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Abstract

Porphyry Cu = Mo + Au and iron oxide-apatite (IOA) deposits rarely occur in spatial and temporal proximity
in Phanerozoic arc-related settings, and the formation of these mineral deposit types in an evolving arc setting
remains poorly understood. Specifically, the roles of magma composition and the tectonic regime remain the
subject of some debate. Here, we systematically estimated the P-T-fo_ conditions and H>O-S-Cl contents for
dioritic to granodioritic source magmas for porphyry and skarn Cu + Au (150-135 Ma) and IOA deposits (~130
Ma) that formed in transpressional and transtensional settings in the Middle-Lower Yangtze River metallogenic
belt, China. Our estimates show that, compared to IOA deposits, the porphyry- and skarn-related magmas were
relatively felsic, cooler, and more hydrous. These geochemical features are consistent with the tectonic transi-
tion from subduction to slab rollback of the paleo-Pacific plate in the East Asia continental margin at <135 Ma
and concomitant crustal extension and steepening of the regional geothermal gradient.

Apatite data reveal that the silicate melts associated with the porphyry and skarn Cu = Au and IOA deposits
had comparable predegassed S concentrations (~0.13 + 0.06 wt % vs. ~0.16 = 0.09 wt % on average), but that
IOA-related melts contained higher predegassed CI/H2O ratios (~0.11 + 0.03 vs. ~0.04 = 0.03 for porphyry-
and skarn-related magmas) that decreased by one order of magnitude after magmatic degassing. Magmatic fo,
estimated using zircon and amphibole, reported in log units relative to the fayalite-magnetite-quartz (FMQ
redox buffer, gradually increased during cooling of the porphyry- and skarn-related magmas (AFMQ +0.7 to
+2.5) at 950° to 800°C and decreased to AFMQ +1 at 700°C owing to fractionation of Fe?*-rich minerals and
subsequent S degassing, respectively. In contrast, the magmatic fo, values for the IOA-related source magmas
varied significantly from AFMQ —1.5 to AFMQ +2.5 but generally show an increasing trend with cooling from
970° to 700°C that probably resulted from variable degrees of evaporite assimilation, fractionation of Fe?+-rich
minerals, and Cl degassing. These results are consistent with the hypothesis that Cl enrichment of the IOA-
related source magmas played a determinant role in their formation.

We propose that the porphyry and skarn Cu + Au deposits in the Middle-Lower Yangtze River metallogenic
belt formed in a transpressional setting in response to paleo-Pacific flat-slab subduction that favored storage
and evolution of S-rich hydrous ore-forming magmas at variable crustal levels. A subsequent extensional set-
ting formed due to slab rollback, leading to rapid degassing of Cl-rich IOA-related magmas. For the latter
scenario, assimilation of evaporite by mafic to intermediate magmas would lead to an enrichment of Cl in the
predegassed magmas and subsequent exsolution of hypersaline magmatic-hydrothermal fluid enriched in Fe as
FeCls. This Fe-rich ore fluid efficiently transported Fe to the apical parts of the magma bodies and overlying
extensional normal faults where IOA mineralization was localized. The concomitant loss of S, H>O, and Cu with
Cl by volcanic outgassing may have inhibited sulfide mineralization at lower temperatures.

Introduction are important sources of iron and phosphates and have the
potential to supply significant rare earth elements (REEs)
hosted in apatite (Barton, 2013; Simon et al., 2018; Troll et al.,
2019; Reich et al., 2022). Porphyry Cu deposits typically form
in compressional to transpressional settings of crustal-thick-
ening convergent margins (Richards, 2003; Sillitoe, 2010;
Meng et al., 2021a, b, 2022), whereas IOA deposits common-
tCorresponding author: e-mail, xmengl@cugb.edu.cn ly form under extensional to transtensional back-arc settings

Porphyry Cu + Au + Mo deposits (hereafter simply “porphyry
Cu deposits”) are the greatest sources of Cu and Mo and sup-
ply significant Au, Ag, and metals such as Te (Sillitoe, 2003,
2010; Cooke et al., 2005, 2014; Richards and Mumin, 2013a,
b; Kesler and Simon, 2015). Iron oxide-apatite (IOA) deposits
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(Sillitoe, 2003; Groves et al., 2005, 2010; Mao et al., 2011;
Barton, 2013; Richards and Mumin, 2013a, b; Reich et al.,
2022; Skirrow, 2022). While it is well documented that por-
phyry Cu and IOA deposits are not genetically related, both
mineral deposit types are observed to have occurred in spatial
and temporal proximity in the Mesozoic Coastal Cordillera of
northern Chile and southern Peru (Sillitoe, 2003; Richards et
al., 2017) and Middle-Lower Yangtze river belt in China (Mao
et al., 2011; Zhou et al., 2013).

The parental magmas for the magmatic-hydrothermal ore
fluids that form porphyry Cu and IOA deposits are generally
thought to be derived from partial melting of metasomatized
mantle lithosphere (Richards, 2003; Groves et al., 2010). The
observation that IOA deposits contain much less Cu-Fe sul-
fide ore relative to porphyry Cu deposits has been interpreted
to indicate that their source magmas were S poor (Richards
and Mumin, 2013a, b). This hypothesis can explain the pref-
erential occurrence of I0OA versus porphyry Cu deposits in
extensional back-arc settings, because magmas formed dur-
ing asthenospheric upwelling may be S poor owing to the
subdued contribution of oxidized sulfur from the subducting
slab to the mantle (Richards et al., 2017). However, it remains
unclear as to whether and how contrasting tectonomagmatic
conditions controlled the formation of these two distinct min-
eral systems in an evolving arc setting.

To better understand the spatiotemporal relationship
among porphyry Cu and IOA deposits, we systematically in-
vestigated intrusive rocks for the P-T- fo, conditions and S-Cl
concentrations of the source magmas related to representative
well-characterized porphyry and skarn Cu + Au and IOA de-
posits in the Middle-Lower Yangtze River metallogenic belt.
In comparison to the Coastal Cordillera of northern Chile and
Peru, the belt only comprises IOA deposits with minor, non-
economic Cu-Fe sulfide mineralization (Table 1). These new
belt-scale data sets are interpreted in a geologic background
to reflect the fundamental tectonic and magmatic control on
the two types of mineralization in the Middle-Lower Yang-
tze River metallogenic belt. A combination of differences
in magmatic P-T- fo, conditions and volatile compositions is
proposed here to have favored the formation of porphyry and
skarn Cu + Au and IOA deposits under broadly compressional
and extensional arc settings in the metallogenic belt, respec-
tively. Evaporite assimilation is suggested to be a key external
trigger for IOA deposit formation.

Tectonic, Magmatic, and Metallogenic Settings
of the Mesozoic Middle-Lower Yangtze River
Metallogenic Belt

The arcuate-shaped Middle-Lower Yangtze River metallo-
genic belt hosts ~200 polymetallic deposits and has a lateral
extent of approximately ~550 km along the Yangtze River
at the northeastern margin of the Yangtze craton in eastern
China (Fig. 1; Chang et al., 1991; Zhai et al., 1992; Pan and
Dong, 1999; Mao et al., 2011). A total indicated and measured
metal resource of 13.9 million tonnes (Mt) Cu, >600 t Au,
and 2.49 billion tonnes (Bt) Fe has been defined (Zhao et al.,
1999; Yin et al., 2016). It is bound to the north by the Dabie
orogen and North China craton along the Xiangfan-Guangji
and Tancheng-Lujiang faults and to the south by the Yangtze
craton along the Yangxin-Changzhou fault (Chang et al., 1991;
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Zhai et al., 1992). The Precambrian crystalline basement in
the Middle-Lower Yangtze River metallogenic belt mainly
includes metamorphosed late Archean to Paleoproterozoic
tonalite-trondhjemite-granodiorite rocks. This contrasts with
the crystalline basement of Neoproterozoic metamorphosed
flysh-like clastic sedimentary sequences in the south Yangtze
craton (Fig. 1; Qiu et al., 2000; Dong et al., 2011).

The crystalline basement rocks in the Middle-Lower Yan-
tze River metallogenic belt are overlain by Paleoproterozoic
to Neoproterozoic (1850-990 Ma) volcanosedimentary and
Paleozoic-Early Triassic clastic and dolomitic successions, in-
cluding siltstone, shale, and limestone (Chang et al., 1991).
Extensive fault networks developed during the Neoprotero-
zoic Jiangnan orogeny due to subduction-related collision of
the Cathaysia terrane and Yangtze craton (Yao et al., 2014;
Goldfarb et al., 2021). Shallow marine carbonate and evapo-
rite sequences deposited in the Triassic are unconformably
overlain by late Triassic-Jurassic terrestrial coal, sandstone,
and mudstone (Chang et al., 1991; Zhai et al., 1992).

Plate reconstruction shows that the paleo-Pacific oceanic
plate has subducted beneath the Eurasian plate (Fig. 2a)
since the early Jurassic (Li et al., 2019); this may be flat or
low-angle subduction (Li and Li, 2007; Wu et al., 2019; Liu
etal., 2021; Qiu et al., 2023). The velocity of the paleo-Pacific
plate is suggested to have steadily increased from ~155 to
137 Ma, and then decreased abruptly after ~135 Ma (Fig.
2b). Although the geodynamic setting for forming the Mid-
dle-Lower Yangtze River metallogenic belt remains debated
(Table 1), the change in the plate velocity is consistent with
the evolving kinematic regime in the belt that changed from
transpression prior to ~135 Ma to strike-slip extension from
135 to 127 Ma, and then to purely extension at ~126 to 123
Ma (Chang et al., 2012), consistent with the evolving tectonic
framework of the East Asian continental margin (L4, |., et al.,
2014; Zhou et al., 2015; Li et al., 2019). Chen et al. (2020)
noted a slight northeastward migration of the high-X calc-al-
kaline mafic magmatism in the Middle-Lower Yangtze River
metallogenic belt and interpreted this as the manifestation of
local extension caused by slab rollback beginning around 140
Ma. However, the compiled geochronological data suggest
the age variation of high-K calc-alkaline magmatism across
the Middle-Lower Yangtze River metallogenic belt is excep-
tionally limited (Fig. 3). Lithospheric extension is supported
by decreasing crustal thickness in the Middle-Lower Yangtze
River metallogenic belt from 62 + 6 km (1o, n = 254) to 49
+ 8 km from ~150 to 135 Ma to <133 Ma (1o, n = 40; Fig.
2¢), which was estimated using published whole-rock La/Yb
ratios following the method of Profeta et al. (2015). Exten-
sion likely commenced at ~140 Ma, but was not widespread
until ~135 Ma in response to eastward retreating subduction
of the paleo-Pacific oceanic plate, rollback of a steeper slab,
upwelling of asthenospheric mantle, and/or lithospheric de-
lamination at the East Asian continental margin (Zhu and Xu,
2019; Zhang et al., 2020; Lii et al., 2021; Mao et al., 2021).

