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Abstract 

Single-stranded RNA molecules can form intramolecular bonds between nucleotides to create secondary structures. These structures can have 
phenotypic effects, meaning mutations that alter secondary structure may be subject to natural selection. Here, we examined the population 
genetics of these mutations within Arabidopsis thaliana genes. We began by identifying derived SNPs with the potential to alter secondary 
structures within coding regions, using a combination of computational prediction and empirical data analysis. We identified 8,469 such 
polymorphisms, representing a small portion (∼0.024%) of sites within transcribed genes. We examined nucleotide diversity and allele 
frequencies of these “pair-changing mutations” (pcM) in 1,001 A. thaliana genomes. The pcM SNPs at synonymous sites had a 13.4% 
reduction in nucleotide diversity relative to non-pcM SNPs at synonymous sites and were found at lower allele frequencies. We used 
demographic modeling to estimate selection coefficients, finding selection against pcMs in 5′ and 3′ untranslated regions. Previous work has 
shown that some pcMs affect gene expression in a temperature-dependent matter. We explored associations on a genome-wide scale, 
finding that pcMs existed at higher population frequencies in colder environments, but so did non-PCM alleles. Derived pcM mutations had a 
small but significant relationship with gene expression; transcript abundance for pcM-containing alleles had an average reduction in 
expression of ∼4% relative to alleles with conserved ancestral secondary structure. Overall, we document selection against derived pcMs in 
untranslated regions but find limited evidence for selection against derived pcMs at synonymous sites.
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Introduction

RNA molecules are single stranded (ssRNA), which gives 
them the ability to form Watson–Crick bonds between bases 
in the same molecule (Varani and McClain 2000). This intra
molecular base pairing, termed secondary structure, largely 
determines the 3-dimensional shape of the molecule. The cap
acity for an RNA sequence to form secondary structures af
fects the function of transcribed regions of genomes in many 
ways (Vandivier et al. 2016). For example, nucleotide second
ary structures in.uence function by modulating translation 
(Kozak 1988; Svitkin et al. 2001), mRNA splicing (Buratti 
and Baralle 2004), ribozyme activity (Steitz and Moore 
2003), localization (Bullock et al. 2010), protein–RNA inter
actions (Williams and Marzluff 1995), and recombination 
(Tomizawa 1984; Forsdyke 1995). Additionally, they affect 
the epigenetic fate of genes by in.uencing their RNA stability 
(Li et al. 2012), complement of small-interfering RNAs 
(siRNAs), and DNA methylation (Martin et al. 2023). The ul
timate impact of a transcribed genomic region on phenotype 
(Duan et al. 2003) and :tness (Innan and Stephan 2001) is 
therefore shaped by its capacity to form secondary structures; 
for example, mutations that affect mRNA structure in humans 
have been implicated in disease (Halvorsen et al. 2010). Yet, 
the evolutionary dynamics of mutations affecting secondary 
structures in mRNAs have received little attention in the evo
lutionary biology literature, with most such studies focusing 
on non-coding RNAs (Nowick et al. 2019).

One interesting and unexplored aspect of selection on sec
ondary structure is its potential to contribute to adaptation. 
In protein coding genes, mutations can, in theory, have non- 
neutral effects on both the amino acid sequence and the nu
cleotide secondary structure. However, selection is typically 
considered through the lens of mutational effects on proteins. 
Metrics like dN/dS (the ratio of nonsynonymous to synonym
ous substitution rates) are used to identify loci under positive 
or purifying selection, but this approach does not account for 
possible selection on mRNA secondary structure, which is 
likely to affect both the numerator and the denominator of 
dN/dS. Consider, too, that :tness optima of secondary struc
tures may change with the environment. For example, 
Ferrero-Serrano et al. (2022) recently demonstrated that 2 
experimentally-validated structure-changing SNPs (often 
termed “riboSNitches” [Halvorsen et al. 2010]) caused differ
ent folding dynamics in cold versus warm environments. Thus, 
the :tness optima of secondary structures may vary with tem
perature and perhaps other environmental variables.

Selection on secondary structure could also have important 
methodological consequences for measuring selection with 
molecular data. This is because interpretation of dN/dS ratios 
assumes that synonymous mutations are selectively neutral 
(Kimura 1968a). Since the 1980s, evolutionary biologists 
have known that this is not entirely correct because codon us
age is non-random (Ikemura 1981), and more recent studies 
have demonstrated strong non-neutral :tness effects from syn
onymous mutations (Lawrie et al. 2013; Lebeuf-Taylor et al. 
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2019). With regard to the :tness effects of secondary struc
ture, it is known that (i) secondary structures within mRNA 
coding regions are more stable than expected under random
ized codon usage (Seffens and Digby 1999), (ii) the location 
of synonymous substitutions is not random with respect to 
secondary structure stability (Chamary and Hurst 2005), 
(iii) codon usage is constrained towards weaker structure 
around miRNA-binding sites (Gu et al. 2012), and (iv) syn
onymous variants disrupting computationally-predicted sec
ondary structure exist at reduced frequencies in human 
populations (Gaither et al. 2021), implying that purifying se
lection acts on these variants. Approaches like dN/dS and the 
McDonald–Kreitman test (McDonald and Kreitman 1991) 
typically rely on the assumption that synonymous changes 
are selectively neutral, but they have been shown to be sensi
tive to even weak selection (Rahman et al. 2021). Depending 
on the strength and prevalence of RNA-level selection, ac
counting for secondary structure could be important for dis
tinguishing neutral synonymous variants from weakly 
selected variants.

Another reason that such mutations are evolutionarily in
teresting is through the possibility of different selective effects 
between the RNA and protein “life stages” of gene expression. 
Nonsynonymous mutations can alter both amino acid se
quence and secondary structure stability, potentially leading 
to a con.ict between selection for protein function (protein- 
level selection) and mRNA stability (RNA-level selection; 
Wegler et al. 2020). For example, a derived missense substitu
tion may enhance the effectiveness of a protein but have an 
overall deleterious effect by compromising mRNA :tness 
through a less favorable secondary structure, potentially lead
ing to improper splicing, translation, or reduced stability 
(Vandivier et al. 2016). The frequency and importance of 
this potential pleiotropic antagonism depend on the relative 
strength of selection acting on mutations affecting secondary 
structure compared to mutations that affect amino acid se
quence. If these con.icts exist, they will constrain the ef:cacy 
of positive selection (Fraïsse et al. 2019).

Finally, while secondary structures serve important func
tions, particularly strong secondary structures have unique 
properties that may negatively affect mRNA half-lives. 
Stable genic hairpins can cause genes to behave like 
pre-microRNA (miRNA) transcripts (Li et al. 2012), which 
form hairpin structures that are targeted by Dicer-like en
zymes (Vergani-Junior et al. 2021) and are subsequently de
graded into small RNAs. Like in pre-miRNA loci, elevated 
numbers of small-interfering RNAs map to these structured 
genes (Li et al. 2012; Martin et al. 2023), putatively because 
their hairpins are degraded by Dicer-like enzymes. In turn, re
gions of miRNA-like secondary structure within genes corres
pond to high densities of small RNA mapping as well as high 
levels of small RNA-associated methylation (Martin et al. 
2023), which often represses gene expression and function 
(Li et al. 2012). Given that small RNA mapping and repressive 
methylation are typically associated with silenced sequences, 
such as transposable elements, it is intriguing that many genes 
(up to 70% of annotated Zea mays genes) contain hairpin sec
ondary structures (Martin et al. 2023). It is possible that these 
regions represent evolutionary con.icts between crucial sec
ondary structure and downstream epigenetic effects.

