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Abstract 
Synergies have been demonstrated to play a significant role in brain-machine interfaces (BMIs) 

controlling hand exoskeletons or robotic systems for motor assistance and rehabilitation. 

However, one major challenge of utilizing BMIs for individuals with stroke is the changes in 

cortical rhythms encoded in the motor-related areas. The suppression of sensorimotor rhythms in 

individuals with stroke may affect the decoding accuracy of BMIs. Therefore, investigating how 

changes in cortical rhythms influence synergy modulation is of paramount importance. This 

study aimed to explore the performance of the neural decoding of hand kinematics based on a 

linear model established between kinematic synergies and corresponding cortical rhythms. Our 

analysis successfully decoded two typical hand grasps representative of daily activities from 

cortical rhythms obtained from electroencephalography (EEG). Results offer promise for 

applications in noninvasive, synergy-based neuromotor control and rehabilitation, particularly 

for individuals with upper limb motor disabilities due to stroke. 
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1. Introduction 

A significant portion of the population faces difficulties in performing simple activities of daily 

living (ADL) due to the loss of upper limb function caused by stroke or spinal cord injury. This 

impairment not only affects their independence of functional mobility and ability to perform 

daily tasks but also compromises their overall quality of life. In response to this critical issue, 

brain-machine interfaces (BMIs) have gained popularity in recent years as a potential solution 

for restoring motor function in individuals with disabilities. BMIs offer an alternative approach 

to bridging the communication gap between the brain and external devices, enabling stroke 



patients to regain motor control and independence. These interfaces have demonstrated 

significant progress in facilitating precise control of external devices, playing a crucial role in 

motor rehabilitation for both individuals with spinal cord injury [1] and stroke [2,3].  

The development and application of BMIs hold substantial promise for improving the lives of 

individuals with upper limb paralysis. Over the past years, researchers have witnessed significant 

advancements in BMI technology, particularly in the context of motor control and rehabilitation. 

Numerous studies have provided compelling evidence supporting the efficacy of BMIs in 

facilitating communication and control for paralyzed individuals. Furthermore, BMIs have 

shown potential beyond motor control, demonstrating success in sensory restoration. This 

includes facilitating the perception of touch and proprioception through neural interfaces [4]. 

These groundbreaking findings have opened up new possibilities for restoring lost motor 

function and enhancing the overall well-being of affected individuals, especially stroke 

individuals. 

Noninvasive BMIs have shown great promise in the application of stroke rehabilitation, which 

directly captures brain activity with great temporal resolution for dynamic exploration and 

further neural representation decoding. Functional near-infrared spectroscopy (fNIRS)- and 

electroencephalogram (EEG)-based BMI have been explored in upper limb/hand movement 

decoding, with positive results in achieving accurate control of robotic arms and prosthetic 

devices [5–9]. Moreover, EEG-based BMIs have been used to trigger functional electrical 

stimulation (FES) in stroke patients, facilitating muscle activation and motor relearning [4]. The 

BMI-FES approach combines the decoding of motor intentions through EEG with the application 

of FES to the affected muscles, creating a closed-loop system that encourages active 

participation and motor recovery. Several studies have demonstrated the feasibility and 

effectiveness of EEG-based BMIs in stroke rehabilitation. For instance, researchers have 

developed BMI systems that decode motor imagery tasks, allowing stroke patients to control 

virtual or robotic limbs with their thoughts [10]. This form of motor imagery-driven BMI has 

been shown to enhance cortical reorganization and promote functional recovery in stroke patients 

[11]. Furthermore, real-time EEG-based BMIs can provide immediate feedback during 

rehabilitation exercises, enabling patients to refine their movements and maximize rehabilitation 

outcomes [12]. 



