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Abstract

Single-stranded RNA molecules can form intramolecular bonds between nucleotides to create secondary structures. These structures can have
phenotypic effects, meaning mutations that alter secondary structure may be subject to natural selection. Here, we examined the population
genetics of these mutations within Arabidopsis thaliana genes. We began by identifying derived SNPs with the potential to alter secondary
structures within coding regions, using a combination of computational prediction and empirical data analysis. We identified 8,469 such
polymorphisms, representing a small portion (~0.024%) of sites within transcribed genes. We examined nucleotide diversity and allele
frequencies of these "pair-changing mutations” (pcM) in 1,001 A. thaliana genomes. The pcM SNPs at synonymous sites had a 13.4%
reduction in nucleotide diversity relative to non-pcM SNPs at synonymous sites and were found at lower allele frequencies. We used
demographic modeling to estimate selection coefficients, finding selection against pcMs in 5’ and 3’ untranslated regions. Previous work has
shown that some pcMs affect gene expression in a temperature-dependent matter. We explored associations on a genome-wide scale,
finding that pcMs existed at higher population frequencies in colder environments, but so did non-PCM alleles. Derived pcM mutations had a
small but significant relationship with gene expression; transcript abundance for pcM-containing alleles had an average reduction in
expression of ~4% relative to alleles with conserved ancestral secondary structure. Overall, we document selection against derived pcMs in
untranslated regions but find limited evidence for selection against derived pcMs at synonymous sites.
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Introduction One interesting and unexplored aspect of selection on sec-
ondary structure is its potential to contribute to adaptation.
In protein coding genes, mutations can, in theory, have non-
neutral effects on both the amino acid sequence and the nu-
cleotide secondary structure. However, selection is typically
considered through the lens of mutational effects on proteins.
Metrics like dn/ds (the ratio of nonsynonymous to synonym-
ous substitution rates) are used to identify loci under positive
or purifying selection, but this approach does not account for
possible selection on mRNA secondary structure, which is
likely to affect both the numerator and the denominator of
dn/ds. Consider, too, that fitness optima of secondary struc-
tures may change with the environment. For example,

RNA molecules are single stranded (ssRNA), which gives
them the ability to form Watson—Crick bonds between bases
in the same molecule (Varani and McClain 2000). This intra-
molecular base pairing, termed secondary structure, largely
determines the 3-dimensional shape of the molecule. The cap-
acity for an RNA sequence to form secondary structures af-
fects the function of transcribed regions of genomes in many
ways (Vandivier et al. 2016). For example, nucleotide second-
ary structures influence function by modulating translation
(Kozak 1988; Svitkin et al. 2001), mRNA splicing (Buratti
and Baralle 2004), ribozyme activity (Steitz and Moore

2003), localization (Bullock et al. 2010), protein-RNA inter-
actions (Williams and Marzluff 1995), and recombination
(Tomizawa 1984; Forsdyke 1995). Additionally, they affect
the epigenetic fate of genes by influencing their RNA stability
(Li et al. 2012), complement of small-interfering RNAs
(siRNAs), and DNA methylation (Martin et al. 2023). The ul-
timate impact of a transcribed genomic region on phenotype
(Duan et al. 2003) and fitness (Innan and Stephan 2001) is
therefore shaped by its capacity to form secondary structures;
for example, mutations that affect mRNA structure in humans
have been implicated in disease (Halvorsen et al. 2010). Yet,
the evolutionary dynamics of mutations affecting secondary
structures in mRNAs have received little attention in the evo-
lutionary biology literature, with most such studies focusing
on non-coding RNAs (Nowick et al. 2019).

Ferrero-Serrano et al. (2022) recently demonstrated that 2
experimentally-validated structure-changing SNPs (often
termed “riboSNitches” [Halvorsen et al. 2010]) caused differ-
ent folding dynamics in cold versus warm environments. Thus,
the fitness optima of secondary structures may vary with tem-
perature and perhaps other environmental variables.
Selection on secondary structure could also have important
methodological consequences for measuring selection with
molecular data. This is because interpretation of dn/ds ratios
assumes that synonymous mutations are selectively neutral
(Kimura 1968a). Since the 1980s, evolutionary biologists
have known that this is not entirely correct because codon us-
age is non-random (Ikemura 1981), and more recent studies
have demonstrated strong non-neutral fitness effects from syn-
onymous mutations (Lawrie et al. 2013; Lebeuf-Taylor et al.
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2019). With regard to the fitness effects of secondary struc-
ture, it is known that (i) secondary structures within mRNA
coding regions are more stable than expected under random-
ized codon usage (Seffens and Digby 1999), (ii) the location
of synonymous substitutions is not random with respect to
secondary structure stability (Chamary and Hurst 2005),
(iii) codon usage is constrained towards weaker structure
around miRNA-binding sites (Gu et al. 2012), and (iv) syn-
onymous variants disrupting computationally-predicted sec-
ondary structure exist at reduced frequencies in human
populations (Gaither et al. 2021), implying that purifying se-
lection acts on these variants. Approaches like dn/ds and the
McDonald-Kreitman test (McDonald and Kreitman 1991)
typically rely on the assumption that synonymous changes
are selectively neutral, but they have been shown to be sensi-
tive to even weak selection (Rahman et al. 2021). Depending
on the strength and prevalence of RNA-level selection, ac-
counting for secondary structure could be important for dis-
tinguishing neutral synonymous variants from weakly
selected variants.

Another reason that such mutations are evolutionarily in-
teresting is through the possibility of different selective effects
between the RNA and protein “life stages” of gene expression.
Nonsynonymous mutations can alter both amino acid se-
quence and secondary structure stability, potentially leading
to a conflict between selection for protein function (protein-
level selection) and mRNA stability (RNA-level selection;
Wegler et al. 2020). For example, a derived missense substitu-
tion may enhance the effectiveness of a protein but have an
overall deleterious effect by compromising mRNA fitness
through a less favorable secondary structure, potentially lead-
ing to improper splicing, translation, or reduced stability
(Vandivier et al. 2016). The frequency and importance of
this potential pleiotropic antagonism depend on the relative
strength of selection acting on mutations affecting secondary
structure compared to mutations that affect amino acid se-
quence. If these conflicts exist, they will constrain the efficacy
of positive selection (Fraisse et al. 2019).

Finally, while secondary structures serve important func-
tions, particularly strong secondary structures have unique
properties that may negatively affect mRNA half-lives.
Stable genic hairpins can cause genes to behave like
pre-microRNA (miRNA) transcripts (Li et al. 2012), which
form hairpin structures that are targeted by Dicer-like en-
zymes (Vergani-Junior et al. 2021) and are subsequently de-
graded into small RNAs. Like in pre-miRNA loci, elevated
numbers of small-interfering RNAs map to these structured
genes (Li et al. 2012; Martin et al. 2023), putatively because
their hairpins are degraded by Dicer-like enzymes. In turn, re-
gions of miRNA-like secondary structure within genes corres-
pond to high densities of small RNA mapping as well as high
levels of small RNA-associated methylation (Martin et al.
2023), which often represses gene expression and function
(Lietal.2012). Given that small RNA mapping and repressive
methylation are typically associated with silenced sequences,
such as transposable elements, it is intriguing that many genes
(up to 70% of annotated Zea mays genes) contain hairpin sec-
ondary structures (Martin et al. 2023). It is possible that these
regions represent evolutionary conflicts between crucial sec-
ondary structure and downstream epigenetic effects.

