIFICATION TASKS. SUBJECT 7 84.26 84.48 84.26 84.31
S R o SUBJECT 8 83.61 84.02 83.61 83.71
UBJECT ?O%URACY ‘E;‘;C‘SION (D}E)CALL SCoRE SUBJECT9 | 83.80 84.20 83.80 83.85
? ‘ ’ %) SUBJECT 10 | 84.72 84.83 84.72 84.72
SuBJECT1 | 83.56 83.86 83.56 83.58 4) Comparison and Discussion: Table IV, compares
SUBJECT 2 78.80 78.98 78.70 78.65 : : :
SUBECT3 8285 kD) TG 07 the average c.:lasslﬁcatlon accuracy obtained by the
SUBJECT4 1 80.79 30.88 30.79 30.80 source localization methods with state-of-the-art
SUBJECTS | 82.87 83.03 82.87 82.88 recent methods. The proposed method using
SUBIECT6 | 80.79 80.96 80.79 80.79 Beamforming source localization achieved the
SUBJECT 7 79.40 79.53 79.40 79.40 . o .
SUBIECTS 18036 3063 3056 3051 highest average accuracy of 83.36%, outperforming
SUBJECT9 | 83.33 83.50 83.33 83.36 other methods such as Dipole Fitting (81.35%) and
SUBJECT 10 | 80.56 80.73 80.56 80.58 MNE (83.34%). In contrast, the state-of-the-art
methods in the sensor domain, including the
2) Classification with MNE Source Localization: Modified EEGNet model, TSCR-Net, and TSCIR-

Table II, presents the performance of the proposed
deep CNN model using MNE source localization.

The accuracy for this method ranges from 79.72% to TABLE IV. - COMPARISON OF AVERAGE CLASSIFICATION

ACCURACY OBTAINED BY THE SOURCE LOCALIZATION

84.44%, with Subject 6 achieving the highest METHODS AND STATE-OF-THE-ART RECENT METHODS.
accuracy. The metrics indicate that MNE source METHOD ACCURACY (%)
localization provides a robust framework for MODIFIED EEGNET MODEL [12] 30.28
classifying hand movements in SCI patients, with TSCR-NET [12] 80.11
consistently high precision, recall, and F1-score EISP(E)I&IEETT[ILZG] g(l);g
values. MNE 83.34
BEAMFORMING 83.36
TABLEIl. PERFORMANCE OF THE PROPOSED DEEP CNN FOR
MNE SOURCE LOCALIZATION IN TERMS OF RECALL, Net, reported lower average accuracies ranging from
PRECISION, F1-SCORE, AND ACCURACY FOR THE SCI 80.11% to 80.75%. Moreover, the confusion

REACH AND GRASP CLASSIFICATION TASKS. R X .
matrices for the SCI dataset (subject 10) using

SUBJECT ACCURACY | PRECISION | RECALL F1-

%) %) %) SCORE dllfferent source localization methods is shown in
(%) Figure 2.
SUBJECT1 | 79.72 81.78 79.72 79.86 The results show that incorporating source localization
SUBJECT 2 83.06 83.22 83.06 83.07 ionificantly enhan the classification performan f th
SUBIECT3 | 83.89 84.64 83.89 84.02 signiticantly enhances the classification pertormance ol the
SUBJECT 4 ’2.12 84.03 32.12 8237 deep CNN model for SCI reach and grasp tasks. Among the
gUBJECTg gi-ii gg;g gi-ii 22% methods, Beamforming achieved the highest average
UBJECT . . . . s S : :
SUBIECT T 34.00 3519 34.00 35.01 accuracy, demonstrating its superiority in capturing cortical
SUBJECTS | 83.89 85.32 33.89 84.15 activity.
SUBJECTY | 84.43 84.47 84.43 84.45 e Improved Spatial Resolution: Techniques like
SUBJECT 10| 83.56 84.02 83.56 86.65 Beamforming, MNE, and Dipole Fitting enhance
3) Classification with Beamforming Source the spatial resolution of EEG signals, leading to
Localization: The performance metrics for the better capture of neural activity and higher
proposed deep CNN model using Beamforming classification accuracy.

source localization summarized in Table III. The
results show that the accuracy ranges from 81.25%
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Fig. 2. Confusion matrices for the SCI dataset (subject 10) using different source localization methods. Confusion matrices for the SCI dataset using
beamforming, MNE, and dipole fitting methods, displaying classification results for Task 1 (Pronation), Task 2 (Supination), Task 3 (Palmar Grasp), Task
4 (Lateral Grasp), Task 5 (Hand Open), and Task 6 (Rest). The matrices highlight the number of correctly and incorrectly classified instances for each task.

e Enhanced Feature Representation:
Transforming data from the sensor to the source
domain provides a precise representation of
cortical activity, improving neural pattern capture.

e Beamforming Superiority: = Beamforming
achieved the highest average accuracy of 83.36%,
outperforming methods in the sensor domain with
average accuracies of 80.11% to 80.75%.

Overall, incorporating source localization techniques
significantly enhances the CNN model's ability to classify
hand movements in individuals with SCI, outperforming
state-of-the-art methods. In EEG-based BClIs, even small
accuracy improvements are crucial, especially in clinical
applications where every percentage point can impact
usability and effectiveness.

IV. CONCLUSION

This paper presents a novel framework for classifying motor
tasks using EEG data from individuals with cervical SCI. By
integrating advanced source localization techniques (MNE,
dipole fitting, beamforming) with a customized Residual
CNN, classification accuracy significantly improved.
Beamforming achieved the highest accuracy at 83.36%,
followed by MNE at 83.34%, and dipole fitting at 81.35%,
surpassing state-of-the-art methods in the sensor domain
(80.11%-80.75%). The CNN model with source localization
attained F1-scores between 79.86% and 84.72%. This study
highlights the potential of source localization and deep
learning in enhancing BCI systems for SCI rehabilitation,
suggesting future research to refine the CNN architecture and
explore additional techniques for improved performance.
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