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Abstract

Motivation: Microbial signatures in the human microbiome are closely associated with various human diseases, driving
the development of machine learning models for microbiome-based disease prediction. Despite progress, challenges remain
in enhancing prediction accuracy, generalizability, and interpretability. Confounding factors, such as host’s gender, age
and body mass index significantly influence the human microbiome, complicating microbiome-based predictions.
Results: To address these challenges, we developed MicroKPNN-MT, a unified model for predicting human phenotype
based on microbiome data, as well as additional metadata like age and gender. This model builds on our earlier
MicroKPNN framework, which incorporates prior knowledge of microbial species into neural networks to enhance
prediction accuracy and interpretability. In MicroKPNN-MT, metadata, when available, serves as additional input features
for prediction. Otherwise, the model predicts metadata from microbiome data using additional decoders. We applied
MicroKPNN-MT to microbiome data collected in mBodyMap, covering healthy individuals and 25 different diseases, and
demonstrated its potential as a predictive tool for multiple diseases, which at the same time provided predictions for
the missing metadata. Our results showed that incorporating real or predicted metadata helped improve the accuracy of
disease predictions, and more importantly, helped improve the generalizability of the predictive models.
Availability: https://github.com/mgtools/MicroKPNN-MT.

Key words: human microbiome, interpretable neural network (NN), knowledge-primed, missing metadata, multitask
classification

Introduction

The human microbiome is a sophisticated ecosystem encompassing

trillions of microorganisms, demonstrating a crucial impact

on human health and diseases (Hou et al., 2022). This

intricate microbial community is distributed across various

body sites, including the skin, oral cavity, respiratory

tract, gastrointestinal tract, urinary tract, and reproductive

tract (Huttenhower et al., 2012). It is involved in diverse

physiological processes, ranging from digestion and immunity

to metabolism and brain function. Maintaining the delicate

balance of the microbiome is essential, as disruptions can

result in dysbiosis, associated with a broad spectrum of

diseases, including inflammatory conditions, obesity, diabetes,

and depression (Hou et al., 2022; Wilkins et al., 2019).

Consequently, the exploration of the human microbiome has

emerged as a rapidly expanding field of research, holding

substantial promise for advancements in disease diagnosis and

treatment, among others. Metagenomic data analysis of the

human microbiome has become a widely adopted strategy

for exploring its impact on human health and disease. The

link between the human microbiome and human health has

generated considerable interest in using microbiome data for

disease diagnosis and personalized medicine (Laterza and

Mignini, 2022).

Many different predictive models have been developed for

microbiome-based disease prediction (Marcos-Zambrano et al.,

2021; Liu et al., 2024). The models vary in the types of

inputs they take (species profiles, functional profiles, or both),

Machine Learning (ML) and AI algorithms, and the prediction

targets (single-disease or multi-disease) (Wirbel et al., 2021;

Le Goallec et al., 2020). These models have various prediction

accuracy and interpretability (some are black box whereas

others are more interpretable). Early predictive models were

based on conventional ML/AI algorithms, and more recently,

deep learning methods including various autoencoders were

also exploited for learning the representation of quantitative

microbiome profiles in a lower dimensional latent space

for building predictive models. Examples include DeepMicro

(Oh and Zhang, 2020), Ph-CNN (Fioravanti et al., 2018),
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PopPhy-CNN (Reiman et al., 2020), and EPCNN (Chen

et al., 2022). We have previously developed MicroKPNN

(Monshizadeh and Ye, 2024) for predicting human health

status based on microbiome data, aiming to improve the

accuracy of prediction and at the same time provide good

explainability of the predictions. MicroKPNN incorporates

multiple microbial relationships (metabolic, phylogenetic, and

community) in the model to improve the performance of

microbiome-based prediction and interpretability of the models.

The model enables the examination of the importance of

different input species and possible explanations (through

the hidden nodes that have biological meaning). MicroKPNN

achieved encouraging performance when tested on seven gut

microbiome datasets involving five different human diseases.

Predictions of human diseases that could benefit from

using microbiome include liver diseases (Caussy et al., 2019),

respiratory diseases (asthma (Bannier et al., 2020) and COPD

(Bowerman et al., 2020)), diabetes (T1D (Zheng et al., 2018)

and T2D (Iatcu et al., 2021)), inflammatory bowel disease

(Mills et al., 2022), and neuropsychiatric conditions (Liu et al.,

2024). A growing body of work has also demonstrated the

possibility of using the gut microbiome for the prediction

of future onset of diseases. Examples include a longitudinal

study showing that the gut microbiome at 1 year of age can

distinguish individuals who develop future T1D up to 20 years

later from those who do not (Bélteky et al., 2023), and another

study that shows baseline gut microbiome is associated with

new-onset T2D in up to 18 years (Ruuskanen et al., 2022).