In this study, we focus on the population genetics of muta-
tions that are likely to affect secondary structure within the
genes of the Arabidopsis thaliana (Arabidopsis) 1001

Martin et al. - https://doi.org/10.1093/molbev/msaf126

Genomes dataset (1001 Genomes Consortium 2016). We be-
gin by establishing a method to identify SNP variants that are
within the ancestral secondary structures of expressed coding
regions. There are generally 2 approaches to identify these
structures, and neither is perfect. The first is empirical measure-
ment. X-ray crystallography can accurately determine the
structure of a transcript (Zhang and Ferré-D’Amaré 2014),
but it is prohibitively expensive and infeasible to perform on
a genome-wide level. Sequencing approaches such as double-
stranded RNA (dsRNA) sequencing (Zheng et al. 2010; Li
et al. 2012), structure-seq (Ding et al. 2014), and SHAPE-seq
(Kwok et al. 2013; Liu et al. 2021) have also been used to esti-
mate secondary structures. These methods can be error prone,
depend on coverage, and capture only a single possible second-
ary structure in a moment in time. The second approach is com-
putational prediction (Halvorsen et al. 2010; Lorenz et al.
2011; Zhang et al. 2020), which is widely used but does not al-
ways recapitulate known structures from X-ray crystallog-
raphy (Zhang et al. 2020). Nonetheless, newer prediction
methods have become more accurate and have distinct advan-
tages, such as the ability to integrate information across many
possible secondary structures (Zhang et al. 2020).

Here, we adopt a combined approach that uses both compu-
tational prediction and sequencing data to identify SNPs that
may affect secondary structures in expressed coding region of
A. thaliana. We then calculate the population frequencies of
these variants across the 1001 global Arabidopsis accessions
to address 4 sets of questions. First, is there evidence that these
mutations are under selection? That is, do they have evolution-
ary histories similar or dissimilar to putatively neutral syn-
onymous mutations? Second, if they appear to be under
selection, what is the inferred strength of selection compared
to synonymous and nonsynonymous SNPs that are not within
secondary structures? Third, is there any evidence to suggest
that RNA-level selection conflicts with protein-level selection
or that they affect one possible phenotype, i.e. gene expression?
Finally, previous work has suggested that secondary-structure
altering SNPs may be associated with environment variables,
particularly temperature. Is this true on a genome-wide scale?

Results

Identifying Unpaired Mutations and Pair Changing
Mutations Mutations

Identifying mutations that change the conformation of an
RNA molecule is a complex and unsolved problem
(Ferrero-Serrano et al. 2022). We developed a method to iden-
tify derived mutations with a high likelihood of being ances-
trally paired (that is, hydrogen bonded to another nucleotide
base in the ancestral A. thaliana genome) within secondary
structures. We refer to such mutations as “pair changing mu-
tations (pcM)”, while those that are not ancestrally paired are
“unpaired mutations (upM).” To classify these variants, we
followed 3 steps (Fig. 1). First, we polarized ancestral SNPs
from the Arabidopsis 1001 Genomes Project (1001
Genomes Consortium 2016) using an A. lyrata outgroup
(see Materials and Methods). We used these ancestral SNPs
to create an ancestral pseudo-transcriptome from the
TAIR10 assembly (Berardini et al. 2015) by replacing derived
alleles present in the Columbia-0 (Col-0) reference genome
with the inferred ancestral SNP. Second, we extracted
mRNA sequences from the pseudo-ancestral reference and in-
ferred base-pairing potentials within these sequences using
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Fig. 1. A schematic representation of the method used to identify derived unpaired (upM) and pair-changing (pcM) mutations. Three SNPs are shown at
positions 6, 12, and 27 within a hypothetical gene: one that is equivocal (6, left), one that is unpaired (position 12, middle) and one that is a pair-changing
mutation (position 27, right). Bases with high (>0.90) LinearPartition base-pairing probabilities are shown as parentheses. Both dsRNA and LinearPartition
evidence were required to designate a base as pcM; bases with only one type of supporting evidence (either base-pairing probabilities > 0.90 or empirical

dsRNA evidence) were deemed equivocal.

LinearPartition (Zhang et al. 2020). LinearPartition calculates
a partition function for a complete RNA sequence, and it sums
equilibrium constants for all possible secondary structures for
a sequence (i.e. not just the most likely structure). It outputs a
base-pairing matrix that conveys the estimated probability
that 2 bases pair. We focused only on bases with a high
(>0.90) probability of pairing. Finally, we overlapped
LinearPartition analyses with empirical data, namely
previously-generated dsRNA data (Zheng et al. 2010). The
data were generated from 6-week-old Col-0 (flower bud clus-
ters, leaves, and all aerial portions), and we used the data with
the intention of distinguishing true paired bases from
less-likely paired bases. In the sequencing data, we found
that dsRNA regions were, on average, 26.9 nt long, and
spanned a total of 1.9 x 10° nt, representing 1.7% of the total
mRNA database.

Given both LinearPartition and dsRNA data, we defined de-
rived pcM mutations as the subset of SNPs: (i) that had a
LinearPartition probability >0.9, (ii) that were detected as
paired in dsRNA data, and (iii) whose presumed paired base
did not also contain a complementary SNP. For example, if
the identified base contained an A to G mutation at position
1 and was found to be ancestrally paired with a T at position
20, then the SNP at position 1 was not counted if position 20
contained a T to C substitution. This approach yielded 3 sets
of derived SNPs: (i) pair-changing mutations (pcM), which
were predicted to alter base-pairing based on both empirical
and computational evidence, (ii) “equivocal” SNPs, which
were predicted to alter base-pairing based on only one of the
2 prediction methods, and (iii) upM, which had no evidence
for being within secondary structures. After applying these
rules, the pcM set consisted of 8,469 inferred mutations across
5,141 Arabidopsis genes (Table 1), representing a subset of
201,965 ancestrally paired bases (Table 1). Note, however,

Table 1 Genomic sites categorized by effect inferred effects on secondary
structure

Ancestrally  Ancestrally Equivocal®

paired unpaired
Total number of bases 201,965 63,158,076 1,305,821
Total number of SNPs 8,469" 2,320,555¢ 70,719
Nonsynonymous SNPs 3,790 864,006 22,231
Synonymous SNPs 3,214 631,838 16,038
UTRs (5’ +3) 1,103 438,206 240,526

*Supported as paired by the computational method (LinearPartition) or by
dsRNA coverage but not both.

PThese SNPs represent the total set of pair-changing mutations (pcM).
“These SNPs represent the set of unpaired mutations (upM).

that the pcM SNPs likely do not reflect all of the bases involved
in secondary structures, due to inevitable false negatives in our
conservative approach. To address this concern, we also com-
pared results from less conservative pcM/upM definitions (e.g.
changing the pairing-probability cutoff and relying only on
LinearPartition by not considering dsRNA overlap) to the
pcM sets. The less conservative datasets yielded qualitatively
similar downstream results (see below), and so for simplicity
we focus primarily on analyses with the pcM set.

