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Abstract—Stroke is one of the major causes of long-term
disability in United States. With more than 800,00 people
experiencing stroke every year, it is important that efficient means
for recovery are presented to support stroke subjects. Exoskeleton
and serious game based rehabilitation are some of the state-of-
art approaches used in the recovery of stroke subjects. Accurate
matching of body poses performed by individuals with stroke
is essential in understanding the current state of recovery of
the subject and plan further rehabilitation. Established machine
learning based approaches fall short in accurately matching
the poses of stroke subjects with ground truths. In this work,
we present algorithms supported by Siamese architectures to
effectively identify the poses performed by the subjects. Our
proposed framework involves data pre-processing, extraction,
building classification models and validating them using a body
pose data set of individuals with stroke. On a considered
public database, our proposed pose identification models namely,
Siamese based LSTM and Siamese based CNN gave 7.8% and
14.2% better identification accuracy than the traditional LSTM
approach.

I. INTRODUCTION

Stroke in general causes motor impairment, systematic

rehab helps to restore the lost motor function enabling subject

to perform his daily activities. Surface Electromyography

(sEMG) based exoskeletons are the choice amongst patients

affected with complete stroke [1]. Serious games based re-

habilitation is an established approach for providing effective

rehabilitation for partial stroke survivors. Immersive serious

games, carefully crafted with scoring mechanisms based on

movement smoothness and accuracy are effective in systematic

and steady motor action recovery of stroke subjects. Serious

games are used not only by stroke subjects but also by healthy

subjects to keep their motor function active.

Estimation of user pose in Virtual Reality (VR) based games

is well explored in literature. Authors in [2], present a low

latency approach for estimating the upper body pose of the

user. In this, they used a convolutional neural network based

architecture for better pose matching, where in the model is

trained with 3D joint positions. Usage of camera input image

to estimate the body pose in an augmented reality (AR) game

application is discussed in [3]. A comparison is made with

the pre-built point in cloud data with the camera image to

estimate the pose. In order to minimize the errors in body

pose estimation authors present a hybrid approach combining

the ORB (Oriented Fast and Rotated Brief) descriptor with

optical flow that accurately tracks the displacement of key

points in consecutive images. A relatively simple method of

pose matching is used in [4] for automated designing of game

levels for a better user experience. Authors allowed for an

error tolerance level for angles of various joint levels, there

by matching a set of angles of an obtained pose with the

existing ground truths. Main emphasis of this work was to

design wide variety of game levels in an automated fashion

using Reinforcement Learning. Accurate estimation of camera

pose using global features based on rotation consistency and

local features based on rotation in-variance is discussed in [5].

Authors pitched this approach for applications in augmented

reality and autonomous driving. They tried to optimize the

pose estimation model by combining the losses obtained from

the global and local features.

Importance of identifying accurate body pose in individuals

with stroke for better rehabilitation is discussed in literature. In

[6], authors analyze the effect of various body pose detection

algorithms for a selected consumer unit (Xbox One Kinect).

They focused on the upper-body stroke rehabilitation and

observed that an improved tracking of shoulder, elbow and

wrist joints along with their temporal information will help

improve the pose prediction accuracy. Evaluation of low cost

human pose estimators namely Openpose, Detectron 2 has

been done in [7]. In this work authors compare the estimates

of angles of shoulders and elbows of four different upper

body exercises obtained from estimators with the ground truth

obtained from RGBD Kinect 2 devices. A numerical compar-

ison based on RMSE and MAE is made between the results

obtained from estimators and the ground truth values. Effective

estimation of body pose in uncontrolled settings based on

videos obtained from single handheld camera is studied in

work [8]. Authors trained a convolutional neural network

(CNN) model using data from below waist videos of stroke

subjects, for predicting clinically relevant gait parameters.

Comparison of estimates with results obtained from standard

gait estimators using numerical analysis concluded that even

with less sophisticated equipment and outside clinical settings

deep networks are effective in estimating stroke gait. To assist

robotic rehabilitation, authors in [9], have proposed usage of

teaching trajectory plan for the bionic motion of robot using

body pose estimation. These estimates were collected using

Kinect’s depth camera and Openpose’s deep neural network.

After validating the trajectories, it was concluded that they will

be of immense help for the rehabilitation doctors to design
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effective trajectories for the rehabilitation robots.

Multiple studies have been performed to understand the

effectiveness of serious game based rehabilitation on stroke

subjects’ recovery. Many of these works focused on analyzing

the immersiveness of the participants, efficiency of the games

in rehabilitation etc. Lack of the emphasis on using latest

machine learning algorithms in estimating quality of the poses

will lead to a superficial analysis and conclusions of the merits

and shortcomings of the serious games. Considering the large

number of patients to be cared for and the extensive nature of

serious games involved in, it is very difficult for physicians to

track the accuracy of pose detection. Therefore accurate pose

identification is a much needed problem to be addressed for an

effective stroke recovery. Usage of advanced technologies to

understand the pose of participants is an established practice.