Various confounding factors affect human microbiota, and

the factors include sex, diet, race, medications, host’s genetic

variation, and so on. In addition, there are technical artifacts

that could complicate the use of microbiome data (Puschhof

and Elinav, 2023). Animal and human studies have shown

sex differences in gut microbiota, and different mechanisms

were suggested (Kim, 2022; Valeri and Endres, 2021). Results

from an animal experiment involving microbiota transfer

suggested that the microbiota-independent gender differences

in the immune system select a gender-specific gut microbiota

composition, which in turn further contributes to gender

differences in the immune system (Fransen et al., 2017). Sex

hormones are a potent driver of differences in the microbiome,

and other factors (diets, antibiotics and environment) impact

gut microbiota in a sex-dependent manner (Valeri and Endres,

2021). A joint analysis (Blekhman et al., 2015) of the

composition of the human microbiome and host genetic

variation revealed significant associations between host genetic

variation and microbiome composition, and these associations

are found to be driven by host genetic variation in immunity-

related pathways and genes associated with microbiome-related

complex diseases including inflammatory bowel disease and

obesity-related disorders.

In addition to models that have been developed to utilize

microbiome data for human disease prediction, microbiome-

based ML models have been developed for other applications,

including age prediction (Huang et al., 2020; Chen et al., 2022).

ML models based on random forest regression revealed different

levels of accuracy using human skin, oral, and gut microbiomes,

with the model using the skin microbiome achieving the most

accurate age prediction (Huang et al., 2020). A multi-view

learning based model was developed for age prediction using

compositional and functional features of microbiome (Chen

et al., 2022). A model was built for predicting body mass index

(BMI) using microbiome data (Liang et al., 2023), achieving

BMI predictions with a mean absolute error (MAE) of about 2

kg/m2. The human microbiome may be used as a resource in

the forensics toolkit (Clarke et al., 2017), as human-associated

bacterial DNA can be used to uniquely identify an individual

(Franzosa et al., 2015), and even to provide information about

their life and behavioral patterns (Kort et al., 2014).

Considering that microbiome composition reflects the

impacts of many factors on the microbiota, and is associated

with host phenotypes, here we propose a unified predictive

model for the various metadata and human diseases. Although

our focus is on microbiome-based disease prediction, our

model also predicts the metadata including age, gender,

BMI, and body site if they are missing. We showed that

by doing this, we can not only improve the accuracy of

disease prediction, but also improve the generalizability of

the predictive model. We called our new model MicroKPNN-

MT as it incorporates prior-knowledge as in MicroKPNN

(Monshizadeh and Ye, 2024). In addition, MicroKPNN-MT

is a multitask and multiclass classification model: it includes

individual decoders for metadata predictions, and the decoder

for disease prediction is multiclass. Since most metagenomics

projects studying microbiome-disease association often have

healthy samples (control), our multiclass classification model

enables the utilization of all these healthy samples from

different projects. We applied our model to the mBodyMap

dataset (Jin et al., 2022), covering 25 different human diseases,

and demonstrated its potential as a predictive tool for multiple

diseases and identifying microbial markers for the diseases and

other metadata such as age.

Materials and Methods

Human microbiome data
We used the mBodyMap database (Jin et al., 2022), which

offers a comprehensive collection of human metagenomic data

and their species abundance profiles derived using state-of-

the-art tools. Reads processing and taxonomic assignments for

all the datasets included in mBodyMap were done using the

same set of tools (Jin et al., 2022). For taxonomic assignments,

MAPseq (v1.2) (Matias Rodrigues et al., 2017) was used for

16S rRNA sequencing data, and MetaPhlAn2 (Segata et al.,

2012) (default parameters) was used for shotgun metagenomic

sequences. The database also boasts a carefully curated set of

human-related metadata, including information on diseases and

health.

We excluded the samples with the sum of relative

abundances < 90 (%), and excluded diseases that had < 50

samples. We ended up with 34,233 samples from 56 projects,

involving 25 diseases. A total of 6,052 species were identified

from these samples. All samples have body site information,

whereas other metadata have various levels of incompleteness:

6,422 samples have age information, 23,804 samples have gender

information, and only 2,094 samples have BMI details.