In this study, we focus on the population genetics of muta
tions that are likely to affect secondary structure within the 
genes of the Arabidopsis thaliana (Arabidopsis) 1001 

Genomes dataset (1001 Genomes Consortium 2016). We be
gin by establishing a method to identify SNP variants that are 
within the ancestral secondary structures of expressed coding 
regions. There are generally 2 approaches to identify these 
structures, and neither is perfect. The :rst is empirical measure
ment. X-ray crystallography can accurately determine the 
structure of a transcript (Zhang and Ferré-D’Amaré 2014), 
but it is prohibitively expensive and infeasible to perform on 
a genome-wide level. Sequencing approaches such as double- 
stranded RNA (dsRNA) sequencing (Zheng et al. 2010; Li 
et al. 2012), structure-seq (Ding et al. 2014), and SHAPE-seq 
(Kwok et al. 2013; Liu et al. 2021) have also been used to esti
mate secondary structures. These methods can be error prone, 
depend on coverage, and capture only a single possible second
ary structure in a moment in time. The second approach is com
putational prediction (Halvorsen et al. 2010; Lorenz et al. 
2011; Zhang et al. 2020), which is widely used but does not al
ways recapitulate known structures from X-ray crystallog
raphy (Zhang et al. 2020). Nonetheless, newer prediction 
methods have become more accurate and have distinct advan
tages, such as the ability to integrate information across many 
possible secondary structures (Zhang et al. 2020).

Here, we adopt a combined approach that uses both compu
tational prediction and sequencing data to identify SNPs that 
may affect secondary structures in expressed coding region of 
A. thaliana. We then calculate the population frequencies of 
these variants across the 1001 global Arabidopsis accessions 
to address 4 sets of questions. First, is there evidence that these 
mutations are under selection? That is, do they have evolution
ary histories similar or dissimilar to putatively neutral syn
onymous mutations? Second, if they appear to be under 
selection, what is the inferred strength of selection compared 
to synonymous and nonsynonymous SNPs that are not within 
secondary structures? Third, is there any evidence to suggest 
that RNA-level selection con.icts with protein-level selection 
or that they affect one possible phenotype, i.e. gene expression? 
Finally, previous work has suggested that secondary-structure 
altering SNPs may be associated with environment variables, 
particularly temperature. Is this true on a genome-wide scale?

Results

Identifying Unpaired Mutations and Pair Changing 
Mutations Mutations

Identifying mutations that change the conformation of an 
RNA molecule is a complex and unsolved problem 
(Ferrero-Serrano et al. 2022). We developed a method to iden
tify derived mutations with a high likelihood of being ances
trally paired (that is, hydrogen bonded to another nucleotide 
base in the ancestral A. thaliana genome) within secondary 
structures. We refer to such mutations as “pair changing mu
tations (pcM)”, while those that are not ancestrally paired are 
“unpaired mutations (upM).” To classify these variants, we 
followed 3 steps (Fig. 1). First, we polarized ancestral SNPs 
from the Arabidopsis 1001 Genomes Project (1001 
Genomes Consortium 2016) using an A. lyrata outgroup 
(see Materials and Methods). We used these ancestral SNPs 
to create an ancestral pseudo-transcriptome from the 
TAIR10 assembly (Berardini et al. 2015) by replacing derived 
alleles present in the Columbia-0 (Col-0) reference genome 
with the inferred ancestral SNP. Second, we extracted 
mRNA sequences from the pseudo-ancestral reference and in
ferred base-pairing potentials within these sequences using 
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LinearPartition (Zhang et al. 2020). LinearPartition calculates 
a partition function for a complete RNA sequence, and it sums 
equilibrium constants for all possible secondary structures for 
a sequence (i.e. not just the most likely structure). It outputs a 
base-pairing matrix that conveys the estimated probability 
that 2 bases pair. We focused only on bases with a high 
(>0.90) probability of pairing. Finally, we overlapped 
LinearPartition analyses with empirical data, namely 
previously-generated dsRNA data (Zheng et al. 2010). The 
data were generated from 6-week-old Col-0 (.ower bud clus
ters, leaves, and all aerial portions), and we used the data with 
the intention of distinguishing true paired bases from 
less-likely paired bases. In the sequencing data, we found 
that dsRNA regions were, on average, 26.9 nt long, and 
spanned a total of 1.9 × 106 nt, representing 1.7% of the total 
mRNA database.

Given both LinearPartition and dsRNA data, we de:ned de
rived pcM mutations as the subset of SNPs: (i) that had a 
LinearPartition probability >0.9, (ii) that were detected as 
paired in dsRNA data, and (iii) whose presumed paired base 
did not also contain a complementary SNP. For example, if 
the identi:ed base contained an A to G mutation at position 
1 and was found to be ancestrally paired with a T at position 
20, then the SNP at position 1 was not counted if position 20 
contained a T to C substitution. This approach yielded 3 sets 
of derived SNPs: (i) pair-changing mutations (pcM), which 
were predicted to alter base-pairing based on both empirical 
and computational evidence, (ii) “equivocal” SNPs, which 
were predicted to alter base-pairing based on only one of the 
2 prediction methods, and (iii) upM, which had no evidence 
for being within secondary structures. After applying these 
rules, the pcM set consisted of 8,469 inferred mutations across 
5,141 Arabidopsis genes (Table 1), representing a subset of 
201,965 ancestrally paired bases (Table 1). Note, however, 

that the pcM SNPs likely do not re.ect all of the bases involved 
in secondary structures, due to inevitable false negatives in our 
conservative approach. To address this concern, we also com
pared results from less conservative pcM/upM de:nitions (e.g. 
changing the pairing-probability cutoff and relying only on 
LinearPartition by not considering dsRNA overlap) to the 
pcM sets. The less conservative datasets yielded qualitatively 
similar downstream results (see below), and so for simplicity 
we focus primarily on analyses with the pcM set.

Prevalence and Distribution of upM and pcM 
Mutations

If mutations that affect secondary structure are selectively im
portant, one naive expectation is that their distribution across 
the genome differs from those mutations that do not affect 
structure. To pro:le and compare distributions among SNP 
types, we categorized derived SNPs based on their predicted 
impact based on SnpEff annotations (Cingolani et al. 2012). 
upMs were more likely to occur in untranslated regions 

Fig. 1. A schematic representation of the method used to identify derived unpaired (upM) and pair-changing (pcM) mutations. Three SNPs are shown at 

positions 6, 12, and 27 within a hypothetical gene: one that is equivocal (6, left), one that is unpaired (position 12, middle) and one that is a pair-changing 

mutation (position 27, right). Bases with high (>0.90) LinearPartition base-pairing probabilities are shown as parentheses. Both dsRNA and LinearPartition 

evidence were required to designate a base as pcM; bases with only one type of supporting evidence (either base-pairing probabilities > 0.90 or empirical 

dsRNA evidence) were deemed equivocal.

Table 1 Genomic sites categorized by effect inferred effects on secondary 

structure

Ancestrally 

paired

Ancestrally 

unpaired

Equivocala

Total number of bases 201,965 63,158,076 1,305,821
Total number of SNPs 8,469b 2,320,555c 70,719
Nonsynonymous SNPs 3,790 864,006 22,231
Synonymous SNPs 3,214 631,838 16,038
UTRs (5′ + 3′) 1,103 438,206 240,526

aSupported as paired by the computational method (LinearPartition) or by 
dsRNA coverage but not both.
bThese SNPs represent the total set of pair-changing mutations (pcM).
cThese SNPs represent the set of unpaired mutations (upM).
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(UTRs) and splice sites than pcMs, which were more common 
in coding regions (Table 2). pcMs were about half as likely to 
be found in the UTRs as expected under random distributions 
based on the length of features within genes—i.e. 3′ UTRs 
comprised ∼15% of genic space but only 8.04% of pcMs 
were within UTRs. Similarly, the percentage of 5′ UTR pcM 
mutations (4.98%) was lower than expected given the per
centage of paired bases within 5′ UTRs (6.86%).

