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Abstract— Emotion recognition via electroencephalography 

(EEG) has emerged as a pivotal domain in biomedical signal 

processing, offering valuable insights into affective states. This 

paper presents a novel approach utilizing a tailored Transformer-

based model to predict valence and arousal levels from EEG 

signals. Diverging from traditional Transformers handling 

singular sequential data, our model adeptly accommodates 

multiple EEG channels concurrently, enhancing its ability to 

discern intricate temporal patterns across the brain. The modified 

Transformer architecture enables comprehensive exploration of 

spatiotemporal dynamics linked with emotional states. 

Demonstrating robust performance, the model achieves mean 

accuracies of 92.66% for valence and 91.17% for arousal 

prediction, validated through 10-fold cross-validation across 

subjects on the DEAP dataset. Trained for subject-specific 

analysis, our methodology offers promising avenues for enhancing 

understanding and applications in emotion recognition through 

EEG. This research contributes to a broader discourse in 

biomedical signal processing, paving the way for refined 

methodologies in decoding neural correlates of emotions with 

implications across various domains including brain-computer 

interfaces, and human-robot interaction. 

Keywords— EEG, Transformers, emotion recognition, brain-

computer interfaces, human-robot interaction 

I. INTRODUCTION 

Emotion recognition through electroencephalography (EEG) 
has emerged as a pivotal domain in affective computing, holding 
profound implications for brain-computer interfaces, human-
robot interaction and other healthcare applications. The intrinsic 
link between neural activity and emotional states makes EEG a 
valuable modality for decoding underlying emotional cues. This 
paper delves into the EEG-based emotion recognition, 
addressing the challenges posed by noisy, non-linear, and non-
stationary nature of EEG signals.  

EEG, being a direct measure of brain activity, provides a 
unique window into the dynamics of emotional states. Its non-
invasiveness and temporal precision make it an ideal candidate 
for real-time emotion recognition, with applications spanning 
human-robot interaction, healthcare diagnostics, and 
personalized affective computing systems. The ability to decode 
emotional states from EEG signals unlocks a myriad of 
possibilities for enhancing human-machine collaboration and 
understanding. 

 
While EEG-based emotion recognition has gained traction, 

existing methodologies face inherent challenges. Notably, the 
intricate nature of EEG signals demands intelligent frameworks 
capable of providing high accuracy in emotion recognition. 
Various approaches, including classical machine learning 

models, have been explored to tackle these challenges. However, 
interpretability, noise resilience, manual feature extraction, and 
subject-specific adaptability remain ongoing concerns. 

The emergence of deep learning models has had a significant 
impact on EEG classification, moving beyond traditional 
machine learning methods. Deep learning techniques utilize 
comprehensive artificial neural networks instead of 
conventional methods that require manual feature extraction. 
Convolutional neural networks (CNN) [1], [2] Long short-term 
memory (LSTM) [3], [4], and hybrid CNN models are widely 
used deep learning techniques for analyzing EEG signals.  

While deep learning methods like CNN and LSTM have 
been applied for EEG-based emotion recognition, inherent 
challenges persist. CNNs struggle with capturing long-range 
dependencies in sequential data, that are crucial for 
understanding the temporal dynamics of emotional states in 
EEG signals. On the other hand, LSTMs, while adept at handling 
sequential data, may face difficulties in managing the complex 
and non-linear nature of EEG signals. These challenges 
underscore the need for a more adaptive and efficient approach. 

The emergence of Transformer models [5], known for their 
ability in handling sequential data with a self-attention 
mechanism, present a compelling solution. By addressing the 
limitations of traditional models, Transformers offer a unique 
opportunity to enhance the accuracy and interpretability of 
emotion recognition from EEG signals. Given their outstanding 
performance in natural language processing (NLP) and 
computer vision (CV), employing Transformers to process 
entire EEG signals [6] presents a viable and effective approach. 
Consequently, Transformers designed for EEG applications 
have been developed for various uses, including emotion 
recognition. However, it's noteworthy that not all existing 
models harness the full potential of multi-channel EEG data 
effectively. For instance, ERTNet [7] and STS-Transformer[8], 
despite incorporating a Transformer-based model, fall short in 
delivering optimal results. One prominent limitation lies in the 
absence of an equivalent mechanism to word embedding, as seen 
in natural language processing (NLP). In EEG-based emotion 
recognition, this can hinder the models' ability to capture local 
patterns effectively. This emphasizes the crucial need for a 
model specifically tailored to leverage all EEG channels 
comprehensively, ensuring the comprehensive capture of 
intricate temporal patterns distributed across the brain. 

