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ABSTRACT

The advent of advanced robotic platforms and workflow automation tools has revolutionized the landscape of biological research, offering
unprecedented levels of precision, reproducibility, and versatility in experimental design. In this work, we present an automated and modular
workflow for exploring cell behavior in two-dimensional culture systems. By integrating the BioAssemblyBot

VR
(BAB) robotic platform and

the BioAppsTM workflow automater with live-cell fluorescence microscopy, our workflow facilitates execution and analysis of in vitro migra-
tion and proliferation assays. Robotic assistance and automation allow for the precise and reproducible creation of highly customizable cell-
free zones (CFZs), or wounds, in cell monolayers and “hands-free,” schedulable integration with real-time monitoring systems for cellular
dynamics. CFZs are designed as computer-aided design models and recreated in confluent cell layers by the BAB 3D-Bioprinting tool. The
dynamics of migration and proliferation are evaluated in individual cells using live-cell fluorescence microscopy and an in-house pipeline for
image processing and single-cell tracking. Our robotics-assisted approach outperforms manual scratch assays with enhanced reproducibility,
adaptability, and precision. The incorporation of automation further facilitates increased flexibility in wound geometry and allows for many
experimental conditions to be analyzed in parallel. Unlike traditional cell migration assays, our workflow offers an adjustable platform that
can be tailored to a wide range of applications with high-throughput capability. The key features of this system, including its scalability, versa-
tility, and the ability to maintain a high degree of experimental control, position it as a valuable tool for researchers across various disciplines.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0209547

I. INTRODUCTION

Two-dimensional (2D) in vitro wound healing assays are fre-
quently used to investigate the dynamics of cellular migration and pro-
liferation.1,2 Traditional methods, like the scratch assay or barrier-
based assays, are simple and cost-effective but depend on manual han-
dling of tools, equipment, and reagents. This presents challenges such
as limited reproducibility, low throughput, and inflexibility in experi-
mental design.2–4 Several technologies have been developed to stan-
dardize the creation of cell-free zones (CFZs) and address the
limitations of manual assays.4–6 However, these methods also have
their drawbacks. First, uniform CFZs are created in all wells simulta-
neously or only a few CFZs can be generated at a time,7,8 limiting the
number of samples and conditions that can be tested in a given

experiment. Additionally, versatility and throughput are restricted; dif-
ferent CFZ shapes cannot be produced for multiple samples. To our
knowledge, no current technology allows for an adjustable number of
conditions and samples without the need for multiple repeated
experiments.5

We sought to use the BioAssemblyBot (BAB) platform, an intelli-
gent multi-axis robotic system designed for three-dimensional (3D)
bio-printing, to explore cell-based assay automation. We present an
automated migration and proliferation (MP) assay for cell monolayers
by integrating BAB with automated live-cell fluorescence microscopy.
Our approach creates precise and reproducible monolayer CFZs, or
wounds, and monitors the dynamics of cell behavior in real-time
throughout the course of wound closure. Our high-throughput
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approach enables MP assays to be implemented in any-sized cell culture
well plate with the novel ability to generate many differently shaped
wounds in a single experiment, allowing for the analysis of multiple con-
ditions in parallel and enhancing versatility in experimental design. We
report the development of our automated workflow and demonstrate its
advantages in comparison to the standard scratch assay.

II. RESULTS

A. Design and automation of migration and

proliferation assay

For automated MP assays, we programmed BAB to remove cells
with consistent speed and pressure from confluent monolayers using a

dispensing tip on its Printing Tool [Fig. 1(a)]. This approach produced
highly consistent wound dimensions and minimal damage to the cul-
ture surface.

The assay was implemented in three parts: (1) wound design, (2)
plate calibration, and (3) assay execution [Fig. 1(b)]. Wounds were
designed as computer-aided design (CAD) models using BAB’s built-
in 3D modeling software. Here, wounds were modeled as 3D shapes
flattened onto the culture surface of individual wells in a pre-calibrated
well plate, where shape, size, and placement within the wells were
customized. Plate calibration was performed on the same type of
multi-well plate as the prepared cultures. Coordinates (x–y–z) were
programmed for the center of all wells relative to the print stage, and