Prevalence and Distribution of upM and pcM
Mutations

If mutations that affect secondary structure are selectively im-
portant, one naive expectation is that their distribution across
the genome differs from those mutations that do not affect
structure. To profile and compare distributions among SNP
types, we categorized derived SNPs based on their predicted
impact based on SnpEff annotations (Cingolani et al. 2012).
upMs were more likely to occur in untranslated regions
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SNP effect

Number upM  Percentage upM in  Number pcM  Percentage pcM in  Percentage difference

SnpEff category” SnpEff category” (upM pcM)

Synonymous variant 631,838 27.23% 3214 37.95% -10.72%
Missense variant 864,006 37.23% 3790 44.75% -7.52%
Disruptive inframe deletion 2825 0.12% 19 0.22% -0.10%
Inframe insertion 2437 0.11% 11 0.13% -0.02%
Inframe deletion 3449 0.15% 14 0.17% -0.02%
Frameshift variant + start lost 450 0.02% 3 0.04% —-0.02%
Frameshift variant + stop gained 222 0.01% 2 0.02% -0.01%
Frameshift variant + stop lost 377 0.02% 2 0.02% -0.01%
Initiator codon variant 231 0.01% 1 0.01% 0.00%
Stop retained variant 1315 0.06% 4 0.05% 0.01%
Disruptive inframe insertion 808 0.03% 2 0.02% 0.01%
Start lost 1232 0.05% 2 0.02% 0.03%
Stop lost 1532 0.07% 2 0.02% 0.04%
Splice acceptor variant 3389 0.15% 8 0.09% 0.05%
Splice donor variant 3537 0.15% 3 0.04% 0.12%
Stop gained 15,577 0.67% 41 0.48% 0.19%
Frameshift variant 24,822 1.07% 64 0.76% 0.31%
5" UTR premature start codon gain variant 18,977 0.82% 42 0.50% 0.32%
5" UTR variant 161,299 6.95% 422 4.98% 1.97%
splice region variant 94,490 4.07% 55 0.65% 3.42%
3’ UTR variant 276,907 11.93% 681 8.04% 3.89%
Intron variant 210,835 9.09% 87 1.03% 8.06%
Total 2,320,555 8469

*Percentage of SNPs in category (upM or pcM) with a particular effect.

(UTRs) and splice sites than pcMs, which were more common
in coding regions (Table 2). pcMs were about half as likely to
be found in the UTRs as expected under random distributions
based on the length of features within genes—i.e. 3' UTRs
comprised ~15% of genic space but only 8.04% of pcMs
were within UTRs. Similarly, the percentage of 5’ UTR pcM
mutations (4.98%) was lower than expected given the per-
centage of paired bases within 5" UTRs (6.86%).

These observations could be caused either because second-
ary structures are less frequent in UTRs or because selection
against pcM mutations is stronger in UTRs. To explore these
options, we compared the locations of 8,469 pcM:s to the set of
201,965 ancestrally paired bases that did not have a derived
SNP. If selection is not the cause, we reasoned that the distri-
bution of pcMs in UTRs should be similar in proportion to an-
cestrally paired bases. To perform each permutation, we chose
a random subset of 7 = 8,469 pseudo-pcM sites from the com-
plete paired site dataset of 7=201,9635. For each permutation,
we counted the percentage of randomly-assigned sites in each
genic component (5’ UTR, coding region, and 3’ UTR) and
then compared those proportions to observed values. We
found, for example, that the observed proportion of 13% of
pcMs in 5’+3’ UTRs differed significantly (P <0.01) from
the 16% proportion of paired ancestral sites in UTRs. These
results suggest that the locational skew in pcMs may not be
due solely to locational biases but may be consistent with se-
lection shaping the location and distribution of pcMs.

Reduced Nucleotide Diversity at Paired Versus
Unpaired Sites

Nucleotide diversity at synonymous sites (s) tends to be higher
than at nonsynonymous sites (my), which is generally inter-
preted as the result of purifying selection (Ingvarsson 2010;
Osada 20135). We calculated nucleotide diversity on different
sets of segregating sites. For pair-changing mutations, we fo-
cused only on synonymous sites (syn_pcM) to avoid the

confounding effects of selection on nonsynonymous substitu-
tions. We compared nucleotide diversity at segregating
synonymous sites between the syn_pcM (n=3,214) and
syn_upM (n=631,838) categories. We hypothesized that, if
syn_pcM mutations are neutral, syn_pcM diversity (Tgyn_pcm)
should be equivalent to syn_upM diversity (ftsyn_upm)-
Alternatively, if selection on paired bases is strong and similar
to that of protein-level selection, 7y, ,cm should be similar to
nonsynonymous diversity (ny) (7= 864,006). We found that
Tloyn_pem (median: Tgyy pevi=0.0071, mean: mgyn pen=0.071)
was significantly lower than @y, v (median: @y, wom=
0.0082, mean: Ty ypm=7.8X 1072 Fig. 2a; t-test P<
0.001). However, misyn ,cm Was also significantly higher than
nin (median: g = 0.0037; mean: g = 0.050), putting pcM di-
versity at an intermediate level (Fig. 2a; t-test P<0.001).
These results nonetheless hint at purifying selection on
syn_pcM sites relative to syn_upM sites.

An open question is whether selection on secondary struc-
ture interferes with selection for amino acid sequence. One fac-
tor that may influence this relationship is variation in selection
across the length of genes. For example, secondary structure is
known to be particularly important at start codons and intron
splice sites (Lietal. 2012; Vandivier et al. 2016), while the ami-
no acid sequence is more important towards the middle of the
protein (Bricout et al. 2023). To explore spatial distributions,
we measured w at the 3 different types of sites across the length
of gene coding sequences (Fig. 2b). The distributions differed
visually among site categories. my was lowest at the middle
of the coding sequence, while syn_m,,» was the lowest towards
the edges. The signal for sy, ,cm Was noisy, likely owing to the
low 7 of this category, but it dipped towards the 3’ end of the
coding sequence.

Investigating Selection on Structural Mutations

Given results based on n, we predicted that mutations that
putatively change secondary structure are generally more
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Fig. 2. Nucleotide diversity at synonymous paired (pcM), synonymous unpaired (upM), and nonsynonymous (missense) sites. a) Violin plot of nucleotide
diversity at different site types, with the black dots representing mean diversity. P-values for statistical contrasts are provided above the violin plots, based
on ttests. b) m calculated in windows across the length across all analyzed CDS regions. The x axis represents length-standardized windows across the
span of all analyzed genes from the 5’ end (transcription start site [TSS]) to the 3’ end (TTS). Missense refers to nonsynonymous bases not identified as
pair-changing mutations; paired refers to synonymous pcM mutations; unpaired refers to synonymous upM mutations.

deleterious than synonymous changes that do not affect sec-
ondary structure. To examine this prediction more formally,
we calculated the site frequency spectra (SFS) of various classes
of mutations and then used the SFS to infer the strength of se-
lection. Visual inspection showed that the distribution for pcM
sites was skewed towards lower frequency alleles compared to
upM sites for both synonymous and nonsynonymous sites
(Fig. 3a and b), reflecting more singletons and fewer intermedi-
ate and fixed mutations. The set of pcM mutations was a small
subset of total SNPs, so we tested for statistical significance be-
tween SFSs in 2 ways: a Kolmogorov—Smirnov test and a
permutation-based approach (Fig. 3¢ and d). The SFS for
pcM mutations at both synonymous and nonsynonymous sites
differed significantly from the SFS of syn_upM mutations.
Nonsynonymous pcM (i.e. non_pcM) mutations had a stron-
ger skew toward rare variants than syn_pcM mutations
(Fig. 3aand b), with a correspondingly lower significance value
relative to the syn_upM SFS (permutation non_pcM, P ~0;
syn_pcM, P=0.01; Fig. 3¢ and d). Finally, we note that the
SFS of mutations in the equivocal class (i.e. those which were
identified by either the computational or sequencing approach,
but not both) fell between the pcM and upM distributions
(Fig. 3a and b).