These observations could be caused either because second
ary structures are less frequent in UTRs or because selection 
against pcM mutations is stronger in UTRs. To explore these 
options, we compared the locations of 8,469 pcMs to the set of 
201,965 ancestrally paired bases that did not have a derived 
SNP. If selection is not the cause, we reasoned that the distri
bution of pcMs in UTRs should be similar in proportion to an
cestrally paired bases. To perform each permutation, we chose 
a random subset of n = 8,469 pseudo-pcM sites from the com
plete paired site dataset of n = 201,965. For each permutation, 
we counted the percentage of randomly-assigned sites in each 
genic component (5′ UTR, coding region, and 3′ UTR) and 
then compared those proportions to observed values. We 
found, for example, that the observed proportion of 13% of 
pcMs in 5′+3′ UTRs differed signi:cantly (P < 0.01) from 
the 16% proportion of paired ancestral sites in UTRs. These 
results suggest that the locational skew in pcMs may not be 
due solely to locational biases but may be consistent with se
lection shaping the location and distribution of pcMs.

Reduced Nucleotide Diversity at Paired Versus 
Unpaired Sites

Nucleotide diversity at synonymous sites (πS) tends to be higher 
than at nonsynonymous sites (πN), which is generally inter
preted as the result of purifying selection (Ingvarsson 2010; 
Osada 2015). We calculated nucleotide diversity on different 
sets of segregating sites. For pair-changing mutations, we fo
cused only on synonymous sites (syn_pcM) to avoid the 

confounding effects of selection on nonsynonymous substitu
tions. We compared nucleotide diversity at segregating 
synonymous sites between the syn_pcM (n = 3,214) and 
syn_upM (n = 631,838) categories. We hypothesized that, if 
syn_pcM mutations are neutral, syn_pcM diversity (πsyn_pcM) 
should be equivalent to syn_upM diversity (πsyn_upM). 
Alternatively, if selection on paired bases is strong and similar 
to that of protein-level selection, πsyn_pcM should be similar to 
nonsynonymous diversity (πN) (n = 864,006). We found that 
πsyn_pcM (median: πsyn_pcM = 0.0071, mean: πsyn_pcM = 0.071) 
was signi:cantly lower than πsyn-upM (median: πsyn_upM = 

0.0082, mean: πsyn_upM = 7.8 × 10−2; Fig. 2a; t-test P < 

0.001). However, πsyn_pcM was also signi:cantly higher than 
πN (median: πN = 0.0037; mean: πN = 0.050), putting pcM di
versity at an intermediate level (Fig. 2a; t-test P < 0.001). 
These results nonetheless hint at purifying selection on 
syn_pcM sites relative to syn_upM sites.

An open question is whether selection on secondary struc
ture interferes with selection for amino acid sequence. One fac
tor that may in.uence this relationship is variation in selection 
across the length of genes. For example, secondary structure is 
known to be particularly important at start codons and intron 
splice sites (Li et al. 2012; Vandivier et al. 2016), while the ami
no acid sequence is more important towards the middle of the 
protein (Bricout et al. 2023). To explore spatial distributions, 
we measured π at the 3 different types of sites across the length 
of gene coding sequences (Fig. 2b). The distributions differed 
visually among site categories. πN was lowest at the middle 
of the coding sequence, while syn_πupM was the lowest towards 
the edges. The signal for πsyn_pcM was noisy, likely owing to the 
low n of this category, but it dipped towards the 3′ end of the 
coding sequence.

Investigating Selection on Structural Mutations

Given results based on π, we predicted that mutations that 
putatively change secondary structure are generally more 

Table 2 SnpEff annotations for upM versus pcM SNPs

SNP effect Number upM Percentage upM in  

SnpEff categorya
Number pcM Percentage pcM in  

SnpEff categorya
Percentage difference  

(upM pcM)

Synonymous variant 631,838 27.23% 3214 37.95% −10.72%
Missense variant 864,006 37.23% 3790 44.75% −7.52%
Disruptive inframe deletion 2825 0.12% 19 0.22% −0.10%
Inframe insertion 2437 0.11% 11 0.13% −0.02%
Inframe deletion 3449 0.15% 14 0.17% −0.02%
Frameshift variant + start lost 450 0.02% 3 0.04% −0.02%
Frameshift variant + stop gained 222 0.01% 2 0.02% −0.01%
Frameshift variant + stop lost 377 0.02% 2 0.02% −0.01%
Initiator codon variant 231 0.01% 1 0.01% 0.00%
Stop retained variant 1315 0.06% 4 0.05% 0.01%
Disruptive inframe insertion 808 0.03% 2 0.02% 0.01%
Start lost 1232 0.05% 2 0.02% 0.03%
Stop lost 1532 0.07% 2 0.02% 0.04%
Splice acceptor variant 3389 0.15% 8 0.09% 0.05%
Splice donor variant 3537 0.15% 3 0.04% 0.12%
Stop gained 15,577 0.67% 41 0.48% 0.19%
Frameshift variant 24,822 1.07% 64 0.76% 0.31%
5′ UTR premature start codon gain variant 18,977 0.82% 42 0.50% 0.32%
5′ UTR variant 161,299 6.95% 422 4.98% 1.97%
splice region variant 94,490 4.07% 55 0.65% 3.42%
3′ UTR variant 276,907 11.93% 681 8.04% 3.89%
Intron variant 210,835 9.09% 87 1.03% 8.06%
Total 2,320,555 … 8469 … …

aPercentage of SNPs in category (upM or pcM) with a particular effect.
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deleterious than synonymous changes that do not affect sec
ondary structure. To examine this prediction more formally, 
we calculated the site frequency spectra (SFS) of various classes 
of mutations and then used the SFS to infer the strength of se
lection. Visual inspection showed that the distribution for pcM 
sites was skewed towards lower frequency alleles compared to 
upM sites for both synonymous and nonsynonymous sites 
(Fig. 3a and b), re.ecting more singletons and fewer intermedi
ate and :xed mutations. The set of pcM mutations was a small 
subset of total SNPs, so we tested for statistical signi:cance be
tween SFSs in 2 ways: a Kolmogorov–Smirnov test and a 
permutation-based approach (Fig. 3c and d). The SFS for 
pcM mutations at both synonymous and nonsynonymous sites 
differed signi:cantly from the SFS of syn_upM mutations. 
Nonsynonymous pcM (i.e. non_pcM) mutations had a stron
ger skew toward rare variants than syn_pcM mutations 
(Fig. 3a and b), with a correspondingly lower signi:cance value 
relative to the syn_upM SFS (permutation non_pcM, P ≃ 0; 
syn_pcM, P = 0.01; Fig. 3c and d). Finally, we note that the 
SFS of mutations in the equivocal class (i.e. those which were 
identi:ed by either the computational or sequencing approach, 
but not both) fell between the pcM and upM distributions 
(Fig. 3a and b).

We evaluated the robustness of these results by investigating 
datasets based on alternative de:nitions of pcM and upM. 
First, we considered sites identi:ed as likely to be paired by 
LinearPartition, without :ltering by dsRNA overlap. For 
both synonymous (n = 19,252) and nonsynonymous (26,021) 
pcM, allele frequencies remained signi:cantly different com
pared to syn_upM (supplementary :g. S1, Supplementary 
Material online). Second, we loosened cutoffs for base-pairing 
probabilities inferred by LinearPartition, while continuing to 
:lter by dsRNA cutoff. With a base-pairing probability thresh
old of 0.50 (opposed to the original 0.90), the SFS of both 
syn_pcM (n = 20,596) and non_pcM (n = 57,349), the SFSs 
remained signi:cantly different to the SFS of syn_upM 
(supplementary :g. S2, Supplementary Material online).

