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Abstract. Secondary inorganic aerosols (sulfate, nitrate, and ammonium; SNA) are major contributors to fine
particulate matter. Predicting concentrations of these species is complicated by the cascade of processes that control
their abundance, including emissions, chemistry, thermodynamic partitioning, and removal. In this study, we use 11
flight campaigns to evaluate the GEOS-Chem model performance for SNA. Across all the campaigns, the model
performance is best for sulfate (R>= 0.51, NMB = 0.11) and worst for nitrate (R?> = 0.22, NMB = 1.76), indicating
substantive model deficiencies in the nitrate simulation. Thermodynamic partitioning reproduces the total particulate
nitrate well (R? = 0.79 and NMB = 0.09), but actual partitioning (i.e., e(NO3")= NO37/TNO3) is challenging to assess
given the limited sets of full gas and particle phase observations needed for ISORROPIA 1I. In particular ammonia
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observations are not often included in aircraft campaigns and more routine measurements would help constrain sources
of SNA model bias. Model performance is sensitive to changes in emissions and dry and wet deposition, with modest
improvements associated with the inclusion of different chemical loss and production pathways (i.e., acid uptake on
dust, N>Os uptake, and NOj3™ photolysis). However, these sensitivity tests show only modest reduction in the nitrate
bias, with no improvement to the model skill (i.e., R?) implying that more work is needed to improve the description

of loss and production of nitrate and SNA as a whole.

1 Introduction

Aerosols (also known as particulate matter, PM) in our atmosphere are associated with poor air quality (Malm
et al., 2000) and the attendant elevated risk of human premature mortality (Pope and Dockery, 2006; Huang et al.,
2012), as well as changes in our climate (Lohmann and Feichter, 2005; Myhre et al., 2013). A major component of
fine particulate matter (PMas) is secondary inorganic aerosols, which include sulfate (SO4>), nitrate (NO3’), and
ammonium (NH4"). While other inorganic species, such as chloride (Cl") can be locally important (Haskins et al.,
2018; Gani et al., 2019), sulfate, nitrate, and ammonium (hereafter SNA) are the dominant contributors to secondary
inorganic fine aerosol worldwide, contributing between '3 and % to measured fine non-refractory PM (Zhang et al.,
2007). These inorganic aerosols have been the major aerosol constituent responsible for the degradation of air quality
associated with industrialization (e.g., in the United States and Europe in the 1970s and 1980s, and China in the early
2000s), as well as subsequent improvements with the implementation of emissions control technology (Leibensperger
et al., 2012; Geng et al., 2017). SNA are also the principal agents of historical aerosol climate forcing (IPCC, 2021).
SNA themselves are not directly emitted, but instead are formed in the atmosphere from precursor gases that have a
range of natural and anthropogenic sources. However, connecting the response of SNA concentrations to changes in
the emissions can be challenging because many non-emission-related processes affect these aerosols (e.g., chemical
oxidation, thermodynamic partitioning, wet and dry deposition; Pye et al., 2009; Paulot et al., 2017; Shah et al., 2018;
Li et al., 2021; Zhai et al., 2021a). Understanding these formation and loss processes is key to characterizing aerosol

trends and impacts on a global scale.

Emissions of sulfur dioxide (SO,), nitrogen oxides (NOy), and ammonia (NH3) provide the source for sulfate,
nitrate, and ammonium aerosols. SO, and NOy emissions are dominated by fossil fuel combustion. The major sources
of NHj3 are agricultural emissions, originating from livestock and fertilizer use, and, in urban areas, from vehicular
emissions (e.g., Phan et al., 2013; Sun et al., 2017). Other important sources include volcanoes and the oxidation of
oceanic dimethyl sulfide (for SO,), soils and biomass burning (for NH; and NOx), and lightning (for NOy). Upon
emission, SO» is oxidized in both the gas- and aqueous-phase to form acidic sulfate aerosols. Similarly, the formation
of inorganic nitrate is mainly through the oxidation of NOy into nitric acid (HNOs; Alexander et al., 2009). The very
low saturation vapor pressure of sulfuric acid implies that this species is primarily found in the particle phase (Seinfeld
and Pandis, 2016). In contrast, thermodynamic partitioning controls the amount of nitrate and ammonium in the gas
and particle phase (i.e., between HNO3 and NO;™ for nitrate and NH3 and NH4" for ammonium). This partitioning is

dependent on relative humidity, temperature, and pH, where higher relative humidity, lower temperature, and higher
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acrosol pH favors nitrate partitioning into the particle phase (Fountoukis and Nenes, 2007; Guo et al., 2016). Ammonia
reacts with both acidic sulfate aerosols (to form different salts, e.g., ammonium bisulfate, ammonium sulfate) and
nitrate (to form particulate ammonium nitrate; Seinfeld and Pandis, 2016). VOCs can also act as a local control on
SNA concentrations since they are directly connected to oxidation capacity and also are involved in alternative loss
pathways for nitrate radicals (Aksoyoglu et al., 2017; Womack et al., 2019). Therefore, nitrate formation depends not
only on the amount of NOy emitted but also on the amount of ammonia and sulfate, ambient conditions (RH and
temperature), and VOC and oxidant concentrations. Also relevant are the loss processes, which include dry and wet
deposition (affecting both SNA and its precursors) and chemical losses (e.g., uptake by dust, nitrate photolysis). These
formation and loss processes, and in turn SNA concentrations, are expected to respond to future changes in precursor
emissions and climate (Dawson et al., 2007; Pye et al., 2009; Vasilakos et al., 2018; Aksoyoglu et al., 2020), but
predicting the magnitude and direction of the response depends on how well models capture the complex, non-linear

system that describes the lifecycle of atmospheric SNA.

Global atmospheric chemistry models incorporate these mechanisms of SNA production and loss. Past
studies have evaluated the SNA simulation in a range of models using surface observations and aircraft campaigns;
the results across models can vary substantially, particularly for nitrate (Mezuman et al., 2016; Bian et al., 2017; Chen
et al., 2019; Nault et al., 2021; Reifenberg et al., 2022). Large variations in how nitrate production, partitioning, and
loss is described drives differences in simulated nitrate, which can result in modelled total nitrate burden (fine + coarse
PM) varying by a factor of 13 (Bian et al., 2017), with some models underestimating nitrate and others overestimating
nitrate. We also note that many global models neglect the formation of ammonium nitrate entirely (Glif3 et al., 2021;
Thornhill et al., 2021). Generally, the sulfate simulation is more consistent and reliable across the different models

(Bian et al., 2017; Nault et al., 2021).

In this study, we use a single model (GEOS-Chem) to systemically evaluate SNA performance. Previous
assessments of the global chemical transport model GEOS-Chem have focused on one region or used one specific
field campaign. These model evaluation studies have found sulfate is well-captured and that ammonium and nitrate
are overestimated in Europe (Park et al., 2004), the US (Park et al., 2004; Heald et al., 2012; Zhang et al., 2012), and
over South Korea (Travis et al., 2022; Zhai et al., 2023). More localized analyses in the US have shown exceptions to
this trend, with underestimates in simulated nitrate in California (Heald et al., 2012; Schiferl et al., 2014) and an
unbiased nitrate simulation in the Northeastern US in wintertime (Shah et al., 2018). Various theories have been
suggested to explain these model biases, including: deficient emissions inventories (Park et al., 2004; Schiferl et al.,
2014), underestimated deposition of HNOs (Heald et al., 2012; Travis et al., 2022), overestimated N>Os hydrolysis
(Zhang et al., 2012; Heald et al., 2012), and uptake of acidic gases on coarse dust (Heald et al., 2012; Zhai et al.,
2023). These studies provide insight into some of the key processes that may be misrepresented or missing from
models such as GEOS-Chem which are adversely affecting simulated SNA concentrations. However, their local focus
with various model versions (including changing descriptions of the chemistry and meteorology), make it challenging

to generalize these results. Here, we use a suite of 11 aircraft campaigns spanning multiple regions of the world to
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provide a more comprehensive and consistent global evaluation of GEOS-Chem SNA performance. We also explore

the key processes controlling SNA concentrations, identifying those that may contribute to model bias.