FIG. 1. Overview of the automated migration and proliferation assay. The BioAssemblyBot (BAB) platform, including the BAB400 and the Tissue Structure Information Modeling
(TSIM) design software, was used for the automation of cell MP assays to increase reproducibility, scalability, and adaptability of experiments. (a) BAB is programmed to
mechanically remove user-defined regions from cell monolayers to create a cell-free zone. Processes such as migration and proliferation can be monitored during re-population
of the cell-free zone. (b) Workflow to design and create wounds in cell monolayers. First, 3D wound models are designed using TSIM software. Next, the well plate is calibrated
with BAB. This involves determining the x, y, and z coordinates of each corner of the plate relative to the print stage with BAB’s Printing Tool. Finally, the CAD files are directed
to BAB, where the assay is executed in the BAB user interface. (c) Workflow for automated time-lapse image acquisition and analysis. BAB is programmed to transfer the
“wounded” well plate to the Zeiss Celldiscoverer7 (CD7) and initiate image acquisition. Images are taken in each well every 20–30min over the course of wound closure.
Individual cells are detected and segmented from each image, and the migration trajectory for each cell is tracked over time. (d) Representative processed images of wound
closure over time for a simple scratch wound. Scale bar¼ 200 lm.
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the surface for printing was set to the culture surface of the well plate.
The CAD wound models were directed to BAB as a “print” path, and
the calibrated plate was selected as the container for printing. The
assay was then executed in the BAB user interface, where the wounds
were recreated in confluent cell monolayers.

Live-cell imaging enables capture of proliferation and migration
dynamics after wounding. As a proof of concept, the automated MP
assay was performed on human fibroblasts with simple scratch
wounds. We programmed the BAB to transfer the wounded well plate
to the Zeiss Celldiscoverer 7 (CD7) live-cell fluorescent microscope
with its Pick n’ Place tool. Time-lapse images of the cells were captured
at 5�magnification every 30min over 48 h. The acquired images were
run through our image processing pipeline, which detects and tracks
individual cell nuclei from time-series data [Fig. 1(c)]. Representative
images of the simple scratch wound closing over time are depicted in
Fig. 1(d).

B. Automated wounding generates consistent wound

dimensions with control over wound shape

To compare the performance of our automated assay against the
standard scratch assay, simple scratches were applied to human fibro-
blasts by the BAB and manually. Images of each well were taken at 5�
magnification, and manual- and BAB-generated scratches were com-
pared for their consistency and positioning. The automated assay produ-
ces wounds with increased consistency in wound shape across all wells
compared to wounds that were created manually [Fig. 2(a)]. We
observed smaller deviations in scratch width for scratches generated by
the BAB (r¼ 44.9lm) compared to manually generated scratches
(r¼ 103.1lm) [Fig. 2(b)]. The positioning of scratches across all wells
was more variable for manual scratches compared to the automated
scratches, which exhibited uniform positioning of each scratch near the
center of the well [Fig. 2(c), supplementary material Figs. S1 and S2].

We next tested the impact of tip size, speed, and acceleration on
outcomes in the automated assay. Tip sizes with outer diameters (ODs)
ranging from 0.3 to 2mm were used to generate scratches [supplemen-
tary material Fig. S3(a)]. Larger tips showed slightly higher variability
compared to the smaller tips. The precision metal dispensing tip with an
OD of 0.48mm showed the least variability (r¼ 33lm) with an average
width of 318lm per scratch [supplementary material Figs. S3(b) and S3
(c)]. In parallel, we evaluated the impact of tip speed and acceleration on
scratch consistency. Using a 0.8mm tip for all scratches, four tip speeds
(ranging from 1.5 to 10mm/s) and three accelerations (ranging from 5
to 20mm/s2) were tested. We observed a minor increase in scratch
width with higher speed and acceleration [supplementary material Fig.
S3(d)], with the greatest variability occurring at an acceleration of
20mm/s2 [supplementary material Fig. S3(e)].

The BAB’s 3D-printing workflow can create many complex
wound shapes with high precision [Fig. 2(d)]. This result highlights
our ability to consistently generate intricate wounds of various shapes
and sizes beyond human capabilities. To evaluate the effect of wound
geometry on the rate of closure, we programmed BAB to create four
different wound shapes, a triangle, square, circle, and line, and per-
formed live-cell imaging at 20min intervals over 88h. Representative
images of a circle and triangle wound closing over time are depicted in
Fig. 2(e). As expected, the area of the wound had an effect on wound
closure time (Table I), but it is undetermined if the effect was due to
wound area alone. Each wound shape has a different number of edges,

and it has been reported in literature that this can influence wound clo-
sure rates.8 This emphasizes the importance of reproducibility in cell-
based assays for wound healing applications—manually generated
wounds with higher error in wound geometry can affect the experi-
mental outcomes. Thus, in a given experiment, wounds need to be
carefully designed and created in order to make accurate comparisons
within and across different conditions.

