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Abstract— Emotion recognition via electroencephalography
(EEG) has emerged as a pivotal domain in biomedical signal
processing, offering valuable insights into affective states. This
paper presents a novel approach utilizing a tailored Transformer-
based model to predict valence and arousal levels from EEG
signals. Diverging from traditional Transformers handling
singular sequential data, our model adeptly accommodates
multiple EEG channels concurrently, enhancing its ability to
discern intricate temporal patterns across the brain. The modified
Transformer architecture enables comprehensive exploration of
spatiotemporal dynamics linked with emotional states.
Demonstrating robust performance, the model achieves mean
accuracies of 92.66% for valence and 91.17% for arousal
prediction, validated through 10-fold cross-validation across
subjects on the DEAP dataset. Trained for subject-specific
analysis, our methodology offers promising avenues for enhancing
understanding and applications in emotion recognition through
EEG. This research contributes to a broader discourse in
biomedical signal processing, paving the way for refined
methodologies in decoding neural correlates of emotions with
implications across various domains including brain-computer
interfaces, and human-robot interaction.
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1. INTRODUCTION

Emotion recognition through electroencephalography (EEG)
has emerged as a pivotal domain in affective computing, holding
profound implications for brain-computer interfaces, human-
robot interaction and other healthcare applications. The intrinsic
link between neural activity and emotional states makes EEG a
valuable modality for decoding underlying emotional cues. This
paper delves into the EEG-based emotion recognition,
addressing the challenges posed by noisy, non-linear, and non-
stationary nature of EEG signals.

EEG, being a direct measure of brain activity, provides a
unique window into the dynamics of emotional states. Its non-
invasiveness and temporal precision make it an ideal candidate
for real-time emotion recognition, with applications spanning
human-robot interaction, healthcare  diagnostics, and
personalized affective computing systems. The ability to decode
emotional states from EEG signals unlocks a myriad of
possibilities for enhancing human-machine collaboration and
understanding.

While EEG-based emotion recognition has gained traction,
existing methodologies face inherent challenges. Notably, the
intricate nature of EEG signals demands intelligent frameworks
capable of providing high accuracy in emotion recognition.
Various approaches, including classical machine learning
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models, have been explored to tackle these challenges. However,
interpretability, noise resilience, manual feature extraction, and
subject-specific adaptability remain ongoing concerns.

The emergence of deep learning models has had a significant
impact on EEG classification, moving beyond traditional
machine learning methods. Deep learning techniques utilize
comprehensive  artificial neural networks instead of
conventional methods that require manual feature extraction.
Convolutional neural networks (CNN) [1], [2] Long short-term
memory (LSTM) [3], [4], and hybrid CNN models are widely
used deep learning techniques for analyzing EEG signals.

While deep learning methods like CNN and LSTM have
been applied for EEG-based emotion recognition, inherent
challenges persist. CNNs struggle with capturing long-range
dependencies in sequential data, that are crucial for
understanding the temporal dynamics of emotional states in
EEG signals. On the other hand, LSTMs, while adept at handling
sequential data, may face difficulties in managing the complex
and non-linear nature of EEG signals. These challenges
underscore the need for a more adaptive and efficient approach.

The emergence of Transformer models [5], known for their
ability in handling sequential data with a self-attention
mechanism, present a compelling solution. By addressing the
limitations of traditional models, Transformers offer a unique
opportunity to enhance the accuracy and interpretability of
emotion recognition from EEG signals. Given their outstanding
performance in natural language processing (NLP) and
computer vision (CV), employing Transformers to process
entire EEG signals [6] presents a viable and effective approach.
Consequently, Transformers designed for EEG applications
have been developed for various uses, including emotion
recognition. However, it's noteworthy that not all existing
models harness the full potential of multi-channel EEG data
effectively. For instance, ERTNet [7] and STS-Transformer[8],
despite incorporating a Transformer-based model, fall short in
delivering optimal results. One prominent limitation lies in the
absence of an equivalent mechanism to word embedding, as seen
in natural language processing (NLP). In EEG-based emotion
recognition, this can hinder the models' ability to capture local
patterns effectively. This emphasizes the crucial need for a
model specifically tailored to leverage all EEG channels
comprehensively, ensuring the comprehensive capture of
intricate temporal patterns distributed across the brain.

This paper introduces an innovative approach to EEG-based
emotion recognition, leveraging a modified Transformer-based
model. Departing from conventional Transformer model which
can process one sequence at a time, our model is tailored to
handle multiple EEG channels simultaneously, enriching its
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capacity to discern intricate temporal patterns across the brain.
The modified Transformer architecture facilitates a
comprehensive understanding of spatiotemporal dynamics
associated with emotional states, promising enhanced accuracy
and interpretability.

The subsequent sections detailed the methodology, model
architecture, training procedures, and evaluation metrics,
providing a holistic understanding of the proposed approach and
its implications for advancing EEG-based emotion recognition.