We used SFS information to infer the strength of selection 
on pcM mutations using :tDadi (Gutenkunst et al. 2009; 
Kim et al. 2017), which estimates demographic history from 
frequency spectra of neutral alleles. Here, we used syn_upM 
mutations for demographic inference, reasoning that they re
present the most likely set of neutral sites in our dataset. We 
:t 4 models with syn_upM SNPS, including a standard neutral 
model, an exponential growth model, a bottleneck model and 
a 2-epoch model (supplementary :g. S3, Supplementary 
Material online; Materials and Methods). Based on the 
Akaike Information Criterion (AIC), the exponential growth 
model best :t the data (Table 3), with exponential growth 
starting 0.243 2NAncestral generations before present to a con
temporary population size ν = 2.26 × NAncestral. Similar shifts 
in population size were inferred with different demographic 
models, all of which inferred a ∼2-fold increase in population 
size beginning ∼0.4 NAncestral generations ago (supplementary 
table S1, Supplementary Material online). These inferences 
match previous work on A. thaliana, which is thought to 
have expanded from refugia after the last glacial maximum 
∼20 KYA (François et al. 2008; Durvasula et al. 2017).

We then used the :tted demographic models to estimate dis
tributions of :tness effects (DFEs) from the SFS of syn_pcMs, 
pcMs in 5′+3′ UTR regions (UTR_pcMs) and non_upM SNPs. 
Based on visual analysis of the SFS (Fig. 3a and b), we expected 
the DFE to be weaker for syn_pcMs than for non_upMs, and 
this was the case (Fig. 4a). From the inferred DFE based on the 
exponential growth model, syn_pcM sites had a mean scaled 
selection coef:cient (γ = 2NAncestralS) = 0.23, which was 
∼50-fold smaller than the mean effect for non_upMs 
(Table 3). [Here, higher mean γ values denote stronger selec
tion against derived mutations.] These estimates of DFE rely 
on the accuracy of the demographic model used, so we also 
compared DFEs estimated using the other demographic mod
els, :nding similar estimates for the magnitude of pcM select
ive effects (Table 3). Interestingly, the inferred mean scaled 
selection coef:cient for UTR_pcMs was ∼15 higher than for 

Fig. 2. Nucleotide diversity at synonymous paired (pcM), synonymous unpaired (upM), and nonsynonymous (missense) sites. a) Violin plot of nucleotide 

diversity at different site types, with the black dots representing mean diversity. P-values for statistical contrasts are provided above the violin plots, based 

on t-tests. b) π calculated in windows across the length across all analyzed CDS regions. The x axis represents length-standardized windows across the 

span of all analyzed genes from the 5′ end (transcription start site [TSS]) to the 3′ end (TTS). Missense refers to nonsynonymous bases not identified as 

pair-changing mutations; paired refers to synonymous pcM mutations; unpaired refers to synonymous upM mutations.
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syn_pcMs under the exponential growth and bottleneck mod
els (Table 3; Fig. 4b), re.ecting the strong-left leaning skew for 
the UTR_pcM SFS (supplementary :g. S4, Supplementary 
Material online). Similar estimates were obtained when 5′ 

and 3′ UTRs were examined separately (exponential growth 
model: 5′ UTR_pcM mean γ = 2.86; 3′ UTR_pcM mean γ = 

5.87). Finally, we note that the relatively high mean values 
were not typical of UTRs, because non-pair changing muta
tions in UTRs had much lower mean γ values (exponential 
growth model: 5′ UTR upM mean γ = 0.11; growth: 3′ UTR 
upM mean γ = 4.0 × 10−4; Fig. 4b).

Since γ values < 1 are typically considered neutral, the mean 
DFE estimates suggest that syn_pcMs (mean γ = 0.23) do not 
have strong selective effects on average. We tested this idea 
more formally using likelihood ratio tests (LRTs) that com
pared nested models with and without DFEs. While the results 
did depend on the demographic model, the null hypothesis of γ 
shape and scale parameters equaling 0.0 could not be rejected 
under the exponential growth and bottleneck models (P = 

0.14; Table 3). By contrast, the null hypothesis could be 

rejected for UTR_pcMs and for non_upM SNPs across all of 
the considered demographic models (LRT P-values < 1 × 

10−5; Table 3; but not for 5′ or 3′ UTR_upM mutations; 
P-values > 0.2) Altogether, the DFE results detect selection 
against derived nonsynonymous SNPs and pair-changing mu
tations in UTRs, without strong statistical evidence for selec
tion against syn_pcMs SNP.

The Potential for Pleiotropy Between Secondary 
Structure and Amino Acid Changes

The DFE analyses suggest that derived syn_pcMs are effective
ly neutral on average, but nucleotide diversity and the SFS sug
gest the possibility of purifying selection against syn_pcMs 
(e.g. Figures 2a, 3c and d). In any case, the inferred 
syn_pcM DFE provides a sense of the magnitude and variation 
of effects across synonymous sites within protein coding re
gions due to secondary structure alone. In contrast, the DFE 
based on non_upM mutations provides insights into selection 
pressures on amino acid changes. Together, these 2 DFEs 

Fig. 3. a) Unfolded site frequency spectra (SFS) showing derived allele frequencies of synonymous alleles categorized by their inferred effect on ancestral 

secondary structure. b) SFS of nonsynonymous alleles in each category. c) Permutation distributions for differences between paired and unpaired SFS at 

synonymous sites (black dot shows missense for scale), and d) between for nonsynonymous sites and unpaired synonymous sites. c) and d) Violins 

represent the distribution of differences in random samples (same n as paired sites) from the unpaired data, while points show the observed differences. 

Differences (y axis) were calculated as the percentage of alleles in each pcM SFS bin subtracted from the percentage in the same upM SFS bin (e.g. {0-0.1] 

in pCM minus {0-0.1] in upM, etc.).
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provide an opportunity to assess how often selection on RNA 
secondary structures is strong enough to interfere with selec
tion on protein function at individual nucleotide sites.

To contrast RNA-level versus protein-level selection, 
we performed simple simulations of selection effects within 
gene coding regions. The simulations consisted of 4 steps 
(supplementary :g. S5, Supplementary Material online 
provides a schematic). First, we began with 24,820 genes 
representing the length of A. thaliana genes with identi:ed 
A. lyrata orthologs (mean length = 1275.4 nt). Second, for 
each gene, we made the common (e.g. Kimura 1968b) but sim
plifying assumption that mutations at ∼76% of sites represent 
non-synonymous changes. Third, since our empirical analyses 
indicated that 0.43% of nonsynonymous alleles were also pcM 
mutations (Table 1), we randomly assigned this proportion of 
nonsynonymous mutations to affect secondary structure. At 
these nonsynonymous sites, we assigned 2 :tness effects: a 
“protein-level” :tness effect (γprotein) and a “RNA-level” :t
ness effect (γstructure). The 2 :tness values were assigned by 
drawing from the corresponding non_upM and syn_pcM gam
ma DFE distributions, as inferred from the exponential growth 
model. Finally, we tallied metrics from each simulation, such as 
the number of sites where RNA-level selection, as re.ected by 
γstructure, was larger than γprotein, and also the number of genes 
where this occurred for at least one site.

Using the DFEs inferred from the exponential growth model, 
we estimated that there were, on average, 97,268 sites across 
23,190 genes (85% of genes) where the selection coef:cient 
for the amino acid change was higher than that for a pcM mu
tation. In contrast, a much smaller but still substantial number 
of 22,118 sites encompassed the opposite case, where γstructure 

> γprotein. These sites were found in 49% (or 13,437) of genes 
(Fig. 4b and c). While these estimates are subject to numerous 
caveats (see Discussion), they suggest that even the small :tness 
effects observed among syn_pcMs could interfere with protein- 
level selection at individual sites across a large subset of genes.