These findings underscore the potential of EEG-based BMIs, providing valuable insights into 

neural representations and enhancing the overall performance of the BMI system. However, the 

successful implementation of BMIs comes with its own set of challenges. One of the primary 

obstacles is modeling the complex relationship between high-dimensional brain activity and 

intricate hand movements. The human hand possesses a large number of degrees of freedom 

(DoFs), which allows for tremendous movement flexibility but complicates the application of 

motor control strategies. Researchers have been exploring innovative approaches to address this 

issue, and one of the promising avenues of research is the utilization of synergies in motor 

control [13]. Studies have shown that the central nervous system (CNS) employs synergies to 

simplify and reduce the complexity of high-dimensional motor control by combining diverse 

actions into functional modules [14]. By representing hand kinematics (joint angular velocities) 

as a weighted combination of kinematic synergies with both spatial and temporal characteristics 

of hand movements, researchers have demonstrated the potential of synergy-based hand 

movement models in advancing dexterous motor control in the context of BMIs [15]. 

Previous studies have demonstrated the relationship between neural activity and hand 

movements by directly correlating neural features with hand kinematics or kinematic synergies, 

paving the way for synergy-based brain-machine interfaces (BMIs) for motor control [5,6,16]. 

These BMIs hold the potential to facilitate efficient BMIs in machine-assisted motor learning 

and movement rehabilitation [2,3,14]. Researchers have developed noninvasive 

electroencephalogram (EEG)-based BMIs capable of decoding hand kinematics for individual 

joints using low-frequency delta (0-3 Hz) waves, leading to successful real-time control of 

robotic arms [17]. Furthermore, investigations have pinpointed the mu and beta frequency bands 

of EEG as particularly effective for identifying movement intentions with high accuracy [18].  

However, individuals who have suffered strokes often exhibit abnormal changes in mu/alpha (8–

13 Hz) and beta (13–30 Hz) EEG waves [3,19]. Additionally, a reduction in premovement 

cortical activity below 5 Hz has been observed following acute motor stroke [20]. Furthermore, a 

previous study shows that compared to healthy individuals, motor cortex activations are greater 

in individuals with moderate motor deficit, but diminished or absent in severely affected patients 

when attempting to move their affected hands [19]. This evidence highlights the increased 

complexity of establishing a robust and effective BMI system based on the unaffected side of the 

brain in stroke patients. These changes in sensorimotor rhythms could potentially impact the 



accuracy of decoding EEG-based BMIs. Research findings provide evidence that individuals 

who have suffered strokes exhibit a less robust ability to decode hand movements using 

movement-related cortical potential (delta waves) compared to the healthy group [21]. 

Consequently, further research is crucial to understand how these changes in rhythms influence 

the modulation of synergies. 

Despite significant progress, generalizing models for predicting and reconstructing basic 

building blocks of hand movements from recorded brain activity remains a significant hurdle in 

achieving dexterous motor control in BMIs. This study specifically explores the impact of 

cortical rhythms observed in EEG on the performance of neural decoding of hand kinematics, 

utilizing a linear model that links kinematic synergies with corresponding cortical rhythms. The 

promising applications of synergy-based BMIs hold the potential to provide assistance to 

individuals with upper limb motor deficits, supporting them with more efficient motor control 

and rehabilitation. A comprehensive understanding of the interplay between neural activity and 

cortical rhythms will be crucial for advancing these BMI technologies and optimizing their 

performance in real-world applications.  

 

2. Methodologies 

2.1 Experimental protocol 

The experiment in this study recruited ten healthy, right-handed individuals with an average age 

of 23.0 ± 3.1 years old (4 males, 6 females). The experiment was conducted under institutional 

approval from the Internal Review Board (IRB). Participants were asked to perform two distinct 

types of hand grasp movements: whole hand grasp and precision grasp, which included a wide 

range of grasp tasks in activities of daily living (ADL). The objects selected for these two typical 

grasps are a water bottle for whole hand grasp and a bracelet for precision gras. During the 

experiment, participants sat in front of the designated experiment table with their dominant palm 

flat and downward, and auditory indicators were involved for the start and stop of each 

movement. Subjects were supposed to reach and grasp the target once they heard the 'start' beep 

and hold the object until a 'stop' beep was given. To avoid brain activity suppression due to 

repetitive movements from the same task, four other objects were also included in the 



experiment. Each object was presented in random order, and participants repeated each grasp 30 

times. The hand movements and corresponding EEG signals were recorded simultaneously. 

During recording, participants were instructed to minimize blinking and swallowing, and trials 

with observed interferences were excluded from the analysis.  