We evaluated the robustness of these results by investigating
datasets based on alternative definitions of pcM and upM.
First, we considered sites identified as likely to be paired by
LinearPartition, without filtering by dsRNA overlap. For
both synonymous (7 =19,252) and nonsynonymous (26,021)
pcM, allele frequencies remained significantly different com-
pared to syn_upM (supplementary fig. S1, Supplementary
Material online). Second, we loosened cutoffs for base-pairing
probabilities inferred by LinearPartition, while continuing to
filter by dsRNA cutoff. With a base-pairing probability thresh-
old of 0.50 (opposed to the original 0.90), the SFS of both
syn_pcM (7n=20,596) and non_pcM (n=57,349), the SFSs
remained significantly different to the SFS of syn_upM
(supplementary fig. S2, Supplementary Material online).

We used SFS information to infer the strength of selection
on pcM mutations using fitDadi (Gutenkunst et al. 2009;
Kim et al. 2017), which estimates demographic history from
frequency spectra of neutral alleles. Here, we used syn_upM
mutations for demographic inference, reasoning that they re-
present the most likely set of neutral sites in our dataset. We
fit 4 models with syn_upM SNPS, including a standard neutral
model, an exponential growth model, a bottleneck model and
a 2-epoch model (supplementary fig. S3, Supplementary
Material online; Materials and Methods). Based on the
Akaike Information Criterion (AIC), the exponential growth
model best fit the data (Table 3), with exponential growth
starting 0.243 2N apcestral g€nerations before present to a con-
temporary population size v=2.26 X Nacestral- Similar shifts
in population size were inferred with different demographic
models, all of which inferred a ~2-fold increase in population
size beginning ~0.4 Napcestral g€Nerations ago (supplementary
table S1, Supplementary Material online). These inferences
match previous work on A. thaliana, which is thought to
have expanded from refugia after the last glacial maximum
~20 KYA (Francois et al. 2008; Durvasula et al. 2017).

We then used the fitted demographic models to estimate dis-
tributions of fitness effects (DFEs) from the SFS of syn_pcMs,
pcMsin 5'+3' UTR regions (UTR_pcMs) and non_upM SNPs.
Based on visual analysis of the SFS (Fig. 3a and b), we expected
the DFE to be weaker for syn_pcMs than for non_upMs, and
this was the case (Fig. 4a). From the inferred DFE based on the
exponential growth model, syn_pcM sites had a mean scaled
selection coefficient (Y =2NanceseralS) =0.23, which was
~50-fold smaller than the mean effect for non_upMs
(Table 3). [Here, higher mean y values denote stronger selec-
tion against derived mutations.] These estimates of DFE rely
on the accuracy of the demographic model used, so we also
compared DFEs estimated using the other demographic mod-
els, finding similar estimates for the magnitude of pcM select-
ive effects (Table 3). Interestingly, the inferred mean scaled
selection coefficient for UTR_pcMs was ~15 higher than for
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Fig. 3. a) Unfolded site frequency spectra (SFS) showing derived allele frequencies of synonymous alleles categorized by their inferred effect on ancestral
secondary structure. b) SFS of nonsynonymous alleles in each category. c) Permutation distributions for differences between paired and unpaired SFS at
synonymous sites (black dot shows missense for scale), and d) between for nonsynonymous sites and unpaired synonymous sites. c) and d) Violins

represent the distribution of differences in random samples (same n as paired sites) from the unpaired data, while points show the observed differences.
Differences (yaxis) were calculated as the percentage of alleles in each pcM SFS bin subtracted from the percentage in the same upM SFS bin (e.g. {0-0.1]

in pCM minus {0-0.1] in upM, etc.).

syn_pcMs under the exponential growth and bottleneck mod-
els (Table 3; Fig. 4b), reflecting the strong-left leaning skew for
the UTR_pcM SFS (supplementary fig. S4, Supplementary
Material online). Similar estimates were obtained when 5’
and 3’ UTRs were examined separately (exponential growth
model: 5" UTR_pcM mean y=2.86; 3’ UTR_pcM mean y=
5.87). Finally, we note that the relatively high mean values
were not typical of UTRs, because non-pair changing muta-
tions in UTRs had much lower mean y values (exponential
growth model: 5" UTR upM mean y=0.11; growth: 3’ UTR
upM mean y=4.0 x 107%; Fig. 4b).

Since y values < 1 are typically considered neutral, the mean
DFE estimates suggest that syn_pcMs (mean y=0.23) do not
have strong selective effects on average. We tested this idea
more formally using likelihood ratio tests (LRTs) that com-
pared nested models with and without DFEs. While the results
did depend on the demographic model, the null hypothesis of y
shape and scale parameters equaling 0.0 could not be rejected
under the exponential growth and bottleneck models (P =
0.14; Table 3). By contrast, the null hypothesis could be

rejected for UTR_pcMs and for non_upM SNPs across all of
the considered demographic models (LRT P-values<1 X
107°; Table 3; but not for 5’ or 3’ UTR_upM mutations;
P-values > 0.2) Altogether, the DFE results detect selection
against derived nonsynonymous SNPs and pair-changing mu-
tations in UTRs, without strong statistical evidence for selec-
tion against syn_pcMs SNP.

The Potential for Pleiotropy Between Secondary
Structure and Amino Acid Changes

The DFE analyses suggest that derived syn_pcMs are effective-
ly neutral on average, but nucleotide diversity and the SFS sug-
gest the possibility of purifying selection against syn_pcMs
(e.g. Figures 2a, 3c and d). In any case, the inferred
syn_pcM DFE provides a sense of the magnitude and variation
of effects across synonymous sites within protein coding re-
gions due to secondary structure alone. In contrast, the DFE
based on non_upM mutations provides insights into selection
pressures on amino acid changes. Together, these 2 DFEs
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Table 3 Demographic models used in fitDadi DFE estimation with information about inferred DFEs from various site categories

Demographic model AIC? ¥ Mean® LRT P-value® ¥ Mean® LRT P-value® vy Mean LRT P-value®
(UTR_pcM) (UTR_pcM) (syn_pcM) (syn_pcM) (non_upM)b (non_upM)
Exponential growth 130 3.64 5.6x10710a 0.23 0.141 12.4 <1x107%¢
Bottleneck growth 869 3.53 2.7x10710 0.24 0.145 31.0 <1x107%¢
Two-epoch 1,024 3.12 3.2x10710a 0.25 0.0870 129.7 <1x1072%¢
Standard neutral model 11,054 58.0 2.8x107%¢ 129.37 2.84x107° 1,251.6 <1x1072°

*Model fit of the demographic model as a predictor of the syn_upM SFS; AIC, Akaike Information Criterion.

"Mean of the inferred gamma DFE distribution for site type.

“Likelihood ratio test (LRT) comparing the demographic model + DFE to the same demographic model without a DFE, based on 2 degrees of freedom.

provide an opportunity to assess how often selection on RNA
secondary structures is strong enough to interfere with selec-
tion on protein function at individual nucleotide sites.