Testing for Expression and Temperature Effects for 
pcMs

Previous work on experimentally-validated secondary- 
structure polymorphisms have suggested that they can affect 
gene expression in a temperature dependent matter tempera
ture (Su et al 2018). This observation, coupled with previous 
observations that gene expression varies with the presence 
and strength of secondary structures (Li et al. 2012; 
Vandivier et al. 2016; Martin et al. 2023), prompted us to 
test 2 hypotheses. The :rst is that the presence of pcMs corre
lates with gene expression. To investigate the potential for this 
effect on a genome-wide level, we used the expression data 
from the 1001 Genomes dataset and constructed a linear model 

with mixed effects similar to Muyle et al. (2021) (see Methods). 
The model measured within-gene expression differences be
tween alleles and tested for the signi:cance of the allelic state 
(pcM vs. no pcM) across all genes, ignoring genes without 
pcM SNPs. Genome wide, our model detected that derived 
pcM alleles had signi:cantly lower levels of expression com
pared to non-pcM alleles (mean difference = 137.4 normalized 
counts; P = 0.001) (supplementary :g. S6, Supplementary 
Material online). The effect was not always consistent among 
genes, however, because 58.5% of allelic genes had lower ex
pression in pcM alleles, while 41.4% had higher expression 
in these genes.

The second hypothesis is that pcMs correlate with tempera
ture. We tested the hypothesis that the frequency of pcMs co
varied with climate by assessing the frequencies of derived 
pcM alleles in geographically distinct subpopulations. To de
:ne subpopulations, we :rst used admixture groups deter
mined from previous analyses of the 1001 Genomes (1001 
Genomes Consortium 2016). For each subpopulation, we esti
mated the mean frequency of derived alleles. To compare popu
lation frequencies to climate data, we extracted climatic 
variables for each individual in each subpopulation based on 
its geographical coordinates and then calculated the mean of 
each climatic variable in each subpopulation. Several climatic 
variables related to temperature were negatively correlated 
with the frequency of syn_pcM alleles across subpopulations 
(Fig. 5a and b). The correlation was signi:cant for 
BIO1 (mean annual temperature; linear model R2

= 0.51, 
P = 0.032), BIO6 (minimum temperature of the coldest month; 
R2

= 0.54, P = 0.024), and BIO11 (mean temperature of the 
coldest quarter; R2

= 0.47, P = 0.043). Other temperature- 
related variables and all precipitation-related variables were 
not signi:cantly correlated (P > 0.05; supplementary :g. S7, 
Supplementary Material online). We repeated this analysis 
with syn_upM frequencies to test whether these results re.ect 
the importance of secondary structure per se or geographic ef
fects; syn_upM regressions were borderline signi:cant for 
BIO1 (P = 0.047) but not for BIO6 (P = 0.052), BIO11 (P = 

0.062) or other bioclimatic variables.
These results relied on the de:nition of populations based 

on admixture groups. Accordingly, we adopted an alternative 
approach that relied on individuals rather than previously- 
de:ned populations. We :rst summarized environmental vari
ation across individuals using principal component analysis 
(PCA). The :rst 3 PCs explained 36.02%, 31.33%, and 
12.93% of the variation in climate, respectively. We then in
cluded these :rst 3 PCs in mixed-linear models to predict the 
number of all pcMs, syn_pcMs and non_pcMs. We did not de
tect any signi:cant associations between all pcMs and 
non_pcMs, but syn_pcMs were signi:cantly associated with 
PC 2 (P = 0.00099). PC 2 also was geographically de:ned, 

Table 3 Demographic models used in fitDadi DFE estimation with information about inferred DFEs from various site categories

Demographic model AICa γ Meanb 

(UTR_pcM)

LRT P-valuec 

(UTR_pcM)

γ Meanb 

(syn_pcM)

LRT P-valuec 

(syn_pcM)

γ Mean 

(non_upM)b
LRT P-valuec 

(non_upM)

Exponential growth 130 3.64 5.6 × 10−10a 0.23 0.141 12.4 <1 × 10−26

Bottleneck growth 869 3.53 2.7 × 10−10a 0.24 0.145 31.0 <1 × 10−26

Two-epoch 1,024 3.12 3.2 × 10−10a 0.25 0.0870 129.7 <1 × 10−26

Standard neutral model 11,054 58.0 2.8 × 10−26 129.37 2.84 × 10−5 1,251.6 <1 × 10−26

aModel :t of the demographic model as a predictor of the syn_upM SFS; AIC, Akaike Information Criterion.
bMean of the inferred gamma DFE distribution for site type.
cLikelihood ratio test (LRT) comparing the demographic model + DFE to the same demographic model without a DFE, based on 2 degrees of freedom.
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with a strong correlation with latitude (Spearman’s ρ = 0.82, 
P < 2.2 × 10−16), and a moderate correlation with longitude 
(Spearman’s ρ = 0.34, P < 2.2 × 10−16, Fig. 5c). To understand 
the relative contribution of bioclimatic variables to PC 2, we 
examined the loadings of each bioclimatic variable on this 
axis. Bioclimatic variables related to temperature (BIO1 to 
BIO11) disproportionately contributed to PC 2 compared to 
precipitation-related bioclimatic variables; e.g. the absolute 
value of cumulative loadings across temperature variables 
was 2.48 on PC2 compared to 1.24 for precipitation variables 
(Fig. 5d and e). Supporting this observation, annual mean tem
perature (BIO 1) explained 69% of variation in PC 2 in a sim
ple linear model, while annual precipitation (BIO 12) only 
explained ∼9% (Fig. 5d and e). Taken together, our analyses 
suggest that the distribution of pcMs is explained in part by 
differences in temperature across the Eurasian range of A. 
thaliana, but these associations also hold weakly for upM 
mutations.

Discussion

Mutations that affect secondary structure have long been 
known to have functional effects (Wan et al. 2014). For ex
ample, they contribute prevalently to human genetic disease 

(Halvorsen et al. 2010; Lin et al. 2020) and a subset may act 
as riboSNitches that affect both secondary structure and 
gene expression (Ferrero-Serrano et al. 2022) in a temperature 
dependent manner (Su et al. 2018).

Here we have identi:ed derived mutations that are likely to 
change pairing between bases within CDS regions, based on 
both bioinformatic predictions and experimental data. Of 
course, their identi:cation is subject to numerous caveats. 
We relied, for example, on a pseudo-ancestral genome that 
was calculated from the Col-0 reference and an A. lyrata out
group. This approach may mis-assign ancestral states for a 
subset of sites and excluded SNPs from the 1,001 genomes da
taset that did not align reliably with A. lyrata. As a conse
quence, we almost certainly identi:ed only a subset of 
pair-changing variants. Our analyses were also likely biased 
toward studying secondary structures that are present in the 
Col-0 reference, because we used dsRNA data from Col-0 in 
our identi:cation pipeline.