Hand movements were captured using CyberGlove (CyberGlove Systems LLC, San Jose, CA, 

USA) at a sampling rate of 125 Hz. The study measured ten joint angular changes from the hand 

joints including the metacarpophalangeal (MCP) joints of the thumb and four fingers, the 

interphalangeal (IP) joint for the thumb, and the proximal interphalangeal (PIP) joints of the four 

fingers. For EEG signal collection, a high-density EEG cap with 32 electrodes was placed at 

specific locations, covering frontal (F), central (C), and parietal (P) areas, as well as eight 

intermediate locations distributed on both sides of the central sulcus. Four of the intermediate 

locations were located on the left hemisphere around C1, C3, and C5, and the other four were 

placed near C2, C4 and C6 on the right hemisphere. The ground electrode was positioned at the 

nasion, and the reference electrode was placed on the right or left ear lobe. Data were 

continuously captured at a sampling rate of 256 Hz using BCI2000 [22]. 

2.2 Derivation of synergies 

The dataset was separated into training and testing sets, where two-thirds of repetitions from 

each grasp type were used for synergy extraction, while the remaining repetitions were used as 

the testing dataset to determine decoding accuracy. Kinematic synergies were derived from 

movements recorded in the training set based on the synergy-based hand movement model [14]. 

Hand kinematics (joint angular velocities) from ten joints were calculated from the differential of 

recorded joint angles. Principal component analysis (PCA) was applied to decompose the hand 

kinematics, and the top six principal components were identified as kinematic synergies. These 

synergies were hypothesized to be common spatiotemporal patterns shared across various grasps 

and were later used for synergy-based reconstruction of movements in the testing set.  

2.3 Neural features extraction 

The raw EEG data were preprocessed to enhance the signal-to-noise ratio by applying common 

average referencing (CAR), which subtracts the common activity from each electrode. To 

remove baseline drift, the mean value of resting EEG signals was subtracted from each trial, and 



the linear trend of the EEG was eliminated. EEG signals were then broadly filtered in the 

frequency range of 0.1-58 Hz using a 5th-order Butterworth filter. To capture the complete 

reach-grasp-hold hand movement process, the preprocessed EEG data were segmented, 

specifically focusing on the first two seconds of the post-stimulus period. 

Considering that EEG is a nonstationary signal with its frequency content changing over time, 

feature extraction in only the time or frequency domain can be challenging. To extract optimal 

features from EEG, a spectrogram was first calculated to estimate the spectrotemporal evolution 

of its frequency content. This process involved dividing the EEG data into segments of 20% of 

the total period, followed by a short-time Fourier transform with 90% overlapping to compute 

the spectrum on each widow segment.  

The spectrogram was calculated on six frequency bands: delta (0-4Hz), theta (4-8Hz), alpha (8-

13Hz), beta (13-30Hz), low gamma (30-58Hz), and the covering frequencies from 0.1Hz to 

58Hz. After the spectrogram was estimated from specific ranges of frequency bands, the average 

power across the frequency range was calculated along the time series in the frequency 

amplitude plane, and the resulting spectral envelopes were considered as neural features. This 

process is illustrated in Figure. 1. The spectral envelope represents dynamic changes from 

different EEG rhythms and this procedure was implemented on each EEG electrode to extract the 

spectral envelope of each electrode. As 32 EEG electrodes simultaneously recorded neural 

activity, PCA was applied to extract top-ranked components as neural features, capturing 

common characteristics across multiple spectral envelopes. 

 



Figure. 1.  Spectral envelope. The spectrogram was estimated from each EEG electrode, and then 

the spectral envelope was calculated by averaging power across all frequencies. This figure 

shows the spectrogram and spectral envelope from the frequency band 0.1-58 Hz. 