This paper introduces an innovative approach to EEG-based 
emotion recognition, leveraging a modified Transformer-based 
model. Departing from conventional Transformer model which 
can process one sequence at a time, our model is tailored to 
handle multiple EEG channels simultaneously, enriching its 

Research supported by NSF CAREER Award (HCC-2053498). 

20
24

 4
6t

h 
A

nn
ua

l I
nt

er
na

tio
na

l C
on

fe
re

nc
e 

of
 th

e 
IE

EE
 E

ng
in

ee
rin

g 
in

 M
ed

ic
in

e 
an

d 
B

io
lo

gy
 S

oc
ie

ty
 (E

M
B

C
) |

 9
79

-8
-3

50
3-

71
49

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
EM

B
C

53
10

8.
20

24
.1

07
81

70
0

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 17,2025 at 04:33:22 UTC from IEEE Xplore.  Restrictions apply. 



capacity to discern intricate temporal patterns across the brain. 
The modified Transformer architecture facilitates a 
comprehensive understanding of spatiotemporal dynamics 
associated with emotional states, promising enhanced accuracy 
and interpretability.  

The subsequent sections detailed the methodology, model 
architecture, training procedures, and evaluation metrics, 
providing a holistic understanding of the proposed approach and 
its implications for advancing EEG-based emotion recognition. 

II. METHODS 

A. EEG Data Source 

1) DEAP Dataset Overview 
The study utilizes the DEAP dataset [9], a comprehensive 

multimodal resource for the exploration of human affective 
states. The dataset captured electroencephalogram (EEG) and 
peripheral physiological signals from 32 participants, each 
exposed to 40 one-minute excerpts of music videos. These 
participants provided subjective ratings on arousal, valence, 
like/dislike, dominance, and familiarity, ranging from 0 to 9 for 
each dimension.  

TABLE I. DEAP DATASET  

 Array Shape Array Content 

Data 40 × 32 × 8064 Video × Channels × Data  

Labels 40 × 4  Videos × Label   

2) Data Label Transformation 
For the purpose of binary classification in predicting valence 

and arousal, a label transformation was applied. Ratings for 
valence and arousal were scaled to binary values, where a rating 
of 5 or higher was mapped to 1, indicating a positive response, 
and ratings below 5 were mapped to 0, indicating a negative 
response. 

B. Model Architecture 

Our proposed model architecture is based on original  
Transformer [5], a deep learning architecture originally designed 
for sequence-to-sequence tasks. Departing from the 
conventional use of Transformers for single sequence/sentence, 
our model is adapted to handle multi-channel EEG data 
effectively. The architecture is optimized to capture 
spatiotemporal patterns across 32 EEG channels, offering a more 
nuanced understanding of neural dynamics associated with 
emotional states. 

The architecture comprises three key blocks: Patch 
Encoding, Position Encoding, and a Single Transformer Encoder 
with 32 heads, corresponding to the number of EEG channels. 
The output from the Transformer encoder is fed into a fully 
connected layer for final predictions. 

1) Patch Encoding 
In our model architecture, Patch Encoding plays a pivotal 

role akin to word embedding in NLP. This critical step involves 
encoding each patch of EEG data to capture underlying patterns 
effectively.  

Initially organized as a 32 × 8064 matrix, the EEG signals 
undergo a patch-based transformation. Through systematic 
division into patches of size patch_size , the matrix is reshaped 
into dimensions of 32 × sq_len × patch_size. This strategic 
patching ensures the precise capture of local patterns inherent in 
EEG data. Subsequently, these patches are encoded via a linear 
layer, producing patch vectors whose lengths pv_len, correspond 
to the output size of the linear layer. This transformation ensures 
that intricate temporal dynamics across different channels are 
accurately represented. Visual representation of this process is 
depicted in Figure 1, elucidating the sequential flow of patch 
encoding within our model architecture. 