2 Description of Observations

This study explores observations from 11 airborne campaigns that span different regions of the world and
almost two decades (2004-2019). As a result, these campaigns represent a wide range of chemical regimes and
emissions scenarios. The campaigns are listed in Table 1, including the dates, locations, and primary references. These
campaigns were selected because they all 1) share a common measurement technique for SNA concentrations and 2)
are not representative of remote conditions, and thus generally have higher concentrations of SNA that are well above
detection limits. The campaigns all took place in the Northern Hemisphere in one of three general regions: North
America (NA), Europe (EU), or Asia (AS). There are at least two campaigns in each area, but with a large geographical
sampling bias (>50% of the campaigns) towards campaigns in the NA region, particularly over the US. Figure 1 shows
the campaign flight tracks. Also in Fig. 1 are panels for each campaign with a pie chart representing the fractional
contribution of all three SNA species to the total measured SNA (measurements described below). Below each pie
chart is the mean observed total SNA. Units are reported in pg/sm?, standardized at STP (P = 1013.25 hPa; T =273.15
K). To make a more direct comparison across campaigns with varying aircraft ceilings, only points below 5 km are
included in Fig 1. The total SNA concentrations are highest for KORUS-AQ, EUCAARI, MILAGRO, ADRIEX, and
SENEX, indicative of the more significant influence of anthropogenic outflow during these campaigns. Generally,
sulfate is the largest contributor to total SNA across all 11 campaigns. The nitrate fraction is higher for the three
campaigns with the highest SNA concentrations (KORUS-AQ, EUCARRI, and MILAGRO), as well as for CalNex
(associated with higher agricultural emissions) and WINTER (associated with colder temperature favouring particle
phase nitrate).

While we focus on campaigns influenced by anthropogenic sources, biomass burning also impacted some of
the campaigns (i.e., FIREX-AQ, DC3, and MILAGRO). For FIREX-AQ, the main objective was to improve
understanding of the impact of fires on air quality and climate, so both wildfires and prescribed agricultural burning
in the US were intentionally sampled. The EMeRGe-EU and EMeRGe-AS campaigns were explicitly interested in air
quality downwind of megacities in Western Europe and Southeast Asia, respectively. We do not include the transit
flights for the EMeRGe-AS campaign (corresponding to the flights on the first and last days between Germany and
the United Arab Emirates). Other transit flights during EMeRGe-AS between megacity centers in Southeast Asia are
included, which involved the sampling of cleaner, ocean air. Similarly, some flights for WINTER measured cleaner
air over the Atlantic Ocean.

Across all the campaigns, Aerodyne aerosol mass spectrometers (AMS; Canagaratna et al., 2007) measured
sulfate, nitrate, and ammonium concentrations. An AMS measures sub-micron, non-refractory particles with
approximately 30% uncertainty for SNA species (Bahreini et al., 2009). Use of a single measurement technique is

expected to reduce potential measurement bias between campaigns, though differences in instrument operation and
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models (Q-AMS, C-ToF-AMS, HR-ToF-AMS; see Supplementary Table 1 for AMS used in each campaign) may
generate some variation.

The nitrate concentrations from the AMS include inorganic and organic nitrate; we use total nitrate in our
analysis since the split between inorganic and organic nitrate is not available for all the campaigns. Previous work has
shown that the percentage of total nitrate that is organic is highly dependent on total nitrate concentrations, ranging
from 0% at highest urban influence to 100% at the cleanest conditions (Day et al., 2022). Given our selection of
campaigns that are anthropogenically influenced, we expect inorganic nitrate to dominate total nitrate. We comment
further on this in Sect. 3.1 and 4. Similarly, small fractions of the AMS sulfate may be due to organosulfates
(Schueneman et al., 2021), and very small fractions of the AMS ammonium may be due to amines (Ge et al., 2023),
but these apportionments are not typically reported and possible contributions are neglected here.

We retain only the data points that have valid measurements for sulfate, nitrate, and ammonium.
Observational data is filtered to remove plumes (sulfate, nitrate, ammonium concentrations > their respective 95th
percentile) since the model is unable to capture these sub-grid processes successfully (Rastigejev et al., 2010).
Observations are then averaged from their original resolution (using 1 minute merge files when they are available) to
the temporal and spatial resolution of the model. The majority of sampling occurred during the day, but some
campaigns had more nighttime flights (e.g., 55% of the valid points for WINTER are at nighttime). After filtering and

averaging, there remain 22,616 unique data points that are used in our model-observation comparison.

WINTER EUCAARI ADRIEX
2.7 pg/sm? 1.9 pg/sm? 1.7 pg/sm? 4.8 pg/sm? 4.2 pg/sm’?

'y *
M .
o
CALNEX MILAGRO SENEX EMERGE-EU EMERGE-AS . S02-
e e e =
NH;
1.3 pg/sm? 4.4 pg/sm? 4.0 pg/sm? 1.1 pg/sm? 1.7 pg/sm?

Figure 1. Flight tracks for the airborne campaigns used in this analysis. Pie charts show mean relative contributions
of sulfate (red), nitrate (blue), and ammonium (yellow) to total SNA for each individual campaign. The area of the pie
charts are scaled based on the mean total SNA for each campaign, which is also reported below the pie chart. Only

points below 5km are included. Information about the year and season for each campaign are included in Table 1.
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3 Model description

3.1 General Description

We use the GEOS-Chem chemical transport model version 13.3.4 (DOI: 10.5281/zenodo.5764874). Full-
year simulations are performed at 2° x 2.5° horizontal resolution while the campaign simulations make use of a finer
resolution of 0.5° x 0.625° nested grid driven by boundary conditions from global 2° % 2.5° simulations. The model
vertical domain is resolved into 47 hybrid-sigma layers extending from the surface to approximately 80 km altitude.
All of the simulations are driven by the MERRA-2 assimilated meteorological data product from the NASA Goddard
Global Modeling and Assimilation Office (GMAO). Boundary layer mixing is described using a non-local mixing
scheme (Lin and McElroy, 2010). Following recommendations from Philip et al. (2016), timesteps are 20 minutes for
chemistry and 10 minutes for transport for the global simulations and 10 minutes for chemistry and 5 minutes for
transport for the nested simulations.

GEOS-Chem includes a detailed gas-phase chemistry coupled with the sulfate-nitrate-ammonium aerosol
system (Park et al., 2004; Pye et al., 2009), with updates to HO, uptake (Mao et al., 2013) and the reactive uptake of
NO,, NO3, and N,Os by aerosols and clouds (Holmes et al., 2019; McDulffie et al., 2018). Dust and sea salt aerosols
are separated into different size bins (4 bins for dust: 0.1-1.0 pm, 1.0-1.8 pm, 1.8-3.0 um, 3.0—6.0 um; 2 bins for sea
salt: 0.01 — 0.5 um, 0.5 — 8 pm). Sodium is calculated as a fraction of fine sea salt acrosol in GEOS-Chem (39.7% by
weight of sea salt). The model uses a bulk aerosol scheme with fixed log-normal modes to describe the size distribution
of aerosols (Martin et al., 2003). A resistors-in-series scheme is used to describe gas dry deposition (Wesely, 1989;
Wang et al., 1998) and size-dependent aerosol dry deposition (Zhang et al., 2001; Emerson et al., 2020). The wet
deposition scheme includes rainout, washout, and scavenging in moist convective updrafts for aerosols and gases
(Amos et al., 2012; Liu et al., 2001; Wang et al., 2011, 2014). Thermodynamic partitioning between the gas and
particle phase is described by the thermodynamic equilibrium aerosol model ISORROPIA II (Fountoukis and Nenes,
2007; Pye et al., 2009). ISORROPIA 1II is run using the default, metastable mode, which assumes that all inorganic
salts exist on the upper branch of the hygroscopic hysteresis curve. Acid uptake on dust (Fairlie et al., 2010) and nitrate
photolysis (Shah et al., 2023) are optional processes in GEOS-Chem version 13.3.4 which we do not include in our
model evaluation; however, we explore the effect of both of these processes on SNA in Section 5.5. When examining
the impact of acid update on dust, we include nitrate and sulfate on dust in the smallest size bin (<1 pm) in our model-
observation comparisons.