To identify bases in coding regions that pair with other bases, 
we chose LinearPartition, because it performs reliably and ef:
ciently relative to other secondary structure prediction pro
grams (Zhang et al. 2020), including in extensive 
comparisons to RNAfold (Lorenz et al. 2011). We also used 
dsRNA data to verify pairing, even though Arabidopsis is 

Fig. 4. The inferred distribution of fitness effects (DFE) for mutation types. a) The gamma DFE distribution for syn_pcM sites and non_upM sites under 

the growth demographic model. The x axis is the scaled selection coefficient, γ (=2Nancestrals); higher values on the x axis refer to stronger purifying 

selection. Note that scale parameters for the syn_pcM distribution were not significantly different from zero (Table 3). b) The gamma DFE distribution 

inferred from mutations within UTRs. pcM mutations from within 5′ and 3′ regions are shown separately, as are upM from those mutations (overlapping 

dotted lines). The axes are described in a). c) The results of the pleiotropy simulations showing the number of sites within a genome where a simulated 

nonsynonymous mutation experienced stronger selective effects at the RNA (secondary structure) level than at the protein level. The numbers differ 

markedly when DFEs from different demographic models (exponential growth, bottleneck with growth and 2 epoch models) were used; however, as 

indicated on the y axis, for each model, > 24,000 nonsynonymous sites across the genome were expected to have stronger selection on secondary 

structure than a missense change. d) The number of genes expected to have at least one site that has a stronger effect on protein (i.e. missense) change 

than the RNA (i.e. change in secondary structure) and vice versa. The boxplots in c) and d) refer to distributions of simulated values across 100 different 

simulations for each demographic model; within boxplots, the line shows the median value and the box edges show the interquartile range.
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one of only 2 plant species with available genome-wide 
structure-seq information (Ding et al. 2014; Deng et al. 
2018). We investigated the use of structure-seq data, but 
most genes were not represented in the dataset, prohibitively 
limiting the possibility for genome-wide analyses. Finally, we 
assumed cutoff probabilities > 0.9 with LinearPartition to :lter 
pair-changing mutations. Although the general results held 
with relaxed criteria, we suspect that our strict criteria misiden
ti:ed many bona �de pcMs as either equivocal or unpaired 
mutations (upMs). The net effect of misclassi:cations is to 
underemphasize differences among site classes (pcM, 

equivocal and upM), making comparisons among categories 
inherently conservative.

The Case for Selection Against Pair-Changing 
Mutations

Given our methods, we identi:ed >200,000 bases across the 
expressed regions of the genome that likely pair with other 
bases on the same transcript. Only a subset of 8,469 bases 
were polymorphic across the Arabidopis 1,000 genomes data
set (Table 1), and these were the focus of our study. The 

Fig. 5. pcM associations with bioclimatic variables. a) The mean pcM frequencies within admixture groups as a function of the mean climate variables for 

BIO1, the Annual Mean Temperature. The equation shows the linear model, the inferred correlation coefficient (R2) and the P-value. b) As a), but for 

BIO12, mean annual precipitation, which has a lower and non-significant relationship with allele frequency. BIO1 and BIO12 are shown as examples, with 

additional bioclimatic variables provided in supplementary fig. S7, Supplementary Material online. c) A map of Eurasia with the sampling location of the 

1001 Genomes, color-scaled by their syn_pcM allele frequencies. d) Linear models of PC 2 as a function of BIO1 and BIO12 variables for each individual. 

e) Loading scores of environmental variables on PC 2. Greater values indicate that variables contribute more to PC 2, and variables are colored by class 

(temperature vs. precipitation). Temperature-associated variables tend to have greater loading values than precipitation.
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examination of these pcMs suggest that they are under select
ive constraint, based on evidence that includes: (i) a 13.4% re
duction of nucleotide diversity (π) at syn_pcM sites compared 
to syn_upM sites (Fig. 2a), (ii) a skewed SFS in syn_pcM sites 
relative to syn_upM sites (Fig. 3a), and (iii) a strong under
representation of pcM changes in some genic locations, espe
cially UTRs (Fig. 2b). In addition to summary statistics, we 
inferred the DFE for various classes of sites based on a :tted 
demographic model. The DFEs re.ect strong evidence for se
lection against derived non_upM variants (Fig. 4a), as ex
pected, but also for pcMs in UTRs (Table 3 and Fig. 4b). As 
we discuss below, the case for selection against syn_pcM var
iants was less clear based on DFE analyses (Table 3) even 
though supported by other metrics.

The inference about purifying selection on derived pcMs 
within UTRs is consistent with previous work that has docu
mented evolutionary constraints on secondary structure. 
Secondary structure has been shown to impose constraint on 
experimental evolution in microbial systems (Chursov et al. 
2013; Bailey et al. 2021), and phylogenetic approaches have 
shown that slower evolutionary rates at synonymous sites cor
relate with the strength of secondary structure (Park et al. 
2013). We have found that the 3′ regions of genes have marked 
reduction of nucleotide diversity for pair-changing mutations 
(Fig. 2b), that UTRs in both 5′ and 3′ regions have skewed 
SFSs (supplementary :g. S4, Supplementary Material online), 
and that DFE analyses support for selection on pcMs (but 
not upMs) in UTRS (Table 3). One open question is about 
the functional basis for selection against derived UTR 
pair-changing mutations. In Arabidopsis, it is known that the 
interruption of secondary structures in 3′ UTRs destabilize 
mRNAs (Zhang et al. 2024), and so it is likely that pcMs affect 
selection on mRNA half-lives or degradation rates. Similarly, 
5′ UTRs are generally tied to ribosome binding and translation 
(Babendure et al. 2006; Matoulkova et al. 2012). It is also 
worth noting that secondary structures are common within 
the UTRs of plant genes; 85% of maize genes have detectable 
secondary structures in their 5′ UTRs (Martin et al. 2023) 
and rice and maize generally seem to have stronger folding dy
namics in 5′ UTRs (Deng et al. 2018; Martin et al. 2023) com
pared to Arabidopsis (Deng et al. 2018). The abundances of 
genic transcript also vary with the strength of secondary struc
tures. In maize, for example, transcript abundance is lower for 
genes with particularly strong or weak folding within their 5′ 

UTRs (Martin et al. 2023), suggesting that there are optimal 
folding parameters with respect to gene expression and trans
lation. Altogether, selection against derived pcM mutations 
in UTRs may re.ect their effects on gene expression, transcript 
stability and/or translation ef:ciency.

In contrast to UTRs, the case for selection against derived 
syn_pcMs is more circumspect, even though it has long been 
known that synonymous mutations are not entirely neutral 
(Ikemura 1981). For example, strongly deleterious synonym
ous variants have been documented in Drosophila, but the se
lective effects did not correlate with the strength of selection 
on secondary structure in this study system (Lawrie et al. 
2013). Here most of our observations are consistent with the 
idea that derived syn_pcM sites are under slightly stronger 
negative selection than syn_upM sites, based on lower nucleo
tide diversity (Fig. 2a), a skewed and signi:cantly differently 
SFS (Fig. 3a) and downstream associations with temperature 
and gene expression. The DFE analyses do not, however, 
necessarily support this conclusion. Relative to “neutral” 

syn_upM sites, the DFE analyses suggest that the syn_pcM 
variants are at most moderately deleterious, and their effects 
cannot be differentiated statistically from presumed neutrality 
(Table 3).

The syn_pcM DFE results likely re.ect some semblance of 
truth, in that syn_upM and syn_pcMs seem to be under similar 
magnitudes of selection. However, the methods are also likely 
to lack discriminatory power, due to the fact (for example) 
that :tDadi and similar may not deal adequately with the ef
fects of linked selection (e.g. Gilbert et al. 2022). Another limi
tation is that :tDadi was developed for the analysis of 
outcrossing species, but A. thaliana is predominantly sel:ng. 
Sel:ng can lead to decreased effective recombination rates, 
which in turn increases the potential for interference among 
linked alleles. Various ways have been implemented to deal 
with sel:ng in DFE analyses (Huber et al. 2018; Blischak 
et al. 2020), but empirical studies on the effect of sel:ng 
have been mixed. DFEs can be overestimated (i.e. inferring 
too much strong selection) when ∼100% sel:ng is not consid
ered (Gilbert et al. 2022) but other studies have recovered ad
equate DFE distributions with sel:ng rates similar to 
Arabidopsis (Arunkumar et al. 2015; Huber et al. 2018). 
Another recent study has shown that inbreeding reduces the 
inferred selective effects of moderately deleterious alleles 
(Daigle and Johri 2024), suggesting that our DFE-based esti
mates based on syn_pcMs may be conservative. We did at
tempt to use sel:ng models in :tDadi, but were unable to 
get them to converge with our data. Nonetheless, our demo
graphic :ts with outcrossing models were reasonable, and 
mean DFEs estimates were not obviously in.ated for some cat
egories of sites (e.g. syn_pcMs, UTR_upMs, etc.).