2) Position Encoding 
Post patch encoding, the shape transforms to 32 × sq_len × 

pv_len. To integrate temporal information into the model, a 
crucial step involves position encoding - a practice inspired by 
the conventional techniques observed in Transformers [5], 
infusing the data with crucial temporal context. 

The result of this process mirrors the output of the patch 
encoding phase. After adding Position Encodings and Patch 
Encodings, the result undergoes a reorganization into a 2D 
representation, precisely a matrix with dimensions of sq_len × 
(32 × pv_len). This matrix is fed into the subsequent Transformer 
encoder, enriching the model's understanding of the temporal 
dynamics inherent in the EEG data. 

3) Single Transformer Encoder with 32 Heads 
The heart of the model lies in the Transformer encoder, a 

critical component adept at processing multi-channel EEG data. 
The encoder is designed to treat each channel's information 
independently, fostering a nuanced understanding of the diverse 
neural activities across the 32 channels. While retaining the 
fundamentals of the original Transformer model, we have 
streamlined the encoder architecture to utilize only one block, in 
contrast to the six blocks in the original design. 

 

Fig1: Proposed Model Architecture (Here C = Channels = 32, sq_len = Sequence length , patch_size = length of each patch, pv_len = Patch vector length of 
encoded patch, d_model = C x pv_len, sq_len x patch_size = 8064) 
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Notably, the Transformer encoder incorporates 32 heads, 
enabling simultaneous attention to various aspects of the input 
data. This intricate attention mechanism contributes 
significantly to the model's capacity to discern complex 
spatiotemporal patterns in EEG data.  

4) Output and Fully Connected Layer (FC): 
The output from the Transformer encoder is seamlessly 

directed to a fully connected  layer (FC). This network is 
designed  to predict two values: one for valence and another for 
arousal.  

Fig. 1 represents the model architecture, illustrating the 
sequential flow from patch encoding to the final output through 
the Transformer encoder and FC. The subsequent sections will 
delve into specifics of training, hyperparameters, and evaluation 
metrics, offering a holistic understanding of the model's 
performance in predicting valence and arousal. 

C. Training Procedure 

1) Subject-Specific Analysis 
To enhance the model's adaptability and account for inter-

subject variability, a subject-specific analysis was employed 
during the training process. This approach involves training the 
model individually for each subject in the dataset, ensuring that 
the model can capture subject-specific patterns in EEG data. 

2) 10-fold Cross-Validation 
The model's robustness and generalizability were assessed 

using 10-fold cross-validation. The dataset was divided into 10 
subsets, with the model trained and validated iteratively on 
different combinations of these subsets. This cross-validation 
strategy helps mitigate overfitting and provides a more reliable 
estimate of the model's performance. 

3) Implementation and Hyperparameters used 
We trained the proposed method on an NVIDIA GeForce 

4070 Ti GPU. The hyperparameters of the proposed model were 
tuned to optimize performance, as outlined in Table II. 

TABLE II HYPERPARAMETERS USED  FOR THE TRAINING THE MODEL 

Hyperparameter Type/Value 

Batch Size 4 

Learning Rate 0.0001 

Encoder Dropout  0.1 

Epochs for each fold 1000 

Patch Size 8 

Attention heads in encoder 32 

Optimizer Adam 

These hyperparameters were chosen through iterative 
experimentation to strike a balance between model convergence 
and generalization. The small batch size, low learning rate, and 
dropout regularization contribute to stable training, while the 
choice of the Adam optimizer and mean squared error loss 
function aligns with the nature of the regression task for valence 
and arousal prediction. 

D. Evaluation Metrics 

1) Subject-specific Accuracy: 

Subject-specific accuracy was computed as the mean 
accuracy across the 10-fold cross-validation for each individual 
subject. The formula for subject-specific accuracy is given by: 

 =   1
10    +  

 +   +   +   

Where: 
  ,   = True Positives/Negatives for subject i 
 ,  = False Positives/ Negatives for subject i 

2) Mean Accuracy Across Subjects: 
The overall mean accuracy across all subjects was then 

calculated as the average of the subject-specific accuracies. 
Additionally, the standard deviation of these mean accuracies 
provided insights into the consistency of model performance 
across different subjects. 