The subduction of the paleo-Pacific oceanic plate and the
subsequent rollback or retreating produced voluminous diorit-
ic to granodioritic magmas in the Jurassic to Early Cretaceous
that intruded sedimentary sequences in the Middle-Lower
Yangtze River metallogenic belt along reactivated basement-
penetrating faults (Pan and Dong, 1999; Mao et al., 2011; Yang
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Fig. 1. Simplified geologic map for the Middle-Lower Yangtze River metallogenic belt, modified from Mao et al. (2017). Inset
map shows the location of the belt in mainland China, modified from Zheng et al. (2013). The distribution of the crystalline
basements are approximated following Dong et al. (2011). The distribution of the crystalline basements is projected to sur-
face; they are not well exposed like the map shows. IOA = iron oxide-apatite.

and Cooke, 2019). The Jurassic-Cretaceous magmatism in the
belt occurred in three episodes (Mao et al., 2011; Zhou et al.,
2013; Chen et al., 2020): (1) ~152 to 135 Ma high-K calc-al-
kaline I-type granitoid associated with porphyry and skarn Cu
+ Au deposits (Figs. 2b, 3), (2) ~133 to 125 Ma shoshonitic
intrusive and volcanic sequences associated with IOA deposits
(Figs. 2b, 3), and (3) slightly younger A-type intrusive rocks
with granitic—syenitic compositions (<130 Ma) associated with
subeconomic Au mineralization. The porphyry and skarn Cu +
Au and IOA deposits mainly formed at broadly transpressional
(or in transition to transtension) and transtensional settings at

~140 and ~130 Ma, respectively (Fig. 2b).

Jurassic to early Cretaceous ore deposits

These mineral deposits have been grouped into seven discrete
ore districts from west to east, including Edong, Jiujiang-
Ruichang (Jiurui), Anqing-Guichi, Tongling, Lujiang-Zong-
yang (Luzong), Nanjing-Wuhu (Ningwu), and Nanjing-Zhen-
jiang (Ningzhen; Fig. 1; Mao et al., 2011; Pirajno and Zhou,
2015). The porphyry and skarn Cu + Au deposits are mainly
clustered in Daye, Jiurui, Anging-Guichi, and Tongling (i.e.,
at latitude of 29.5°E-31°E), whereas the IOA deposits are re-
stricted to the northeastern part of the belt (Fig. 3), including
the Ningwu (Nanjing-Wuhu) and Luzong (Lujiang-Zongyang)

ore districts (Fig. 1). A few skarn Fe deposits have also been
reported in the Edong and Luzong ore districts, which mainly
formed at the same time as the IOA deposits (Fig. 3). The
porphyry and skarn Cu + Au deposits of the Middle-Lower
Yangtze River metallogenic belt are genetically associated
with granodioritic to quartz dioritic stocks that were emplaced
into thick carbonate and clastic sedimentary sequences. The
contrasting alteration features of the porphyry and skarn Cu
+ Au deposits are mainly affected by host rocks (clastic ver-
sus carbonate; Table 1). Massive, disseminated, and veinlet
mineralization are primarily hosted in skarns along the con-
tacts between the intrusions and the carbonate sequences or
are stratabound between the limestone-dolomite sequences
(Tables 1, 2). Mineralization is also hosted in quartz dioritic
to granodioritic stocks with potassic and phyllic alteration in
Tongshankou, Baoshan, Chengmenshan, Wushan, Matou, and
Dongguashan where the hosts are clastic rocks (Table 2).

The Middle-Lower Yangtze River metallogenic belt IOA
deposits are spatially and temporally associated with synvol-
canic gabbroic to dioritic intrusions emplaced in the Early
Cretaceous volcanic basins or Triassic sedimentary sequences
(Mao et al., 2011; Zhao et al., 2020). Mineralization styles in-
clude massive, breccia-hosted dissemination and veinlets that
occur in the apical parts of the dioritic intrusions or at their
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Table 1. Summary of Previous Studies on Main Mineral Deposits in Middle-Lower Yangtze River Metallogenic Belt (MLYRMB), China

Porphyry and skarn Cu-Au deposits

Iron oxide-apatite deposits

Ages

Kinematic regime
Ore tonnage
Ore—forming magmas

Host rocks

Alteration

Mineralization

Nature of ore fluids

Sources for metal

Magmatic origin

Geophysical feature

Geodynamic setting

152-135 Ma (~140 Ma)

Transpression (Chang et al., 1991, 2012; Mao et al., 2006)
13.9 Mt Cu and >600 t Au (Yin et al., 2016; Zhao et al., 1999)
High-K calc-alkaline diorite, quartz diorite, and granodiorite

Clastic sedimentary rocks (e.g., sandstone) and carbonates (e.g.,
limestone, dolomite)

Qtz + Kfs + Bt, Qtz + Ser, Grt + Di + Act + Chl + Ep = Serp, Qtz + Cal

Disseminated, veinlet, and/or massive Cep + Py + Mt (+ Po in skarn)
mineralization

Moderate to high temperature (~600-200 °C) magmatic-hydrothermal
saline, COy-bearing fluids exsolved from the magma chamber, prob-
ably being interacted with meterioic water during late stages of miner-
alization (Chen and Li, 2009; Zhou et al., 2015; Cao et al, 2017)

Copper and Au are mainly sourced from the hydrothermal fluids
exsolved from the magma chamber, whereas the sulfur for some of
these deposits are from magmatic fluids assimilated by minor evapo-
rite sequence (Hou, Z.Q., et al., 2011; Mao et al., 2011; Zhou et al.,
2013)

Delamination or partial melting of the thickened ancient lower conti-
nental crust (Wang et al., 2007; Hou, Z.Q., et al., 2011); or interaction
of crustal materials with magmas derived from metasomatized mantle
source regions (Li et al., 2008; Mao et al., 2011; Chen et al., 2020; Yan
etal., 2021)

135-126 Ma (~130 Ma)

Transtension (Chang et al., 1991, 2012; Mao et al., 2006)
2.49 Bt Fe (Yin et al., 2016)

Shoshonitic diorite porphyry

(1) Coeval early Cretaceous andesite and tuffs; (2) shale,
calcareous siltstone, and mudstone, quartz sandstone,
and conglomerate

Ab = Phl £ Act + Ap, Di + Anh + Grt + Ap

Disseminated, massive, and breccia-hosted Mt
mineralization

High to moderate temperature (~800-250 °C; ~700—
400 °C for main magnetite deposition) magmatic-hydro-
thermal S-rich saline fluids (up to ~90 wt. % NaClequiv)
subsequently mixed with meteoritic water (Li, W., et al.,
2015; Luo et al., 2015); liquid immiscibility model trig-
gered by minor addition of P by crustal assimilation has
also been proposed (Hou, T., et al., 2011)

Derivation of iron mainly from magmatic fluids exsolved
from the magma chamber (Mao et al., 2011; Zhou et
al., 2013; Zhao et al., 2020); sulfur is mainly from assim-
ilation of evaporite sequences as evidenced by the high
&S ratios, possibly upon emplacement of the magmas
(Duan et al., 2021)

Remelting of the subduction-modified lithospheric mantle
with possible assimilation of evaporite sequences dur-
ing magma emplacement at shallow levels (Fan et al.,
2019)

(1) Low-velocity zone observed in the uppermost mantle at 100-200 km beneath the MLYRMB via ambient noise and teleseismic
approaches, which is interpreted to represent a hot upper mantle that was partially molten resulting from partial melting of the
Paleo-pacific plate or mantle source induced by the westward subduction of the paleo-Pacific plate (Ouyang et al., 2014)

(2) A summary of seismic and magnetotelluric surveys suggests an anomalously thin lithosphere, low S- and P-wave seismic veloc-
ity, and a dipping high-conductivity body extending from the lower crust to the asthenosphere, which are interpreted to be
affected by delamination and asthenospheric upwelling during Late Mesozoic (Lii et al., 2021 and references therein); this is
consistent with the crustal thinning since <135 Ma observed in this and previous studies

Model 1 (Subduction-related): Ore-forming magmas derived from par-
tial melting of metasomatized subcontinental lithospheric mantle by
fluids released during dehydration or partial melting of the subduct-
ing paleo-Pacific or Izanagi slab (e.g., flat slab, slab ridge, or teared
slab) at >135 Ma (Ling et al., 2009; Mao et al., 2011; Wu et al., 2012;
Ouyang et al., 2014; Wang, F.Y., et al., 2014; Yang et al., 2014b; Pira-
jno and Zhou, 2015; Gu et al., 2018; Yan et al., 2021; Zhang, J., et al.,
2021); slab roll-back is debated to have occurred between 150 Ma and
135 Ma (Yang et al., 2014a; Chen et al., 2020)