To contrast RNA-level versus protein-level selection,
we performed simple simulations of selection effects within
gene coding regions. The simulations consisted of 4 steps
(supplementary fig. S5, Supplementary Material online
provides a schematic). First, we began with 24,820 genes
representing the length of A. thaliana genes with identified
A. lyrata orthologs (mean length=1275.4 nt). Second, for
each gene, we made the common (e.g. Kimura 1968b) but sim-
plifying assumption that mutations at ~76 % of sites represent
non-synonymous changes. Third, since our empirical analyses
indicated that 0.43 % of nonsynonymous alleles were also pcM
mutations (Table 1), we randomly assigned this proportion of
nonsynonymous mutations to affect secondary structure. At
these nonsynonymous sites, we assigned 2 fitness effects: a
“protein-level” fitness effect (Yprorein) and a “RNA-level” fit-
ness effect (Ysrucrure)- The 2 fitness values were assigned by
drawing from the corresponding non_upM and syn_pcM gam-
ma DFE distributions, as inferred from the exponential growth
model. Finally, we tallied metrics from each simulation, such as
the number of sites where RNA-level selection, as reflected by
Ystructures Was larger than v, orein, and also the number of genes
where this occurred for at least one site.

Using the DFEs inferred from the exponential growth model,
we estimated that there were, on average, 97,268 sites across
23,190 genes (85% of genes) where the selection coefficient
for the amino acid change was higher than that for a pcM mu-
tation. In contrast, a much smaller but still substantial number
of 22,118 sites encompassed the opposite case, where Ygiruceure
> Yprotein- 1 hese sites were found in 49% (or 13,437) of genes
(Fig. 4b and c). While these estimates are subject to numerous
caveats (see Discussion), they suggest that even the small fitness
effects observed among syn_pcMs could interfere with protein-
level selection at individual sites across a large subset of genes.

Testing for Expression and Temperature Effects for
pcMs

Previous work on experimentally-validated secondary-
structure polymorphisms have suggested that they can affect
gene expression in a temperature dependent matter tempera-
ture (Su et al 2018). This observation, coupled with previous
observations that gene expression varies with the presence
and strength of secondary structures (Li et al. 2012;
Vandivier et al. 2016; Martin et al. 2023), prompted us to
test 2 hypotheses. The first is that the presence of pcMs corre-
lates with gene expression. To investigate the potential for this
effect on a genome-wide level, we used the expression data
from the 1001 Genomes dataset and constructed a linear model

with mixed effects similar to Muyle et al. (2021) (see Methods).
The model measured within-gene expression differences be-
tween alleles and tested for the significance of the allelic state
(pcM vs. no pcM) across all genes, ignoring genes without
pcM SNPs. Genome wide, our model detected that derived
pcM alleles had significantly lower levels of expression com-
pared to non-pcM alleles (mean difference = 137.4 normalized
counts; P=0.001) (supplementary fig. S6, Supplementary
Material online). The effect was not always consistent among
genes, however, because 58.5% of allelic genes had lower ex-
pression in pcM alleles, while 41.4% had higher expression
in these genes.

The second hypothesis is that pcMs correlate with tempera-
ture. We tested the hypothesis that the frequency of pcMs co-
varied with climate by assessing the frequencies of derived
pcM alleles in geographically distinct subpopulations. To de-
fine subpopulations, we first used admixture groups deter-
mined from previous analyses of the 1001 Genomes (1001
Genomes Consortium 2016). For each subpopulation, we esti-
mated the mean frequency of derived alleles. To compare popu-
lation frequencies to climate data, we extracted climatic
variables for each individual in each subpopulation based on
its geographical coordinates and then calculated the mean of
each climatic variable in each subpopulation. Several climatic
variables related to temperature were negatively correlated
with the frequency of syn_pcM alleles across subpopulations
(Fig. 5a and b). The correlation was significant for
BIO1 (mean annual temperature; linear model R*=0.51,
P=0.032), BIO6 (minimum temperature of the coldest month;
R?=0.54, P=0.024), and BIO11 (mean temperature of the
coldest quarter; R*=0.47, P=0.043). Other temperature-
related variables and all precipitation-related variables were
not significantly correlated (P> 0.05; supplementary fig. S7,
Supplementary Material online). We repeated this analysis
with syn_upM frequencies to test whether these results reflect
the importance of secondary structure per se or geographic ef-
fects; syn_upM regressions were borderline significant for
BIO1 (P=0.047) but not for BIO6 (P=0.052), BIO11 (P=
0.062) or other bioclimatic variables.

These results relied on the definition of populations based
on admixture groups. Accordingly, we adopted an alternative
approach that relied on individuals rather than previously-
defined populations. We first summarized environmental vari-
ation across individuals using principal component analysis
(PCA). The first 3 PCs explained 36.02%, 31.33%, and
12.93% of the variation in climate, respectively. We then in-
cluded these first 3 PCs in mixed-linear models to predict the
number of all pcMs, syn_pcMs and non_pcMs. We did not de-
tect any significant associations between all pcMs and
non_pcMs, but syn_pcMs were significantly associated with
PC 2 (P=0.00099). PC 2 also was geographically defined,
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Fig. 4. The inferred distribution of fitness effects (DFE) for mutation types. a) The gamma DFE distribution for syn_pcM sites and non_upM sites under
the growth demographic model. The x axis is the scaled selection coefficient, y (=2NancestraiS); higher values on the x axis refer to stronger purifying
selection. Note that scale parameters for the syn_pcM distribution were not significantly different from zero (Table 3). b) The gamma DFE distribution
inferred from mutations within UTRs. pcM mutations from within 5’ and 3’ regions are shown separately, as are upM from those mutations (overlapping
dotted lines). The axes are described in a). c) The results of the pleiotropy simulations showing the number of sites within a genome where a simulated
nonsynonymous mutation experienced stronger selective effects at the RNA (secondary structure) level than at the protein level. The numbers differ
markedly when DFEs from different demographic models (exponential growth, bottleneck with growth and 2 epoch models) were used; however, as
indicated on the y axis, for each model, >24,000 nonsynonymous sites across the genome were expected to have stronger selection on secondary
structure than a missense change. d) The number of genes expected to have at least one site that has a stronger effect on protein (i.e. missense) change
than the RNA (i.e. change in secondary structure) and vice versa. The boxplots in c) and d) refer to distributions of simulated values across 100 different
simulations for each demographic model; within boxplots, the line shows the median value and the box edges show the interquartile range.

with a strong correlation with latitude (Spearman’s p=0.82,
P<2.2%x107'), and a moderate correlation with longitude
(Spearman’s p=0.34, P <2.2x 107'°, Fig. 5c). To understand
the relative contribution of bioclimatic variables to PC 2, we
examined the loadings of each bioclimatic variable on this
axis. Bioclimatic variables related to temperature (BIO1 to
BIO11) disproportionately contributed to PC 2 compared to
precipitation-related bioclimatic variables; e.g. the absolute
value of cumulative loadings across temperature variables
was 2.48 on PC2 compared to 1.24 for precipitation variables
(Fig. 5d and e). Supporting this observation, annual mean tem-
perature (BIO 1) explained 69 % of variation in PC 2 in a sim-
ple linear model, while annual precipitation (BIO 12) only
explained ~9% (Fig. 5d and e). Taken together, our analyses
suggest that the distribution of pcMs is explained in part by
differences in temperature across the Eurasian range of A.
thaliana, but these associations also hold weakly for upM
mutations.