III. RESULTS 

The comparative analysis aimed to assess the effectiveness 
of the proposed model against existing methodologies in EEG-
based emotion recognition, with mean accuracies presented in 
Table III for valence and arousal predictions across various 
models tested. Fig. 2 illustrates these values for all subjects for 
the proposed method.  

TABLE III COMPARISON OF MEAN ACCURACIES FOR VARIOUS 

METHORDS FOR VALANCE AND AROUSAL.   

Acc (%) Year Valence % Arousal % 

LSTM 2017 84.75 82.16 

CNN+HMM 2020 79.77 ± 0.61 83.09 ± 0.84   

HOLO-FM 2021 76.61 ± 2.13  77.72 ± 2.87 

DBCN 2022 87 ± 4.5   90.93 ± 3.9 

ERTNet 2024 73.31  80.99 

STS-Transformer 2024 89.86 86.83 

Proposed Method 2024 92.66 ± 3.99 91.17 ± 3.67 

 
The LSTM model [3] achieved good accuracies of 85.45% 

for valence and 85.65% for arousal, showcasing its proficiency 
in handling sequential data. However, it is worth noting that 
LSTM models might struggle with capturing long-range 
dependencies in EEG signals, potentially limiting their ability to 
discern intricate temporal patterns. The CNN+HMM hybrid 
model [10], incorporating convolutional neural networks and 
hidden Markov models, exhibited accuracies of 79.77% 
(valence) and 83.09% (arousal). Despite its capabilities, the 
reliance on manual feature extraction and the inherent challenges 
of hidden Markov models might impede its adaptability and 
noise resilience. HOLO-FM [11], utilizing holographic feature 
maps, demonstrated accuracies of 76.61% (valence) and 77.72% 
(arousal). While innovative, this approach may face limitations 
in capturing the complexity of emotional states due to its reliance 
on feature maps. DBCN [2], employing dilated bottleneck-based 
convolutional neural networks, exhibited high accuracies of 
87% (valence) and 90.93% (arousal). However, the 
interpretability of such complex architectures might be 
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compromised, and subject-specific adaptability could be 
challenging.  

ERTNet [7] and STS-Transformer [8], both Transformer-
based approaches lacking a word embedding equivalent, as we 
have patch encoding, showed accuracies of 73.31% and 80.99% 
for ERTNet, and 89.86% and 86.83% for STS-Transformer, in 
valence and arousal prediction, respectively. The absence of 
mechanisms equivalent to word embedding and patch encoding 
might hinder these models in effectively capturing local patterns 
and spatiotemporal dynamics in EEG data. In contrast, the 
proposed model, incorporating patch encoding and handling 
multi-channel EEG, with each channel having a separate head, 
achieved mean accuracies of 92.66% (valence) and 91.17% 
(arousal). This design choice enables the model to 
comprehensively discern intricate temporal patterns across the 
brain, demonstrating enhanced accuracy and interpretability.  

IV. DISCUSSION AND CONCLUSION 

The presented results underscore the effectiveness of the 
proposed method in EEG-based emotion recognition by valence 
and arousal prediction. Leveraging a modified Transformer-
based architecture tailored for multi-channel EEG data, our 
approach enabled a comprehensive understanding of 
spatiotemporal dynamics associated with emotional states. The 
competitive accuracy achieved, despite slight variability, 
highlights the robustness and adaptability of our model across 
subjects. This positions our method as a promising tool for 
advancing EEG-based emotion recognition, with implications 
for affective computing and human-machine interaction [12]. 
However, it's essential to acknowledge the limitations observed 
in our study. While our model demonstrated better performance, 
there is still room for improvement in accuracy, particularly in 
addressing the variability observed across subjects. In the near 
future we will refine our model to enhance accuracy and 
reliability, via multilayer preprocessing. Furthermore, applying 
our method to other datasets and real-world scenarios could 
validate its generalizability and contribute to the development of 
robust and versatile emotion recognition systems, thus continue 
to improve EEG-based emotion recognition. 
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