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Abstract

Motivation: Microbial signatures in the human microbiome are closely associated with various human diseases, driving
the development of machine learning models for microbiome-based disease prediction. Despite progress, challenges remain
in enhancing prediction accuracy, generalizability, and interpretability. Confounding factors, such as host’s gender, age
and body mass index significantly influence the human microbiome, complicating microbiome-based predictions.
Results: To address these challenges, we developed MicroKPNN-MT, a unified model for predicting human phenotype
based on microbiome data, as well as additional metadata like age and gender. This model builds on our earlier
MicroKPNN framework, which incorporates prior knowledge of microbial species into neural networks to enhance
prediction accuracy and interpretability. In MicroKPNN-MT, metadata, when available, serves as additional input features
for prediction. Otherwise, the model predicts metadata from microbiome data using additional decoders. We applied
MicroKPNN-MT to microbiome data collected in mBodyMap, covering healthy individuals and 25 different diseases, and
demonstrated its potential as a predictive tool for multiple diseases, which at the same time provided predictions for
the missing metadata. Our results showed that incorporating real or predicted metadata helped improve the accuracy of
disease predictions, and more importantly, helped improve the generalizability of the predictive models.

Availability: https://github.com/mgtools/MicroKPNN-MT.

Key words: human microbiome, interpretable neural network (NN), knowledge-primed, missing metadata, multitask
classification

Introduction for exploring its impact on human health and disease. The
. . . L. . link between the human microbiome and human health has

The human microbiome is a sophisticated ecosystem encompassing X . . R X .

s . . . L. generated considerable interest in using microbiome data for

trillions of microorganisms, demonstrating a crucial impact

on human health and diseases (Hou et al.,, 2022). This

intricate microbial community is distributed across various

disease diagnosis and personalized medicine (Laterza and
Mignini, 2022).

body sites, including the skin, oral cavity, respiratory . Mar.ly different p.redlctlve Il:lO(.ielS have been developed for
microbiome-based disease prediction (Marcos-Zambrano et al.,
2021; Liu et al., 2024). The models vary in the types of
inputs they take (species profiles, functional profiles, or both),
Machine Learning (ML) and AI algorithms, and the prediction

targets (single-disease or multi-disease) (Wirbel et al., 2021;

tract, gastrointestinal tract, urinary tract, and reproductive
tract (Huttenhower et al., 2012). It is involved in diverse
physiological processes, ranging from digestion and immunity
to metabolism and brain function. Maintaining the delicate
balance of the microbiome is essential, as disruptions can . o
. .. . . Le Goallec et al., 2020). These models have various prediction
result in dysbiosis, associated with a broad spectrum of K .
. . . X . . . accuracy and interpretability (some are black box whereas
diseases, including inflammatory conditions, obesity, diabetes,

and depression (Hou et al.,, 2022; Wilkins et al., 2019).

Consequently, the exploration of the human microbiome has

others are more interpretable). Early predictive models were
based on conventional ML/AI algorithms, and more recently,

deep learning methods including various autoencoders were
emerged as a rapidly expanding field of research, holding P . & X & X L
. . . . . . also exploited for learning the representation of quantitative
substantial promise for advancements in disease diagnosis and K . . X K
A . microbiome profiles in a lower dimensional latent space
treatment, among others. Metagenomic data analysis of the o . X R
for building predictive models. Examples include DeepMicro

human microbiome has become a widely adopted strategy (Oh and Zhang, 2020), Ph-CNN (Fioravanti et al, 2018)
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PopPhy-CNN (Reiman et al., 2020), and EPCNN (Chen
et al.,, 2022). We have previously developed MicroKPNN
(Monshizadeh and Ye, 2024) for predicting human health
status based on microbiome data, aiming to improve the
accuracy of prediction and at the same time provide good
explainability of the predictions. MicroKPNN incorporates
multiple microbial relationships (metabolic, phylogenetic, and
community) in the model to improve the performance of
microbiome-based prediction and interpretability of the models.
The model enables the examination of the importance of
different input species and possible explanations (through
the hidden nodes that have biological meaning). MicroKPNN
achieved encouraging performance when tested on seven gut
microbiome datasets involving five different human diseases.