II. METHODS

A. EEG Data Source

1) DEAP Dataset Overview

The study utilizes the DEAP dataset [9], a comprehensive
multimodal resource for the exploration of human affective
states. The dataset captured electroencephalogram (EEG) and
peripheral physiological signals from 32 participants, each
exposed to 40 one-minute excerpts of music videos. These
participants provided subjective ratings on arousal, valence,
like/dislike, dominance, and familiarity, ranging from 0 to 9 for
each dimension.

TABLE I. DEAP DATASET

Array Shape Array Content
Data 40 x 32 x 8064 Video x Channels x Data
Labels 40 x 4 Videos x Label

2) Data Label Transformation

For the purpose of binary classification in predicting valence
and arousal, a label transformation was applied. Ratings for
valence and arousal were scaled to binary values, where a rating
of 5 or higher was mapped to 1, indicating a positive response,
and ratings below 5 were mapped to 0, indicating a negative
response.

B. Model Architecture

Our proposed model architecture is based on original
Transformer [5], a deep learning architecture originally designed
for sequence-to-sequence tasks. Departing from the
conventional use of Transformers for single sequence/sentence,
our model is adapted to handle multi-channel EEG data
effectively. The architecture is optimized to capture
spatiotemporal patterns across 32 EEG channels, offering a more
nuanced understanding of neural dynamics associated with
emotional states.

The architecture comprises three key blocks: Patch
Encoding, Position Encoding, and a Single Transformer Encoder
with 32 heads, corresponding to the number of EEG channels.
The output from the Transformer encoder is fed into a fully
connected layer for final predictions.

1) Patch Encoding

In our model architecture, Patch Encoding plays a pivotal
role akin to word embedding in NLP. This critical step involves
encoding each patch of EEG data to capture underlying patterns
effectively.

Initially organized as a 32 x 8064 matrix, the EEG signals
undergo a patch-based transformation. Through systematic
division into patches of size patch_size , the matrix is reshaped
into dimensions of 32 x sq len x patch size. This strategic
patching ensures the precise capture of local patterns inherent in
EEG data. Subsequently, these patches are encoded via a linear
layer, producing patch vectors whose lengths pv_len, correspond
to the output size of the linear layer. This transformation ensures
that intricate temporal dynamics across different channels are
accurately represented. Visual representation of this process is
depicted in Figure 1, elucidating the sequential flow of patch
encoding within our model architecture.

2) Position Encoding

Post patch encoding, the shape transforms to 32 x sq len x
pv_len. To integrate temporal information into the model, a
crucial step involves position encoding - a practice inspired by
the conventional techniques observed in Transformers [5],
infusing the data with crucial temporal context.

The result of this process mirrors the output of the patch
encoding phase. After adding Position Encodings and Patch
Encodings, the result undergoes a reorganization into a 2D
representation, precisely a matrix with dimensions of sq len x
(32 xpv_len). This matrix is fed into the subsequent Transformer
encoder, enriching the model's understanding of the temporal
dynamics inherent in the EEG data.

3) Single Transformer Encoder with 32 Heads

The heart of the model lies in the Transformer encoder, a
critical component adept at processing multi-channel EEG data.
The encoder is designed to treat each channel's information
independently, fostering a nuanced understanding of the diverse
neural activities across the 32 channels. While retaining the
fundamentals of the original Transformer model, we have
streamlined the encoder architecture to utilize only one block, in
contrast to the six blocks in the original design.
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Notably, the Transformer encoder incorporates 32 heads,
enabling simultaneous attention to various aspects of the input
data. This intricate attention mechanism contributes
significantly to the model's capacity to discern complex
spatiotemporal patterns in EEG data.

4) Output and Fully Connected Layer (FC):

The output from the Transformer encoder is seamlessly
directed to a fully connected layer (FC). This network is
designed to predict two values: one for valence and another for
arousal.

Fig. 1 represents the model architecture, illustrating the
sequential flow from patch encoding to the final output through
the Transformer encoder and FC. The subsequent sections will
delve into specifics of training, hyperparameters, and evaluation
metrics, offering a holistic understanding of the model's
performance in predicting valence and arousal.

C. Training Procedure

1) Subject-Specific Analysis

To enhance the model's adaptability and account for inter-
subject variability, a subject-specific analysis was employed
during the training process. This approach involves training the
model individually for each subject in the dataset, ensuring that
the model can capture subject-specific patterns in EEG data.

2) 10-fold Cross-Validation

The model's robustness and generalizability were assessed
using 10-fold cross-validation. The dataset was divided into 10
subsets, with the model trained and validated iteratively on
different combinations of these subsets. This cross-validation
strategy helps mitigate overfitting and provides a more reliable
estimate of the model's performance.

3) Implementation and Hyperparameters used

We trained the proposed method on an NVIDIA GeForce
4070 Ti GPU. The hyperparameters of the proposed model were
tuned to optimize performance, as outlined in Table II.