III. DISCUSSION

We sought to address the limitations of existing in vitro wound
healing assays by leveraging the capabilities of the BAB platform.
BAB-generated wounds are more consistent in size and positioning
compared to manual methods. We demonstrate BAB’s ability to create
intricate wound shapes at multiple scales, highlighting the precision
and flexibility of this approach. Our method offers advantages in terms
of reproducibility, scalability, and adaptability. The robotic control of
the assay not only minimizes human-induced variability and contami-
nation risks but also ensures consistent wound creation and monitor-
ing. The scalability and adaptability of our platform allows for
high-throughput experimentation, making it amenable to multiple
experimental conditions and complex wound geometries.

While wound size is a well-established metric in wound healing
research, recent literature suggests the importance of wound geome-
try.5 Studies have indicated that the number of wound edges affects
cell migration rates both in vitro and in vivo.8,9 Another study showed
that cell movement at the wound edge depends on the interplay
between local curvature and actin organization, and thus, the geometry
of the wound directly influences closure dynamics.10 In natural set-
tings, wounds rarely present as simple geometric shapes. Complex
wounds, such as those with irregular edges or varying depths, more
accurately mimic in vivo tissue repair.11 While some aspects of these
complexities can be explored in 2D models, their relevance becomes
more pronounced in 3D culture systems,1 where cells interact with
their surrounding extracellular matrix and the spatial configuration of
wounds can better simulate in vivo conditions. Our future work aims
to extend our automated workflow to study wound healing dynamics
in 3D-bioprinted human skin equivalents. Unlike standard 3D print-
ers, which operate in three planes, BAB utilizes six degrees of freedom
to precisely and reproducibly fabricate biological structures. This
enhanced mobility allows for complexity beyond the conventional x–
y–z planes. In 3D wound healing models, BAB’s ability to print at any
angle with high resolution allows for the fabrication of intricately pat-
terned tissue constructs and wound shapes that mimic the spatial com-
plexity of in vivo wounds. These models would provide critical insights
into the influence of wound geometry on healing processes, presenting
an opportunity to develop more effective treatment strategies for com-
plex wounds.

Beyond 3D-bioprinting, BAB is equipped with interchangeable
tools, such as pipetters and grippers, to perform standard laboratory
tasks like liquid handling and plate manipulations. This allows for
automated media exchanges, reagent delivery, precise cell seeding, and
reproducible perturbations, thereby increasing lab efficiency and free-
ing researchers to focus on other aspects of their work.12,13 Through
the BioApps workflow automater, BAB can interface with other labo-
ratory equipment to build fully automated workflows. BioApps offers
a high degree of programmability, providing control over individual
components in a user-friendly interface. This enables customization
and flexibility, allowing users to tailor the system to specific
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experimental needs. We developed a BioApp for automated wound-
ing, plate handling, and time-series image acquisition, available on
the BioAppsTMMarket.14We plan to enhance this BioApp by adding
modules for cell plating, fluorescent staining, and media exchanges
to provide an end-to-end workflow for automated wound healing
assays (Fig. 3). We envision that this workflow can be adapted for
any application involving treatments or perturbations within 2D cul-
tures systems.

Our platform’s modular design is particularly valuable for instan-
ces where experimental design is constrained by human capabilities.13

For example, monitoring cell behavior over extended periods involves
continuous imaging and media exchanges at regular intervals, which is
impractical for manual operation due to the need for consistent timing
and minimal disruption to the cells and imaging loci. Likewise, collect-
ing samples at high time resolutions over extended periods would be
virtually impossible to perform manually but could be seamlessly

FIG. 2. Automated wounding generates more consistent wounds compared to the standard scratch assay. (a) Representative images of simple scratches made by the BAB
(top) and by hand (bottom). BAB-generated scratches exhibit more consistency compared to manually generated wounds. Scale bar¼ 500 lm. (b) Scratch width measure-
ments. Scratch widths and standard deviations were calculated as the distance between each wound edge along the full length of the scratch. Each bar represents one wound.
(c) Representative full well images of scratches made by the BAB (top) and by hand (bottom). White dashed lines indicate the center of the well. Scale bar¼ 1mm. (d)
Representative images of complex wound shapes created by the BAB. Scale bar¼ 1mm. (e) Image montage of wound closure over time for circle and triangle wound shapes.
Scale bar¼ 1mm.
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managed by the automation capabilities of BAB. Another direction for
our future research is automating time-series sample collection for
single-cell RNA sequencing during wound healing. We aim to explore
gene expression dynamics in single cells, collecting samples every two
hours over several days to provide a high-throughput characterization
of cellular behavior and molecular changes in response to wounding.