Model 2 (Intraplate): Ore-forming magmas formed in a setting of delam-
ination of enriched lithospheric mantle or lower crust, as well as asthe-
nospheric upwelling (Wang et al., 2007; Li et al., 2008; Hou, Z.Q., et
al., 2011; Zhou et al., 2015; Yang and Cooke, 2019), in response to
weakening of compressive stress during (1) a shift from Tethysian to
paleo-Pacific plate subduction since late Jurassic or (2) the change in
subduction direction or rollback of paleo-Pacific plate after ~135 Ma
(Zhou et al., 2015; Chen et al., 2020)

Model 1: Lithospheric extension in response to changes
in the motion of Izanagi plate parallel to East Eurasian
continental margin, slab rollback and destabilization of
the thickened enriched lithospheric mantle and lower
crust (Wang et al., 2006; Mao et al., 2011; Zhou et al.,
2013; Wang, F.Y., et al., 2014; Chen et al., 2020)

Model 2: Upwelling of asthenosphere mantle break the
stagnant paleo-Pacific flat slab and make mafic melts
underplated at the crust (Pirajno and Zhou, 2015)

Abbreviations: Ab = albite, Act = Actinolite, Ap = apatite, Anh = anhydrite, Bt = biotite, Cal = calcite, Cep = chalcopyrite, Chl = chlorite, Di = diopside, Ep
= epidote, Grt = garnet, Kfs = K-feldspar, Mt = magnetite, Phl = phlogopite, Po = pyrrhotite, Qtz = quartz, Ser = sericite

contacts with the carbonate sequences, where skarns have
formed (Tables 1, 2). High-temperature sodic alteration was
followed by ore-stage actinolite + apatite + diopside + chlo-
rite = epidote alteration and sulfide (pyrite + chalcopyrite) +
sulfate (gypsum + anhydrite) veins (Zhou et al., 2013; Duan et
al., 2021). Representative IOA deposits include Washan, Gao-

cun, Heshangqiao, Baixiangshan, and Zhongjiu-Gushan in the
Ningwu basin and the Nihe deposit in the Luzong basin. Mag-
netite from the massive and vein ores in the Washan and Gao-
cun deposits has been estimated to crystallize at temperatures
of 550° to 800°C, consistent with mineralization temperature
for IOA deposits worldwide (Zeng et al., 2022). The iron ores
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Fig. 4. Photomicrographs of representative least-altered igneous rock samples from the porphyry and skarn Cu = Au and iron
oxide-apatite (IOA) deposits in the Middle-Lower Yangtze River metallogenic belt. (a) Granodiorite porphyry from Tong-
shankou in the Daye ore district (cross-plane polarued DYTSK-01). (b) Granodiorite porphyry from Jilongshan in the Jiurui

ore district (cross-plane polarized; JRJLS-02). (c)
polarized; AQYS-01). (d)

Quartz diorite from Yueshan in the Anqing-Guichi ore district (cross-plane
) Quartz diorite from South Hucun in the Tongling ore district (cross-plane polarized; TLHC- 01)

(e) Diorite porphyry from the Heshangqgiao IOA deposit in the Ningwu ore district (cross-plane polarized; NWHSQ-01).
Diorite porphyry from Zhongjiu-Gushan in the Ningwu ore district (plane-polarized; NWZJGS-04). Abbreviations: Amp =
amphibole, Anh = anhydrite, Ap = apatite, Brt = barite, Bt = biotite, Kfs = K-feldspar, Pl = plagioclase, Px = pyroxene, Qtz =
quartz, Ser = sericite. See Table 3 for sample locations and descriptions.

equigranular or porphyritic textures were collected from the
ore-forming plutonic stocks (Fig. 4). Thin sections were pre-
pared for petrographic examination, and most of the collected
samples are shown to have been variably altered. Detailed
descriptions of these samples are provided in Table 3. Zircon
grains from the variably altered samples were separated us-
ing conventional magnetic and density methods at the Geo-

logical Surveying and Mapping Institute of Hebei Province,
China. A total of ~15,000 representative zircon grains were
handpicked, mounted on epoxy resins, and polished to expose
their internal structures.

To constrain the crystallization conditions and original com-
positions of the ore-forming magmas, we restricted our analy-
ses to the relatively fresh minerals in the least-altered samples
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Fig. 5. Photomicrographs of representative magnetite-ilmenite, apatite, and the zircon hosts in the igneous rock samples from
the Middle-Lower Yangtze River metallogenic belt. (a, b) Primary magnetite-ilmenite pair in antecrystic zircon core from
Jiguanzui in the Daye ore district; cathodoluminescence (CL) and backscattered electron (BSE) images, respectively. (c)
Primary apatite inclusion in zircon grain with oscillatory zoning (Washan iron oxide-apatite deposit); BSE. (d) Primary zoned
apatite grains in granodiorite from Tongshan in Anqing-Guichi ore district; BSE. (e) Porous, altered apatite inclusion hosted
in altered amphibole grain (Yueshan deposit, Anqing-Guichi ore district), BSE. (f) Apatite grains intergrown with quartz,
calcite and magnetite (albitized diorite, Heshanggiao, Ningwu ore district). Abbreviations: Ab = albite, Ap = apatite, Calc =
calcite, Kfs = K-feldspar, Ilm = ilmenite, Mt = magnetite, Qtz = quartz, Zrn = zircon.

(Fig. 5). Zircon grains and the host mineral inclusions from
some altered samples were also analyzed. Amphibole, apatite,
biotite, and zircon were analyzed for major and/or trace ele-
ment abundances using electron probe microanalysis (EPMA)
and laser ablation-inductively coupled plasma-mass spectrom-
etry (LA-ICP-MS). Primary amphibole and biotite grains are
common in the thin sections for the least-altered high-K calc-

alkaline intrusive rock samples but are only rarely observed in
the IOA-related dioritic samples (Fig. 4). Magnetite is com-
mon as an interstitial phase or as inclusions in other minerals,
particularly amphibole. Coexisting magnetite and ilmenite are
rarely present as inclusions in zircon grains (e.g., DYJGZ-01,
Fig. 5a-b) but seem to form by exsolution from original Fe-Ti
oxides. We prioritized analyzing zircon-hosted apatite inclu-
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sions (Fig. 5¢) that preserve primary chemical zoning (Fig.
5d), or compositionally homogeneous apatite grains hosted in
mineral phases such as amphibole and biotite. Porous apatite

EA — =
L. ~ . =

= v A =

A -~ 5 3§ £ 5

o0 g £ 2 B g

k= g = = = ’ s . . . .

g g g 'Cg’ % g tﬁ grains or those intergrown with hydrothermal minerals (e.g.,

E $ s F £ & 2 sample NWHSQ-04) are interpreted to have been altered

i = ?g = = g =S (Fig. 5e) or crystallized from magmatic fluids exsolved from

& *JE % ::é = = silicate melt (Fig. 5f). All studied zircon grains exhibit oscil-
= E 1y B o3 A n latory or sector zonings, as revealed by cathodoluminescence
Eﬁ E ggf £ % \E}; tﬁ (CL) imaging (Fig. 5a, ¢; App. Figs. Al and A2).
5| L 2Zie g & =
g S ZEgsS S OE 2 g LA-ICP-MS zircon U-Pb and trace element analyses
= £ B EL T ¢ : . . . .

; iRy = fNE b 9 £ Zircon grains were analyzed for U-Pb isotope and trace el-
=2 ?3 S HoZEZ %Z S L ement abundances using LA-ICP-MS at the Collaborative
s £ dE 2 E 2”% 3 L % Innovation Center for Exploration of Strategic Mineral Re-
% b%z a8 50;\3 ‘2 s5e E & sources, China University of Geosciences (Wuhan). A 193-nm
2 £ %j nEosas = = NWR HE excimer laser coupled with an Agilent 7900 ICP-
£ .gffg FirRlglsE 2 o [ MS was used to ablate and analyze the zircon grains. The pa-
) TEEGEGGEE 12 | rameters for the laser were a fluence of 3.5 J/cm?, a repetition
& E2RE %é gé %3 mEmE ; rate of 8 Hz, and a spot size of 32 pm. Thirty seconds of back-
E 2z 82852 5ENEY |8 ground were acquired followed by each analysis of 40 s. Pri-
5} =, =2 =2 £ 6 = 5 = [SV R e = N A
§ 2 e R mary and secondary reference materials for the zircon U-Pb