Our experiments showed that categorized age and BMI

worked better for our application compared to their actual

values. So, we performed preprocessing on the collected data.

Specifically, we categorized BMI data qualitatively based on

standard definitions: underweight (BMI < 18.5), healthy weight

(18.5 ≤ BMI < 25), overweight (25 ≤ BMI < 30), and

obesity (BMI ≥ 30). Additionally, age data was grouped

into qualitative categories including infant (age ≤ 3), children

adolescents (3 < age ≤ 18), young adult (18 < age ≤ 35),

middle aged (35 < age ≤ 50), senior (50 < age ≤ 65), and
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Fig. 1. Breakdown of the samples according to the metadata. (A) The number of available samples for each metadata. (B) The number of samples

within each age category. (C) The number of samples for each gender. (D) The number of samples in each BMI category. (E) The number (percentage)

of samples collected from various body sites.

elderly (age > 65). See Figure 1 for the breakdown of the

samples according to the different metadata.

The model architecture
In this study, we propose a novel neural network architecture,

termed MicroKPNN-MT, designed to capture complex

relationships within human microbiome samples. The architecture

is tailored to incorporate prior knowledge about microbial

interactions, taxonomic relationships, and community structures

for microbiome-based human disease prediction. Furthermore,

MicroKPNN-MT utilizes metadata (age, gender, BMI, and

body site) to enhance disease prediction. For the samples

with missing metadata, MicroKPNN-MT predicts the missing

metadata using additional decoders in the model, and predicted

metadata is used for disease prediction. Figure 2 shows

the overall model architecture, which comprises several key

components outlined below.

Input layer

The input layer of the neural network is composed of species

abundance data derived from human microbiome samples. Each

input node represents the relative abundance of a specific

microbial species in the sample. We used the species abundance

data provided by mBodyMap (Jin et al., 2022).

Customized linear layer (MaskedLinear)

To leverage prior knowledge effectively, the first hidden layer

employs a customized linear layer, denoted as MaskedLinear.

This layer enforces a mask on the connections between the

input and hidden layers based on prior knowledge. The mask is

designed to capture relationships among three distinct groups:

metabolites, taxa, and communities.

• Metabolites (pink nodes in Figure 2). Each metabolite

is represented by two nodes in the hidden layer: one

for production and one for consumption. Edges connect

producer species in the input layer to the production

node and consumer species to the consumption node.

The metabolic edges are created according to the NJS16

metabolic network (Sung et al., 2017). There are a total of

281 different metabolites.

• Taxa (blue nodes). Taxonomic relationships are encoded

using the NCBI hierarchical taxonomy (which we obtained

by downloading the files from the NCBI FTP server through

the NCBI Taxonomy database web page in December

2023. Edges connect species in the input layer with their

corresponding genus. We note that MicroKPNN could

exploit different taxonomic ranks in this hidden layer

(genus, order, etc). MicroKPNN-MT uses the genus as

the taxonomic rank, as it significantly reduces the time

complexity by eliminating the search for taxonomic ranks,

and also in MicroKPNN, we showed that using the genus

generally gave good results across different datasets and

diseases.

• Communities (green nodes). Each node represents a

community, and all species belonging to the community

have an edge connecting to the node. Communities

are inferred from a species co-occurrence network using

advanced network inference approaches that can handle

sparse compositional data (Lam and Ye, 2022). The co-

occurrence network was constructed based on compositional

data of more than 4000 human microbiome datasets, and

the Leiden algorithm was applied to detect communities of

microbial species in the network.
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Fig. 2. Model architecture used in MicroKPNN-MT for multitask and multiclass classification. The MicroKPNN-MT model is designed to predict human

phenotype and infer missing metadata, such as BMI, age, and gender, based on microbiome data. This architecture combines microbiome input with

knowledge-primed layers, which incorporate prior biological information to improve prediction accuracy and interpretability. The multitask structure

allows the model to generate phenotype predictions while simultaneously predicting missing metadata. By utilizing available metadata or inferring it

when missing, the model addresses confounding variables and enhances the generalizability of microbiome-based predictions. This approach also enables

the identification of microbial markers potentially influencing host phenotypes, supporting both predictive accuracy and biological insight.

Metadata decoders

A dedicated decoder is included for each metadata (age,

gender, BMI, and body site). Each decoder comprises one fully

connected layer with dimensions matching the MaskedLinear

layer. The output dimensions of these decoders align with the

number of classes in each metadata, except for gender, which

has a single output with a sigmoid activation function.