To match the observations, organic nitrate from the model (from isoprene and monoterpene precursors) is
also included in nitrate. We use the complex scheme for organic aerosols described by Pai et al. (2020). However, we
note that for the campaigns in this work, organic nitrate is a minor constituent of simulated total nitrate (median
organic nitrate contribution is 0.1% of total nitrate). The largest median organic nitrate fraction is simulated during
SENEX (7.4% of total nitrate), which was heavily influenced by biogenic sources in the Southeast US.

Each GEOS-Chem simulation is matched to the specific time and location of each airborne campaign. The
majority of the emissions inventories used in this work are year specific. This includes the global anthropogenic

emissions (comprising fossil fuel and agricultural sources) from the Community Emissions Database System (CEDS)
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v2 inventory, which also provides ship emissions (year-specific up to 2017; Hoesly et al., 2018), biomass burning
emissions from GFED4s (van der Werf et al., 2017), volcanic SO, emissions (Carn et al., 2017), lightning emissions
(Murray et al., 2012), sea salt emissions (Jaeglé et al., 2011), offline dust emissions (Meng et al., 2021), and offline
soil NOy emissions (Hudman et al., 2012). Also included are DMS emissions (Lana et al., 2011; Breider et al., 2017),
aircraft emissions from AEIC 2009 (Stettler et al., 2011), and natural (soil, ocean, vegetation, wild animals) emissions
of NH3 from GEIA (Bouwman et al., 1997). Anthropogenic emissions for the United States are superseded by the
EPA’s National Emissions Inventory for 2016 (NEI 2016; Henderson and Freese, 2021). These emissions are also
year-specific for all our campaign runs, which are based on annual scale factors derived from emissions trends from
2002-2020. By default, the NEI 2016 emissions inventory has weekday/weekend scale factors applied to the NOx and
SOy emissions. Time-of-day scaling factors are applied to all anthropogenic NOy and other fossil-burning emissions

globally.

3.2 SNA Budget in GEOS-Chem

Figure 2 shows the average global simulated distribution of sulfate, total (organic + inorganic) nitrate, and
ammonium at the surface and in the mid-troposphere for the year 2018. Only fine sulfate and nitrate (not associated
with sea salt or dust) are included to correspond to the fine mode sampling by the AMS. Concentrations peak at the
surface for all SNA species over India, East Asia, and Europe (annual mean concentrations > 8g/sm?), corresponding
to regions with large anthropogenic precursor emissions. Smaller enhancements are visible over the US associated
with lower emissions (e.g., stricter regulation; Leibensperger et al., 2012). Other identifiable sources include biomass
burning, volcanic emissions, and ocean sources (for sulfate). At the surface, SNA dominates (>50%) simulated PM: s
concentrations across large swaths of the globe (Fig. 3), including near large population centers in the Eastern US,
Europe, and Eastern Asia. Surface PM; s has been evaluated in GEOS-Chem previously and it is generally within 50%
of the observations (Lee et al., 2017; Weagle et al., 2018; Zhai et al., 2021b). At the 600mb level (Fig. 2), the same
regions stand out as at the surface, but concentrations are generally low (~1pg/sm?). In the mid-troposphere, SO4*
concentrations are higher and more uniform than NHs" and NO;" reflecting the significant contributions of ocean
sources to background SO4* and thermodynamics of ammonium and nitrate aerosols compared with sulfate aerosols.

Table 2 summarizes the budget for SNA and their precursors based on a 2018 simulation. All species have a
similar lifetime of around 4-5 days. A significant amount of the emitted SO (58 TgS/yr) and DMS (19 TgS/yr) is
converted to sulfate and then lost to wet deposition (36 TgS/yr). The precursor emissions for NOs™ and NH4" are 50
TgN/yr for NOx and 68 TgN/yr for NH;s. The budgets for sulfate, nitrate, and ammonium are generally within the
range reported by Bian et al. (2017). The notable exceptions are that dry deposition of sulfate is lower in GEOS-Chem
compared to all the other reported models (2.5 — 7.3 TgS) and that ammonia emissions exceed the range reported for
the AeroCom III models in 2008 (47 — 58 TgN/yr) (Bian et al., 2017). Dry deposition of ammonium (see Table 2) is
also at the low end of the range reported in Bian et al. (2017) (1.3 — 16.3 TgN). However, across these models (and
GEOS-Chem) dry deposition loss generally makes up less than 20% of the total loss due to deposition (Bian et al.,
2017). In comparison, dry deposition of the precursor species (i.e., SO, HNO3, NH3) is more important, contributing

>50% of the total deposition loss of these precursors in GEOS-Chem. Other studies have shown that changes to the
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dry deposition of these precursors impacts SNA concentrations (Travis et al., 2022); this is discussed further in Section

5.3.
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Figure 2. Average annual concentrations of sulfate, nitrate, and ammonium at the surface and in the mid-troposphere
(600mb) for 2018.
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Figure 3. Percent contribution of SNA to annual mean surface PM s concentration based on a global simulation for
2018.

Table 2. Summary of the 2018 global, tropospheric budget in GEOS-Chem for SNA and their precursors. Note NOs

corresponds to fine, inorganic + organic nitrate. The lifetime is to dry and wet deposition only.

SO, SO4* HNO; NO;5 NH; NH,"
Burden 0.3 0.4 0.3 0.09 0.2 0.3
(TgS or TgN)
Wet Dep 10.2 36.4 15.8 59 18.0 233
(TgS/yr or TgN/yr)
Dry Dep 242 2.1 16.7 0.7 23.9 2.2
(TgS/yr or TgN/yr)
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Lifetime (days) 3.1 4.1 3.1 5.1 1.7 4.6

4 Model Evaluation

We summarize the model evaluation of inorganic aerosol using two different statistical metrics: the
coefficient of determination (R?) and the normalized mean bias (NMB). The ability of the model to capture variability
is indicated by R%. NMB is the sum of the differences between each model and observation data point normalized by
the sum of all the observations, where a positive (negative) NMB implies the model is overestimating
(underestimating) the observations. It provides an idea of the relative bias irrespective of total concentration, which
varies across these different campaigns. These statistics are calculated for the point-by-point comparison between the
observations and model or, only where explicitly mentioned, using the vertical profiles. R values (not presented here)
are all positive except for those corresponding to the NOs™ vertical profiles (discussed in detail below) of two
campaigns (CalNex and SENEX), where the model and observations show opposite trends with height. Figure 4 shows
the R? and NMB values for all the campaigns and the three SNA species. R? values range from 0.01 (very poor) to
0.65 (variability in observations reasonably well captured). For all the campaigns, the model performance is best for
sulfate (R?= 0.51, NMB = 0.11) and notably worst for nitrate (R? = 0.22, NMB = 1.76). Model performance for
ammonium generally lies between that for nitrate and sulfate (R> and NMB are 0.43 and 0.66 for all campaigns
combined), reflecting the strong role that these acidic species play in the amount of ammonium formed. Better
performance is expected for sulfate because the formation rates (under typical atmospheric conditions) are well-
understood and concentrations are not controlled by variable gas-particle partitioning. Figure 4 also demonstrates
spatial variation in performance, with consistent high biases across all three species for the campaigns in Asia and
Europe. In contrast, there is more variability by campaign and by species for the North American campaigns, with no
apparent relationship in bias for these campaigns with year, season, or source influence. However, the high nitrate
bias is more consistent with extreme overestimates (NMB > 2) seen across all three regions. When nitrate is scaled
down based on the NMB across all the campaigns (NMB = 1.76), average PM» s concentrations across Northern
Hemisphere land decrease by 3.4%, with maximum reductions of 25% in Eastern US and East Asia and 33% in Europe
(Fig. S1 in the Supplement).