s R = = isotope and trace element analyses were analyzed regularly
£ during the analytical sessions.
= Correction of laser-induced element fractionation, instru-
ot oo Tj"; mental drift, and downhole fractionation was performed with
2 2 2 5 ICPMSDataCal software (Liu, Y., et al., 2010). The U-Pb iso-
£ B & S
= . . . .
5 tope ratios were normalized to the primary zircon reference
° 3 & 9 i
| = g 22 T 2 98 8 A material 91500. The secondary reference materials SA-01 or
= E 5% % 5 § % ) inghu-01 were analyzed to monitor the accuracy and repro-
HEE 2 25 & £ £ £ £ Qinghu y: : Y P
Sf = /R AR A A A A 2 ducibility of the unknown isotopic analyses. The trace element
= I o data were normalized using an internal standard scheme to the
=zl = =) synthetic glass NIST610 with an assumption of the stoichio-
= g = & = {‘r\]? & % £ metric concentration of Si in zircon as 15.32 wt %. The syn-
= | T & thetic glass NIST612 and zircon 91500 were used to monitor
I the accuracy of the unknown trace element analyses. The iso-
z s s ... = topic and trace element data for the secondary reference ma-
&z B B g = 2 F E g terials are consistent with the reported standard values (App.
(=] DL D [*e] . .
£ g §5 2 3 & & = Table Al). Concordia or intercept ages for the samples were
3 B ®m® W > @ @ ’% calculated using Isoplot v. 4.15 (Ludwig, 2012), in which the
~ [ uncertainties of the uranium decay constants are considered.
% P S S S E The values of the mean square of weighted deviates (MSWD)
< 2 8 5 8B % = < for the studied samples are calculated to measure the ratio of
%ﬂ g g % g g g g f; the scatter of the data points to the predicted scatter du.e to t.he
3 5 A= = = = s analytical uncertainty (Wendt and Carl, 1991). To minimize
ﬁ S the effects of hydrothermal alteration and contamination of
E g § subsurface mineral/melt inclusions on T- fo, results, the zircon
ER: g Ly trace element data were screened using criteria as follows: (1)
. _ év,; E’E _ ;E 2 ENQ La content < 1 ppm, (2) LREE index (Dy/Nd + Dy/Sm) > 10
2 2 2 2 2 W@ S = (Bell et al., 2016); (3) Ti < 50 ppm (Lu, 2016).
H £ % % 2 £ & £E
A Z ©Z Z £ = N il Electron probe microanalysis (EPMA)
Ll X . .
2E Major and trace element abundances of amphibole, biotite,
s g w = go = 2 2 & &g and apatite were acquired using a JOEL JXA-iHP200F field
sl 3¢ BE éﬂ & & T emission EPMA at the Institute of Mineral Resources, China
Al 92 22z z =z =z Z a0 Academy of Geological Sciences. The analytical parameters
E <5 ied for the different lyzed mi Is. Amphibol d
= =8 varied for the different analyzed minerals. Amphibole an
s ws T o4 3 3 3 z biotite were analyzed for twelve elements (i.e., Si, Ti, Al, Cr,
. %; g 3 g qu S 2 8 58 Fe, Mn, Mg, Can, Na, K, F, and Cl) at the same conditions:
"% < E oF I E = SH g 15-kV accelerating voltage, 20-nA beam current, and 5-pm
gl 2N =Z E E E E E =k spot beam size.
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Apatite grains were analyzed for fourteen elements (i.e., P,
Ca, AL, Si, Mn, Fe, Sr, Y, Na, K, F, Cl, S, and Zr) using the
following conditions: 15-kV accelerating voltage, 10-nA beam
current, and beam sizes from 2 to 5 pm depending on the size
of the analyzed grain. Meng et al. (2021a) used these analytical
conditions for apatite and reported that (1) the measured S and
Cl contents of apatite are more reliable than F content when
using a 2-pm beam, and (2) damage of apatite using a beam
size of 5 pm can be minimized, particularly for apatite grains
with the c-axis perpendicular to the electron beam (Meng
et al., 2021a). In this study, we only report the F content of
apatite for analyses that used a beam size of 5 pm or for grains
where the c-axis was perpendicular to the 2-pm beam.

X-ray lines, crystals, internal standards, and counting times
for peak and background measurements are provided in the
notes of Appendix Tables A2 through A4. We excluded all
analyses of zircon-hosted apatite grains with ZrOs concentra-
tion of >1 wt %, as these are interpreted to reflect contamina-
tion of the inclusion by the host.

Methods of T-P- fo, estimation

The crystallization temperatures of apatite, zircon, and am-
phibole were estimated using the methods in Piccoli and Can-
dela (1994), Loucks et al. (2020), and Ridolfi (2021), respec-
tively. For estimating apatite saturation temperature (AST),
we used previously compiled lithogeochemical data for the
studied intrusive rocks (Chen et al., 2020) and assumed the
whole-rock SiOs and P05 abundances approximate those in
the silicate melts at the time of apatite crystallization. A re-
vised Ti-in-zircon thermometer by Loucks et al. (2020) was
used to constrain zircon crystallization temperatures (Triz),
considering it includes the effect of pressure on the calibra-
tion of Ferry and Watson (2007). The activities of SiOs and
TiO2 were assumed to be 1 and 0.6, respectively, based on
the presence of primary quartz and titanite as well as zircon-
hosted ilmenite in the samples (Tables 3, 4; Dilles et al., 2015;
Schiller and Finger, 2019). The crystallization pressure of the
amphibole grains was estimated using the amphibole barom-
eter of Mutch et al. (2016).

Values of fo, for the ore-forming magmas were estimated
from the compositions of zircon and amphibole using the
oxybarometers of Loucks et al. (2020) and Ridolfi (2021).
We attempted to use the zircon oxybarometers calibrated
by Smythe and Brenan (2016) and Loucks et al. (2020). The
method of Smythe and Brenan (2016) requires quantitative
determination of trace element abundances in zircon and the
zircon-equilibrated melt composition in addition to water
content and the activities of SiOy and TiO;z (i.e., aSiOs and
aTiOs). This method is sensitive to water content, where a
variation of 1 wt % H>O in the melt can lead to a deviation of
~0.5 log units of fo,. Considering that we currently lack a ro-
bust method for accurately estimating the absolute water con-
tent at the time of zircon crystallization, the empirical zircon
oxybarometer of Loucks et al. (2020) that only involves the
measured concentrations of Ti and Ce and the age-corrected
initial U concentration of zircon was used. The zircon Ce-Ti-
U; oxybarometer was calibrated by Loucks et al. (2020) using
fo, values determined from coeval magnetite-ilmenite pairs
and amphibole, melt Fe3+/Fe2+ ratios, and experimental run
products at controlled fo,. Loucks et al.s (2020) method is

MENG ET AL.

applicable to igneous rocks with a broad compositional range
(i.e., calc-alkaline, tholeiitic, adakitic, shoshonitic, metalumi-
nous to mildly peraluminous, and mildly peralkaline) with f02
values of AFMQ —4.9 to AFMQ +2.9. The estimated fo, value
yields a standard error of ~ +0.6 log unit. B

The amphibole oxybarometer was calibrated using experi-
mental data of amphibole in equilibrium with the calc-alkaline
and alkaline silicate melts under various fo, conditions (Ridol-
fi et al., 2010; Ridolfi and Renzulli, 2012; Ridolfi, 2021). We
used the most recently updated amphibole oxybarometer that
was calibrated by filtering out poor-quality experimental data
(Ridolfi, 2021). The oxybarometer is P-T-independent and is
suitable for Mg-rich calcic amphibole in calc-alkaline and al-
kaline melts across a wide P-T range (up to 2,200 MPa and
1,130°C). The spreadsheet Amp-TB2 in Ridolfi (2021) was
used to assess the reliability and suitability of the amphibole
EPMA analyses for the oxybarometer. We excluded analyses
that were outside the compositional range for calibrating the
amphibole oxybarometer. The standard error for the amphi-
bole oxybarometer is +0.3 log units.

Methods in estimating melt volatile concentrations

We tried to use multiple mineral-based methods to estimate
concentrations of H»O, S, and Cl in the silicate melts from
which the ore-forming magmatic-hydrothermal fluids ex-
solved. The H>O content was approximated using the am-
phibole hygrometer of Ridolfi (2021). However, because the
coefficient of determination for the linear relationship be-
tween experimental and calculated H2O contents using the
amphibole hygrometer is low (R2 = 0.645; Ridolfi, 2021), we
suggest that the HyO results can only be regarded as semi-
quantitative. The S concentration in the melt was estimated
using a model for the partition coefficient of S between apa-
tite and melt (Ds®'™; Meng et al., 2021a) based on experimen-
tal studies that demonstrated the S concentration in apatite is
controlled by the melt S content, fOQ, and temperature (Parat
and Holtz, 2004; Konecke et al., 2019). The melt CI/H5O ra-
tio was estimated using methods as follows: (1) an exchange
partitioning model (Li and Hermann, 2017) established based
on experimental results of felsic silicate melts by Webster et
al. (2009), (2) a thermodynamic exchange partitioning model
that considers the nonideality in apatite solid solution (Li and
Costa, 2020), (3) an exchange coefficient model for partition-
ing of Cl-OH between amphibole and melt as a function of
amphibole composition (Giesting and Filiberto, 2014), and
(4) an empirical exchange coefficient model for CI-F-OH par-
titioning between biotite and silicate melt as functions of the
compositions of the biotite and the equilibrated melt (Zhang,
C., etal., 2022). For method (4), we assumed the whole-rock
compositions summarized by Chen et al. (2020) represent the
melt composition.

Results
Zircon U-Pb dating

The absolute timing of the igneous rocks has been well con-
strained mainly using zircon U-Pb dating by a number of au-
thors (Fig. 3; App. Table A5). We supplement the cathodo-
luminescence (CL) images and U-Pb dates for the zircon
samples in order to distinguish the antecrystic, autocrystic,
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and xenocrystic zircon grains. A total of 429 isotopic analyses
were performed. Most analyses yielded Th/U ratios of >0.3
(App. Table Al), and the analyzed grains typically exhibit os-
cillatory and sector zonings consistent with a magmatic origin
(App. Figs. Al and A2). The U-Pb isotope data for the xeno-
crystic and antecrystic cores were distinguished based on their
morphologies (Corfu et al., 2003). Zircon xenocrysts typically
vielded older 206Pb/23U dates compared to the concordia or
intercept U-Pb ages, whereas the antecrystic zircon cores
yielded indistinguishable 206Pb/238U dates (App. Table A1) but
contrasting chemical zoning in CL responses that contrast the
rims (Fig. 5a).

Geochronological data are summarized in Table 4 and illus-
trated in Appendix Figures A3 and A4. Concordia, or intercept
U-Pb ages, were calculated to define the crystallization ages
of the dated zircon grains and the host intrusive rocks. Con-
sistent with previous studies (Figs. 2b, 3; App. Tables A5-A6),
the geochronological results suggest that the magmas related
to porphyry and skarn Cu deposits and IOA deposits in the
Middle-Lower Yangtze River metallogenic belt intruded the
upper crust at 150 to 135 and ~130 Ma, respectively (Table 4).
The porphyry- and skarn-related igneous rocks contain abun-
dant zircon xenocrysts that yielded U-Pb dates of 3443 to 739
Ma (n = 32), which is consistent with the age spectrum of the
zircon xenocrysts entrapped by lamprophyres in Middle-Low-
er Yangtze River metallogenic belt (Zhang, S., et al., 2021).
Nineteen Jurassic xenocrystic zircon grains were identified in
porphyry- and skarn-related intrusive rocks, whereas only one
Triassic zircon grain was identified in the IOA-related samples
(App. Table A1).