2.4 Neural decoding  

The neural decoding model was implemented using multivariate linear regression to determine 

the relationship between neural features and synergy weights from the training set [5,6,23]. The 

training set was used to derive the kinematic synergies and model the linear correlation matrix 

between the synergy weights and corresponding neural features. The weights of synergies from 

the testing set were calculated using corresponding neural features through this multivariate 

linear regression model, and the hand kinematics were then reconstructed by linearly combining 

the decoded synergy weights and the kinematic synergies extracted from the training set. The 

decoding procedure is briefly illustrated in Figure. 2. Decoding accuracy between the recorded 

kinematics and neural decoded kinematics was measured using the Pearson correlation 

coefficient β, and the decoding error was defined as 1—β. To avoid bias from a certain set of 

repetitions, this model was evaluated with 8-fold cross-validation with shuffled repetitions in the 

training set and testing set in each fold. 

 



Figure. 2.  Neural decoding process of the testing set. The neural features were extracted from 

the principal components of the spectral envelope of EEG signals. Synergy weights for the 

testing set were then calculated using these features through the multivariate linear regression 

model. Finally, hand kinematics were decoded by linearly combining the decoded synergy 

weights and the pre-extracted kinematic synergies. 

3. Results 

Motor-related EEG activity reveals distinct modulations in specific regions, effectively 

visualized through EEG spectral power tomography, as illustrated in Figure. 3. Averaged over all 

frequencies, the EEG spectral power offers valuable insights into the dynamic changes occurring 

during movement execution; brain activity exhibits a notable increase post-stimulus, reaching its 

peak during the active movement phase, and gradually settling down towards the holding phase.  

Figure. 3.  Tomography of spectral power changes during grasp on various frequency bands. The 

activity in the motor cortex first decreases after the auditory stimulus, then increases to its peak 

during the movement, and gradually settles down.  

 

Intriguingly, similar dynamic changes are observed in the low-frequency bands (delta, theta, and 

alpha). Following the auditory stimulus, the contralateral hemisphere of motor-related areas 

 



initially exhibits post-stimulus desynchronization, while the ipsilateral side exhibits 

synchronization. Conversely, relatively fluctuated dynamic changes were observed bilaterally 

across the hemisphere in the low gamma power. Furthermore, beta waves exhibit earlier 

synchronization, with the spectral power demonstrating greater activation in the bilateral primary 

motor cortex. This is followed by a more gradual decline compared to other frequencies. 

The average decoding accuracy rates across all subjects achieved 79.1±0.14%. Figure. 4 displays 

the averaged decoding errors based on two types of grasps and different EEG frequency bands. 

Overall, whole-hand grasp performance slightly surpasses that of precision grasp, with lower 

average errors, particularly in the low gamma band (30-56 Hz). Notably, the low gamma waves 

displayed exceptional decoding performance for both grasps, particularly for whole hand grasp, 

where they exhibited the lowest error and deviation. In contrast, alpha waves (8-13 Hz) 

performed best for the precision grasp.  

Figure. 4.  Decoding error of two types of hand grasp using various EEG waves. The relatively 

lower decoding errors are observed in the low gamma band (30-56 Hz) for both types of hand 

grasp. The whole-hand grasp exhibits slightly better overall performance compared to the 

precision grasp. 

 

Additionally, the precision grasp exhibited smaller standard deviations across movement 

repetitions, suggesting slightly more consistent decoding compared to the whole hand grasps, 

which showed greater variability. These findings highlight specific frequency bands offering 

 



superior decoding accuracy for different grasp types, emphasizing the potential of exploring 

alternative EEG rhythms in developing and optimizing BMI systems for hand movement.  

The decoding model demonstrated its capability to finely adjust weights according to different 

movements, leading to successful decoding of the angular velocity patterns across typical hand 

grasps. Figure. 5 (from Subject 9, low gamma waves) presents comparisons between recorded 

and decoded kinematic patterns of ten joints from whole hand grasps (illustrated in Figure.5(A)) 

and precision hand grasps (illustrated in Figure.5(B)). The results show the averaged trajectories 

across the testing set, where shaded areas indicate the variability among different repetitions. 

Consistent with previous observations, the decoding performance appears more robust in whole-

hand grasps. Additionally, the model achieved higher accuracy in predicting the kinematic 

trajectories of the MCP joints compared to the PIP joints, particularly evident in the index finger. 

This observation aligns with the understanding that the index finger plays a crucial role in 

employing various dexterity strategies during grasp movements. 