Our work has reinforced that genes have many potential 
targets of selection—from UTRs to missense changes to sec
ondary structure—that could, in theory, lead to interference 
and complex trade-offs. For example, mutations in UTRs 
are likely to compete with other, linked changes in coding re
gions. There are also possible con.icts between the RNA ver
sus protein life stages of a gene at individual sites; that is, 
mutations could be detrimental for secondary structure but 
advantageous for protein function, or vice versa. We assessed 
how often, at individual sites, the magnitude of negative selec
tion against secondary structure (i.e. RNA level) changes was 
stronger than for nonsynonymous (i.e. protein level) changes, 
based on draws from the syn_pcM and non_upM DFE distri
butions. The results were surprising, because they showed that 
nearly half of genes may have at least one nonsynonymous mu
tation that has larger :tness effects due to effects on secondary 
structure compared to the encoded amino acid change. Thus, 
selection at the RNA-level may often affect proteins. We rec
ognize that our approach to investigate this phenomenon 
was simplistic, in that it assumed the inferred DFEs were ac
curate and also treated each gene equivalently with respect 
to both evolutionary rates and the probability of an amino 
acid change. Further disentangling the numerous (perhaps 
contradictory) pressures shaping gene evolution at both 
RNA and protein levels will require integrating structural dy
namics into molecular and population genetic analysis.

Paired Mutations Associate With Temperature and 
Gene Expression

In a landmark study, Su et al (2018) presented a compelling 
demonstration of the potential importance of secondary struc
tures within plant genes. They subjected rice (Oryza sativa L.) 
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seedlings to a high temperature, eliciting a heat-shock re
sponse, and then found that the RNAs of ∼14,000 genes un
folded over the experimental temperature range. As a class, 
these genes also demonstrated shifts in gene expression, which 
they attributed primarily to more rapid degradation of un
folded RNAs (as opposed to reduced translation rates). 
Their work suggested that SNPs that modify secondary struc
tures could be more or less tolerated, depending on tempera
ture and climate. That is, selection against pcMs may not be 
as strong for plants that reside in regions of moderate (as op
posed to high) temperatures. Their results also suggest that 
RNA folding is a vital component of gene expression, so 
that one expects correlations between the presence of second
ary structure altering SNPs and shifts in gene expression.

To explore these threads on a genome-wide scale, we exam
ined the distribution of pcM variants across the sampling land
scape of the Arabidopsis 1001 Genomes dataset. We 
investigated the association of alleles and climate across sub
populations (i.e. previously inferred admixture groups) and 
across individuals. Both approaches provide genome-wide evi
dence that derived pcM mutations are more common at loca
tions with lower temperatures, as measured by bioclimatic 
variables (Fig. 5), without correspondingly strong associations 
to precipitation-based variables (Fig. 5e). This is the :rst dem
onstration of this genome-wide pattern, to our knowledge, 
and it provides an opportunity to consider the evolutionary 
forces that contribute to such a pattern. We can think of 3 rea
sonable explanations: local adaptation, deleterious load and 
genetic/geographic clustering. Previous work has argued con
vincingly that some associations between pcMs and climate 
likely represent local adaptation events (Ferrero-Serrano and 
Assmann 2019), but we favor the latter 2 explanations for 
our genome-wide pattern, for 2 reasons. First, derived, dele
terious pcM mutations may be less strongly selected against 
in low temperature environments where strong-folding may 
not be as critical, and deleterious mutations tend to accumu
late at the edges of geographic ranges (Travis et al. 2007; 
Excof:er et al. 2009; Angert et al. 2020). Visually, we :nd 
that higher pcM counts occur in the Northern and Eastern 
edges of the sampled range (Fig. 5c), perhaps representing ex
panding edges from Ice Age refugia. Second, syn_upM muta
tions also correlate with BIO1, suggesting associations 
among temperature, geography and genetic diversity.

Of course, any argument for selection for or against derived 
pcMs assumes that they have a phenotypic effect. We found 
the potential for such an effect, because genome-wide allelic 
expression was signi:cantly lower for alleles with a derived 
pcM. This genome-wide result, across all sampled genes, 
mimics similar results in microbial systems where the disrup
tion of secondary structures reduces gene expression (Bailey 
et al. 2021). However, there was also wide variation 
across genes, because >40% of genes showed the opposite 
pattern—i.e. pcM alleles had higher expression. We frankly 
:nd it surprising that we could detect any trend at all, given ex
perimental noise and that alleles in most genes likely differ by 
more than just the presence/absence of a pcM. The results sug
gest, although it is far from proven, the disruption of second
ary structures has a causal effect on expression. One potential 
biological explanation for higher expression of pcM alleles is 
that the mutations that disrupt especially strong secondary 
structures may also interrupt RNA-interference (Li et al. 
2012), thereby diminishing epigenetic control. No matter the 
cause, we have shown that derived pair-changing mutations 

are under moderate levels of purifying selection based on 
most of our analyses, that they vary across the genic location 
(e.g. UTR vs. synonymous sites), that they associate with tem
perature, and that one potential cause of these effects is that 
the perturbation of secondary structures alters the dynamics 
of transcript abundance.

Materials and Methods

Identification of Derived upM and pcM Mutations

We used the 1001 Genomes Project v.3.1 (https:// 
1001genomes.org/data/GMI-MPI/releases/v3.1/) SNP calls 
(Lamesch et al. 2012) and variant annotations (1001 
Genomes Consortium 2016) for all analyses. We :ltered the 
variant dataset that included all 1001 genomes to retain bial
lelic SNPs and assigned ancestral and derived states by align
ing the A. lyrata v1.0 genome assembly (Hu et al. 2011) to 
the A. thaliana TAIR10 reference (Lamesch et al. 2012) using 
AnchorWave 1.0 (Song et al. 2022). This approach enabled us 
to polarize 5,613,812 of 12,883,854 (43.6%) SNPs.

To identify sites that may contribute to RNA secondary 
structures, we :rst constructed a pseudo-ancestral genome 
by replacing derived sites in the TAIR10 assembly with their 
corresponding ancestral alleles from the polarized VCF using 
GATK FastaAlternateReferenceMaker v3.7 (McKenna et al. 
2010). Then, we extracted the longest mRNA (coding) se
quence for each protein-coding gene from the pseudo- 
ancestral reference using bedtools2 getfasta 2.27.1 (Quinlan 
and Hall 2010) before estimating RNA folding for each 
sequence with LinearPartition v1.0 (Zhang et al. 2020). 
We then selected SNP sites that overlapped with positions 
with base-pairing probability > 0.9 as determined by 
LinearPartition for further analysis. We veri:ed putative pair
ing sites by determining the overlap with dsRNA sequencing 
data generated from wildtype .ower buds (NCBI Gene 
Expression Omnibus GSE23439) (Zheng et al. 2010). Since 
the dsRNA data was mapped to the TAIR9 assembly, we con
verted to TAIR10 assembly coordinates (Lamesch et al. 2012) 
using CrossMap 0.6.4 (Zhao et al. 2014). We considered pu
tative pair changing mutations (pcM) with both computation
al and empirical evidence (i.e. high base pairing probability in 
LinearPartition analysis and dsRNA coverage). We further :l
tered these sites by :nding overlap with potential compensat
ing mutations using the base pairing probability :les from 
LinearPartition; to do so, SNPs were excluded if the paired 
base position also contained an alternative allele with base- 
pairing compatibility with the derived allele. All overlaps of 
genomic features were calculated using the GenomicRanges 
R package 1.48.0 (Lawrence et al. 2013).