Disease decoder

An additional decoder is introduced for disease prediction,

taking input from the output of the metadata decoders and

the customized layer. This decoder includes one fully connected

layer with dimensions matching the MaskedLinear layer. The

output dimension matches the number of classes in the disease

prediction task.

To enhance disease prediction accuracy, metadata are

masked in the model. If true values for metadata are available,

they are used directly. Otherwise predicted metadata from the

metadata encoders are utilized for disease prediction.

Model training and performance evaluation
We adopted a 5-fold cross-validation strategy to evaluate the

performance of our model. Special care was taken to ensure

that each fold maintained a consistent distribution of diseases,

enhancing the reliability of our results.

To balance the effects of metadata that have different

numbers of available samples, we use weighted cross-entropy

and binary cross-entropy as the loss function:

L =
n

nage

nage∑
i=0

CE(ŷage, yage)

+
n

ngender

ngender∑
i=0

BCE(ŷgender, ygender)

+
n

nbmi

nbmi∑
i=0

CE(ŷbmi, ybmi)

+
n

nbody site

nbody site∑
i=0

CE(ŷbody site, ybody site)

+
n∑

i=0

CE(ŷdisease, ydisease)

(1)

where n, nage, ngender, etc., denote the sample counts for the

entire dataset, age, gender, etc., respectively; y is the actual

category, ŷ is predicted category; CE and BCE represent cross-

entropy and binary cross-entropy losses, respectively.

The performance of the model was assessed using the

following metrics: accuracy (ACC), which is the fraction

of correct predictions; area under the curve (AUC), an

aggregated measure of the model’s performance across various

decision thresholds; F1 score, which is the harmonic mean of

the precision (fraction of true positives among all predicted

positives) and recall scores (fraction of predicted true

positives among all true positives); and the area under the

precision-recall curve (AUPRC), which captures the trade-off

between precision and recall, particularly valuable in assessing

performance on imbalanced datasets. As our model is multiclass

involving 25 diseases and healthy individuals for phenotype

prediction, the metrics were computed for each phenotype, then

averaged to provide the overall scores. The same approach was

used for the evaluation of the metadata prediction.
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These metrics were chosen to account for the imbalanced

nature of the dataset we used, providing a comprehensive

assessment of the model’s performance across individual

diseases as well as on average.

Interpretation of the models
We implemented local interpretability methods to analyze

individual samples and subsequently aggregated these interpretations

into global ones with a particular focus on the metadata-related

architecture within MicroKPNN-MT. Specifically, to measure

the influence of various metadata elements on disease prediction

and the impact of specific hidden nodes on metadata prediction,

we employed the Integrated Gradients (Sundararajan et al.,

2017) and Layer Conductance (Dhamdhere et al., 2018),

respectively.

Integrated Gradients (IG) attribute NN predictions to input

features, while Layer Conductance (LC) delves into individual

neuron and layer contributions. IG and LC attributes, positive

or negative, reflect a feature’s influence on the prediction. In

our experiments, we transform these attributes into importance

scores by taking their absolute values, where a higher score

indicates a larger impact of a feature on a specific prediction.

During the aggregation phase, to determine the overall

importance of features to a specific task, we average the scores

across all classes within that task. In addition, the model is

trained 20 times with randomly initialized weights for a stable

and credible interpretation. This approach enables a thorough

interpretability analysis of MicroKPNN-MT, exploring both

the contributions of the nodes to metadata prediction and the

impacts of metadata on disease prediction.

Baseline models
We compared our model with a few baseline models

including Support Vector Machine (SVM), Random Forest

(RF), and eXtreme Gradient Boosting (XGBoost) for disease

and metadata predictions through 5-fold cross-validation.

We empirically determined the optimal hyperparameters for

baseline models through experimental evaluation. The SVM

model employed a non-linear Gaussian Radial Basis Function

(RBF) kernel with a regularization parameter of 1.0. The

RF model comprised 500 decision trees. The XGBoost model

utilized 500 boosting stages, with each regression estimator

having a maximum depth of 5. All other hyperparameters were

set to their default values as implemented in the scikit-learn

package.

Implementation and availability
We developed MicroKPNN-MT using PyTorch, and for

interpretability analysis, we employed Captum (Kokhlikyan

et al., 2020), a package specifically designed for model

interpretation within the PyTorch framework. We utilized

AdamW optimizer with early stopping to mitigate overfitting.

