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Abstract—Stroke is one of the major causes of long-term
disability in United States. With more than 800,00 people
experiencing stroke every year, it is important that efficient means
for recovery are presented to support stroke subjects. Exoskeleton
and serious game based rehabilitation are some of the state-of-
art approaches used in the recovery of stroke subjects. Accurate
matching of body poses performed by individuals with stroke
is essential in understanding the current state of recovery of
the subject and plan further rehabilitation. Established machine
learning based approaches fall short in accurately matching
the poses of stroke subjects with ground truths. In this work,
we present algorithms supported by Siamese architectures to
effectively identify the poses performed by the subjects. Our
proposed framework involves data pre-processing, extraction,
building classification models and validating them using a body
pose data set of individuals with stroke. On a considered
public database, our proposed pose identification models namely,
Siamese based LSTM and Siamese based CNN gave 7.8% and
14.2% better identification accuracy than the traditional LSTM
approach.

I. INTRODUCTION

Stroke in general causes motor impairment, systematic
rehab helps to restore the lost motor function enabling subject
to perform his daily activities. Surface Electromyography
(sEMG) based exoskeletons are the choice amongst patients
affected with complete stroke [1]. Serious games based re-
habilitation is an established approach for providing effective
rehabilitation for partial stroke survivors. Immersive serious
games, carefully crafted with scoring mechanisms based on
movement smoothness and accuracy are effective in systematic
and steady motor action recovery of stroke subjects. Serious
games are used not only by stroke subjects but also by healthy
subjects to keep their motor function active.

Estimation of user pose in Virtual Reality (VR) based games
is well explored in literature. Authors in [2], present a low
latency approach for estimating the upper body pose of the
user. In this, they used a convolutional neural network based
architecture for better pose matching, where in the model is
trained with 3D joint positions. Usage of camera input image
to estimate the body pose in an augmented reality (AR) game
application is discussed in [3]. A comparison is made with
the pre-built point in cloud data with the camera image to
estimate the pose. In order to minimize the errors in body
pose estimation authors present a hybrid approach combining
the ORB (Oriented Fast and Rotated Brief) descriptor with
optical flow that accurately tracks the displacement of key

points in consecutive images. A relatively simple method of
pose matching is used in [4] for automated designing of game
levels for a better user experience. Authors allowed for an
error tolerance level for angles of various joint levels, there
by matching a set of angles of an obtained pose with the
existing ground truths. Main emphasis of this work was to
design wide variety of game levels in an automated fashion
using Reinforcement Learning. Accurate estimation of camera
pose using global features based on rotation consistency and
local features based on rotation in-variance is discussed in [5].
Authors pitched this approach for applications in augmented
reality and autonomous driving. They tried to optimize the
pose estimation model by combining the losses obtained from
the global and local features.

Importance of identifying accurate body pose in individuals
with stroke for better rehabilitation is discussed in literature. In
[6], authors analyze the effect of various body pose detection
algorithms for a selected consumer unit (Xbox One Kinect).
They focused on the upper-body stroke rehabilitation and
observed that an improved tracking of shoulder, elbow and
wrist joints along with their temporal information will help
improve the pose prediction accuracy. Evaluation of low cost
human pose estimators namely Openpose, Detectron 2 has
been done in [7]. In this work authors compare the estimates
of angles of shoulders and elbows of four different upper
body exercises obtained from estimators with the ground truth
obtained from RGBD Kinect 2 devices. A numerical compar-
ison based on RMSE and MAE is made between the results
obtained from estimators and the ground truth values. Effective
estimation of body pose in uncontrolled settings based on
videos obtained from single handheld camera is studied in
work [8]. Authors trained a convolutional neural network
(CNN) model using data from below waist videos of stroke
subjects, for predicting clinically relevant gait parameters.
Comparison of estimates with results obtained from standard
gait estimators using numerical analysis concluded that even
with less sophisticated equipment and outside clinical settings
deep networks are effective in estimating stroke gait. To assist
robotic rehabilitation, authors in [9], have proposed usage of
teaching trajectory plan for the bionic motion of robot using
body pose estimation. These estimates were collected using
Kinect’s depth camera and Openpose’s deep neural network.
After validating the trajectories, it was concluded that they will
be of immense help for the rehabilitation doctors to design
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effective trajectories for the rehabilitation robots.