Nucleotide Diversity, Allele Frequency, and DFE 
Analyses

We calculated nucleotide diversity (π) for pcM and upM sites 
using VCFtools v0.1.16 (Danecek et al. 2011). First, we ex
tracted sites from the 1,001 genomes VCF :le belonging to 
each category (syn_pcM, non_pcM, etc.) using samtools ta
bix, the 1,001 genomes SnpEff :le and annotations from our 
paired/unpaired site identi:cation. We calculated π with the 
per-site method in each gene using VCFtools. We measured 
distance between sites and various genic features (starts, stops, 
and intron junctions) using GenomicRanges in R.

Site frequency spectra were calculated using a custom R 
script with vcfR v1.15.0 (Knaus and Grünwald 2017), 
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data.table v1.15.2 (Barrett et al. 2024), and tidyverse 2.0 
(Kuhn and Wickham 2020) R packages. Permutation tests 
for differences between SFS were done by sampling the num
ber of upM sites, building a SFS for each sample, calculating 
the difference between the sample SFS and the true upM SFS 
in each bin and then repeating this procedure for 10,000 iter
ations to generate a distribution of differences for each bin 
under the null model.

To estimate the DFE for different mutation types, we used 
the :tDadi python package (Gutenkunst et al. 2009; Kim 
et al. 2017). We :rst inferred demography using the 
syn_upM SFS, which we assumed represented neutral muta
tions, as in theory they affect neither the RNA secondary struc
ture nor the protein product. We :t 4 demographic models 
(Table 3) by loading the syn_upM SFS into Fitdadi from the po
larized VCF :le and by projecting down to 50 frequency bins to 
moderate the effects of missing data. We optimized parameters 
for each demographic model using the multinomial method, 
and we perturbed each starting parameter at least 5 times to en
sure that the same optimum for each demographic parameter 
was reached independent of starting values. We evaluated the 
accuracy of the inferred demographic models using :tDadi to 
generate a neutral SFS under each demographic model and 
compared the simulated SFS to the SFS from real data using 
the Kolmogorov-Smirnov test in R. The estimated parameters 
for each model are provided in supplementary table S1, 
Supplementary Material online and examples of model :ts 
are provided in supplementary :g. S3, Supplementary 
Material online.

We then used each of the :tted demographic models to esti
mate the DFE of syn_pcMs, UTR_pcMs, non_pcMs and 
non_upMs separately by using the unfolded SFS for each mu
tation type in :tDadi (Kim et al. 2017) modeling the DFE as a 
gamma distribution. We plotted DFEs in python using mat
plotlib (Hunter 2007). We estimated the mean scaled selection 
coef:cient of each gamma distribution by multiplying the 
shape × scale parameter of each. For both variant classes, we 
used likelihood ratio tests with 2 degrees of freedom to com
pare nested models that inferred the 2 gamma parameters 
(i.e. with and without the DFE) (Table 3). We also tested 2 sep
arate syn_upM SFS for demographic inference: (1) using a 
folded SFS and (2) using subsampling instead of projection. 
We tested these alternative approaches because (1) the un
folded SFS is dependent on accurate ancestral state-calls, and 
(2) subsampling allows for modeling of inbreeding during op
timization of the demographic model, while projection does 
not. However, we ultimately did not include these results be
cause in both cases the model :ts were much worse (growth 
model from folded SFS AIC = 756.66; subsampling growth 
model with inbreeding AIC = 528,690)

Pleiotropy Simulation

To investigate the potential for con.icts between protein and 
RNA-level selection, we started with a collection of 27,206 
genes and multiplied the CDS lengths of each A. thaliana 
gene with an A. lyrata ortholog (downloaded from Ensembl) 
by 0.66 to approximate the number of nonsynonymous sites 
across the genome. For each gene, we assigned each site as ei
ther paired or unpaired based on the probability data from 
Table 1. We then assigned each site a “protein-level” :tness ef
fect (γ) by pseudo-randomly drawing a value from the 
non_upM DFE gamma distribution (shape = 0.24, scale = 

52.7). The assigned selection coef:cient was pseudo-random 

because the maximum value of assignments was capped at 
1,000 (2NAS). We then assigned paired sites an 
“RNA-level” :tness effect by the same method, but this time 
sampling from gamma distribution representing the DFE of 
synonymous pcM SNPs (shape = 0.22, scale = 73). For each 
simulation we counted the number of sites across the genome 
where selection was stronger (more negative) against second
ary structure changes than amino acid changes. We evaluated 
the accuracy of our DFE simulations by comparing the means 
of these sampled DFE to the “true” means estimated from the 
gamma distributions (shape × scale). We repeated the simula
tion 100 times, :nding that the results changed minimally 
(Fig. 4).

Geospatial and Climatic Correlations

We studied the association between environmental variables 
and the number of pcM SNPs at both subpopulation and indi
vidual scales. For the environmental variables, we used the 19 
WorldClim 2 bioclimatic variables at 2.5 min resolution, 
which summarize past climate averages from 1970 to 2000 
(Fick and Hijmans 2017). Bioclimatic values for each acces
sion were extracted using the collection coordinates reported 
by the 1001 Genomes Project (1001 Genomes Consortium 
2016) and the raster 3.6-26 R package (Hijmans 2023). For 
the subpopulation-based approach, we considered the 10 sub
populations inferred previously (1001 Genomes Consortium 
2016) and :t both simple linear models and generalized linear 
models in R (R Core Team 2023) to predict the mean allele fre
quency across syn_pcM alleles using the mean of each biocli
matic variable for each subpopulation.

For the individual-scale approach, we :rst did a PCA of the 
bioclimatic variables using the prcomp function in R (R Core 
Team 2023) and then :t mixed linear models using the lmekin 
function from the coxme 2.2-20 R package (Therneau 2024) 
to test for an association between between the :rst 3 PCs 
and the number of pcM alleles across pcM sites per accession. 
A centered relatedness matrix calculated from all biallelic 
SNPs using gemma 0.98.5 (Zhou and Stephens 2012) was in
cluded as a random effect in the models. We corrected the 
P-values using the Bonferroni method and assessed signi:
cance at α = 0.05 (Huber et al. 2018).

Expression Analyses

Expression data in the form of log normalized counts was 
downloaded from the NCBI Gene Expression Omnibus 
(GSE80744) (Kawakatsu et al. 2016), which includes expres
sion data for 24,175 genes in the 727 Salk accessions from 
the 1001 Genomes dataset. pcM overlap with genes was deter
mined using the GenomicRanges library in R (Lawrence et al. 
2013). Allelic state for each accession was determined using the 
1001 Genomes VCF :le. Genes with no pcM allele were ex
cluded from the analysis, and only 2 allelic states were consid
ered: whenever an accession contained one or more pcMs in the 
gene, it was considered a pcM allele, irrespective of whether the 
pcM was the same SNP between alleles (e.g. if an accession con
tained a pcM at one position within a gene, and another acces
sion contained a pcM at a different position, both were put into 
the same category of “pcM alleles”). The mixed-effect linear 
model was analyzed using the R package lme4 (Bates et al. 
2015) and included pcM allelic state as a :xed effect and 
gene identity as a random effect, expressed as:

log(Gene expression + 1) ∼ pcM presence + (1|Gene) 
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