Predictions of human diseases that could benefit from
using microbiome include liver diseases (Caussy et al., 2019),
respiratory diseases (asthma (Bannier et al., 2020) and COPD
(Bowerman et al., 2020)), diabetes (T1D (Zheng et al., 2018)
and T2D (Iatcu et al.,, 2021)), inflammatory bowel disease
(Mills et al., 2022), and neuropsychiatric conditions (Liu et al.,
2024). A growing body of work has also demonstrated the
possibility of using the gut microbiome for the prediction
of future onset of diseases. Examples include a longitudinal
study showing that the gut microbiome at 1 year of age can
distinguish individuals who develop future T1D up to 20 years
later from those who do not (Bélteky et al., 2023), and another
study that shows baseline gut microbiome is associated with
new-onset T2D in up to 18 years (Ruuskanen et al., 2022).

Various confounding factors affect human microbiota, and
the factors include sex, diet, race, medications, host’s genetic
variation, and so on. In addition, there are technical artifacts
that could complicate the use of microbiome data (Puschhof
and Elinav, 2023). Animal and human studies have shown
sex differences in gut microbiota, and different mechanisms
were suggested (Kim, 2022; Valeri and Endres, 2021). Results
from an animal experiment involving microbiota transfer
suggested that the microbiota-independent gender differences
in the immune system select a gender-specific gut microbiota
composition, which in turn further contributes to gender
differences in the immune system (Fransen et al., 2017). Sex
hormones are a potent driver of differences in the microbiome,
and other factors (diets, antibiotics and environment) impact
gut microbiota in a sex-dependent manner (Valeri and Endres,
2021). A joint analysis (Blekhman et al., 2015) of the
composition of the human microbiome and host genetic
variation revealed significant associations between host genetic
variation and microbiome composition, and these associations
are found to be driven by host genetic variation in immunity-
related pathways and genes associated with microbiome-related
complex diseases including inflammatory bowel disease and
obesity-related disorders.

In addition to models that have been developed to utilize
microbiome data for human disease prediction, microbiome-
based ML models have been developed for other applications,
including age prediction (Huang et al., 2020; Chen et al., 2022).
ML models based on random forest regression revealed different
levels of accuracy using human skin, oral, and gut microbiomes,
with the model using the skin microbiome achieving the most
accurate age prediction (Huang et al., 2020). A multi-view
learning based model was developed for age prediction using
compositional and functional features of microbiome (Chen
et al., 2022). A model was built for predicting body mass index
(BMI) using microbiome data (Liang et al., 2023), achieving
BMI predictions with a mean absolute error (MAE) of about 2

kg/m?. The human microbiome may be used as a resource in
the forensics toolkit (Clarke et al., 2017), as human-associated
bacterial DNA can be used to uniquely identify an individual
(Franzosa et al., 2015), and even to provide information about
their life and behavioral patterns (Kort et al., 2014).
Considering that microbiome composition reflects the
impacts of many factors on the microbiota, and is associated
with host phenotypes, here we propose a unified predictive
model for the various metadata and human diseases. Although
our focus is on microbiome-based disease prediction, our
model also predicts the metadata including age, gender,
BMI, and body site if they are missing. We showed that
by doing this, we can not only improve the accuracy of
disease prediction, but also improve the generalizability of
the predictive model. We called our new model MicroKPNN-
MT as it incorporates prior-knowledge as in MicroKPNN
(Monshizadeh and Ye, 2024). In addition, MicroKPNN-MT
is a multitask and multiclass classification model: it includes
individual decoders for metadata predictions, and the decoder
for disease prediction is multiclass. Since most metagenomics
projects studying microbiome-disease association often have
healthy samples (control), our multiclass classification model
enables the utilization of all these healthy samples from
different projects. We applied our model to the mBodyMap
dataset (Jin et al., 2022), covering 25 different human diseases,
and demonstrated its potential as a predictive tool for multiple
diseases and identifying microbial markers for the diseases and

other metadata such as age.

Materials and Methods

Human microbiome data

We used the mBodyMap database (Jin et al., 2022), which
offers a comprehensive collection of human metagenomic data
and their species abundance profiles derived using state-of-
the-art tools. Reads processing and taxonomic assignments for
all the datasets included in mBodyMap were done using the
same set of tools (Jin et al., 2022). For taxonomic assignments,
MAPseq (v1.2) (Matias Rodrigues et al., 2017) was used for
16S rRNA sequencing data, and MetaPhlAn2 (Segata et al.,
2012) (default parameters) was used for shotgun metagenomic
sequences. The database also boasts a carefully curated set of
human-related metadata, including information on diseases and
health.

We excluded the samples with the sum of relative
abundances < 90 (%), and excluded diseases that had < 50
samples. We ended up with 34,233 samples from 56 projects,
involving 25 diseases. A total of 6,052 species were identified
from these samples. All samples have body site information,
whereas other metadata have various levels of incompleteness:
6,422 samples have age information, 23,804 samples have gender
information, and only 2,094 samples have BMI details.