Discussion

Mutations that affect secondary structure have long been
known to have functional effects (Wan et al. 2014). For ex-
ample, they contribute prevalently to human genetic disease

(Halvorsen et al. 2010; Lin et al. 2020) and a subset may act
as riboSNitches that affect both secondary structure and
gene expression (Ferrero-Serrano et al. 2022) in a temperature
dependent manner (Su et al. 2018).

Here we have identified derived mutations that are likely to
change pairing between bases within CDS regions, based on
both bioinformatic predictions and experimental data. Of
course, their identification is subject to numerous caveats.
We relied, for example, on a pseudo-ancestral genome that
was calculated from the Col-0 reference and an A. lyrata out-
group. This approach may mis-assign ancestral states for a
subset of sites and excluded SNPs from the 1,001 genomes da-
taset that did not align reliably with A. lyrata. As a conse-
quence, we almost certainly identified only a subset of
pair-changing variants. Our analyses were also likely biased
toward studying secondary structures that are present in the
Col-0 reference, because we used dsRNA data from Col-0 in
our identification pipeline.

Toidentify bases in coding regions that pair with other bases,
we chose LinearPartition, because it performs reliably and effi-
ciently relative to other secondary structure prediction pro-
grams (Zhang et al. 2020), including in extensive
comparisons to RNAfold (Lorenz et al. 2011). We also used
dsRNA data to verify pairing, even though Arabidopsis is
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one of only 2 plant species with available genome-wide
structure-seq information (Ding et al. 2014; Deng et al.
2018). We investigated the use of structure-seq data, but
most genes were not represented in the dataset, prohibitively
limiting the possibility for genome-wide analyses. Finally, we
assumed cutoff probabilities > 0.9 with LinearPartition to filter
pair-changing mutations. Although the general results held
with relaxed criteria, we suspect that our strict criteria misiden-
tified many bona fide pcMs as either equivocal or unpaired
mutations (upMs). The net effect of misclassifications is to
underemphasize differences among site classes (pcM,

equivocal and upM), making comparisons among categories
inherently conservative.

The Case for Selection Against Pair-Changing
Mutations

Given our methods, we identified >200,000 bases across the
expressed regions of the genome that likely pair with other
bases on the same transcript. Only a subset of 8,469 bases
were polymorphic across the Arabidopis 1,000 genomes data-
set (Table 1), and these were the focus of our study. The
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examination of these pcMs suggest that they are under select-
ive constraint, based on evidence that includes: (i) a 13.4% re-
duction of nucleotide diversity (r) at syn_pcM sites compared
to syn_upM sites (Fig. 2a), (ii) a skewed SFS in syn_pcM sites
relative to syn_upM sites (Fig. 3a), and (iii) a strong under-
representation of pcM changes in some genic locations, espe-
cially UTRs (Fig. 2b). In addition to summary statistics, we
inferred the DFE for various classes of sites based on a fitted
demographic model. The DFEs reflect strong evidence for se-
lection against derived non_upM variants (Fig. 4a), as ex-
pected, but also for pcMs in UTRs (Table 3 and Fig. 4b). As
we discuss below, the case for selection against syn_pcM var-
iants was less clear based on DFE analyses (Table 3) even
though supported by other metrics.

The inference about purifying selection on derived pcMs
within UTRs is consistent with previous work that has docu-
mented evolutionary constraints on secondary structure.
Secondary structure has been shown to impose constraint on
experimental evolution in microbial systems (Chursov et al.
2013; Bailey et al. 2021), and phylogenetic approaches have
shown that slower evolutionary rates at synonymous sites cor-
relate with the strength of secondary structure (Park et al.
2013). We have found that the 3’ regions of genes have marked
reduction of nucleotide diversity for pair-changing mutations
(Fig. 2b), that UTRs in both 5’ and 3’ regions have skewed
SFSs (supplementary fig. S4, Supplementary Material online),
and that DFE analyses support for selection on pcMs (but
not upMs) in UTRS (Table 3). One open question is about
the functional basis for selection against derived UTR
pair-changing mutations. In Arabidopsis, it is known that the
interruption of secondary structures in 3’ UTRs destabilize
mRNAs (Zhang et al. 2024), and so it is likely that pcMs affect
selection on mRNA half-lives or degradation rates. Similarly,
5" UTRs are generally tied to ribosome binding and translation
(Babendure et al. 2006; Matoulkova et al. 2012). It is also
worth noting that secondary structures are common within
the UTRs of plant genes; 85% of maize genes have detectable
secondary structures in their 5 UTRs (Martin et al. 2023)
and rice and maize generally seem to have stronger folding dy-
namics in 5" UTRs (Deng et al. 2018; Martin et al. 2023) com-
pared to Arabidopsis (Deng et al. 2018). The abundances of
genic transcript also vary with the strength of secondary struc-
tures. In maize, for example, transcript abundance is lower for
genes with particularly strong or weak folding within their 5’
UTRs (Martin et al. 2023), suggesting that there are optimal
folding parameters with respect to gene expression and trans-
lation. Altogether, selection against derived pcM mutations
in UTRs may reflect their effects on gene expression, transcript
stability and/or translation efficiency.

In contrast to UTRs, the case for selection against derived
syn_pcMs is more circumspect, even though it has long been
known that synonymous mutations are not entirely neutral
(Ikemura 1981). For example, strongly deleterious synonym-
ous variants have been documented in Drosophila, but the se-
lective effects did not correlate with the strength of selection
on secondary structure in this study system (Lawrie et al.
2013). Here most of our observations are consistent with the
idea that derived syn_pcM sites are under slightly stronger
negative selection than syn_upM sites, based on lower nucleo-
tide diversity (Fig. 2a), a skewed and significantly differently
SFS (Fig. 3a) and downstream associations with temperature
and gene expression. The DFE analyses do not, however,
necessarily support this conclusion. Relative to “neutral”
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syn_upM sites, the DFE analyses suggest that the syn_pcM
variants are at most moderately deleterious, and their effects
cannot be differentiated statistically from presumed neutrality
(Table 3).

The syn_pcM DFE results likely reflect some semblance of
truth, in that syn_upM and syn_pcMs seem to be under similar
magnitudes of selection. However, the methods are also likely
to lack discriminatory power, due to the fact (for example)
that fitDadi and similar may not deal adequately with the ef-
fects of linked selection (e.g. Gilbert et al. 2022). Another limi-
tation is that fitDadi was developed for the analysis of
outcrossing species, but A. thaliana is predominantly selfing.
Selfing can lead to decreased effective recombination rates,
which in turn increases the potential for interference among
linked alleles. Various ways have been implemented to deal
with selfing in DFE analyses (Huber et al. 2018; Blischak
et al. 2020), but empirical studies on the effect of selfing
have been mixed. DFEs can be overestimated (i.e. inferring
too much strong selection) when ~100% selfing is not consid-
ered (Gilbert et al. 2022) but other studies have recovered ad-
equate DFE distributions with selfing rates similar to
Arabidopsis (Arunkumar et al. 2015; Huber et al. 2018).
Another recent study has shown that inbreeding reduces the
inferred selective effects of moderately deleterious alleles
(Daigle and Johri 2024), suggesting that our DFE-based esti-
mates based on syn_pcMs may be conservative. We did at-
tempt to use selfing models in fitDadi, but were unable to
get them to converge with our data. Nonetheless, our demo-
graphic fits with outcrossing models were reasonable, and
mean DFEs estimates were not obviously inflated for some cat-
egories of sites (e.g. syn_pcMs, UTR _upMs, etc.).