T-P conditions

The estimated crystallization temperatures of various mineral
phases and the estimated crystallization pressures of amphi-
bole for representative samples are summarized in Table 5
and illustrated in Figures 6a, b, 7a, 8, 9a, and 10. The zircon
and amphibole record comparable crystallization tempera-
tures of 700° to 950°C (Figs. 6a, b, 8a) and 650° to 900°C
(Figs. 6a, b, 8b), respectively. Assuming aTiOz = 0.6 and aSiOs
= 1.0, the Tz values for dioritic rocks associated with IOA
deposits are greater than Triz values for granodioritic to
quartz dioritic rocks from porphyry and skarn deposits (890°
+ 50° vs. 810° = 50°C; lo; Table 5; Fig. 6a). No time-space
variations in Triz values are observed for the igneous rocks
associated with porphyry and skarn Cu + Au deposits across
the four porphyry and skarn ore districts (Figs. 6a, b, 7). In
contrast, the crystallization temperatures of amphibole in the
intrusive rocks associated with the porphyry and skarn and
IOA deposits are comparable at 770° + 40°C (1o) and 750° +
50°C (1o), respectively (Table 5).

The amphibole grains are classified as Mg-hornblende ex-
cept for one sample that contains Mg-hastingsite and Tsche-
makitic pargasite (App. Table A2). The crystallization pres-
sures for amphibole from the porphyry- and skarn-related
intrusive rocks range from 527 + 60 MPa (lo) to 118 = 30
MPa (10), whereas amphibole in the IOA-related diorite sam-
ples crystallized at pressures of 189 + 72 to 85 + 16 MPa (1o;
Table 5), corresponding to crystallization paleo-depths of 5 to
20 and 3 to 7 km, respectively. Amphibole barometry indicates
that amphibole in the porphyry- and skarn-related intrusive

1071

rocks crystallized along a steeper P-T trajectory compared to
amphibole from the magmas associated with IOA mineraliza-
tion (Fig. 10a).

Magmatic f02 estimates

The magmatic fo, estimates for representative intrusive sam-
ples from porphyry and skarn Cu and IOA deposits are re-
ported in Table 5 and illustrated in Figures 6¢c, d, 7b, 8, and
10b. Geochemical data for zircon from Wang et al. (2013),
Wang et al. (2015), Wen et al. (2020), and Zhang, J., et al.
(2021) were included in the reported f02 values.

Zircon: Zircon grains from the porphyry- and skarn-related
intrusive rocks yielded average magmatic fo, values of AFMQ
+0.5 £ 0.6 (10) to + 2.2 + 0.3 (10) at temperatures of 930° to
740°C (Figs. 6¢, d, 7b, 8a, b). There are no time-space varia-
tions in AFMQ values for the igneous rocks associated with
porphyry and skarn Cu = Au deposits across the four ore dis-
tricts (Figs. 6¢c, d, 7b). With the exception of one sample, the
average magmatic fo, values for samples from the Edong, Ji-
urui, and Anging-Guichi ore districts increase from ~AFMQ
+0.7 at 930°C to ~AFMQ +2.5 at ~800°C, and then decline
to ~AFMQ +1 at ~740°C (Fig. Sa; Table 5). A strong negative
correlation between AFMQ values and Triz, is observed for
samples from the Tongling district, culminating in an AFMQ
value of +2.2 + 0.3 at 775° + 37°C (1o; Fig. 8a). The negative
correlation of estimated fo, with Triz was also detected for
single samples from the other ore districts studied. Five ante-
crystic zircon cores from Jiguanzui in the Daye district yielded
aAFMQ value of +0.7 £ 0.2 (10) at 933° + 21°C (10), whereas
10 analyses of autocrystic zircon grains from the same sample
yvielded higher average AFMQ value of +1.9 = 0.3 (10) at low-
er Triz-of 788° + 28°C (1o; Table 5). Similarly, three analyses
of the antecrystic zircon cores from Tongshan in the Anqing-
Guichi district yielded a AFMQ value of +0.7 + 0.3 (1o) at
896° + 10°C (1o) compared to autocrystic zircon grains from
the same sample that yielded a AFMQ value of +1.6 + 0.4 (10)
at 817° + 29°C (1o; Table 5).

The estimated magmatic fo, values of the IOA-related mag-
mas are highly variable (Table 5) and are on average lower
than the porphyry- and skarn-related magmas (Figs. 6b, 7b).
The IOA-related samples have been divided into three groups
(Figs. 6b, 7b, 8b): (1) a sample from Nihe in the Luzong ore
district yielded AFMQ —1.4 + 0.2 (10); (2) four samples from
the northern Ningwu ore district yielded increasing fo, values
(from AFMQ —0.8 + 0.4 to AFMQ +0.6 + 0.3) with decreasing
temperatures; (3) two samples from the southern Ningwu ore
district yielded greater FMQ values of 1.2 + 0.7 (10) and 2.1
+ 0.4 (1o; Table 5).

Thirty-two Archean-Proterozoic zircon xenocrysts from the
porphyry- and skarn-related intrusive rocks yielded an average
magmaticf% value of ~AFMQ +0.1 + 1.6 (1o, n = 32; Fig. Sc;
App. Table Al). Most of the zircon grains yielded UyNb ratios
of 240 (U; represents the age-corrected initial U concentra-
tion in zircon calculated following the method in Loucks et
al., 2020; F ig. 8c). In comparison, fourteen xenocrystic zircon
grains of Jurassic ages yielded a higher average fo, value of
AFMQ +14 = 0.5 (1o, n = 14; Fig. 8c; App. Table Al). The
Triassic xenocrystic zircon grain identified in one sample from
the Heshanggiao IOA deposit yielded an fo, value of AFMQ
+0.4 + 0.4 (2SE).
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All the analyzed zircon grains from the studied samples
yielded negative Eu anomalies (Figs. 6e, £, 7c, 9). The porphy-
ry- and skarn-related intrusive rocks typically yielded higher
zircon Ew/Eu® ratios of 0.62 + 0.08 (ranging from 0.43 + 0.04
to 0.77 + 0.08; 16) compared to those for IOA deposits (0.43
+ 0.09 on average; ranging from 0.33 + 0.04 to 0.53 = 0.09;
10). No time-space variations in zircon EwEu* values are
observed for the igneous rocks associated with porphyry and
skarn Cu + Au deposits across the four ore districts (Figs. 6e,
f, 7c). A positive correlation between the Ew/Eu* and AFMQ
values has not been observed (Fig. 9b), suggesting the mag-
matic fo, may not be the main factor affecting the zircon Ew/
Eu® anomalies reported here.

Amphibole: The average magmatic fo, value estimated from
amphibole compositions for the porphyry- and skarn-related
intrusive rock samples is AFMQ +1.6 + 0.4 (10), which is low-
er than that for IOA deposits (AFMQ +2.4 + 0.3, 1o; Table
5). The magmatic fo, values for the samples from porphyry-
and skarn-related deposits decrease from AFMQ ~2.3 + 0.4
at 838° + 42°C to a scattered range of AFMQ +1.0 to 1.5 at
lower temperatures (Fig. 10b). In contrast, the magmatic fo
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Table 5. P-T Crystallization Conditions, Magmatic fo,, and Zircon Ew/Eu® for Representative Intrusive Rocks Associated with Porphyry and Skarn
Cu + Au and Tron Oxide-Apatite Deposits in the Middle-Lower Yangtze River Metallogenic Belt, China

P (MPa) T (°C) foz (AFMQ) EwEu*

Sample District Deposit Amp ! Zrn ? Amp 3 Zrn ? Amp3 Zrm
DYTLS-01 Daye Tonglushan 118 + 30 803 + 52 707 + 27 2.1+0.7 1.6+02 0.56 = 0.11
DYTSK-01 Daye Tongshankou 198 + 19 740 + 32 757 +9 12+04 1.3+02 0.74 £ 0.07
DYHLS-01 Daye Huanglongshan 330 + 86 870 + 31 810 + 39 0.6 0.5 1.9+0.5 0.62 + 0.09
DY]GZ-01 Daye Jiguanzui n.a. 788 + 28K n.a. 1.9 £ 0.3% n.a. 0.55 + 0.05%

933 + 21¢ 0.7 £ 0.2¢ 0.43 = 0.04¢
JRBS-z01 Daye Baoshan n.a. 783 + 16 n.a. 0.5+ 0.6 n.a. 0.67 = 0.05
JRCMS-z01 Daye Chengmenshan n.a. 753 + 39 n.a. 1.0+0.3 n.a. 0.64 + 0.06
JRDLW-z01 Jiurui Dongleiwan n.a. 767 + 13 n.a. 1.7+0.3 n.a. 0.65 = 0.05
JRDJS-z01 Jiurui Dengjiashan n.a. 780 £ 27 n.a. 2.0 +0.2 n.a. 0.55 + 0.04
JRJLS-02 Jiurui Jilongshan 527 + 60 765 + 43 838 + 42 1.6 +0.6 2.3+ 0.4 0.57 + 0.04
JRWS-z01 Jiurui Wushan n.a. 765 £ 88 1.9+1.0 0.56 + 0.04
GCTS-03 Guichi Tongshan 255 + 57 817 + 29k 772 £ 20 1.6 £ 0.4% 1.8+04 0.51 + 0.06%

896 + 10¢ 0.7 £ 0.3¢ 0.56 + 0.04¢
GCMT-01 Guichi Matou 181 + 56 741 + 29 749 + 24 1.0+ 0.5 0.9+04 0.53 + 0.05
AQYS-03 Guichi Yueshan 131 + 39 860 + 22 735+ 11 1.6 +0.3 1.5+0.3 0.65 = 0.11
TLDGS-01 Tongling Dongguashan 352 + 38 819 + 36 796 + 13 1.9+ 0.3 1.8 +£0.3 0.68 £ 0.08
TLHC-z01 Tongling Hucun n.a. 775 + 37 2.2+0.3 0.65 + 0.04
TLHC-01 Tongling South Hucun 178 + 34 788 + 26 746 + 23 1.9+ 0.3 1.2 +0.3 0.60 + 0.06
TLJGS-z01 Tongling Jiguanshan n.a. 865 + 48 n.a. 1.0+04 n.a. 0.67 + 0.08
TLJKL-z01 Tongling Jinkouling n.a. 798 + 42k n.a. 2.1+ 048 n.a. 0.70 = 0.08¢