Our experiments showed that categorized age and BMI
worked better for our application compared to their actual
values. So, we performed preprocessing on the collected data.
Specifically, we categorized BMI data qualitatively based on
standard definitions: underweight (BMI < 18.5), healthy weight
(18.5 < BMI < 25), overweight (25 < BMI < 30), and
obesity (BMI > 30). Additionally, age data was grouped
into qualitative categories including infant (age < 3), children
adolescents (3 < age < 18), young adult (18 < age < 35),
middle aged (35 < age < 50), senior (50 < age < 65), and
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Fig. 1. Breakdown of the samples according to the metadata. (A) The number of available samples for each metadata. (B) The number of samples
within each age category. (C) The number of samples for each gender. (D) The number of samples in each BMI category. (E) The number (percentage)

of samples collected from various body sites.

elderly (age > 65). See Figure 1 for the breakdown of the
samples according to the different metadata.

The model architecture

In this study, we propose a novel neural network architecture,
termed MicroKPNN-MT, to
relationships within human microbiome samples. The architecture

designed capture complex
is tailored to incorporate prior knowledge about microbial
interactions, taxonomic relationships, and community structures
for microbiome-based human disease prediction. Furthermore,
MicroKPNN-MT utilizes metadata (age, gender, BMI, and
body site) to enhance disease prediction. For the samples
with missing metadata, MicroKPNN-MT predicts the missing
metadata using additional decoders in the model, and predicted
metadata is used for disease prediction. Figure 2 shows
the overall model architecture, which comprises several key

components outlined below.

Input layer

The input layer of the neural network is composed of species
abundance data derived from human microbiome samples. Each
input node represents the relative abundance of a specific
microbial species in the sample. We used the species abundance
data provided by mBodyMap (Jin et al., 2022).

Customized linear layer (MaskedLinear)

To leverage prior knowledge effectively, the first hidden layer
employs a customized linear layer, denoted as MaskedLinear.
This layer enforces a mask on the connections between the
input and hidden layers based on prior knowledge. The mask is
designed to capture relationships among three distinct groups:
metabolites, taxa, and communities.

Metabolites (pink nodes in Figure 2). Each metabolite
is represented by two nodes in the hidden layer: one
for production and one for consumption. Edges connect
producer species in the input layer to the production
node and consumer species to the consumption node.
The metabolic edges are created according to the NJS16
metabolic network (Sung et al., 2017). There are a total of
281 different metabolites.

Taxa (blue nodes). Taxonomic relationships are encoded
using the NCBI hierarchical taxonomy (which we obtained
by downloading the files from the NCBI FTP server through
the NCBI Taxonomy database web page in December
2023. Edges connect species in the input layer with their
We note that MicroKPNN could
exploit different taxonomic ranks in this hidden layer

corresponding genus.

(genus, order, etc). MicroKPNN-MT uses the genus as
the taxonomic rank, as it significantly reduces the time
complexity by eliminating the search for taxonomic ranks,
and also in MicroKPNN, we showed that using the genus
generally gave good results across different datasets and
diseases.

Communities (green nodes). Each node represents a
community, and all species belonging to the community
have an edge connecting to the node. Communities
are inferred from a species co-occurrence network using
advanced network inference approaches that can handle
sparse compositional data (Lam and Ye, 2022). The co-
occurrence network was constructed based on compositional
data of more than 4000 human microbiome datasets, and
the Leiden algorithm was applied to detect communities of

microbial species in the network.
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Fig. 2. Model architecture used in MicroKPNN-MT for multitask and multiclass classification. The MicroKPNN-MT model is designed to predict human

phenotype and infer missing metadata, such as BMI, age, and gender, based on microbiome data. This architecture combines microbiome input with

knowledge-primed layers, which incorporate prior biological information to improve prediction accuracy and interpretability. The multitask structure

allows the model to generate phenotype predictions while simultaneously predicting missing metadata. By utilizing available metadata or inferring it

when missing, the model addresses confounding variables and enhances the generalizability of microbiome-based predictions. This approach also enables

the identification of microbial markers potentially influencing host phenotypes, supporting both predictive accuracy and biological insight.

Metadata decoders

A dedicated decoder is included for each metadata (age,
gender, BMI, and body site). Each decoder comprises one fully
connected layer with dimensions matching the MaskedLinear
layer. The output dimensions of these decoders align with the
number of classes in each metadata, except for gender, which
has a single output with a sigmoid activation function.