We examine if there is a connection between nitrate bias and the model gas ratio (Fig. S2), which is the ratio
of free ammonia ([NHx]-2[SO4*]) to total gas + particle nitrate (Ansari and Pandis, 1998). A GR > 1 indicates that the
system is HNOj3 limited, 0 < GR < 1 the system is NH3 limited, and GR < 0 the system is extremely NH3 limited and
indicates that sulfate is not fully neutralized. When NH3 is extremely limited, NO3™ concentrations are lower and there
is consistent negative bias in the simulated NOj;". This suggests that GEOS-Chem has an excessively strong NH3
limitation that is inhibiting some nitrate formation in these relatively clean (low SNA concentration) regions.
However, these comparisons are also subject to measurement detection limits. The majority of the observations are
characterized by GR > 0, which includes both ammonia limitation (0 < GR < 1) and HNOj3 limitation (GR > 1); the
simulated nitrate is positively biased in both cases, which indicates that the model bias is not the result of one specific

precursor limitation.
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Figures 5 and 6 show the vertical profile of median sulfate and nitrate (respectively) for each campaign. For
sulfate, there are some modest under- and overestimates in magnitude across the campaigns. However, the model
captures the generally consistent sulfate vertical profile shape, with most showing a peak at the surface and decreasing
concentrations with altitude. The vertical profile of SO, (Fig. S3) is also well captured by the model, but there is
limited model skill for this species on a point-to-point basis (R? = 0.31) which may degrade the sulfate simulation.
The ratio SO4*/SOx (for campaigns that have SO, data) is well-captured for 4 of the 9 campaigns, but it is substantially
overestimated for the remaining campaigns (CalNex, WINTER, MILAGRO, EMeRGe-EU, and EMeRGe-EU),
particularly above the boundary layer (Fig. S4). For CalNex and MILAGRO, SO> is underestimated and SO4>" is
overestimated (while total SOx is well-captured), suggesting that oxidation may be overly rapid; for the other
campaigns there is no evident relationship in the bias.

The shape of the observed vertical profile is less consistent for nitrate. For most campaigns, the model
generally captures the vertical profile, albeit often with high biases both near the surface and aloft, especially for the
European and Asian campaigns. However, in the case of the CalNex and DC3 campaigns, the model predicts peak
nitrate concentrations aloft, which is not seen in the observations. The simulated nitrate also shows higher variability
(larger IQR) compared to the observations and modelled sulfate. As indicated by the NOs" vertical profile for CalNex,
this campaign measured many negative NO3™ concentrations (25% of all points), especially at higher altitudes (greater
than 3km all altitude bins have > 60% negative points). While we do not remove these points for any of our model-
observation comparisons, we note that the bias would remain but be modestly decreased if points below the detection
limit were removed from our analysis. Observed and modelled ammonium profiles (Fig. S7) exhibit similar trends to
nitrate including the high-altitude peaks in simulated nitrate seen for CalNex and DC3, but generally exhibit less bias
than nitrate.

The campaigns are influenced by a range of conditions which dictate the relative importance of particular
processes. For example, some campaigns like EUCAARI and ADRIEX had strong inversions at the top of the BL
which led to increasing concentration of nitrate with height within the BL. Restricting the focus to points above the
model-defined planetary boundary layer height (71% of points) shows an improvement in R? for NOs™ across all
campaigns (increases by <0.01 to 0.13 relative to when all points are used), which implies that there is more model
skill at capturing NOj3™ aloft. However, there is also an increase in the bias (NMB for NOs™ increases to 2.91 across all
the campaigns). Some campaigns (e.g., ADRIEX and EUCAARI) are less likely to be influenced by any deficiencies
in the description of wet deposition in GEOS-Chem due to the lack of rainfall during the campaign (Crosier et al.,
2007; Morgan et al., 2010). Others (e.g. DC3 and FIREX-AQ) may have biases associated with the challenges in
capturing convective events. The exaggerated peak in simulated nitrate for DC3 could be associated with missing
deposition because the storms are small compared to the spatial resolution of the model (Li et al., 2018). Consistent
biases in vertical transport or precipitation are unlikely to explain the nitrate bias across these campaigns given that
the model reproduces the expected vertical profiles for soluble species such as sulfate (Fig. 5) and for insoluble species
such as CO (Fig. S8). In what follows, we use the merged dataset to focus on the universal response to processes,
however, it is important to acknowledge that local biases in emissions and meteorology may degrade the model

performance for individual campaigns, as explored in greater detail in campaign-specific studies.
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As described in Sects. 2 and 3.1, the model and observed values for nitrate also include organic nitrate.
Median observed nitrate concentrations are generally mid-range (0.05 — 0.7 pg/sm?®) across most campaigns and at all
altitudes, which implies these are, generally, environments where the relative contribution of organic nitrate could be
significant (~20-80%) (Day et al., 2022). However, we find that the model organic nitrate contributes very little to
total simulated nitrate concentrations across almost all the campaigns (Sect. 3.1). While this suggests that
improvements to the organic nitrate description in GEOS-Chem are needed (Pai et al., 2020), it also indicates that the
large positive bias in simulated nitrate is indicative of even greater deficiencies in the description of inorganic nitrate
in GEOS-Chem. Furthermore, measurements of nitrate might be biased high for campaigns that used a C-ToF-AMS
(CalNex, EMeRGe-AS, EMeRGe-EU, EUCAARI, SENEX) where the bias in observational nitrate is proportional to
the organic mass concentrations (e.g., corrected nitrate measurements were 30% lower than the measured values due
to organics for one SENEX flight; Fry et al., 2018). Correcting for any overestimates in observed nitrate for these
campaigns would worsen the model bias in nitrate.

In what follows, we examine potential causes of SNA model bias, with a focus on the nitrate bias, specifically

the role that deposition, thermodynamic partitioning, chemistry, and/or emissions biases may play.
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Figure 4. GEOS-Chem model performance evaluated against each airborne campaign for sulfate (red), nitrate (blue),
and ammonium (yellow) reported as R’ and NMB. Campaigns are grouped by the three general regions examined in

this study. Model performance for all the campaigns merged into one dataset is shown under ‘All’.
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Figure 5. Median vertical profile of observed (black) and simulated (red) sulfate concentrations. Points are binned
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bin are not shown. R?> and NMB for the vertical variability is also reported for each campaign.
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350 bin are not shown. R? and NMB for the vertical variability is also reported for each campaign.
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5 Investigating Model Bias

5.1 Evaluating Thermodynamic Partitioning
5.1.1 Evaluating Thermodynamic Partitioning in ISORROPIA II

First, we examine whether errors in the thermodynamic partitioning, represented via the ISORROPIA II scheme
could contribute to some of the model bias. Issues with partitioning, which can also act as a strong control on dry
deposition and lifetime of total (gas- + particle-phase) nitrate (TNOj3") and ammonium (NHx = NH3 + NH4*; Nenes et
al., 2021), could contribute to the model SNA bias. ISORROPIA 1I, as implemented in GEOS-Chem and in forward
mode, partitions TNOj3", (NHx), and chloride (TCI" = HCI + CI"), based on the total concentrations of these species,
temperature (T), relatively humidity (RH), and sodium and sulfate concentrations. It does not include cations
associated with mineral dust (K*, Ca?*, and Mg?"), which are included in other implementations of ISORROPIA 1I.

The ability of ISORROPIA 1I to partition successfully can be evaluated by providing the observations as an
input to a standalone version of ISORROPIA II (in forward mode) and comparing the predicted partitioning to the
expected partitioning (i.e., the observations). However, none of the campaigns explored here included a complete set
of measurements for the relevant species to fully evaluate partitioning. In particular, NHs;, HCI, and Na* were only
measured for 2, 3, and 4 of the campaigns, respectively. We do not use the NH3 data collected for WINTER due to
issues with the sample collection, as discussed in Guo et al. (2016), nor the NHj; data collected for FIREX-AQ because
it only reports enhancements in plumes which are not captured well by the model. Therefore, we undertake our
evaluation of partitioning by substituting GEOS-Chem simulated values for these three species for all campaigns. In
addition, we only consider the subset of campaigns where HNO3 and Cl" are measured, which leaves 7 campaigns for
our evaluation of ISORROPIA II. We filter the data as described in Sect. 2 and remove any points with missing or
negative SNA, T, RH, HNOj; or CI to use as an input to ISORROPIA II. The resulting ISORROPIA 1I predicted
nitrate and ammonium concentrations do not agree perfectly with observations, though the overall NMB is small (Fig.
7). There are three input factors that may contribute to the imperfect performance in Figure 7: the meteorology, the

substituted model values, and measurement uncertainties.
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Figure 7. Comparison of the expected (x-axis) to ISORROPIA Il-predicted (y-axis) aerosol concentrations.
Observations of T, RH, SO, NOs, NH,;*, HNO; and CI are used as inputs into ISORROPIA II. Only the campaigns

that include these measurements are represented.
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Figure 8. R’ (black) and NMB (pink) for ISORROPIA II predicted nitrate concentrations (with observations given as
input) versus a) temperature and b) RH. Points are binned to the nearest 5K and 5% for the temperature and RH
plots, respectively. Dark gray bars indicate the number of points in each bin. Light gray sections of the plot show

which ranges of temperature and relative humidity result in worsened performance

Figure 8 shows the relationship between ISORROPIA II performance (R? and NMB) and temperature and
RH specifically for NOj™. Performance degrades when RH < 15% or RH >90% and T > 300 K. Previous work supports
these observed limitations of ISORROPIA II’s performance at very low humidity where under these conditions the
aerosols are less likely to be in a completely liquid state (Ansari and Pandis, 2000; Malm and Day, 2001; Fountoukis
and Nenes, 2007; Bertram et al., 2011). Also at very high humidity, there is exponential growth in the particle liquid
water, which can lead to large uncertainties in the pH (Malm and Day, 2001; Guo et al., 2015). We therefore filter out
these points (retaining only points where T <300 K and 15 <RH < 90%) in all subsequent analysis; however, we find
that doing so only moderately improves the performance (R? and NMB) of ISORROPIA 11 exhibited in Fig. 7 (impact
on GEOS-Chem performance discussed in Section 5.1.2).