The learning rate is set to 0.001 and the batch size is set

to 16. The source code of MicroKPNN-MT is available at:

https://github.com/mgtools/MicroKPNN-MT. Benchmarking

scripts are also made available under the same repository.

Results

Using metadata helps improve the disease prediction
We conducted a comprehensive comparison between disease

prediction models with and without metadata integration. The

primary objective was to assess the impact of incorporating

metadata on the predictive performance of the models. Despite

the consistent structure maintained across all models, the

crucial distinction lies in the meaningful interpretation of the

metadata nodes within each model.

The results (see Table 1) show a notable improvement in

disease prediction outcomes when all metadata were included

in the models, with the F1 score improved from 0.764 to 0.810.

We also built different models incorporating only one metadata

at a time to test the impact of individual metadata on the

prediction. The results showed that incorporating actual or

predicted metadata, especially age and body site information

helped improve disease prediction (see Table 1).

Figure 3 shows that different diseases have a wide range of

prediction accuracy. MicroKPNN-MT predicted some diseases

including cystic fibrosis with high accuracy. Fewer samples for

training probably contributed to the poorer performance of

some of the phenotypes including Parkinson disease, Psoriasis,

and Granulomatosis with Polyangiitis (GPA). On the other

hand, it also suggests these diseases may involve more

complicated factors, and using microbiome data alone was not

sufficient for accurate predictions.

A benchmark on the mBodyMap database for disease

prediction is established as shown in Table 2. We compared

our model with a few baseline models for all disease predictions

through 5-fold cross-validation. Our model outperforms the

others in terms of Accuracy (ACC) and F1 score, reflecting

its effectiveness at specific decision thresholds crucial for

predicting host phenotypes based on microbiome data. While

RF achieves the highest AUPRC, indicating better overall

precision-recall performance across all thresholds, the F1 score

is more relevant for our task as it highlights the model’s

performance at the critical decision points.. In terms of AUC

score, RF, XGBoost, and our model perform similarly, with

XGBoost slightly outperforming the other two models. It is

worth noting that even though the inference time of our model

is not the shortest, it predicts not only diseases but also all

other metadata during inference.

Missing metadata can be predicted from microbiome
data
As summarized in Table 3, all metadata can be predicted

using microbiome data with promising accuracy (in ACC and

F1-score). Evaluations using additional metrics (AUC and

AUPRC) are summarized in Supplemental Table S1 and S2.

For each metadata, we used predictions from two different

models, one for disease prediction and all metadata (disease

+ all metadata), and the other one for disease prediction

and the targeted metadata (disease + one metadata). The

results show that these two models gave very similar results,

although the disease + one metadata model gave marginally

better results. We note age has 6 categories (from infant to

elderly), BMI has 4, sex has 2, and there are 19 different body

sites. BMI prediction has the lowest accuracy of about 0.592

(still significantly better than random guesses involving four

choices). We attribute the poor BMI prediction to the small

training data (only 6% of the samples have BMI information),

among other possible reasons. We also trained and evaluated

SVM, RF, and XGBoost models for metadata prediction as

baselines. Since these models are not designed for multi-task

prediction, we trained individual models for each task. They

utilized the same hyperparameters as those used for disease

prediction demonstrated in the above section. Compared to

https://github.com/mgtools/MicroKPNN-MT
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Fig. 3. Prediction accuracy for each of the phenotypes (25 diseases + healthy) in F1 scores. The boxes with whiskers show the distribution of the F1

scores (mean and variance computed from the 5-fold cross-validations). The bars on the top show the number of available samples for each phenotype

for training and testing. Abbreviations for the diseases: RTIs (Respiratory Tract Infections), BV (Bacterial Vaginosis), COPD (Chronic Obstructive

Pulmonary Disease), OME (Otitis Media with Effusion), NEC (Necrotizing Enterocolitis), IBS (Irritable Bowel Syndrome), GPA (Granulomatosis with

Polyangiitis).

these baseline models for individual tasks, our multitask models

still show the highest or close to the highest performance. Our

models gave the most accurate predictions of age, BMI and

body site. In particular, our models outperformed the baseline

models for age and BMI predictions with a large margin. For

gender prediction, our models and RF outperformed other

approaches, with RF outperformed our models slightly.

Figure 4 shows the confusion matrices for the predictions

of age and BMI, showing that for most samples, their age and

BMI can be correctly predicted, however significant confusion

especially between neighboring categories (e.g., elderly and

senior, young adult and middle aged, healthy weight and

overweight) were observed.