Figure. 5.  Reconstruction plots of the whole hand grasp in (A) and the precision grasp in (B) 

from 10 joints. The recorded kinematics (in green solid line) and neural decoded kinematics (in 

pink dashed line) are averaged across all repetitions for Subject 9, low gamma (30-58 Hz) band 

and the shaded regions represent standard deviations. T: thumb, I: index, M: middle, R: ring, P: 

pinky. 

 
4. Discussion and Conclusion 

 



This study implemented a linear model between the neural features and hand kinematics to 

successfully predict two types of synergy-based hand grasps from different frequency ranges of 

EEG and achieved promising results. Activity in the contralateral motor cortex (in Fig. 3) 

associated with the dominant hand movements was observed from low-frequency EEG rhythms 

(delta, theta, and alpha rhythms), while bilateral activity revealed from beta and low gamma 

rhythms could compensate for the influence of contralesional motor cortex in individuals with 

stroke. Furthermore, the high performance of hand movement decoding using different EEG 

rhythms reveals the probability of decoding the movement using alternative cortical activities, 

leading to the potential of exploration of robust and dexterous hand movement decoding for 

individuals with stroke.  

Despite the diversity of the motor cortex activations observed from healthy individuals, stroke 

patients with moderate to severe hand movement deficits [19] show potential for utilizing 

alternative mechanisms, such as the ipsilateral system, to compensate for unusual cortical 

potential changes. Increased ipsilateral cortical activity associated with hand movements after 

stroke [24] suggests that neural decoding from these areas could reveal different information 

compared to the damaged regions, although previous studies have shown the feasibility of 

decoding upper limb movements from the ipsilateral sensorimotor area for BMI systems [25]. 

Remarkably, even in individuals with brain lesions from stroke, the ipsilateral hemisphere retains 

the ability to represent motor effort. This finding suggests the potential for a robust decoding 

system based on our approach for individuals with stroke. Furthermore, the analysis of bilateral 

cortical activity in alternative EEG rhythms, such as beta and low gamma bands, may play a 

significant role in mediating motor-related activities in both healthy individuals and individuals 

with stroke. These findings suggest that distinct neural mechanisms contribute to motor task 

processing, potentially impacting our understanding of motor control and its application in BMI. 

The exceptional performance of low gamma waves in decoding both types of grasps, particularly 

in the case of the whole hand grasp, underlines the importance of exploring alternative EEG 

rhythms for optimizing BMI development for hand movement applications. Moreover, the 

correlation between neural features and kinematic synergy weights reveals the value of mapping 

and analyzing the CNS and motor primitives, offering crucial insights into the complex 

interaction between neural representations and motor tasks.  



Motor function impairments may challenge the development of the correlation between brain 

activity and hand synergies due to the changes in synergy patterns in stroke individuals [26]. 

Healthy synergies have demonstrated the promising potential for stroke rehabilitation [27,28], 

which could also be considered as compensation for the way of reconstruction of healthy and 

near-natural movements. Previous research has demonstrated that a BMI-based rehabilitation 

system for stroke patients yields significantly superior outcomes compared to traditional 

rehabilitation methods used in the control group [29]. Moreover, clinical evidence has provided 

compelling support for the substantial functional improvement in stroke rehabilitation across 

various stroke stages through rehabilitation [30]. Additionally, the inclusion of brain activation 

training practices in the rehabilitation process has emerged as a promising and effective strategy 

[31]. The incorporation of brain activation training enhances the rehabilitation methodology by 

leveraging the brain's adaptive capabilities and promoting neuroplasticity, ultimately 

contributing to improved recovery outcomes. 

Beyond decoding movement intentions, BMIs that capture brain activity associated with 

movement synergies offer additional potential. They could assist in near-natural hand 

movements through robotic or exoskeletal interfaces or facilitate the rehabilitation process 

through targeted electrical stimulation. The proposed idea involved in this study contributes to a 

deeper understanding of the intricacies of neural decoding to realize dexterous hand 

reconstruction in various daily activities. Consequently, it holds significant promise for future 

therapeutic interventions, including EEG-based motor rehabilitation and assistive BMI systems 

for individuals with motor impairments.  
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