920 + 39¢ 0.7 £ 0.3¢ 0.61 = 0.04%
TLQSJ-z01 Tongling Qingshanjiao n.a. 840 + 36 n.a. 14+04 n.a. 0.77 + 0.08
TLSTJ-z01 Tongling Shatanjiao n.a. 776 £ 39 n.a. 1.9+04 n.a. 0.70 + 0.06
TLTEB-z01 Tongling Tianebaodan n.a. 839 + 74 n.a. 1.8+0.7 n.a. 0.73 = 0.08
TLTGS-01 Tongling Tongguanshan n.a. 812 £ 39 n.a. 1.8+0.7 n.a. 0.62 + 0.11
Average 252 + 131 810 + 50 770 + 40 15+05 1.6 +04 0.62 = 0.08
LZNH-06 Luzong Ninghe n.a. 892 + 10 n.a. -14+02 n.a. 0.48 + 0.03
NWGC-02 Ningwu Gaocun n.a. 967 + 49 n.a. -0.8+04 n.a. 0.44 + 0.05
NWHSQ-01 Ningwu Heshanggiao 85 + 16 870 + 28 n.a. 0.5+0.3 n.a. 0.35 £ 0.03
NWHSQ-04 Ningwu Heshanggiao 168 + 25 941 + 31 772 + 17 0.1+£0.3 24+04 0.33 + 0.04
NWWS-02 Ningwu Wushan n.a. 804 + 24 n.a. 0.6+0.3 n.a. 0.53 = 0.09
NWHMS-01 Ningwu Hemushan n.a. 883 + 25 n.a. 21+04 n.a. 0.34 = 0.04
NWZ]GS-02 Ningwu Zhongjiu-Gushan 189 + 72 875 + 51 789 = 42 1207 2.1+0.3 0.53 £ 0.04
Average 147 + 55 890 = 50 750 + 50 03+12 24 +0.3 0.43 + 0.09

Notes: The results estimated from zircon geochemistry for samples DYTLS-01, DYTS-02, DYTSK-01 and TLTGS-01 are assumed to be comparable to that
for other samples collected from the same deposit; previously published zircon geochemistry data for samples from the Tonglushan, Tongshankou, Wushan,
Tongguanshan, and Dongguashan deposits (Wang et al., 2013; Wang et al., 2015; Wen et al., 2020, and Zhang, |., et al., 2021) have been compiled and merged
with our data to calculate the relevant values; methods in estimating P-T crystallization conditions and magmatic fo,: 1 = Mutch et al. (2016); 2 = Loucks et

al. (2020); 3 = Ridolfi (2021); Ew/Eu® = Eu,/(Sm, xGd,)2% n represents chondrite-normalized; normalization data are from Sun and McDonough (1989); the
letters C and R represent values estimated using samples from the core and rim, respectively

from 1.26 + 0.03 to 2.94 + 1.71 wt %; 10), respectively (Table
6). Apatite that crystallized after degassing yielded lower aver-
age S and Cl concentrations of 0.02 + 0.01 wt % (10) and 1.03
+ 0.55 wt %, respectively (1o; Table 6). In contrast, hydro-
thermal apatite grains in the albitized diorite sample NWH-
SQ-04 contain homogenous S and Cl contents of 0.16 + 0.06
wt % (10) and 0.36 + 0.07 wt % (10), respectively. These S
and Cl concentrations are consistent with data from Zeng et
al. (2016) for apatite crystallized from early-stage magmatic-
hydrothermal fluids in the Ningwu ore district (Fig. 11).

The estimated average concentrations of S in the porphyry-
and skarn-related and IOA-related silicate melts in equilib-
rium with predegassed apatite are comparable at 0.13 + 0.06
wt % (1o) and 0.16 = 0.09 wt % (10), respectively (Fig. 12;
Table 6). The average melt CI/H2O ratios estimated using
apatite compositions for the intrusive rocks associated with
the porphyry and skarn Cu and IOA deposits are 0.05 + 0.03
(1o) and 0.14 + 0.02 (10) using the model of Li and Hermann
(2017) and 0.04 + 0.03 (10) and 0.11 + 0.03 (10) using the

model of Li and Costa (2020). Using the exchange partition
coefficients of OH-CI between amphibole and melt (Giesting
and Filiberto, 2014), the melt CI/H>O ratios for porphyry and
skarn Cu deposits are estimated to be lower than those for
IOA deposits (0.02 = 0.01 vs. 0.12 + 0.04; 1o; Fig. 12; Table
6). Similarly, the melt CI/H2O ratios estimated using biotite
and bulk-rock compositions (Zhang, C., et al., 2022) are 0.03
+ 0.01 and 0.34 = 0.03 for the porphyry- and skarn-related
and IOA-related rocks, respectively (Table 6). These results
are internally consistent, suggesting that the CI/H»O ratios of
the IOA-related melts were a factor of 3 to 11 higher than
those of the porphyry- and skarn-related melts.

Discussion

Magmatic oxidation states

The temperature-independent, mineral-based oxybarome-
ters indicate that f02> reported as AFMQ, varied in the source
magmas that evolved ore-forming fluids for porphyry Cu de-
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Fig. 6. (a, b) Plots of Ti-in-zircon temperature versus latitude and longitude. (c, d) Plots of AFMQ values versus latitude and
longitude. (e, f) Plots of zircon Ew/Eu® ratios versus latitude and longitude. Small symbols in (a) and (b) are individual zircon
analyses, whereas the larger ones are average values for the groups of zircon samples. Error bars represent standard devia-

tions (10).

posits and IOA deposits in the Middle-Lower Yangtze River
metallogenic belt (Fig. 13). The fo, data reported here for
the causative magmas for the porphyry and skarn Cu + Au
deposits indicate that they were oxidized throughout their
evolution (Fig. 13), consistent with published studies of arc
magmas in general and those that formed porphyry Cu sys-
tems (Richards, 2015; Cottrell et al., 2021; Meng et al., 2021a;
2022). The porphyry- and skarn-related high-K calc-alkaline
magmas in the Middle-Lower Yangtze River metallogenic

belt are thought to have been derived from (1) thickened or
delaminated lower crust (Wang et al., 2007; Hou, Z.Q., et
al., 2011) or (2) partial melting of sub-arc mantle that was
metasomatized in the Neoproterozoic (Li et al., 2008; Wang
et al., 2016; Chen et al., 2020) and/or the Mesozoic (Mao et
al., 2011). The estimated magmatic fo2 values reported here
discount the possibility of the former model considering that
the analyzed Archean-Neoproterozoic zircon xenocrysts that
are probably entrained from the Precambrian crystalline
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Fig. 7. Plots of (a) Ti-in-zircon temperature, (b) AFMQ (fayalite-magnetite-
quartz) values, and (c) zircon Euw/Eu® ratios versus zircon U-Pb age for por-
phyry- and skarn-related and iron oxide-apatite-related igneous rocks in the
Middle-Lower Yangtze River metallogenic belt. Small symbols in (a) and (b)
are individual zircon analyses, whereas the larger ones are average values for
the groups of zircon samples. The 206Pb/235U ages with standard deviation
(1o) are reported for the individual zircon grains, whereas the concordia or
intercept ages with 2 standard errors are plotted for individual samples. Error
bars for the Ti-in-zircon temperature, AFMQ values, and zircon Ew/Eu®
ratios represent standard deviations (10).

basement are constrained to be relatively reduced (~AFMQ
+0; Fig. 5a), so that pure remobilization of the Precambri-
an crystalline basement (i.e., dominated by late Archean to
Paleoproterozoic tonalite-trondhjemite-granodiorite; Dong
et al., 2011) and their mafic-ultramafic counterparts during

Fig. 8. (a, b) Plots of AFMQ (fayalite-magnetite-quartz) values versus Ti-in-
zircon temperature for porphyry- and skarn- and iron oxide-apatite (I0A)-
related magmas in the Middle-Lower Yangtze River metallogenic belt. (c)
Plots of AFMQ values versus U-Pb age of the xenocrystic zircon grains in
ore-related samples from the Middle-Lower Yangtze River metallogenic belt
(MLYRB). The zircon oxybarometer and revised Ti-in-zircon thermometer
are from Loucks et al. (2020). We assume a pressure of 200 MPa for estimat-
ing the Ti-in-zircon temperatures for both porphyry- and skarn-related and
IOA-related magmas. Variation of pressure by ~100 MPa will produce errors
of ~10°C, which is within the range of the standard deviations of tempera-
ture estimates (10°-90°C). Small symbols in (a) and (b) are individual zircon
analyses, whereas the larger ones are average values for the groups of zir-
con samples. The symbols in (c) are individual analyses of xenocrystic zircon
grains. Error bars represent standard deviations (10). The pink band in (a)
represents a 95% confidence interval with the regression line in the center for
the samples in Tongling ore district (R2 = 0.76 for all the average values). The
gray bands represent the average AFMQ value of 0.85 + 0.95 (10) estimated
using a zircon oxybarometer for Phanerozoic arc magmas (Meng et al., 2022).
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thickening or delamination of the lower crust should have
produced relatively reduced and S-poor magmas. A signifi-
cant modification and oxidation of the lithospheric mantle is
therefore required. Compared to the scattered AFMQ values
(~0 on average; Fig. 8c) estimated using the compositions of
the Neoproterozoic arc-like xenocrystic zircon grains (U/Nb
ratios of 240; Grimes et al., 2015), the Jurassic arc-like zir-
con xenocrysts yielded relatively high magmatic fo, of AFMQ
+1.4 £ 0.5 (1o, n = 14). We therefore suggest that the fluids
or melts released during the paleo-Pacific flat-slab subduc-
tion may have contributed to metasomatism and oxidation
of the mantle from which the oxidized porphyry- and skarn-
related magmas formed in the Middle-Lower Yangtze River
metallogenic belt.