Incorporating metadata helps improve the model
generalizability
To assess the robustness and generalizability of our model,

we designed another experiment so that predictive models

were applied to unseen data from projects that were not

included in the training. We selected three diseases (out of

25 diseases) that have data from three or more projects.

Additionally, we included a set of healthy samples, expanding

the disease prediction task to involve four classes, namely

Cystic Fibrosis (CF), Chronic Obstructive Pulmonary Disease

(COPD), Bacterial Vaginosis (BV), and the healthy class.

We divided our dataset into two main subsets: a training

dataset and a test dataset. The training dataset comprised

samples from 10 projects, totaling 4380 samples. For the test

dataset, we selected a different set of 6 projects (no overlaps

between projects for train and projects for testing) for a total of

869 samples (see Supplemental Table S3 for the list of projects).

This partitioning strategy aimed to provide a comprehensive

evaluation of our model’s performance on a diverse range of

projects and diseases. We trained and compared two models:

one that utilized metadata and another that did not include

this additional information.

We examined the performance of the models on the

training and test datasets, respectively (see Table 4). On

the training dataset, all models achieved high accuracy (RF

slightly outperformed other models) with F1 score > 0.96,

except SVM which had F1 score of 0.856. In addition, the

model using metadata yielded a slightly improved performance,

highlighting the potential benefits of incorporating additional

contextual information even in familiar data scenarios. On the

test dataset, all models had worse performance (e.g., RF’s

F1 score dropped from 0.998 to 0.674). However, what is

encouraging is that our model incorporating metadata still

gave reasonable predictions with F1 score of 0.856, drastically

outperforming the counterpart that lacked this additional

information (F1 score = 0.695). This comparison showcases

the superior generalizability of our model that incorporates

metadata on previously unseen data. It suggests that the

integration of metadata plays a pivotal role in bolstering the

model’s predictive capacity, particularly in scenarios where

it encounters diverse and unfamiliar data. However, the

results suggest there is still room for further improvement for

generalization, as we saw a significant performance degradation

on the unseen samples, despite that metadata helped.
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A B

Fig. 4. Confusion matrices summarizing the predictions of age and BMI, respectively. The percentage of samples in each cell was averaged over 5-fold

cross-validations. The percentages in each row add up to one. Using age prediction as an example, among the microbiomes derived from infants, 84.8%

of the samples were correctly predicted as from infants, while 12.7% of the samples were predicted to be from children adolescents, and so on. See

Supplemental Figure 1 for confusion matrices that show the counts of samples in each cell.

A B

Fig. 5. Example interpretations of the predictive models. (A) Impacts of metadata on disease prediction, where the x-axis represents metadata types,

including age, gender, BMI, and body site, and the y-axis represents disease names. (B) Impacts of the meaningful hidden nodes on the age prediction,

where the x-axis represents the importance scores, and the y-axis lists the names of the relevant metabolites, taxa, and community nodes. The importance

scores shown as numbers in (A) and represented along x-axis in (B) were computed using the Integrated Gradients and Layer Conductance approaches

(see Methods). The relative values of the importance scores indicate the impacts of metadata/hidden nodes on the predictions, with higher numbers

representing larger impacts.

Interpretation of the predictive models
Importance scores of the metadata and the individual nodes

computed from the predictive models can be used to shed

light on the impacts of metadata on disease prediction and to

explain predictions. Figure 5 shows some example applications

of importance scores.

Figure 5A shows the impacts of metadata on disease

prediction. Most of the impact values are non-zero, suggesting

that the metadata consistently enhances prediction accuracy

across all diseases. Among the metadata we used, age and

BMI have large impacts on the prediction of a few diseases

including pneumonia, asthma, necrotizing enterocolitis (NEC),

and granulomatosis with polyangiitis (GPA). We note that

one needs to be cautious with the interpretation for GPA,

as GPA was one of the diseases that were not well predicted

by MicroKPNN-MT (see Figure 3). For the two respiratory
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diseases, the metadata has a larger impact on the prediction of

asthma than COPD. We note that age and BMI showed similar

patterns in their contribution to disease prediction, which could

partially be caused by the correlation between age and BMI.