Multiple studies have been performed to understand the
effectiveness of serious game based rehabilitation on stroke
subjects’ recovery. Many of these works focused on analyzing
the immersiveness of the participants, efficiency of the games
in rehabilitation etc. Lack of the emphasis on using latest
machine learning algorithms in estimating quality of the poses
will lead to a superficial analysis and conclusions of the merits
and shortcomings of the serious games. Considering the large
number of patients to be cared for and the extensive nature of
serious games involved in, it is very difficult for physicians to
track the accuracy of pose detection. Therefore accurate pose
identification is a much needed problem to be addressed for an
effective stroke recovery. Usage of advanced technologies to
understand the pose of participants is an established practice.
Instant understanding of the pose of the subjects can be
obtained by the use of sensors or wearable objects obtained. A
major drawback with this approach is the low level of comfort
of the subject in wearing the device and lack of his willingness
to wear the device. The scenario in which, sensors placed else
where in the data collection site may need the subject to be
stationed in a same place for every data collection episode.

Though there have been multiple works in the domain of
pose estimation for general purposes and for stroke rehabil-
itation, effect of body pose estimation quality in individuals
with stroke was never given sufficient emphasis. To address
this gap, in this work, we present Siamese network based
models which can effectively identify the body pose thereby
improving the overall rehabilitation process. The rest of the
paper is organized as follows. Section II discusses details of
various methods used in this work for body pose matching and
the data set considered for validating the methods. Analysis
of the results obtained from the methods and a comparative
study with other works are presented in Section III. Section
IV concludes the paper with a summary of observations and
scope for future work.

II. METHODS

In this Section, we describe in detail the data set considered
in this work and the methods we considered for body pose
matching using the pre-processed data.

A. Data Set

Stroke often leads to impairment of movements. To ac-
commodate movements stroke subjects use their strong joints,
thus altering the poses. In this work we consider the data set
published in [10], which present a set of clinically relevant
motions that are considered during the rehabilitation therapy.
Comprising of 10 healthy and 9 stroke subjects this data
set is obtained using a Microsoft Kinect sensor. All the
motions are performed while the participant remains seated,
involving only the upper body. A total of 20 motions were
performed by all the healthy subjects while stroke subjects
could perform motions between 4 to 12, depending on each
individual capabilities. For each motion of a given subject, all
the 25 joint positions as described in [11], were recorded in
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world coordinates and were saved in a corresponding csv file.
The data is sampled at 2KHz. Data collection setup in shown
in Fig. 1.

Fig. 1. Framework for collecting pose data - Adapted from [10]

B. Pose Matching Framework

The considered data set in earlier section is pre-processed
for deploying various machine learning models. The pose
matching framework used in this paper is shown in Fig. 2.
After the pre-processing the data corresponding to a particular
motion (series of poses) ¢« of a given subject j is arranged
as single input vector p; ;. Such input vectors are sent to
both Siamese CNN and Siamese LSTM models, where in
each vector is compared with another vector to observe the
similarity. The percentage of correctly identified input vectors
of same motion give the similarity score or accuracy of the
model. For LSTM model, we train the model with a training
data set extracted from the original data set. Later we test on
a testing data set and collect the classification accuracy of the
motions. Details of the individual architectures are explained
below.
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Fig. 2. Framework for Pose Matching/Classification