The relatively high fo, values of AFMQ +0.5 to AFMQ +2.5
for the porphyry- and skarn-related magmas predict the co-
existence of sulfate and sulfide in the silicate melt by follow-
ing the experimentally determined sulfide-sulfate transition
in fo, space for basaltic-dacitic melt at 1,000°C and 300 MPa
(Jugo et al., 2010; Botcharnikov et al., 2011; Kleinsasser et al.,
2022). This is supported by the presence of magmatic sulfide
and sulfate minerals in igneous rocks from the Tongling (Du
and Audétat, 2020) and Daye districts (Table 3), respectively.
The magmatic fo, increased with magma cooling, which may
be attributed to the fractionation of Fe2+-bearing miner-
als (Ulmer et al., 2018; Tang et al., 2018; Zhang, ].B., et al.,
2022). As the magma evolved, the estimated f02 increased to
AFMQ +2.5 at 770°C and then decreased to ~AFMQ +1 at
~700°C (Fig. 13).

Exsolution of magmatic-hydrothermal fluids from hydrous
melts can occur during their emplacement in the upper crust
(e.g., ~300 MPa; Edmonds and Woods, 2018). The decrease
in fo, as the porphyry- and skarn-related magmas cooled from
800° to 700°C could be explained by mass transfer of sulfur
from the melt to the exsolved magmatic-hydrothermal fluid,
where sulfur in the melt at a lower temperature is predicted
to be both sulfate (SO4)2- and sulfide (HsS) and sulfur in the

fluid is sulfite (SO2) at ~AFMQ +2.5 (Jugo et al., 2010; Audé-
tat and Simon, 2012; Nash et al., 2019). The iron reduction
and H.S oxidation is described by the reaction:

3Fes0s5 (melt) + HaS (melt) =
6FeO (melt) + SOy (fluid) + H2O (fluid). (1)

The fo, values for the intrusive rocks in the northern Ning-
wu ore district increased by nearly two orders of magnitude
from AFMQ -1 at 970°C to AFMQ +0.5 at 800°C, and then
increased to AFMQ +2.5 at <800°C (Fig. 13). The v:slriablefo2
values for the two groups of samples may be attributed to the
difference in the amount of evaporite assimilated, whereas
the increasing trend in fo, can be explained by fractionation
of Fe?+-bearing minerals and two reactions that occur during
degassing of the melt that yielded high CI/H2O ratios. This
increases the Fe3+/Fe2+ ratio of the melt resulting in oxidation
via the following reactions:

3FeO (melt) + SO + 2HCI =
Fe30y (melt) + SO: (gas) + 2CI- (fluid) + H2O (fluid); (2)

FesOy4 (melt) + 2HCI =
Fes03 (melt) + FeCls (fluid) + H2O (fluid). (3)

The latter involves the mass transfer of Fe2+ from the melt
to the exsolved fluid phase as FeCly (Simon et al., 2004; Bell
and Simon, 2011).

Source of the volatile elements

Silicate melts that produced porphyry and skarn Cu + Au de-
posits in the Middle-Lower Yangtze River metallogenic belt
are distinct from those that produced the IOA deposits. The
porphyry- and skarn-related melts were hydrous (~5-8 wt %
H-0) and S-rich (~0.13 + 0.06 wt %) with moderate CI/H-O
ratios (~0.04 + 0.03), consistent with porphyry Cu systems
and arc magmas globally (Candela and Piccoli, 1995; Mein-
ert et al., 2005; Audétat and Simon, 2012; Richards, 2015;
Meng et al., 2021a; Fig. 12). The IOA-related melts were less
hydrous (~4-5 wt % H20), with significantly higher CI/H>O
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Fig. 10. Plots of pressure, temperature, AFMQ (fayalite-magnetite-quartz)
value, and H2O concentration estimated using amphibole composition for
porphyry- and skarn- and iron oxide-apatite (IOA)-related intrusive samples
in Middle-Lower Yangtze River metallogenic belt. Small symbols are indi-
vidual zircon analyses, whereas larger ones are average sample compositions.
Error bars represent standard deviations (10).

ratios (~0.11 + 0.03) and highly variable S contents (<0.16 +
0.09 wt %; Fig. 12).

The hydrous ore-forming melts for the porphyry and skarn
Cu + Au deposits lack whole-rock Eu anomalies and have el-
evated whole-rock Sr/Y ratios (see summary in Chen et al.,
2020) and higher zircon EwWEu* ratios (Figs. 6-8) that are
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Fig. 11. Plots of S versus Cl concentration in primary apatite grains for por-
phyry- and skarn- and iron oxide-apatite (IOA)-related intrusive samples in
the Middle-Lower Yangtze River metallogenic belt. The symbols represent
individual analyses, except that the star symbols represent the average values
with standard deviations for apatite grains crystallized from early-stage mag-
matic fluids in Ningwu ore district. The S and CI data for the hydrothermal
apatite grains in Ningwu are from Zeng et al. (2016). The average S concen-
trations in apatite grains for Phanerozoic arc magmas are from Meng et al.
(2021a).

consistent with fractionation of amphibole and suppression of
plagioclase (Richards and Kerrich, 2007). In comparison, the
IOA-related dioritic rocks typically yielded negative whole-
rock Eu anomalies, lower whole-rock Sr/Y ratios (see sum-
mary in Chen et al., 2020), and lower zircon Eu/Eu® ratios
(Figs. 6-8), suggesting early fractionation of plagioclase that
may be favored in the relatively dry magmas (Richards, 2011).
These systematic changes in geochemical features are consis-
tent with lithospheric extension at ~135 Ma (Figs. 2, 14; Li et
al., 2019).

Exhaustion of the volatile ingredients in the previously
metasomatized mantle source without a continuous flux of
oxidized slab-derived fluids is not capable of maintaining the S
contents in the derivative silicate melts because reduced sul-
fur will be separated early from the magmas as sulfide liquid
(Wallace and Edmonds, 2011; Richards et al., 2017; Meng et
al., 2022). Slab-derived fluids typically yielded high CI/H.O
ratios, and the decline in the slab-derived flux to the man-
tle (e.g., during slab rollback or remobilization of previously
metasomatized mantle for the Middle-Lower Yangtze River
metallogenic belt) will decrease the CI/H2O ratios in the de-
rivative melts (Kent et al., 2002; Candela and Piccoli, 2005).
However, the predegassed S concentrations in ore-forming
melts for the porphyry and skarn Cu + Au deposits are in-
distinguishable from those in the magmas associated with
IOA deposits, whereas the CI/H»O ratios of the predegassed
IOA-related melts estimated using apatite compositions are
a factor of ~3 higher than those estimated for porphyry- and
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phyry and skarn Cu and iron oxide-apatite (IOA) deposits in the Middle-
Lower Yangtze River metallogenic belt. Method 1 = Li and Hermann (2017);
Method 2 = Li and Costa (2020); Method 3 = Giesting and Filiberto (2014).
The estimated CI/H:0 ratios of the silicate melts using apatite and amphi-
bole compositions are consistent with uncertainty. Note that the CI/H20 ratios
of the degassed IOA-related melts may represent the maximum values if we
assume that the degassed apatite grains crystallized at a lower temperature
compared to those predegassed grains. The CI/H20 result estimated using
biotite and whole-rock compositions (Zhang, S., et al., 2021) for one sample of
IOA-related dioritic rock has been reported in the main text but is not plotted
here. The measured CI/H2O ratios for melt inclusions in olivine and minor
pyroxene from Phanerozoic arc rocks (SiOs > 52 wt %; from GEOROC data-
base) were plotted in the histogram, in which the melt inclusion data were fil-
tered using COs 2 50 ppm to minimize the effect of magmatic degassing. One
sample with CI/H20 ratio of 0.40 was not plotted. N represents numbers of
the groups of melt inclusions. Abbreviations: Amp = amphibole, Ap = apatite.

skarn-related melts and those for most Phanerozoic arc mag-
mas (Fig. 12). We therefore suggest that an additional source
with a higher S concentration and CI/H»O ratio is required for
forming IOA-related melts (Fig. 14).

One possible source to explain the S- and Cl-rich nature of
the predegassed silicate melts associated with IOA deposits
is the assimilation of evaporite sequences. This is supported
by (1) the presence of hypersaline brine inclusions hosted in
pyroxene-garnet skarns in the Ningwu basin (Li, W,, et al.,
2015), in which the brine inclusions are SOg-rich (3-39 wt
%) and have Cl/Br, Na/K, and Na/B ratios consistent with
the assimilation of sedimentary halite (Li, W., et al., 2015),
and (2) the heavy sulfur isotope values in hydrothermal an-
hydrite **Sann = +15.2 to +16.9%0) and pyrite (83*Spy = +4.6
to +12.1%o; Li, W,, et al., 2015; Duan et al., 2021). The hy-
persaline brine inclusions were trapped at temperatures of
~740° to 860°C (Ma et al., 2006; Li, W., et al., 2015), whereas
the hydrothermal anhydrite and pyrite precipitated from the
ore fluid at 450° to 540°C (Duan et al., 2021). The results
indicate that assimilation of the evaporite sequences probably
occurred before saturation of apatite at 871° + 31°C during

Fig. 13. Summary of AFMQ (fayalite-magnetite-quartz) values and tempera-
tures estimated for porphyry- and skarn- and iron oxide-apatite (IOA)-related
intrusive rocks from the Middle-Lower Yangtze River metallogenic belt.
Error bars represent standard deviations (10). The gray band represents the
average fo_ value estimated using magnetite-ilmenite mineral pairs for global
arc magmas (Cottrell et al., 2022). See the explanation for the trajectories in
the main text. Abbreviations: Amp = amphibole, Zrn = zircon.