A more critical, but difficult to assess factor is the use of model substituted values for NH3;, HCI, and Na*
concentrations. Figure 9 shows that for the limited campaigns where these species are measured, the model does not
capture the observed variability (low R?), and in the case of sodium exhibits significant biases. Observations of sodium
are limited, and the only available measurements are for bulk aerosol (<4um), which does not align with the definition
of sodium in GEOS-Chem (fraction of fine mode sea salt); these differences in size cut explain at least some of the
discrepancy in Fig. 9. Observations for NH; are only available for two of the campaigns (SENEX and CalNex). The
near zero NMB for NHs in Fig. 9 is driven by large model overestimates for SENEX, with both over and
underestimates for CalNex. The variation in model performance could indicate that regional processes (e.g.,
emissions) dominate ammonia model bias.

For the two campaigns where NH; measurements are available, we find that using these as inputs to
ISORROPIA 1I, rather than model values, impacts the comparison between predicted and observed nitrate, with

particularly large improvements in the R? for CalNex (Figs. S9 and S10). Similar tests for Na® and HCI had negligible

16



405

410

415

420

425

430

435

impact on bias and R? despite the clear inability of GEOS-Chem to capture the observed concentrations of these
species (Fig. 9). We note that non-volatile cations, which other than Na* are not accounted for this implementation of
ISORROPIA 11, have been shown to shift partitioning, producing an average fine nitrate aerosol surface concentration
that is 21% higher than in a simulation with chemically inert dust (Karydis et al., 2016). This increase in nitrate is seen
despite also introducing a loss pathway for HNOj; that reduces nitrate formation (discussed in more detail in Sect. 5.5).
Figure 7 does not exhibit a systematic low bias in nitrate, suggesting that for the campaigns considered in this study,
neglecting non-volatile cations does not produce noticeable partitioning bias.

Our evaluation of ISORROPIA II in Figure 7 focuses on the aerosol nitrate and ammonium concentrations
since these are the target species for our GEOS-Chem model simulation. A more explicit evaluation of the partitioning
would explore the performance of &NOs") (=NOs/TNOs5) and &(NH4") (=NH4"/TNHy). However, the rarity of
observed NHj3 limits the dataset for which the observed partitioning can be fully assessed. For completeness we
evaluate ¢(NOs") and ¢(NH4") using model substituted ammonia concentrations as used in Figure 7. The resulting
ISORROPIA II-predicted £(NOj3") demonstrates little skill (R? = 0.25), whereas e(NH4") is better captured (R? = 0.78;
Fig. S11 in Supplement). We identify no consistent relationship between the low R? and other variables (e.g. other
species, pH, concentrations) across the campaigns.

For the two campaigns with NH3 observations, replacing the GEOS-Chem sourced-NH3 values with the
observed NH; improves R? for ¢(NOs"), but at the cost of worsening R? for &(NH4") (Figs. S9 and S10). We also
explore the possibility of using estimated NH; values for all campaigns. Following Guo et al. (2016), we iteratively
solve for NHj3 by cycling through different input TNHy values for ISORROPIA II until the expected concentration of
NH4" is returned (or it fails to reach a solution). Using these new NHj3 values improves agreement between observed
and ISORROPIA II-predicted €(NO3") (R? = 0.59). In particular, we note that we get a similar comparison between
model and observed £(NOj5’) for WINTER as in Guo et al. (2016) (R? =0.61, NMB = -0.41, and performance is best
when RH > 50%). However, these estimated NHj; values greatly, and unrealistically, overestimate the observed NHj3
from CalNex and SENEX (NMB = 0.48 and 11.39 respectively).

The limited evaluation of ¢(NOs") and &(NH4") possible here suggests that there may be some unresolved
issues with partitioning as represented by ISORROPIA II. We note that our analysis assumes that the measurements
are unbiased, there are no missing bases, and that the system is in thermodynamic equilibrium. Representation of non-
equilibrium thermodynamics can introduce some improvement in model bias for SNA but can also worsen model
performance (Rosanka et al., 2024), suggesting that the missing non-equilibrium process in this work is unlikely a
large contributor to the model bias shown here. More work is needed to fully evaluate ISORROPIA 1II performance
for ammonium nitrate across a range of conditions, including using a full suite of gas and aerosol phase measurements.
However, for the purposes of this broader investigation into ammonium nitrate performance within GEOS-Chem, we
conclude that partitioning is not a dominant source of bias in the NO3™ concentration comparisons (Fig. 7) and

restricting the RH and T range can improve agreement between observations and model (Fig. 8).
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Figure 9. Distribution of the observed and model values for NH3;, HCI, and Na" with reported R’ and NMB.

5.1.2 Evaluating Thermodynamic Partitioning in GEOS-Chem

In addition to the comparisons shown in Fig. 9, here we explore whether there are biases in other model
parameters that control thermodynamic partitioning and to what extent this may contribute to the GEOS-Chem biases
in nitrate. Figure 10 shows the spread in these ISORROPIA 1I inputs for both the observations and the model. Where
measured, HNOs is generally overestimated by the model (NMB = 0.44). This could result from overestimated
precursor emissions, excessive chemical production, or alternatively, underestimated loss of HNOj3 that could generate
a high bias in HNOj and, in turn, NO;3 (discussed later). We also note that there is no systematic bias in the simulated
NO;/TNOs (Fig. S6). The over and underestimates in this ratio are consistent with the NO3™ bias seen in Figure 6, and
thus are not indicative of a partitioning bias, further supporting the analysis of the previous section. The model
underestimates C1 and does not capture the observed variability (low R?). Temperature is very well captured by the
model (high R?, low NMB). The distribution of RH is similar between model and observations in Fig. 10, but the
lower R? value indicates that there are differences in RH on a point-by-point basis. Some of the disagreement between
observed and model RH can be explained by the observed RH being defined with respect to water, while the model
RH is defined with respect to the relevant phase (ice, water, or a combination of the two) depending on temperature.
This leads to greater discrepancies in RH aloft (Fig. S12). However, converting model RH to be with respect to water

does not significantly alter ISORROPIA 1I predicted partitioning and therefore does not contribute to the model bias.
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Figure 10. Distribution of the observed and model values for the different variables needed as input to ISORROPIA
1I with reported R? and NMB.

As in the previous section, we filter by RH and temperature (retaining points with T < 300K and 15 <RH <
90%) since Fig. 8 confirms that ISORROPIA II may not appropriately capture thermodynamic partitioning at these
extremes of the observed T and RH. Twenty percent of the data points are eliminated by this filtering, with most of
the points lost (72%) from low altitudes (< 4km). This filtering has a small effect on the model performance shown in
Figs. 4-6. Sulfate performance is relatively unchanged (new R? and NMB of 0.54 and 0.13 for all campaigns
combined). R? for all campaigns combined is decreased very minimally for NOs™ (0.22 to 0.21) and NH4" (<0.01
difference). The largest change after filtering is the reduction in NO3;” NMB from 1.76 to 1.70. A small fraction of the
model high nitrate bias can therefore be explained by the temperature and RH range limitations, specifically for the
partitioning by ISORROPIA II in GEOS-Chem. The comparison of ISORROPIA II-predicted pH using the
observations and using the model values is also improved after filtering by T and RH (R? goes from 0.28 to 0.32 and
NMB from 0.32 to 0.19, see Fig. S13). For the remainder of this study, we remove points in these temperature and
RH extremes and explore what processes might be responsible for the remaining nitrate bias.