The primary limitation of our approach is the requirement for
the BAB and a live-cell imaging system. The initial investment in these
technologies could be a barrier for smaller laboratories or those with
limited funding. However, the cost of these systems is not entirely out
of reach, especially for core services or research facilities prioritizing
high-throughput experimentation. In such settings, the benefits of
increased efficiency, precision, and reproducibility can justify the
investment as they ultimately lead to more reliable and robust scientific
outcomes.

We also note that scratch widths were not precisely aligned with
the measured tip widths, likely due to differences in tip deformation
during scratching that is related to tip material. Material quality could
also impact tip performance, where subtle manufacturing inconsisten-
cies might contribute to variation if more than one tip is used. Thus
where tip changes are needed, the user should ensure proper calibra-
tion for each tip.

In summary, the combined features of BAB and BioApps allow
for the automation of end-to-end experimental workflows with

increased efficiency, throughput, and standardization. This ensures
high precision and accuracy, leading to more reliable and reproducible
scientific results. Incorporating live-cell fluorescent imaging in our
automated workflow enables the investigation of dynamic biological
processes during wound healing, like migration and proliferation, cell
cycle phase transitions,15 or epithelial-to-mesenchymal transition
events,16 providing a more comprehensive view of cellular behaviors in
response to injury. Our platform is broadly applicable beyond the
study of wound healing, including (a) monitoring angiogenesis in bio-
fabricated tissue constructs; (b) migration studies with different chemi-
cal conditions or coating substrates; (c) in vitro models for cancer
metastasis and invasion; (d) high-throughput drug screening; and (e)
the investigation of cell state trajectories in cellular reprogramming
studies.

IV. CONCLUSION

We have developed an automated workflow for in vitromigration
and proliferation assays. By addressing the limitations of current meth-
ods, we achieved enhanced precision, reproducibility, and flexibility in
creating and monitoring cell-free zones. The ability to generate com-
plex wound shapes and scale experiments for high-throughput analysis
offers significant advancements for wound healing research. While the
initial cost is a barrier, the potential for future enhancements, such as
3D wound models and fine-resolution sample collection, underscores
the versatility and transformative impact of our approach. Our modu-
lar, automated workflow not only streamlines experimental processes
but also paves the way for broader applications in biomedical research.

V. METHODS

A. Automated migration and proliferation assay

The steps described below were completed for each run of the
automated assay reported in the Results. Multi-well plates from 12–96
wells were tested in our approach. The plate calibration steps were

TABLE I. Average area and wound closure times for different wound shapes (n¼ 3).

Wound Area (mm2) 6 SD Closure time % Closure (t¼ 88 h)

Triangle 21.66 0.4 >88 h 98.8%

Square 17.66 0.9 >88 h 99.9%

Circle 17.26 1.1 >88 h 99.6%

Line 4.46 0.3 32 h 100%

FIG. 3. Vision for an end-to-end workflow automated by the BioAssemblyBot platform. All workflow tasks would be assembled into and managed by BioApps, which controls
the entire workflow and allows for individual tasks to be tailored as needed.
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completed once for each plate size used, while the tip to stage offset
was determined for each new dispensing tip.

1. Wound design

Tissue Structure and Information Modeling (TSIM) software
v1.1.227 (Advanced Solutions Life Sciences, LLC) was used for design
of the wounds. The plate type was selected, and settings included
“print continuously,” “flatten,” and the printer default for “move
between layers.” In a new sketch, the wound shapes were drawn using
TSIM’s sketching tools. Finalized wound shapes were then copied into
other wells as desired for replicates. The z-depth of all objects was set
to 0.0001. In the material settings, printing pressure was set to 0 psi,
and tip speed and acceleration were set to 3 and 10mm/s2, respec-
tively, unless otherwise noted. The design file was saved and sent as a
print job to the BAB human machine interface (HMI).