C. Siamese CNN method

We present the architecture we used for the Siamese CNN
model in Fig. 3. The input shape for both sister networks as
shown in figure is specified as 75. Next, each of the inputs
passes through a 1D convolutional layer with 32 filters and
a kernel size of 3. This setup is typically used to extract
local features from sequence data, with the small kernel size
capturing local dependencies. The output of the convolutional
layers is flattened, enabling model to transform the multidi-
mensional convolutional output into a one-dimensional vector.
We considered, the first dense layer having 25 neurons, so that
the model could capture a moderate level of complexity in the
features extracted from the flattened output. The second dense
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layer is reduced to a single neuron. This acts as a form of
bottleneck feature, where the network is forced to condense the
information into the most salient features for the task at hand.
Next, the Lambda layer computes the L1 distance between the
outputs of the two dense layers corresponding to each input.
Here the model focuses on the absolute differences in feature
representations to gauge similarity. Finally, we used a dense
layer with a sigmoid activation function at the output for a
binary classification task, In the context of a Siamese network,
this determines whether or not the input pairs are similar.

LAMBDA LAYER
(FUNCTION L1-distance

Fig. 3. Architecture of Siamese CNN neural network

D. Siamese LSTM method

In this method, we considered Siamese based LSTM for
identifying similarity of two poses. As shown in Fig. 4, any
given two poses pass through an LSTM layer configured with
34 units, with a dropout of 0.2, and a recurrent dropout of 0.2.
The LSTM’s role is to process sequential data, accounting for
long-term dependencies within the input sequence which is 75
timesteps long. We used set dropout and recurrent dropout to
0.2 to lay a strong emphasis on preventing over fitting. This
will be important in scenarios where the training data is not
very large or the sequences contain complex patterns. These
are followed by two dense layers, a LAMBDA layer and an
output layer with sigmoid activation function as described in
earlier Section.

E. only LSTM method

In the final method, we considered only LSTM architecture,
which identifies the class of a given poses using a classifica-
tion method. This is method is performed to compare with
the earlier two Siamese based methods and understand their
advantages and drawbacks. The architecture is shown in Fig. 5.
Here, the input layer is set to accept input sequences of length
75. The LSTM layer has 34 units, and it includes dropout and
recurrent dropout, both set at 0.2. This is done so that the
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LAMBDA LAYER
(FUNCTION L1-distance

Fig. 4. Architecture of Siamese LSTM neural network

model can process sequences with the capability to remember
long-term dependencies. The dropout is used to reduce over
fitting by randomly setting a proportion of input units to 0
at each update during training time, which in this case is 20.
A fully connected layer with 50 neurons follows the LSTM
layer. This layer interprets features extracted from the input
sequence by the LSTM layer. The following dense layer has
20 neurons and uses a softmax activation function. This is for
classification task where the model is expected to categorize
the input into one of 20 possible classes. The softmax function
will output a probability distribution over these 20 classes,
with the sum of probabilities equaling 1.

Fig. 5. Architecture of LSTM
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Fig. 6. a.), b.) c.) Training and Validation accuracy and d.) e.) f.) loss of only LSTM, Siamese LSTM, Siamese CNN respectively. Siamese CNN outperforms
Siamese LSTM both in accuracy and loss. This can be due to the fact that CNN better exploits spatial sequences and our data has both spatial and temporal

sequences.

III. RESULTS AND DISCUSSION

In this Section, we present the results obtained from apply-
ing three different methods described in earlier Section on the
body pose of individuals with stroke data set [10]. Further, we
analyse the results and present a comparative study with other
works.