We now test how the model values for T, RH, HNOs, Cl', SO4*, NO5", and NH4" impact the partitioning and
contribute to the high NOs™ bias in GEOS-Chem. Figure 11 shows a series of sensitivity tests where different
combinations of modelled and observed values were given as an input to standalone ISORROPIA 1I. The bias of each
sensitivity test, relative to the “true”, observed NOs~ and NH4*, are represented by the x and y axes respectively.

The ‘Obs’ sensitivity case refers to when all the possible observations available for each campaign are used
as input to ISORROPIA II. As in the previous section, we only use the campaigns that have HNO3 and CI
measurements. We see that the ISORROPIA Il-predicted nitrate and ammonium are only slightly high biased
compared to observations when ISORROPIA 11 is driven by the entire (but incomplete) set of observed concentrations

and meteorology (also seen in Fig. 7). We attribute this slight bias to the unmeasured species across the dataset in
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Sect. 5.1.1. The “Model’ test case refers to using only the output from GEOS-Chem along the flight tracks as input to
ISORROPIA II. The model is biased high compared to the observations, consistent with the results of the model
evaluation in Sect. 4.

To identify whether any specific parameter drives the model bias, we substitute model values with observed
values one at a time. When we replace the model temperature with the observed temperature, as in the ‘Obs T’ run,
we see a negligible impact on the partitioning, as expected given the match in observed and MERRA-2 temperature
(Fig. 10). Similarly, substituting the observed HNOs3, CI', and RH for model values (in three separate tests) produces
little change in the thermodynamic partitioning, despite the biases seen between the model and observations in Fig.
10. As expected, the high bias in model HNOj shifts the partitioning towards more particle phase. Despite an apparent
high bias in model RH (NMB = 0.09, see Fig. 10), substituting observed RH for model RH results in less particle
phase, which is associated with a low bias in model RH at higher NO3~ and NH4" concentrations.

Using observed sulfate, which is generally lower than the model, as an input to ISORROPIA 1II produces less
ammonium, but more nitrate, as expected. However, the changes are relatively modest and do not suggest that sulfate
model biases are responsible for the substantial biases in ammonium nitrate seen in GEOS-Chem. Greater
improvements in predicted nitrate and ammonium concentrations result from using the observed ammonium or, more
noticeably, the observed nitrate. The least biased ISORROPIA II prediction results from substituting in the observed
sulfate, nitrate, and ammonium (‘Obs SNA’), which nearly removes all bias for both nitrate and ammonium. This
indicates that the GEOS-Chem model bias in nitrate and ammonium is largely a result of model SNA itself, rather
than partitioning biases driven by meteorology, other aerosol constituents, or gas-phase precursors. However, we note
that without a complete set of observed NH3 measurements, we cannot fully assess how biases in this species and the
associated emissions may play a role in this model bias. We also note that while the magnitude of the NMB in NOj3
and NH4" shown in Fig. 11 are sensitive to the subset of campaigns used, the general trends remain the same (i.e.,

changes in T, RH, CI, and HNO; have low impact, change in SNA has the largest).
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Figure 11. Bias in NOs and NH," associated with different sensitivity tests with ISORROPIA II using all the available
observed values (‘Obs’), all modelled values (‘Model’), and when different observed values are substituted in for

model values. Data is filtered to retain points where model T < 300 K and 15 < model RH < 90%.

The analyses above suggest that the GEOS-Chem model overestimate of nitrate (and ammonium) is likely
the result of an excessive source or an underestimated or missing loss process for nitrate itself. We leverage the fast-
run time of standalone ISORROPIA II to run a multitude of sensitivity tests to explore how much TNOs™ and NHy
would need to change in GEOS-Chem to improve model performance. Figure 12 shows the model performance, using
NMB as the metric, for NHs" and NO;s~ when the simulated values of TNOs and NHy are scaled. All campaigns are
included and are grouped by region to capture how changes on a regional scale could improve model performance.
The NMB for the sum of ammonium and nitrate is also shown, where the swaths of gray (where NMB is near zero)
indicate that there are different scalings of TNOj; and NHy that would all result in a similarly “most improved”
simulation for both ammonium and nitrate. All three regions exhibit the same pattern, but the scaling factors are shifted
up/down depending on regional model biases. For example, the North American campaigns, which are generally less
biased (Fig. 4), require the least change (a 25% reduction of TNOs™ and/or NHy) to eliminate the bias. In contrast, the
simulation would be most improved for the European and Asian campaigns with significant cuts (up to 50-75%) to
TNOs", NHy, or both. In the coming sections, we explore how different production and loss processes in GEOS-Chem

could reduce TNO; and NHy in GEOS-Chem and, in turn, produce an improved simulation for ammonium nitrate.
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Figure 12. ISORROPIA II performance across different sensitivity runs conducted by scaling NH, and TNOj3 input
from the baseline model values. Performance is reported as NMB for NH* (first column), NOs (middle column), and
the sum of NH;" and NOj (last column). Campaigns are grouped by region. Data is filtered to retain points where
model T < 300 K and 15 <model RH < 90%. White boxes in the last column indicate the scaling factors for NH, and
TNOs used in the full GEOS-Chem sensitivity test run (discussed in Sect. 5.2).

5.2 Response of SNA to Changes in Emissions

Overestimated precursor emissions in the model could drive the high bias in ammonium nitrate in GEOS-
Chem. We conduct a sensitivity test where we assume that the entirety of the ammonium nitrate model bias is
associated with emissions uncertainties and use the concentration scalings for TNO3;™ and NHy from the previous
section as a proxy for NOy and NH; emissions in a GEOS-Chem sensitivity simulation. We cut both NOy and NH3
anthropogenic emissions by 50% for the EU and AS regions and by 25% for the NA region (scalings for each region
are highlighted by the white outlined boxes in Fig. 12). Agricultural emissions, which are included in the
anthropogenic emission inventories in GEOS-Chem, are also scaled down. The reduction to anthropogenic emissions
is performed as a simple sensitivity to the dominant source and does not imply that other smaller NOy sources (e.g.

soil and lightning) are unbiased. The resulting GEOS-Chem model bias in nitrate and ammonium are both significantly
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reduced (Fig. 13). This confirms that our offline ISORROPIA 1I sensitivity tests shown in Fig. 12 are a reasonable
proxy for precursor emissions scaling. However, reductions in bias come without any significant improvement to the
model’s ability to capture the shape of the observed distribution or model skill (see R? values). In particular, despite
the significant improvement at high NO3™ concentrations, the lower NOj3™ concentrations (0.01 — 1pg/sm3) are still
significantly underestimated suggesting that the biases at high and low concentrations may be driven by different
factors. Furthermore, there is good agreement (within 10%) between the current NH3; emissions from CEDS and a
top-down satellite-based emission estimate for North America, Europe, and East China (Luo et al., 2022)., Also, a
regional emissions inventory for Asia is within +25% of NOx and NH3 emissions estimates from CEDS (Kurokawa

and Ohara, 2020).

In addition, for those campaigns where NOy was measured, the model is almost consistently biased low in
NOx (NMB ~ -0.29) and overestimates the HNO3:NOx concentration ratio (Fig. S14), which suggests that, rather than
NOx emissions, formation (and loss) of HNO3 may instead be overestimated (underestimated) in the model. Low NOx
and high HNO; biases could also indicate that oxidation is too fast in the model. Overly rapid oxidation could also
contribute to the high SO4*/SOx ratios seen across some campaigns (Fig. S4). While we do not explicitly investigate
the potential role of oxidation on SNA model bias, we note that the mean tropospheric OH burden in GEOS-Chem is
on the higher end of what is suggested by the literature (based on both observations and models; Bloss et al., 2005;
Hu et al., 2018). Direct comparisons of GEOS-Chem to observations made at surface sites and during aircraft
campaigns show that modelled OH (including its uncertainty) generally falls within the uncertainty range of measured
OH, but is generally higher in the model than the observations (Bloss et al., 2005; Christian et al., 2018; Kim et al.,
2022). However, inconsistent biases in HNOj across the campaigns suggest that model OH is not exclusively driving
model bias. As mentioned above, changes to VOC emissions can also affect SNA concentrations, leading to possible
reductions in concentration and the model bias presented here (e.g., Aksoyoglu et al., 2017), however this effect is
likely limited to near-surface regions with a higher potential for missing VOC reactivity and is unlikely to be an

important driver of the high, consistent NO3™ bias seen here in the free troposphere.