Instant understanding of the pose of the subjects can be

obtained by the use of sensors or wearable objects obtained. A

major drawback with this approach is the low level of comfort

of the subject in wearing the device and lack of his willingness

to wear the device. The scenario in which, sensors placed else

where in the data collection site may need the subject to be

stationed in a same place for every data collection episode.

Though there have been multiple works in the domain of

pose estimation for general purposes and for stroke rehabil-

itation, effect of body pose estimation quality in individuals

with stroke was never given sufficient emphasis. To address

this gap, in this work, we present Siamese network based

models which can effectively identify the body pose thereby

improving the overall rehabilitation process. The rest of the

paper is organized as follows. Section II discusses details of

various methods used in this work for body pose matching and

the data set considered for validating the methods. Analysis

of the results obtained from the methods and a comparative

study with other works are presented in Section III. Section

IV concludes the paper with a summary of observations and

scope for future work.

II. METHODS

In this Section, we describe in detail the data set considered

in this work and the methods we considered for body pose

matching using the pre-processed data.

A. Data Set

Stroke often leads to impairment of movements. To ac-

commodate movements stroke subjects use their strong joints,

thus altering the poses. In this work we consider the data set

published in [10], which present a set of clinically relevant

motions that are considered during the rehabilitation therapy.

Comprising of 10 healthy and 9 stroke subjects this data

set is obtained using a Microsoft Kinect sensor. All the

motions are performed while the participant remains seated,

involving only the upper body. A total of 20 motions were

performed by all the healthy subjects while stroke subjects

could perform motions between 4 to 12, depending on each

individual capabilities. For each motion of a given subject, all

the 25 joint positions as described in [11], were recorded in

world coordinates and were saved in a corresponding csv file.

The data is sampled at 2KHz. Data collection setup in shown

in Fig. 1.

Fig. 1. Framework for collecting pose data - Adapted from [10]

B. Pose Matching Framework

The considered data set in earlier section is pre-processed

for deploying various machine learning models. The pose

matching framework used in this paper is shown in Fig. 2.

After the pre-processing the data corresponding to a particular

motion (series of poses) i of a given subject j is arranged

as single input vector pi,j . Such input vectors are sent to

both Siamese CNN and Siamese LSTM models, where in

each vector is compared with another vector to observe the

similarity. The percentage of correctly identified input vectors

of same motion give the similarity score or accuracy of the

model. For LSTM model, we train the model with a training

data set extracted from the original data set. Later we test on

a testing data set and collect the classification accuracy of the

motions. Details of the individual architectures are explained

below.

Fig. 2. Framework for Pose Matching/Classification

C. Siamese CNN method

We present the architecture we used for the Siamese CNN

model in Fig. 3. The input shape for both sister networks as

shown in figure is specified as 75. Next, each of the inputs

passes through a 1D convolutional layer with 32 filters and

a kernel size of 3. This setup is typically used to extract

local features from sequence data, with the small kernel size

capturing local dependencies. The output of the convolutional

layers is flattened, enabling model to transform the multidi-

mensional convolutional output into a one-dimensional vector.

We considered, the first dense layer having 25 neurons, so that

the model could capture a moderate level of complexity in the

features extracted from the flattened output. The second dense
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layer is reduced to a single neuron. This acts as a form of

bottleneck feature, where the network is forced to condense the

information into the most salient features for the task at hand.

Next, the Lambda layer computes the L1 distance between the

outputs of the two dense layers corresponding to each input.

Here the model focuses on the absolute differences in feature

representations to gauge similarity. Finally, we used a dense

layer with a sigmoid activation function at the output for a

binary classification task, In the context of a Siamese network,

this determines whether or not the input pairs are similar.

Fig. 3. Architecture of Siamese CNN neural network

D. Siamese LSTM method

In this method, we considered Siamese based LSTM for

identifying similarity of two poses. As shown in Fig. 4, any

given two poses pass through an LSTM layer configured with

34 units, with a dropout of 0.2, and a recurrent dropout of 0.2.

The LSTM’s role is to process sequential data, accounting for

long-term dependencies within the input sequence which is 75

timesteps long. We used set dropout and recurrent dropout to

0.2 to lay a strong emphasis on preventing over fitting. This

will be important in scenarios where the training data is not

very large or the sequences contain complex patterns. These

are followed by two dense layers, a LAMBDA layer and an

output layer with sigmoid activation function as described in

earlier Section.

E. only LSTM method

In the final method, we considered only LSTM architecture,

which identifies the class of a given poses using a classifica-

tion method. This is method is performed to compare with

the earlier two Siamese based methods and understand their

advantages and drawbacks. The architecture is shown in Fig. 5.

Here, the input layer is set to accept input sequences of length

75. The LSTM layer has 34 units, and it includes dropout and

recurrent dropout, both set at 0.2. This is done so that the

Fig. 4. Architecture of Siamese LSTM neural network

model can process sequences with the capability to remember

long-term dependencies. The dropout is used to reduce over

fitting by randomly setting a proportion of input units to 0

at each update during training time, which in this case is 20.

A fully connected layer with 50 neurons follows the LSTM

layer. This layer interprets features extracted from the input

sequence by the LSTM layer. The following dense layer has

20 neurons and uses a softmax activation function. This is for

classification task where the model is expected to categorize

the input into one of 20 possible classes. The softmax function

will output a probability distribution over these 20 classes,

with the sum of probabilities equaling 1.