IOA magma crystallization (App. Fig. A6). The significantly
low sulfur isotope values for the high-K calc-alkaline intru-
sive rocks and sulfide minerals (834S = -2 to +5%o) from most
of the studied porphyry and skarn Cu + Au deposits suggest
much stronger assimilation of evaporite sequences (as sug-
gested by the high pyrite %S = +4.6 to + 12.1%o) during for-
mation of the IOA deposits rather than porphyry and skarn
Cu = Au deposits (Pan and Dong, 1999; Li, W,, et al., 2015;
Zhou et al., 2015; Fan et al., 2019; Duan et al., 2021).

Tectonic and metallogenic models for porphyry Cu and
IOA deposits in the Middle-Lower Yangtze River
metallogenic belt

Porphyry Cu and IOA systems preferentially formed under
broadly compressional and extensional environments, respec-
tively, in response to the secular tectonic evolution in subduc-
tion-related settings (Sillitoe, 2003; Mao et al., 2011; Richards
et al., 2017). The tectonic setting of the Middle-Lower Yang-
tze River metallogenic belt at >135 Ma has been debated,
with subduction and intraplate models being proposed (Table
1). The interpreted broadly compressional setting at >135
Ma, which was a common feature in eastern China and ad-
jacent countries (e.g., Korea, Japan, and northern Vietnam;
Mao et al., 2021), is incompatible with the intraplate model
in which the magmas associated with porphyry and skarn Cu
+ Au deposits are thought to be derived mainly from partial
melting of the previously metasomatized mantle (e.g., in the
Neoproterozoic) in an extensional environment (Table 1).
Neoproterozoic magmatism has barely been identified in the
northeastern Yangtze craton, along which the Middle-Lower
Yangtze River metallogenic belt formed (Zhou et al., 2002).
The scattered and low AFMQ values of ~0 on average (Fig.
8c) estimated from the Neoproterozoic zircon xenocrysts of
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Fig. 14. Schematic cartoon models illustrating the tectonic evolution of the paleo-Pacific flat slab subduction in eastern China
for the Late Jurassic-Early Cretaceous Middle-Lower Yangtze River metallogenic belt (MLYRB not to scale; adapted from
Wu et al., 2019). (a) Flat-slab subduction for forming porphyry and skarn-related magmatism. (b) Slab rollback for iron oxide-
apatite (IOA)-related shoshonitic rocks. The Eastern Asian continental crust is significantly simplified due to its complexity
in the crystalline basement and for revealing the contrasting tectonic control on the mineralization in Middle-Lower Yangtze

River metallogenic belt.

arc affinity are inconsistent with the relatively oxidized condi-
tions of the mantle source of the Middle-Lower Yangtze River
metallogenic belt in the Neoproterozoic. In contrast, the mag-
matic fo, data presented in this study suggest that the mantle
source may have been metasomatized and oxidized since
~170 Ma, coincident with the operation of the previously pro-
posed paleo-Pacific flat-slab subduction (Li et al., 2019; Wu
et al., 2019; Liu et al., 2021; Qiu et al., 2023). The temporal
coincidence suggests that the paleo-Pacific flat-slab subduc-
tion should have contributed to the oxidation of the mantle
lithosphere. The long distance (~1,000 km) of the paleo-Pacif-
ic flat-slab subduction is comparable to the Farallon flat slab
during the Laramide orogeny in North America (Liu, L., et
al., 2010; Axen et al., 2018; Yan et al., 2020). Fluids and/or
melts released from the paleo-Pacific oceanic plate may have
infiltrated, weakened, and triggered the partial melting of the
overlying mantle lithosphere to produce adakitic magmas that
ascend along suture zones (Fig. 14).

A simple modelis put forward here to accommodate the tec-
tonomagmatic evolution at the time of porphyry and skarn Cu
+ Auand IOA deposit formation in the Middle-Lower Yangtze
River metallogenic belt (Figs. 14, 15). Under a transpressional
(or in transition to transtensional) setting (Table 1), primitive
basaltic magmas were produced by partial melting of the rela-
tively oxidized sub-arc mantle previously metasomatized by

slab-derived fluids released from paleo-Pacific flat slab (Fig.
14a). Hot, hydrous basaltic magmas interacted with the upper
plate lithosphere (e.g., Archean to Neoproterozoic crystalline
basement) and underwent melting, assimilation, storage, and
homogenization (Hildreth and Moorbath, 1988). These pro-
cesses are commonly associated with the fractionation of maf-
ic minerals and will progressively make the relatively oxidized
primitive arc magmas geochemically evolved, more oxidized,
and enriched in volatile elements such as H-O and S, as well
as variable Cl concentrations (Richards et al., 2012; Loucks,
2021). A moderately compressional setting inhibits rapid
magma ascent (Watanabe et al., 1999) and favors the accu-
mulation of andesitic-dacitic magmas in mid- to upper-crustal
reservoirs, followed by exsolution of magmatic-hydrothermal
fluids upon further cooling and interaction with the preexist-
ing igneous or carbonate rocks to form porphyry and skarn Cu
deposits (Richards, 2003; Sillitoe, 2010; Cooke et al., 2014).
Rollback of the paleo-Pacific flat slab from ~135 Ma may
have led to an extensional to transtensional setting of the
upper plate lithosphere in the Middle-Lower Yangtze River
metallogenic belt during IOA formation (Figs. 14, 15; Table
1; Chang et al., 1991, 2012; Mao et al., 2006, 2011; Li et al.,
2019) and caused a decrease in the mass transfer of aqueous
fluids from the subducting slab to the mantle wedge that re-
duced the Cl and S in the source magmas. Upwelling metaso-
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occur at the time of IOA formation (not depicted). Abbreviation: MASH = melting, assimilation, storage, homogenization.

matized asthenosphere mantle may have interacted with the
base of the crust, but the flux of hot, less-hydrous primitive
basaltic magmas cannot be maintained at the base of the crust
for extensive interaction, making the derivative magmas rela-
tively mafic and less hydrous, so that they could ascend rap-
idly to the upper crust or erupt at the surface (Loucks, 2021),
as evidenced by the voluminous volcanic deposits along the
Middle-Lower Yangtze River metallogenic belt (Figs. 1, 14b,
15b). The Cl enrichment in the intermediate to mafic source
magmas for IOA deposits during evaporite assimilation re-
sulted in the mass transfer of significant quantities of Fe from
the silicate melt to the exsolved ore fluid (Simon et al., 2004;
Reich et al., 2022). Normal faulting networks developed in
extensional settings during slab rollback can serve as conduits
for the highly focused ascent of FeCls-rich magmatic-hydro-
thermal fluids (Fig. 15b; Reich et al., 2022). Magnetite will
precipitate during the rapid ascent of an evolved magmatic-
hydrothermal fluid via a reaction such as the following:

3FeCly (fluid) + 4H>0 (fluid) =
Fe30y4 (solid) + 6HCI (fluid) + Hy (gas) (4)

because the solubility of FeCls is strongly pressure dependent
(Chou and Eugster, 1977; Boctor et al., 1980; Simon et al.,
2004; Zajacz et al., 2008; Reich et al., 2022). The P-T paths
estimated using amphibole compositions (Fig. 10a) are con-
sistent with the steeper geotherms of extensional settings as
opposed to those for arc settings (Hopkins et al., 2008). Ow-
ing to a steep geothermal gradient in the extensional setting
(Richards and Mumin, 2013b), as well as to thermal convec-
tion during asthenospheric upwelling, the high-heat-produc-
ing plutons may develop high-temperature alteration zones
extensively in their apical parts for the IOA deposit formation
(Figs. 14b, 15b; Table 1).

The data reported here indicate that the silicate melts for
porphyry and skarn Cu + Au deposits and IOA deposits have
similar predegassed S contents. However, early volatile exso-
lution in the IOA-related magmas, as monitored by apatite
composition (Fig. 11), would emit S, H2O, and volatile metals
(e.g., Cu) to the surface (Edmonds et al., 2022) at the time of
magnetite precipitation at 500° to 800°C (Reich et al., 2022;
Zeng et al., 2022). The concomitant emission of S, H2O, and
Cu with Cl would limit the residual melts for large-scale Fe +
Cu sulfide mineralization at ~400°C owing to SOz dispropor-
tionation (Rye, 1993). We here suggest that tectonic-driven
processes are the best possible explanation for the different
modes for IOA versus porphyry and skarn Cu + Au deposits in
the Middle-Lower Yangtze River metallogenic belt.

Conclusions

The petrogenetic studies presented here on the ore-forming
source magmas for the representative porphyry and skarn Cu
+ Au and IOA deposits in the Middle-Lower Yangtze River
metallogenic belt suggest that their magmatic fo, values vary
systematically with crustal assimilation, crystal fractionation,
and magmatic degassing. Because the estimated predegassed
S concentrations are indistinguishable, the contrasting S con-
centrations in the primitive magmas were not the fundamen-
tal cause for the contrasting metal endowments in the porphy-
ry and skarn Cu + Au and IOA deposits of the Middle-Lower
Yangtze River metallogenic belt. Instead, the magma compo-
sition and evolution paths (e.g., assimilation, decompression,
cooling, and degassing) controlled by kinematic settings and
geothermal gradients in the upper plate lithosphere exerted
a first-order control on forming porphyry and skarn Cu + Au
and IOA deposit types in the Middle-Lower Yangtze River
metallogenic belt.
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The coexistence of an IOA deposit and a porphyry Cu system
is rare on a global scale, such as in the Middle-Lower Yangtze
River metallogenic belt, the Coastal Cordillera of northern
Chile and Peru, and northern Sweden. Although slab rollback
or retreating, asthenospheric upwelling, and extensional set-
tings commonly follow compressional settings related to nor-
mal subduction, the IOA deposits are only rarely identified
where evaporite sequences are identified or inferred based on
geochemical evidence. This observation predicts that evapo-
rite assimilation is probably a key ingredient for IOA deposit
formation under a broadly extensional setting.
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