Figure 5B shows the impacts of the metabolite, taxon,

and community nodes on age prediction. It lists the top 15

contributing hidden nodes (in the Maskedlinear layer that

have biological meaning) to the age prediction, including

two metabolite nodes, two community nodes, and 11

genera. Interestingly, the genus that is ranked second is

Brevibacterium, which contains species such as Brevibacterium

epidermidis that are typically found on the skin. This result

is consistent with a previous study, which showed that using

skin microbiome resulted in the most accurate prediction of age

compared to microbiome from other body sites (Huang et al.,

2020).

Discussion

We developed MicroKPNN-MT and its application to a

large collection of human microbiome datasets in mBodyMap

showed that our new method achieved promising results for

disease predictions based on microbiome data. In addition, it

provided predictions of missing metadata of the microbiome

samples, which we anticipate could be utilized by other

applications, considering that metadata are largely missing

for the existing microbiome datasets. The comprehensive

architecture we designed for MicroKPNN-MT enables the

model to learn intricate relationships within microbiome

samples by combining information from species abundance,

prior knowledge about microbial interactions, taxonomic

relationships, and community structures. The use of customized

layers and metadata-specific encoders contributes to the

model’s interpretability and performance across multiple

prediction tasks. It is worth noting that the metadata cannot

be directly integrated into the benchmark models (SVM, RF

and XGBoost) for two main reasons: a significant portion of

the metadata is missing from the dataset, and the benchmark

models are typically designed for single modal, which are not

optimal for handling inputs from different domains (e.g., species

abundance and various metadata).

Our experiments focus not only on the performance within

datasets from the same project as shown in Table 1 and

Table 3 but also on the generalizability of models on the

data from unseen projects as shown in Table 4. Testing on

samples from unseen projects showed a substantial reduction

in the accuracy of the models due to the heterogeneous

nature of the microbiome datasets. The observed divergence

in performance between the models using and without using

the metadata, especially on the unseen samples, showcased

the significance of using metadata to enhance the model’s

robustness beyond the confines of the training data. These

results further emphasize the potential of metadata-driven

approaches to improve predictive outcomes in real-world

healthcare applications.

Although it was built upon MicroKPNN, MicroKPNN-MT is

a very different tool for multi-class predictions and at the same

time provides predictions for missing metadata. It is a unique

model from these perspectives, and to our best knowledge there

are no such existing tools available that does all at the same

time. There were models that have been developed for example

for age prediction based on microbiomes, and separate models

have to be trained for different diseases, but our model can

provide predictions of all metadata and all diseases currently

included in the model. We also note that for comparison

purpose, we reported the accuracy of the metadata prediction

by traditional methods such as SVM and RF, however, unlike

our method, different models have to be trained for these

methods for different metadata.

We used microbiome datasets collected in mBodyMap

to train and test the models. The mBodyMap dataset is

comprehensive containing tens of thousands of samples, and the

datasets from different projects were reanalyzed using the same

procedures. Limitations include that there are other methods

that can be used to infer species profiles from metagenomes, and

studies have shown that the choice of bioinformatics analyses

could have an impact on the utility of microbiome data (Liu

et al., 2024).

We note that the prior-knowledge used in current

MicroKPNN-MT is incomplete. For example, the community

structure used in MicroKPNN-MT was inferred from gut (stool)

microbiomes. Although there are significant overlaps of the

microbial species found in the different body sites with those

found in gut microbiome, different body sites have distinct

microbial species profiles. We anticipate that such community

structures can be refined when human microbiomes from

different body sites are included for the co-occurrence and

community detection.

We anticipate that MicroKPNN-NT can be further improved

with additional optimization of the models and adding

additional functionality. We observed that the model for

both disease and BMI prediction actually resulted in slightly

worse performance for disease prediction compared to the

model that did disease prediction only (see Table 1). One

direction of optimization is to try different combinations of

the metadata and see how that changes the performance.

Second, MicroKPNN-NT can be improved for predicting

multiple diseases (a person could have disease A and

disease B). Currently, MicroKPNN-MT only predicts one

class for the health status prediction (healthy or one of

the other 25 diseases). Finally, it is important to further

develop MicroKPNN-MT so that it can provide confidence

for prediction so if a microbiome dataset is derived from an

individual who doesn’t have any of the included phenotypes,

MicroKPNN-MT prediction should be able to reflect that.
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Table 1. Comparison of the accuracy of disease prediction with and without using metadata.