Disease decoder

An additional decoder is introduced for disease prediction,
taking input from the output of the metadata decoders and
the customized layer. This decoder includes one fully connected
layer with dimensions matching the MaskedLinear layer. The
output dimension matches the number of classes in the disease
prediction task.

To enhance disease prediction accuracy, metadata are
masked in the model. If true values for metadata are available,
they are used directly. Otherwise predicted metadata from the
metadata encoders are utilized for disease prediction.

Model training and performance evaluation

We adopted a 5-fold cross-validation strategy to evaluate the
performance of our model. Special care was taken to ensure
that each fold maintained a consistent distribution of diseases,
enhancing the reliability of our results.

To balance the effects of metadata that have different

numbers of available samples, we use weighted cross-entropy

and binary cross-entropy as the loss function:

Mage

L=— Z OE(gagev yage)

Mage ;=g

Mgender

n “
4+ — Z BCE(ygendenygender)

MNgender i—o0

Mbmi

Z CE(Jbmi, Ybmi) (1)

Mbmi ;2

n

Mbody site

— E CE(Jvody sites Ybody site)
Nbody site i—0

n

n
+ Z CE(:gdiseascv ydiscasc)

1=0

where n, nage, Ngender, €tc., denote the sample counts for the
entire dataset, age, gender, etc., respectively; y is the actual
category, 7 is predicted category; C' E and BCE represent cross-
entropy and binary cross-entropy losses, respectively.

The performance of the model was assessed using the
following metrics: accuracy (ACC), which is the fraction
of correct predictions; area under the curve (AUC), an
aggregated measure of the model’s performance across various
decision thresholds; F1 score, which is the harmonic mean of
the precision (fraction of true positives among all predicted
positives) and recall scores (fraction of predicted true
positives among all true positives); and the area under the
precision-recall curve (AUPRC), which captures the trade-off
between precision and recall, particularly valuable in assessing
performance on imbalanced datasets. As our model is multiclass
involving 25 diseases and healthy individuals for phenotype
prediction, the metrics were computed for each phenotype, then
averaged to provide the overall scores. The same approach was
used for the evaluation of the metadata prediction.
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These metrics were chosen to account for the imbalanced
nature of the dataset we used, providing a comprehensive
assessment of the model’s performance across individual
diseases as well as on average.

Interpretation of the models

We implemented local interpretability methods to analyze

individual samples and subsequently aggregated these interpretations

into global ones with a particular focus on the metadata-related
architecture within MicroKPNN-MT. Specifically, to measure
the influence of various metadata elements on disease prediction
and the impact of specific hidden nodes on metadata prediction,
we employed the Integrated Gradients (Sundararajan et al.,
2017) and Layer Conductance (Dhamdhere et al., 2018),
respectively.

Integrated Gradients (IG) attribute NN predictions to input
features, while Layer Conductance (LC) delves into individual
neuron and layer contributions. IG and LC attributes, positive
or negative, reflect a feature’s influence on the prediction. In
our experiments, we transform these attributes into importance
scores by taking their absolute values, where a higher score
indicates a larger impact of a feature on a specific prediction.
During the aggregation phase, to determine the overall
importance of features to a specific task, we average the scores
across all classes within that task. In addition, the model is
trained 20 times with randomly initialized weights for a stable
and credible interpretation. This approach enables a thorough
interpretability analysis of MicroKPNN-MT, exploring both
the contributions of the nodes to metadata prediction and the
impacts of metadata on disease prediction.

Baseline models

We compared our model with a few baseline models
including Support Vector Machine (SVM), Random Forest
(RF), and eXtreme Gradient Boosting (XGBoost) for disease
and metadata predictions through 5-fold cross-validation.
We empirically determined the optimal hyperparameters for
baseline models through experimental evaluation. The SVM
model employed a non-linear Gaussian Radial Basis Function
(RBF) kernel with a regularization parameter of 1.0. The
RF model comprised 500 decision trees. The XGBoost model
utilized 500 boosting stages, with each regression estimator
having a maximum depth of 5. All other hyperparameters were
set to their default values as implemented in the scikit-learn
package.

Implementation and availability

We developed MicroKPNN-MT using PyTorch,
interpretability analysis, we employed Captum (Kokhlikyan
et al., 2020),
interpretation within the PyTorch framework. We utilized

and for
a package specifically designed for model

AdamW optimizer with early stopping to mitigate overfitting.
The learning rate is set to 0.001 and the batch size is set
to 16. The source code of MicroKPNN-MT is available at:
https://github.com/mgtools/MicroKPNN-MT. Benchmarking
scripts are also made available under the same repository.