2. Plate calibration

For plate calibration, multi-well plates were placed on the BAB
Print Stage and de-lidded. In the BAB HMI, the BAB Printing Tool
was retrieved and a new container for printing was created for each
type of plate. The number of rows and columns were input, and the
Printing Tool tip was manually positioned in the center of the first
well, designated A1, at an arbitrary z coordinate since z coordinates
were determined later during tip to stage offset calibration. The x, y,
and z coordinates were recorded for A1 and the process was repeated
for the remaining three corner wells. The coordinates were then calcu-
lated and stored for all wells using the HMI settings Update All Wells
(Relative) and CalculateWells from Extents. Calibration for tip to stage
offset ensured contact between the dispensing tip of the BAB Printing
Tool and the plate surface. The BAB Printing Tool with a tip was man-
ually positioned to have full contact with the surface of the plate,
ensuring no visible deformation of the tip. The measured tip offset was
recorded for use during print execution.

3. Execution

The assay was executed using the Print interface of the BAB
HMI. The measured tip offset was loaded in the calibration settings
alongside the design file received from the TSIM application. The cali-
brated well plate was selected as the container for printing and the
location of the BAB Printing Tool was given.

B. Cell culture

Human BJ fibroblasts (ATCC CRL-2522) were cultured on stan-
dard cultureware in Dulbecco’s Modified Eagle’s Medium (DMEM,
Gibco 11965-092) with 10% Fetal Bovine Serum (FBS, Corning 35-
015-CV), 1% MEM Non-Essential Amino Acids (NEAA, Gibco
11140-050), and 1% penicillin-streptomycin (P/S, Gibco 15140122).
Cells were incubated at 37 �C in 5% CO2, and media were exchanged
every 48 h. For the automated MP assay, BJ fibroblasts were seeded at
densities ranging from 0.22 to 0.63� 105 cells/cm2 in 12-, 24-, 48-, or
96-well plates. After 24h, the cells used in time courses were incubated
in normal media containing 0.02lM Hoechst 33342 (Enzo, ENZ-
52401) for 2 h, followed by executing the MP assay. Cells used in other
assays were stained with 0.5lM Hoechst for 30min. After scratching,
the wells were washed with PBS. FluoroBrite DMEM (Gibco, A18967-

01) with 10% FBS, 1% NEAA, and 1% P/S was added to all wells prior
to image acquisition.

C. Image acquisition

The Zeiss Celldiscoverer 7 (CD7) live-cell imaging system was
used to automate capture of time-lapse images during wound closure.
Oblique contrast and fluorescence microscopy was performed with a
Plan-Apochromat 5�/0.35 objective and 0.5� or 1� tube lens. Images
were taken using an Axiocam 506 with 14bit resolution. Cells were
imaged at 37 �C in 5% CO2. Images were captured every 20 or 30min
over the duration of wound closure. For each wound, a multi-channel
time-series ome.tiff file was prepared in the Zen Blue 3.0 software
and exported for downstream analysis.

D. Image processing

1. Image analysis

Raw images were preprocessed using ImageJ and Python, and
analyses were performed with MATLAB and Python. All scripts may
be found at the following URL: https://github.com/jrcwycy/
wound_healing.

For wound area calculations, raw oblique images were first pre-
processed in ImageJ. Wounds were identified using the Image

Segmenter application in MATLAB and exported as binary masks.
Wound areas were then quantified over time for each shape. For
scratch width analysis, individual cell nuclei were segmented from raw
H3342 images using StarDist,17 a deep-learning based method for
object detection and segmentation. Isolated segmentations were then
filtered out of the wound bed images using a nearest neighbors
approach.18 To identify wound edges, contours that separated areas of
high cell density from areas of low cell density were detected using
scikit-image.19 The line of best fit for each contour served as the
wound edge for subsequent analyses. Scratch widths were calculated as
the distance between the two wound edges along the entire length of
the scratch for each image.

2. Automated cell tracking

To automate analysis of wound healing experiments, we con-
structed an image processing pipeline using the Python framework
Snakemake.20,21 The pipeline is designed to manage parallel proc-
essing of large time-series imaging data in a high-performance com-
puting environment. Briefly, the pipeline produces nuclear
segmentations at each time step using StarDist17 and predicts cel-
lular movement using a Bayesian single cell tracking approach.22

Inputs to the pipeline are multi-channel time-series ome.tiff files
and a set of user-defined parameters controlling the behavior of differ-
ent filtering and analysis operations.19 The outputs of the pipeline are
properties of cell nuclei at each time step, and nuclear linkages between
time steps which we refer to as “tracks.”

We describe the operations of the pipeline in Algorithm 1 on a
single input. Note that the pipeline may be run on a set of input
images. All software for automated image prepossessing and analy-
sis may be found at the following URL: https://github.com/
CooperStansbury/pip-fucci.
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SUPPLEMENTARY MATERIAL

See the supplementary material for images and data that support
the findings of this study.
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