Model Accuracy (std) AUC (std) F1 score (std) AUPRC (std)

disease only 0.913 (0.00274) 0.965 (0.048) 0.764 (0.203) 0.519 (0.296)

disease + age 0.917 (0.00166) 0.967 (0.049) 0.779 (0.185) 0.573 (0.290)

disease + gender 0.911 (0.00337) 0.968 (0.044) 0.760 (0.199) 0.563 (0.273)

disease + BMI 0.911 (0.00224) 0.964 (0.048) 0.760 (0.198) 0.523 (0.299)

disease + body site 0.919 (0.00241) 0.967 (0.049) 0.796 (0.170) 0.544 (0.287)

disease + all metadata 0.924 (0.00266) 0.968 (0.049) 0.810 (0.178) 0.620 (0.289)

The best performances for each evaluation metric are highlighted in bold.

Table 2. Performance for SVM, RF, XGBoost, and Ours on the Disease task.

Model ACC AUC F1 AUPRC # parameters Inference Time (s)

SVM 0.808 (0.003) 0.969 (0.002) 0.503 (0.006) 0.582 (0.015) 80 M 856.122 (76.979)

RF 0.908 (0.002) 0.996 (0.010) 0.643 (0.345) 0.881 (0.165) 10 M 0.609 (0.050)
XGBoost 0.916 (0.003) 0.996 (0.009) 0.773 (0.190) 0.876 (0.152) 30 M 0.707 (0.292)

Ours (disease + all

metadata)
0.924 (0.003) 0.968 (0.049) 0.810 (0.178) 0.620 (0.289) 39 M 140.400 (12.876)

All the ACC, AUC, F1, and AUPRC scores and running times are averaged across 5 folds, formatted as mean (std). The unit for the parameter number

is count, and M stands for million. The best performances for each evaluation metric are highlighted in bold.

Table 3. Summary of the metadata prediction in ACC and F1-score (std).

Age Gender BMI Body site

Model ACC F1 ACC F1 ACC F1 ACC F1

disease + one metadata
0.763

(<0.01)

0.684

(0.136)

0.933

(<0.01)

0.901

(0.055)

0.592

(0.019)

0.480

(0.211)

0.936

(<0.01)

0.647

(0.332)

disease + all metadata
0.761

(<0.01)

0.684

(0.137)

0.931

(<0.01)

0.899

(0.057)

0.584

(0.026)

0.465

(0.225)

0.934

(<0.01)

0.633

(0.343)

SVM
0.366

(0.013)

0.355

(0.006)

0.903

(0.004)

0.774

(0.008)

0.253

(0.023)

0.247

(0.037)

0.896

(0.003)

0.533

(0.007)

RF
0.632

(0.008)

0.461

(0.235)

0.937

(0.004)

0.909

(0.051)

0.406

(0.020)

0.363

(0.194)

0.943

(0.003)

0.556

(0.405)

XGBoost
0.611

(0.009)

0.494

(0.214)

0.900

(0.005)

0.865

(0.069)

0.386

(0.031)

0.346

(0.180)

0.944

(0.003)

0.638

(0.352)

The best performances for each evaluation metric are highlighted in bold. Evaluations in additional metrics including AUC and AUPRC are shown in

Supplemental Table S1 and S2.

Table 4. Comparison of the accuracy of disease prediction with and without using metadata on samples from unseen projects (not used for

training).

Model Accuracy (std) AUC (std) F1 score (std) AUPRC (std)

SVM (train) 0.829 (0.014) 0.962 (0.005) 0.856 (0.014) 0.913 (0.013)

RF (train) 0.997 (0.002) 0.999 (0.001) 0.998 (0.002) 0.999 (0.001)

XGBoost (train) 0.996 (0.002) 0.999 (0.001) 0.996 (0.002) 0.999 (0.001)

disease only (train) 0.983 (0.005) 0.987 (0.016) 0.986 (0.012) 0.962 (0.047)

disease + all metadata (train) 0.991 (0.001) 0.994 (0.012) 0.993 (0.006) 0.988 (0.019)

SVM (test) 0.741 (0.009) 0.937 (0.004) 0.700 (0.010) 0.789 (0.013)

RF (test) 0.703 (0.005) 0.917 (0.003) 0.674 (0.004) 0.748 (0.005)

XGBoost (test) 0.668 (0.012) 0.902 (0.005) 0.610 (0.024) 0.749 (0.014)

disease only (test) 0.727 (0.017) 0.895 (0.080) 0.695 (0.115) 0.734 (0.159)

disease + all metadata (test) 0.871 (0.026) 0.966 (0.023) 0.856 (0.140) 0.900 (0.095)
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