Fig. 5. Architecture of LSTM

179

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on November 17,2025 at 04:35:48 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c)

(d) (e) (f)

Fig. 6. a.), b.) c.) Training and Validation accuracy and d.) e.) f.) loss of only LSTM, Siamese LSTM, Siamese CNN respectively. Siamese CNN outperforms
Siamese LSTM both in accuracy and loss. This can be due to the fact that CNN better exploits spatial sequences and our data has both spatial and temporal
sequences.

III. RESULTS AND DISCUSSION

In this Section, we present the results obtained from apply-

ing three different methods described in earlier Section on the

body pose of individuals with stroke data set [10]. Further, we

analyse the results and present a comparative study with other

works.

A. Analysis of Results Obtained

As discussed in II-A, not all types of poses are preformed

by all the considered subjects. Out of the 20 different poses,

some poses like reach side to side and back using left hand

(Rch sd2sd Bck L), reach forward backward using left hand

(Rch Fwd Bck L) are more prominently performed by the

subjects than poses like reach forward backward using right

hand (Rch Fwd Bck R). A distribution of number of obser-

vations for each pose category, collected from 19 different

subjects is shown in Fig. 7. After pre-processing, the pose data

was sent to each of the three models as described in Section

II.

From Fig. 6, we can observe the training and validation

accuracies and losses for the three different methods in iden-

tifying the right class for each pose. The Siamese LSTM

model has an AUC of approximately 0.89, indicating its

effectiveness distinguish between the similar and non similar

classes. The Siamese CNN model gave a higher AUC of

around 0.95, can be seen in Fig. 8. This proves the CNN

model’s excellent ability to grasp patterns from successive

Fig. 7. Distribution of samples by pose category in data set [10]. Not all the
20 poses are performed by all the 19 subjects considered, due to individual
limitations.

inputs. It has an improved result than the Siamese LSTM

model, and the curve suggests that it is particularly effective

across various thresholds, maintaining a high true positive rate

and a low false positive rate. In conclusion, while both models

exhibit strong performance, the Siamese CNN model is more

effective in identifying body pose accurately, as indicated by

the higher AUC value. The only LSTM model, is less effective

than other two methods in this comparison. Its predictive

performance could be more applicable to different types of
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TABLE I
COMPARISON TABLE

Model Avg. Score Avg. Score
(Right Pairs) (Wrong pairs)

ST-AM-CNN [12] 0.9686 0.7077
ST-VGG-16 [12] 0.9959 0.9827
Siamese LSTM 0.750480 0.280108
Siamese CNN 0.872325 0.148438

data or scenarios where understanding temporal dynamics is

important. The pink dotted line in Fig. 8, indicates the micro-

average ROC curve for the only LSTM model with an AUC

of 0.46, is counter intuitive since an AUC less than 0.5 is

worse than random guessing. It could possibly imply severe

class imbalance and the model is performing poorly on the

majority class.

Fig. 8. Performance Comparison of only LSTM, Siamese LSTM and Siamese
CNN. Siamese CNN has better AUC, due to its greater ability in identifying
the patterns in poses.

B. Comparison with Other Work

In work [12], methods for pose evaluation and matching

are described. This work considered skeleton like images as

input to their Siamese based models. For comparison with

our work, we choose models by their best scores from their

work. In Table I, we present the average score obtained for

identifying the right pairs (i.e. two poses of same category

are identified as same, two poses of different category are

identified as different) and the wrong pairs (i.e. two poses of

different category are identified as same, two poses of same

category are identified as different). The higher score for right

pairs and lower score for wrong pairs is the ideal scenario.

The Siamese CNN model exhibits a strong preference

for precision, as evidenced by its superior performance in

minimizing ’wrong pairs’, signifying its efficiency in reducing

the errors. This trait is particularly advantageous in settings

where the consequences of incorrect matches are significant.

Although its score for ’right pairs’ is not the highest, it sug-

gests a deliberate calibration towards precision at the expense

of capturing every potential correct match, a trade-off that

may be beneficial in high-stakes applications requiring utmost

accuracy. In stark contrast, the ST-VGG-16 model, despite its

excellent score for ’right pairs’, indicating a high sensitivity

to correct matches, performs poorly on ’wrong pairs’. This

implies a tendency to make more erroneous matches, which

could be problematic in scenarios where such mistakes are

costly. The Siamese CNN model, therefore, presents a more

prudent choice over the ST-VGG-16 for tasks where the

precision of the match is more critical than the sheer number

of matches identified.

IV. CONCLUSION

In this work we present a novel models for body pose

matching in individuals with stroke, based on Siamese LSTM

and Siamese CNN architectures. This improved pose matching

will help in providing efficient rehabilitation methods. Our

Siamese based models outperformed their only LSTM counter-

part significantly. Compared to existing works on pose match-

ing our work minimizes the errors reported pose matching.

We would like to extend this work by validating the models

on our own data set and also verify its direct affect on stroke

subject rehabilitation.
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