Our work has reinforced that genes have many potential
targets of selection—from UTRs to missense changes to sec-
ondary structure—that could, in theory, lead to interference
and complex trade-offs. For example, mutations in UTRs
are likely to compete with other, linked changes in coding re-
gions. There are also possible conflicts between the RNA ver-
sus protein life stages of a gene at individual sites; that is,
mutations could be detrimental for secondary structure but
advantageous for protein function, or vice versa. We assessed
how often, at individual sites, the magnitude of negative selec-
tion against secondary structure (i.e. RNA level) changes was
stronger than for nonsynonymous (i.e. protein level) changes,
based on draws from the syn_pcM and non_upM DFE distri-
butions. The results were surprising, because they showed that
nearly half of genes may have at least one nonsynonymous mu-
tation that has larger fitness effects due to effects on secondary
structure compared to the encoded amino acid change. Thus,
selection at the RNA-level may often affect proteins. We rec-
ognize that our approach to investigate this phenomenon
was simplistic, in that it assumed the inferred DFEs were ac-
curate and also treated each gene equivalently with respect
to both evolutionary rates and the probability of an amino
acid change. Further disentangling the numerous (perhaps
contradictory) pressures shaping gene evolution at both
RNA and protein levels will require integrating structural dy-
namics into molecular and population genetic analysis.

Paired Mutations Associate With Temperature and
Gene Expression

In a landmark study, Su et al (2018) presented a compelling
demonstration of the potential importance of secondary struc-
tures within plant genes. They subjected rice (Oryza sativa L.)
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seedlings to a high temperature, eliciting a heat-shock re-
sponse, and then found that the RNAs of ~14,000 genes un-
folded over the experimental temperature range. As a class,
these genes also demonstrated shifts in gene expression, which
they attributed primarily to more rapid degradation of un-
folded RNAs (as opposed to reduced translation rates).
Their work suggested that SNPs that modify secondary struc-
tures could be more or less tolerated, depending on tempera-
ture and climate. That is, selection against pcMs may not be
as strong for plants that reside in regions of moderate (as op-
posed to high) temperatures. Their results also suggest that
RNA folding is a vital component of gene expression, so
that one expects correlations between the presence of second-
ary structure altering SNPs and shifts in gene expression.

To explore these threads on a genome-wide scale, we exam-
ined the distribution of pcM variants across the sampling land-
scape of the Arabidopsis 1001 Genomes dataset. We
investigated the association of alleles and climate across sub-
populations (i.e. previously inferred admixture groups) and
across individuals. Both approaches provide genome-wide evi-
dence that derived pcM mutations are more common at loca-
tions with lower temperatures, as measured by bioclimatic
variables (Fig. 5), without correspondingly strong associations
to precipitation-based variables (Fig. 5e¢). This is the first dem-
onstration of this genome-wide pattern, to our knowledge,
and it provides an opportunity to consider the evolutionary
forces that contribute to such a pattern. We can think of 3 rea-
sonable explanations: local adaptation, deleterious load and
genetic/geographic clustering. Previous work has argued con-
vincingly that some associations between pcMs and climate
likely represent local adaptation events (Ferrero-Serrano and
Assmann 2019), but we favor the latter 2 explanations for
our genome-wide pattern, for 2 reasons. First, derived, dele-
terious pcM mutations may be less strongly selected against
in low temperature environments where strong-folding may
not be as critical, and deleterious mutations tend to accumu-
late at the edges of geographic ranges (Travis et al. 2007;
Excoffier et al. 2009; Angert et al. 2020). Visually, we find
that higher pcM counts occur in the Northern and Eastern
edges of the sampled range (Fig. 5c), perhaps representing ex-
panding edges from Ice Age refugia. Second, syn_upM muta-
tions also correlate with BIO1, suggesting associations
among temperature, geography and genetic diversity.

Of course, any argument for selection for or against derived
pcMs assumes that they have a phenotypic effect. We found
the potential for such an effect, because genome-wide allelic
expression was significantly lower for alleles with a derived
pcM. This genome-wide result, across all sampled genes,
mimics similar results in microbial systems where the disrup-
tion of secondary structures reduces gene expression (Bailey
et al. 2021). However, there was also wide variation
across genes, because >40% of genes showed the opposite
pattern—i.e. pcM alleles had higher expression. We frankly
find it surprising that we could detect any trend at all, given ex-
perimental noise and that alleles in most genes likely differ by
more than just the presence/absence of a pcM. The results sug-
gest, although it is far from proven, the disruption of second-
ary structures has a causal effect on expression. One potential
biological explanation for higher expression of pcM alleles is
that the mutations that disrupt especially strong secondary
structures may also interrupt RNA-interference (Li et al.
2012), thereby diminishing epigenetic control. No matter the
cause, we have shown that derived pair-changing mutations

are under moderate levels of purifying selection based on
most of our analyses, that they vary across the genic location
(e.g. UTR vs. synonymous sites), that they associate with tem-
perature, and that one potential cause of these effects is that
the perturbation of secondary structures alters the dynamics
of transcript abundance.

Materials and Methods

Identification of Derived upM and pcM Mutations

We wused the 1001 Genomes Project v.3.1 (https:/
1001genomes.org/data/GMI-MPI/releases/v3.1/) SNP calls
(Lamesch et al. 2012) and variant annotations (1001
Genomes Consortium 2016) for all analyses. We filtered the
variant dataset that included all 1001 genomes to retain bial-
lelic SNPs and assigned ancestral and derived states by align-
ing the A. lyrata v1.0 genome assembly (Hu et al. 2011) to
the A. thaliana TAIR10 reference (Lamesch et al. 2012) using
AnchorWave 1.0 (Song et al. 2022). This approach enabled us
to polarize 5,613,812 of 12,883,854 (43.6%) SNPs.

To identify sites that may contribute to RNA secondary
structures, we first constructed a pseudo-ancestral genome
by replacing derived sites in the TAIR10 assembly with their
corresponding ancestral alleles from the polarized VCF using
GATK FastaAlternateReferenceMaker v3.7 (McKenna et al.
2010). Then, we extracted the longest mRNA (coding) se-
quence for each protein-coding gene from the pseudo-
ancestral reference using bedtools2 getfasta 2.27.1 (Quinlan
and Hall 2010) before estimating RNA folding for each
sequence with LinearPartition v1.0 (Zhang et al. 2020).
We then selected SNP sites that overlapped with positions
with base-pairing probability>0.9 as determined by
LinearPartition for further analysis. We verified putative pair-
ing sites by determining the overlap with dsSRNA sequencing
data generated from wildtype flower buds (NCBI Gene
Expression Omnibus GSE23439) (Zheng et al. 2010). Since
the dsRNA data was mapped to the TAIR9 assembly, we con-
verted to TAIR10 assembly coordinates (Lamesch et al. 2012)
using CrossMap 0.6.4 (Zhao et al. 2014). We considered pu-
tative pair changing mutations (pcM) with both computation-
al and empirical evidence (i.e. high base pairing probability in
LinearPartition analysis and dsRNA coverage). We further fil-
tered these sites by finding overlap with potential compensat-
ing mutations using the base pairing probability files from
LinearPartition; to do so, SNPs were excluded if the paired
base position also contained an alternative allele with base-
pairing compatibility with the derived allele. All overlaps of
genomic features were calculated using the GenomicRanges
R package 1.48.0 (Lawrence et al. 2013).