A. Analysis of Results Obtained

As discussed in II-A, not all types of poses are preformed
by all the considered subjects. Out of the 20 different poses,
some poses like reach side to side and back using left hand
(Rch_sd2sd_Bck_L), reach forward backward using left hand
(Rch_Fwd_Bck_L) are more prominently performed by the
subjects than poses like reach forward backward using right
hand (Rch_Fwd_Bck_R). A distribution of number of obser-
vations for each pose category, collected from 19 different
subjects is shown in Fig. 7. After pre-processing, the pose data
was sent to each of the three models as described in Section
1L

From Fig. 6, we can observe the training and validation
accuracies and losses for the three different methods in iden-
tifying the right class for each pose. The Siamese LSTM
model has an AUC of approximately 0.89, indicating its
effectiveness distinguish between the similar and non similar
classes. The Siamese CNN model gave a higher AUC of
around 0.95, can be seen in Fig. 8. This proves the CNN
model’s excellent ability to grasp patterns from successive
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Fig. 7. Distribution of samples by pose category in data set [10]. Not all the
20 poses are performed by all the 19 subjects considered, due to individual
limitations.

inputs. It has an improved result than the Siamese LSTM
model, and the curve suggests that it is particularly effective
across various thresholds, maintaining a high true positive rate
and a low false positive rate. In conclusion, while both models
exhibit strong performance, the Siamese CNN model is more
effective in identifying body pose accurately, as indicated by
the higher AUC value. The only LSTM model, is less effective
than other two methods in this comparison. Its predictive
performance could be more applicable to different types of
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TABLE 1
COMPARISON TABLE

Model Avg. Score Avg. Score

(Right Pairs) | (Wrong pairs)
ST-AM-CNN [12] 0.9686 0.7077
ST-VGG-16 [12] 0.9959 0.9827
Siamese LSTM 0.750480 0.280108
Siamese CNN 0.872325 0.148438

data or scenarios where understanding temporal dynamics is
important. The pink dotted line in Fig. 8, indicates the micro-
average ROC curve for the only LSTM model with an AUC
of 0.46, is counter intuitive since an AUC less than 0.5 is
worse than random guessing. It could possibly imply severe
class imbalance and the model is performing poorly on the
majority class.

Receiver Operating Characteristic (ROC)
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Fig. 8. Performance Comparison of only LSTM, Siamese LSTM and Siamese
CNN. Siamese CNN has better AUC, due to its greater ability in identifying
the patterns in poses.

B. Comparison with Other Work

In work [12], methods for pose evaluation and matching
are described. This work considered skeleton like images as
input to their Siamese based models. For comparison with
our work, we choose models by their best scores from their
work. In Table I, we present the average score obtained for
identifying the right pairs (i.e. two poses of same category
are identified as same, two poses of different category are
identified as different) and the wrong pairs (i.e. two poses of
different category are identified as same, two poses of same
category are identified as different). The higher score for right
pairs and lower score for wrong pairs is the ideal scenario.

The Siamese CNN model exhibits a strong preference
for precision, as evidenced by its superior performance in
minimizing 'wrong pairs’, signifying its efficiency in reducing
the errors. This trait is particularly advantageous in settings
where the consequences of incorrect matches are significant.
Although its score for ’right pairs’ is not the highest, it sug-
gests a deliberate calibration towards precision at the expense
of capturing every potential correct match, a trade-off that
may be beneficial in high-stakes applications requiring utmost
accuracy. In stark contrast, the ST-VGG-16 model, despite its
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excellent score for ’right pairs’, indicating a high sensitivity
to correct matches, performs poorly on 'wrong pairs’. This
implies a tendency to make more erroneous matches, which
could be problematic in scenarios where such mistakes are
costly. The Siamese CNN model, therefore, presents a more
prudent choice over the ST-VGG-16 for tasks where the
precision of the match is more critical than the sheer number
of matches identified.

IV. CONCLUSION

In this work we present a novel models for body pose
matching in individuals with stroke, based on Siamese LSTM
and Siamese CNN architectures. This improved pose matching
will help in providing efficient rehabilitation methods. Our
Siamese based models outperformed their only LSTM counter-
part significantly. Compared to existing works on pose match-
ing our work minimizes the errors reported pose matching.
We would like to extend this work by validating the models
on our own data set and also verify its direct affect on stroke
subject rehabilitation.
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