While reductions to the emissions in GEOS-Chem can eliminate the bias in the model simulation, the poor
(and worsening) model skill is not ameliorated, suggesting that regional emissions biases alone are not responsible for

the poor model performance for SNA.
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Figure 13. Distribution plots of sulfate, nitrate, and ammonium mass concentrations across the all campaigns as in
the observations (black), the standard GEOS-Chem model run (red, solid), and the GEOS-Chem run with NOx and
NH; emissions reduced (“Emis”; red, dashed). R? and NMB are reported for both the standard and reduced emissions
simulations. Shaded regions indicate concentrations below the detection limit of the AMS (shown is median DL across

all campaigns). Extreme T and RH values have been filtered as described in Sect. 5.1.2.

5.3 Sensitivity of SNA to Dry Deposition Changes

Dry deposition of SNA and its precursors is not well constrained. Evaluation of current model
parameterizations for dry deposition are limited by a relatively small number of direct global measurements available
for dry deposition fluxes and large uncertainties in calculated deposition velocity (va; Emerson et al., 2020). Travis et
al. (2022) suggest some of the high bias in GEOS-Chem’s nitrate and HNO3 during KORUS-AQ could be attributed
to insufficient dry deposition on urban surfaces and see improvements in the model bias when v4 for HNOj is increased
by a factor of 5. Heald et al. (2012) saw weak responses of global surface nitrate concentrations (decreased by <10%)

when HNO3 dry deposition velocity was doubled.

Here we test how simulated global SNA responds to changes in v4 using two sensitivity tests: one for changes
in vq for all precursor gases (SO,, HNOs, and NH3) and the other for changes in vq for all the SNA species. In both
simulations, we increase vq by a factor of 2. We conduct these sensitivity tests for one year of simulation and not for
all the campaigns (i.e. we do not provide comparisons of R? and NMB). Figure 14 shows that relative changes in
surface concentrations are minimal across all species and the two different sensitivity tests. Over land, surface NO3
is the most sensitive to the scaling of v4prec and vasna. Scaling vqprec has a larger effect on SNA concentrations than
scaling vgsna, demonstrating the more important role of dry deposition for the gas-phase precursors. However, while
dry deposition of SNA in GEOS-Chem is on the lower end of other global models, dry deposition of precursors is on
the higher end of these same models (Bian et al., 2017). Changing dry deposition velocities has a lessened impact
aloft, especially for the sensitivity test where v4,sna was doubled (e.g., at the 800mb level the maximum decrease for
NOs is 20%), which confirms that the simulation of airborne measurements shown here is largely unaffected by

uncertainties in dry deposition.
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Figure 14. Impact of doubling dry depositional velocity of precursor species (SO, HNO3, and NH3, top row) and SNA
(bottom row) on annual mean surface concentrations of sulfate, nitrate, and ammonium for 2018. Concentrations <

0.05 ug/sm’ are filtered out.

5.4 Sensitivity of SNA to Wet Deposition Changes

The wet deposition scheme in GEOS-Chem accounts for rainout and washout in both large-scale stratiform and
convective precipitation as well as scavenging in convective updrafts (Jacob et al., 2000; Liu et al., 2001). These are
highly parameterized processes that are empirically derived and remain uncertain. A recent update to the wet
deposition scheme in GEOS-Chem was developed by Luo et al. (2019, 2020), including changes that are relevant to
SNA concentrations. The Luo et al. scheme updated the value for in-cloud condensed water ICCW) to vary temporally
and spatially based on MERRA-2 cloud and rainwater, as opposed to being a constant value. It also includes updated
empirical washout coefficients for HNO3 and aerosols and rainout efficiencies for HNO3 and SO, (Luo et al., 2019,
2020). Calculation of the effective Henry’s law constant (H*) was updated to use a varying rain water pH (for washout)
and cloud water pH (for rainout and scavenging in convective updrafts), as opposed to a constant value of 4.5.
Calculations of H* were also updated for SO, and NHj3, specifically, with impacts on both wet and dry deposition
(e.g., for the dry deposition scheme, the average vq is 0.8—1 times the value from the standard simulation). The global
annual mean burden for sulfate, nitrate, and ammonium are reduced by 32%, 53%, and 37% under these changes in
our 2018 simulation. SO, and HNO3 global annual mean burdens decrease by 15% and 56%, respectively, in the
simulation with the Luo et al. scheme. In contrast, the ammonia burden increases by 55% as a result of partitioning
favoring gas-phase TNHyx when SOs* and TNOs are reduced. We use the Luo et al. scheme to explore some of the

sensitivity surrounding wet removal uncertainties through the lens of model performance for SNA.

Figure 15 shows the mass concentration distributions for all three SNA species across all campaigns for the
observations and the two different wet deposition schemes. Despite the addition of a geographically varying ICCW,
which we might expect to better represent the regional variability in wet removal, there is no significant improvement
in the R%. However, the new wet deposition scheme substantially reduces the nitrate NMB from 1.70 to 1.02. The
comparison suggests that the shifted nitrate distribution overestimates the lower concentrations, however many of
these concentrations may lie below the detection limit of the AMS and cannot be evaluated. The vertical profiles for
nitrate show similar trends with shifts to lower concentrations at all altitudes, but no noticeable improvement in model
performance compared to the profiles shown in Fig. 6 for the default model. The ammonium mass concentration
distribution is also significantly shifted to lower concentrations which improves the NMB. A similar reduction is seen
for the sulfate mass concentration distribution, but the displacement to lower concentrations (not seen in the
observations) slightly worsens the overall NMB (from 0.13 to -0.16). This suggests that the Luo et al. scheme may
overestimate wet removal of SNA. Dutta and Heald (2023) also show that the Luo et al. deposition scheme results in
a substantial overestimate of observed nitrate wet deposition fluxes. This suggests that additional work is needed to
optimize the removal efficiencies in GEOS-Chem considering the use of a physically varying ICCW. We note that
smaller storms, which impacted some of the campaigns, may not be resolved at the resolution of the model, and

therefore even with updates to the wet deposition scheme there is a limitation to how well the variability in wet removal
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can be captured. Finally, these comparisons emphasize that wet removal plays a major role in controlling the lifetime
and abundance of SNA; biases in the representation of these processes may explain some of the deficiencies in the

simulation of model SNA concentrations.

1o S032- NO; NH;
"|rR2=0.54 R? = 0.21 — obs R? = 0.43
> NMB = (.13 NMB = 1.7 —— Model (Standard) NMB = 0.66
£ 0.8/ R, =0.55 RZ,, = 0.21 -~ Model (Luo Wet Dep) RZ,, = 0.43
g NMByo = -0.16 NMB o = 1.02 NMByo = 0.24
o
0.6
[
o
(0]
NO0.4
©
E
o 0.2
=2 1
0.0 == s
102 1072 107! 10° 10! 102103 102 107! 10° 10! 1071073 102 107! 100 10! 102

Concentration (ug/sm3) Concentration (ug/sm?) Concentration (pg/sm?)

Figure 15. Distribution plots of sulfate, nitrate, and ammonium mass concentrations across all the campaigns as
observed (black), simulated in the standard GEOS-Chem model (red, solid), and simulated in GEOS-Chem with the
Luo et al. (2019, 2020) wet deposition scheme (red, dashed). R’ and NMB are reported for both the standard (black
text) and Luo et al. (grey text) simulations. Shaded regions indicate concentrations below the detection limit of the
AMS (shown is median DL across all campaigns). Extreme T and RH values have been filtered as described in Sect.

5.1.2.