TABLE Il HYPERPARAMETERS USED FOR THE TRAINING THE MODEL

Subject-specific accuracy was computed as the mean
accuracy across the 10-fold cross-validation for each individual
subject. The formula for subject-specific accuracy is given by:

10) “ (TP, + TN, + FP, + FN,)

Accuracygypject = (

Where:
TP; , TN; = True Positives/Negatives for subject i
FP;, FN; = False Positives/ Negatives for subject i

2) Mean Accuracy Across Subjects:

The overall mean accuracy across all subjects was then
calculated as the average of the subject-specific accuracies.
Additionally, the standard deviation of these mean accuracies
provided insights into the consistency of model performance
across different subjects.

III. RESULTS

The comparative analysis aimed to assess the effectiveness
of the proposed model against existing methodologies in EEG-
based emotion recognition, with mean accuracies presented in
Table III for valence and arousal predictions across various
models tested. Fig. 2 illustrates these values for all subjects for
the proposed method.

TABLE III COMPARISON OF MEAN ACCURACIES FOR VARIOUS
METHORDS FOR VALANCE AND AROUSAL.

Acc (%) Year Valence % Arousal %
LSTM 2017 84.75 82.16
CNN-+HMM 2020 79.77 £ 0.61 83.09+ 0.84
HOLO-FM 2021 76.61 = 2.13 77.72 £ 2.87
DBCN 2022 87+ 45 90.93+ 3.9
ERTNet 2024 73.31 80.99
STS-Transformer 2024 89.86 86.83
Proposed Method 2024 92.66 = 3.99 91.17 £+ 3.67

Hyperparameter Type/Value

Batch Size 4

Learning Rate 0.0001
Encoder Dropout 0.1

Epochs for each fold 1000
Patch Size 8
Attention heads in encoder 32

Optimizer Adam

These hyperparameters were chosen through iterative
experimentation to strike a balance between model convergence
and generalization. The small batch size, low learning rate, and
dropout regularization contribute to stable training, while the
choice of the Adam optimizer and mean squared error loss
function aligns with the nature of the regression task for valence
and arousal prediction.

D. Evaluation Metrics

1) Subject-specific Accuracy:

The LSTM model [3] achieved good accuracies of 85.45%
for valence and 85.65% for arousal, showcasing its proficiency
in handling sequential data. However, it is worth noting that
LSTM models might struggle with capturing long-range
dependencies in EEG signals, potentially limiting their ability to
discern intricate temporal patterns. The CNN+HMM hybrid
model [10], incorporating convolutional neural networks and
hidden Markov models, exhibited accuracies of 79.77%
(valence) and 83.09% (arousal). Despite its capabilities, the
reliance on manual feature extraction and the inherent challenges
of hidden Markov models might impede its adaptability and
noise resilience. HOLO-FM [11], utilizing holographic feature
maps, demonstrated accuracies of 76.61% (valence) and 77.72%
(arousal). While innovative, this approach may face limitations
in capturing the complexity of emotional states due to its reliance
on feature maps. DBCN [2], employing dilated bottleneck-based
convolutional neural networks, exhibited high accuracies of
87% (valence) and 90.93% (arousal). However, the
interpretability of such complex architectures might be
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compromised, and subject-specific adaptability could be
challenging.

ERTNet [7] and STS-Transformer [8], both Transformer-
based approaches lacking a word embedding equivalent, as we
have patch encoding, showed accuracies of 73.31% and 80.99%
for ERTNet, and 89.86% and 86.83% for STS-Transformer, in
valence and arousal prediction, respectively. The absence of
mechanisms equivalent to word embedding and patch encoding
might hinder these models in effectively capturing local patterns
and spatiotemporal dynamics in EEG data. In contrast, the
proposed model, incorporating patch encoding and handling
multi-channel EEG, with each channel having a separate head,
achieved mean accuracies of 92.66% (valence) and 91.17%
(arousal). This design choice enables the model to
comprehensively discern intricate temporal patterns across the
brain, demonstrating enhanced accuracy and interpretability.

IV. DISCUSSION AND CONCLUSION

The presented results underscore the effectiveness of the
proposed method in EEG-based emotion recognition by valence
and arousal prediction. Leveraging a modified Transformer-
based architecture tailored for multi-channel EEG data, our
approach enabled a comprehensive understanding of
spatiotemporal dynamics associated with emotional states. The
competitive accuracy achieved, despite slight variability,
highlights the robustness and adaptability of our model across
subjects. This positions our method as a promising tool for
advancing EEG-based emotion recognition, with implications
for affective computing and human-machine interaction [12].
However, it's essential to acknowledge the limitations observed
in our study. While our model demonstrated better performance,
there is still room for improvement in accuracy, particularly in
addressing the variability observed across subjects. In the near
future we will refine our model to enhance accuracy and
reliability, via multilayer preprocessing. Furthermore, applying
our method to other datasets and real-world scenarios could
validate its generalizability and contribute to the development of
robust and versatile emotion recognition systems, thus continue
to improve EEG-based emotion recognition.
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