Nucleotide Diversity, Allele Frequency, and DFE
Analyses

We calculated nucleotide diversity () for pcM and upM sites
using VCFtools v0.1.16 (Danecek et al. 2011). First, we ex-
tracted sites from the 1,001 genomes VCF file belonging to
each category (syn_pcM, non_pcM, etc.) using samtools ta-
bix, the 1,001 genomes SnpEff file and annotations from our
paired/unpaired site identification. We calculated & with the
per-site method in each gene using VCFtools. We measured
distance between sites and various genic features (starts, stops,
and intron junctions) using GenomicRanges in R.

Site frequency spectra were calculated using a custom R
script with vefR v1.15.0 (Knaus and Griinwald 2017),
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data.table v1.15.2 (Barrett et al. 2024), and tidyverse 2.0
(Kuhn and Wickham 2020) R packages. Permutation tests
for differences between SFS were done by sampling the num-
ber of upM sites, building a SFS for each sample, calculating
the difference between the sample SFS and the true upM SFS
in each bin and then repeating this procedure for 10,000 iter-
ations to generate a distribution of differences for each bin
under the null model.

To estimate the DFE for different mutation types, we used
the fitDadi python package (Gutenkunst et al. 2009; Kim
et al. 2017). We first inferred demography using the
syn_upM SFS, which we assumed represented neutral muta-
tions, as in theory they affect neither the RNA secondary struc-
ture nor the protein product. We fit 4 demographic models
(Table 3) by loading the syn_upM SFS into Fitdadi from the po-
larized VCF file and by projecting down to 50 frequency bins to
moderate the effects of missing data. We optimized parameters
for each demographic model using the multinomial method,
and we perturbed each starting parameter at least 5 times to en-
sure that the same optimum for each demographic parameter
was reached independent of starting values. We evaluated the
accuracy of the inferred demographic models using fitDadi to
generate a neutral SFS under each demographic model and
compared the simulated SFS to the SFS from real data using
the Kolmogorov-Smirnov test in R. The estimated parameters
for each model are provided in supplementary table S1,
Supplementary Material online and examples of model fits
are provided in supplementary fig. S3, Supplementary
Material online.

We then used each of the fitted demographic models to esti-
mate the DFE of syn_pcMs, UTR_pcMs, non_pcMs and
non_upMs separately by using the unfolded SFS for each mu-
tation type in fitDadi (Kim et al. 2017) modeling the DFE as a
gamma distribution. We plotted DFEs in python using mat-
plotlib (Hunter 2007). We estimated the mean scaled selection
coefficient of each gamma distribution by multiplying the
shape x scale parameter of each. For both variant classes, we
used likelihood ratio tests with 2 degrees of freedom to com-
pare nested models that inferred the 2 gamma parameters
(i.e. with and without the DFE) (Table 3). We also tested 2 sep-
arate syn_upM SFS for demographic inference: (1) using a
folded SFS and (2) using subsampling instead of projection.
We tested these alternative approaches because (1) the un-
folded SFS is dependent on accurate ancestral state-calls, and
(2) subsampling allows for modeling of inbreeding during op-
timization of the demographic model, while projection does
not. However, we ultimately did not include these results be-
cause in both cases the model fits were much worse (growth
model from folded SFS AIC=756.66; subsampling growth
model with inbreeding AIC = 528,690)

Pleiotropy Simulation

To investigate the potential for conflicts between protein and
RNA-level selection, we started with a collection of 27,206
genes and multiplied the CDS lengths of each A. thaliana
gene with an A. lyrata ortholog (downloaded from Ensembl)
by 0.66 to approximate the number of nonsynonymous sites
across the genome. For each gene, we assigned each site as ei-
ther paired or unpaired based on the probability data from
Table 1. We then assigned each site a “protein-level” fitness ef-
fect (y) by pseudo-randomly drawing a value from the
non_upM DFE gamma distribution (shape=0.24, scale=
52.7). The assigned selection coefficient was pseudo-random
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because the maximum value of assignments was capped at
1,000 (2NxS). We then assigned paired sites an
“RNA-level” fitness effect by the same method, but this time
sampling from gamma distribution representing the DFE of
synonymous pcM SNPs (shape=0.22, scale=73). For each
simulation we counted the number of sites across the genome
where selection was stronger (more negative) against second-
ary structure changes than amino acid changes. We evaluated
the accuracy of our DFE simulations by comparing the means
of these sampled DFE to the “true” means estimated from the
gamma distributions (shape x scale). We repeated the simula-
tion 100 times, finding that the results changed minimally
(Fig. 4).

Geospatial and Climatic Correlations

We studied the association between environmental variables
and the number of pcM SNPs at both subpopulation and indi-
vidual scales. For the environmental variables, we used the 19
WorldClim 2 bioclimatic variables at 2.5 min resolution,
which summarize past climate averages from 1970 to 2000
(Fick and Hijmans 2017). Bioclimatic values for each acces-
sion were extracted using the collection coordinates reported
by the 1001 Genomes Project (1001 Genomes Consortium
2016) and the raster 3.6-26 R package (Hijmans 2023). For
the subpopulation-based approach, we considered the 10 sub-
populations inferred previously (1001 Genomes Consortium
2016) and fit both simple linear models and generalized linear
models in R (R Core Team 2023) to predict the mean allele fre-
quency across syn_pcM alleles using the mean of each biocli-
matic variable for each subpopulation.

For the individual-scale approach, we first did a PCA of the
bioclimatic variables using the prcomp function in R (R Core
Team 2023) and then fit mixed linear models using the Imekin
function from the coxme 2.2-20 R package (Therneau 2024)
to test for an association between between the first 3 PCs
and the number of pcM alleles across pcM sites per accession.
A centered relatedness matrix calculated from all biallelic
SNPs using gemma 0.98.5 (Zhou and Stephens 2012) was in-
cluded as a random effect in the models. We corrected the
P-values using the Bonferroni method and assessed signifi-
cance at a=0.05 (Huber et al. 2018).

Expression Analyses

Expression data in the form of log normalized counts was
downloaded from the NCBI Gene Expression Omnibus
(GSE80744) (Kawakatsu et al. 2016), which includes expres-
sion data for 24,175 genes in the 727 Salk accessions from
the 1001 Genomes dataset. pcM overlap with genes was deter-
mined using the GenomicRanges library in R (Lawrence et al.
2013). Allelic state for each accession was determined using the
1001 Genomes VCF file. Genes with no pcM allele were ex-
cluded from the analysis, and only 2 allelic states were consid-
ered: whenever an accession contained one or more pcMs in the
gene, it was considered a pcM allele, irrespective of whether the
pcM was the same SNP between alleles (e.g. if an accession con-
tained a pcM at one position within a gene, and another acces-
sion contained a pcM at a different position, both were put into
the same category of “pcM alleles”). The mixed-effect linear
model was analyzed using the R package Ime4 (Bates et al.
2015) and included pcM allelic state as a fixed effect and
gene identity as a random effect, expressed as:

log(Gene expression+ 1) ~ pcM presence + (1|Gene)
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