5.5 The role of additional chemical sources and sinks in SNA bias

A missing chemical sink is another potential source of fine-mode SNA bias. Uptake of acidic gases (e.g.,
HNO:s, SO, H,SO4) by dust is one possible pathway. We find that for the two campaigns with the highest dust load
(KORUS-AQ and EMeRGe-AS) acid uptake on dust, as implemented by Fairlie et al. (2010), improved the model’s
ability to capture SNA, but the impact was minimal. The largest impact was on nitrate where NMB was reduced by
0.04 and there was no change in model skill (R?), consistent with previous results (Fairlie et al., 2010). Zhai et al.
(2023) show that including anthropogenic coarse dust in GEOS-Chem eliminated much of the nitrate overestimate for
the KORUS-AQ campaign observations made in the Seoul Metropolitan Area (SMA). In the SMA, the average coarse
PM concentration at the surface was 23 pg/m? for 2015 (Zhai et al., 2023), which is at the upper limit of what has been
observed in Los Angeles and across European cities (range 5 — 23 pg/m?; Pakbin et al., 2010; Eeftens et al., 2012).
Coarse anthropogenic PM is expected to be considerably less abundant outside of urban areas and aloft, and thus the
campaigns explored here (including some individual flights during KORUS-AQ) would be relatively unaffected by

this process, indicating that this is not a universal remedy for the GEOS-Chem nitrate simulation deficiencies.

Nitrate photolysis is another potential and uncertain pathway for nitrate loss. Studies generally relate the
photolysis of nitrate to the photolysis of nitric acid by an enhancement factor (EF), with previous estimates for the EF
ranging from 1 — 1000 (Romer et al., 2018; Shi et al., 2021; Ye et al., 2016). Shah et al. (2023) implemented a

parameterization of NO3™ photolysis in GEOS-Chem to address an observed underestimate in NO, where the EF scales
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from 10 to 100 depending on the concentration of sea salt aerosols relative to the concentration of NOs. For two
campaigns which are characterized by high calculated EFs and NO;3™ concentrations (MILAGRO and WINTER, with
mean EFs of 0.47 and 0.29 respectively), adding the Shah et al. scheme leaves R? unchanged and NMB negligibly
altered (< 0.02) for all species. Therefore, nitrate photolysis, unless substantially more efficient than currently

parameterized, cannot explain the large nitrate biases in the GEOS-Chem simulation.

We also consider the potential for an overestimated HNOj; source to explain the SNA bias, specifically N>,Os
uptake by aerosols. N>Os hydrolysis represents a significant pathway for inorganic nitrate formation, estimated to
contribute 41% of the inorganic nitrate source near the surface (Alexander et al., 2020) and 18% of the tropospheric
inorganic nitrate burden (Alexander et al., 2009). The N,Os uptake coefficient (yn20s5) indicates the probability that
N,Os will be lost on an aerosol surface, leading to the formation of HNO3. The uptake parameter is dependent on
numerous factors (e.g., aerosol composition, temperature, RH) and there remains uncertainty in the model
parameterization of this process, with estimated values ranging over several orders of magnitude (Holmes et al., 2019;
Macintyre and Evans, 2010; McDuffie et al., 2018). In a sensitivity test, we reduced the uptake coefficient of N,Os in
GEOS-Chem by one order of magnitude across all aerosol types for the WINTER and KORUS-AQ campaigns, which
have the highest concentrations of N>Os. There was no significant impact on R? (< 0.01) while the NMB for nitrate
for these campaigns was reduced from 1.90 to 1.72; this suggests that the uncertainty in this pathway has a limited,

but non-negligible effect on the model’s ability to capture SNA.

We explore the combined effect of all these updates to the chemical pathways (acid uptake by dust, reduced
Yn205, and NOj3™ photolysis) on annual mean SNA. The global burden of both SO4* and NH4" are negligibly impacted
(~1% decrease), but there is a 11% reduction in the burden of NOs". Fig. 16 shows that the largest impact on SNA
surface concentrations is for NOs™ over Eastern US, Europe, India, and East China. Sulfate concentrations show modest
increases downwind of regions where NOj; is decreased. A more damped effect on SNA concentrations is seen in the
mid-troposphere. Collectively, known uncertainties in the chemical formation and loss processes (in the limits tested

here) do not substantially perturb nitrate concentrations and cannot explain the model biases seen in our simulation.

Surface
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Figure 16. Impact of updates to chemical pathways in GEOS-Chem (i.e. including acid uptake on dust, NOs

photolysis, and reducing yn:o05) on annual mean surface and mid-troposphere (600mb) concentrations of sulfate,
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nitrate, and ammonium for 2018. Concentrations < 0.05 ug/sm’ are filtered out. Model nitrate and sulfate include

nitrate and sulfate on dust in the smallest size bin.

6 Conclusions

Our evaluation of the global inorganic aerosol simulation in GEOS-Chem against observations from 11
airborne campaigns indicates that sulfate is generally well simulated in the model but that there is a systematic high
bias in nitrate (and ammonium), with worse performance in Europe and Asia. We explore a range of factors that may

contribute to the bias in nitrate.

We find that the ISORROPIA II model reproduces observed nitrate concentrations and conclude that
thermodynamic partitioning is not responsible for the model nitrate bias. However, we identify that the variability in
observed £(NO3") is not well captured with ISORROPIA II, but the evaluation of partitioning is incomplete given the
limited set of ammonia observations. Extremely dry or saturated conditions, as well as the highest temperatures, are
not well captured by ISORROPIA II, thereby degrading the GEOS-Chem model performance, particularly for nitrate.
Removing these points modestly reduces the nitrate bias. Sensitivity tests using standalone ISORROPIA II suggest
that the model bias in other species (HNOs, CI, Na*, HCI) are not responsible for the SNA bias. However, we find
that partitioning is sensitive to NH3 concentrations and, for the two campaigns with ammonia measurements, the
model evaluation demonstrates little skill and significant biases for this species. Ammonia is not routinely measured;
our results indicate that additional measurements are sorely needed to further explore how ammonia biases may impact
model simulations of nitrate. With the caveat that the impact of a potentially poor ammonia simulation on nitrate
cannot be fully assessed, our analysis suggests that excessive sources or underestimated loss of nitrate in the model is

the cause of the nitrate bias.

The model is sensitive to adjustments in emissions, deposition, and, very minimally, to different chemical
loss and production updates (i.e., acid uptake on dust, N>Os uptake, and NOs™ photolysis), but none can explain the
entirety of the high nitrate bias, or universally improve the model skill. Adjustments to the wet deposition scheme in
GEOS-Chem show reductions in nitrate bias but worsen the model’s ability to capture sulfate, suggesting that nitrate
concentrations are very sensitive to wet removal processes, but that these particular updates do not improve the model
skill. A combination of changes to the emissions, deposition, and chemical production and loss may be able to close
the high bias gap between model and observations, but more work is required to understand how to improve the
model’s ability to capture the variability in observed nitrate. We note that our comparisons assume that the fine-mode
SNA is fully captured by the AMS observations. A high model bias in nitrate may result if a substantial fraction of
fine aerosol nitrate extends beyond the 1 pum size (and is mis-characterized by the model as sub-micron as well).
Measurements of the aerosol nitrate size distribution extending up to 2.5 pm are needed to explore this further. More
routine geographically distributed measurements of wet deposition of TNO3 and dry deposition of HNO3 may help

also constrain the nitrate lifecycle. In addition, comprehensive measurements of NOy species (e.g., N2Os, PAN,

28



715

720

725

730

735

740

745

HONO, organic nitrates) would help to evaluate NOy cycling in the model and in turn identify how biases in the

chemical processes involving NOy impact inorganic particulate nitrate.

The model deficiencies in SNA highlighted in this paper have broader implications because of the role of
SNA in climate and air quality. Despite numerous updates over the past decade to the description of chemical and
physical processes that are relevant to nitrate formation in GEOS-Chem, model predictions of nitrate concentrations
remain persistently biased high. The factor(s) contributing to the poor model skill and bias in SNA remain elusive.
The grossly overestimated nitrate in GEOS-Chem implies that any policy-relevant studies for air-quality and climate
that employ this model will be similarly biased, including an over-emphasis on nitrogen containing PM and a likely
incorrect attribution of sectoral contributions to PM. Comprehensive measurements of particle and gas-phase
precursors in a range of environments would be invaluable to future efforts to identify the drivers of nitrate bias and

to improve the fidelity of GEOS-Chem and possibly other models.
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