Results

Using metadata helps improve the disease prediction

We conducted a comprehensive comparison between disease
prediction models with and without metadata integration. The

primary objective was to assess the impact of incorporating
metadata on the predictive performance of the models. Despite
the consistent structure maintained across all models, the
crucial distinction lies in the meaningful interpretation of the
metadata nodes within each model.

The results (see Table 1) show a notable improvement in
disease prediction outcomes when all metadata were included
in the models, with the F1 score improved from 0.764 to 0.810.
We also built different models incorporating only one metadata
at a time to test the impact of individual metadata on the
prediction. The results showed that incorporating actual or
predicted metadata, especially age and body site information
helped improve disease prediction (see Table 1).

Figure 3 shows that different diseases have a wide range of
prediction accuracy. MicroKPNN-MT predicted some diseases
including cystic fibrosis with high accuracy. Fewer samples for
training probably contributed to the poorer performance of
some of the phenotypes including Parkinson disease, Psoriasis,
and Granulomatosis with Polyangiitis (GPA). On the other
hand,
complicated factors, and using microbiome data alone was not

it also suggests these diseases may involve more

sufficient for accurate predictions.

A benchmark on the mBodyMap database for disease
prediction is established as shown in Table 2. We compared
our model with a few baseline models for all disease predictions
through 5-fold cross-validation. Our model outperforms the
others in terms of Accuracy (ACC) and F1 score, reflecting
its effectiveness at specific decision thresholds crucial for
predicting host phenotypes based on microbiome data. While
RF achieves the highest AUPRC, indicating better overall
precision-recall performance across all thresholds, the F1 score
is more relevant for our task as it highlights the model’s
performance at the critical decision points.. In terms of AUC
score, RF, XGBoost, and our model perform similarly, with
XGBoost slightly outperforming the other two models. It is
worth noting that even though the inference time of our model
is not the shortest, it predicts not only diseases but also all
other metadata during inference.

Missing metadata can be predicted from microbiome
data

As summarized in Table 3, all metadata can be predicted
using microbiome data with promising accuracy (in ACC and
Fl-score). Evaluations using additional metrics (AUC and
AUPRC) are summarized in Supplemental Table S1 and S2.
For each metadata, we used predictions from two different
models, one for disease prediction and all metadata (disease
+ all metadata), and the other one for disease prediction
and the targeted metadata (disease + one metadata). The
results show that these two models gave very similar results,
although the disease + one metadata model gave marginally
better results. We note age has 6 categories (from infant to
elderly), BMI has 4, sex has 2, and there are 19 different body
sites. BMI prediction has the lowest accuracy of about 0.592
(still significantly better than random guesses involving four
choices). We attribute the poor BMI prediction to the small
training data (only 6% of the samples have BMI information),
among other possible reasons. We also trained and evaluated
SVM, RF, and XGBoost models for metadata prediction as
baselines. Since these models are not designed for multi-task
prediction, we trained individual models for each task. They
utilized the same hyperparameters as those used for disease
prediction demonstrated in the above section. Compared to
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Fig. 3. Prediction accuracy for each of the phenotypes (25 diseases + healthy) in F1 scores. The boxes with whiskers show the distribution of the F1

scores (mean and variance computed from the 5-fold cross-validations). The bars on the top show the number of available samples for each phenotype
for training and testing. Abbreviations for the diseases: RTIs (Respiratory Tract Infections), BV (Bacterial Vaginosis), COPD (Chronic Obstructive
Pulmonary Disease), OME (Otitis Media with Effusion), NEC (Necrotizing Enterocolitis), IBS (Irritable Bowel Syndrome), GPA (Granulomatosis with

Polyangiitis).

these baseline models for individual tasks, our multitask models
still show the highest or close to the highest performance. Our
models gave the most accurate predictions of age, BMI and
body site. In particular, our models outperformed the baseline
models for age and BMI predictions with a large margin. For
gender prediction, our models and RF outperformed other
approaches, with RF outperformed our models slightly.

Figure 4 shows the confusion matrices for the predictions
of age and BMI, showing that for most samples, their age and
BMI can be correctly predicted, however significant confusion
especially between neighboring categories (e.g., elderly and
senior, young adult and middle aged, healthy weight and
overweight) were observed.

Incorporating metadata helps improve the model
generalizability

To assess the robustness and generalizability of our model,
we designed another experiment so that predictive models
were applied to unseen data from projects that were not
included in the training. We selected three diseases (out of
25 diseases) that have data from three or more projects.
Additionally, we included a set of healthy samples, expanding
the disease prediction task to involve four classes, namely
Cystic Fibrosis (CF), Chronic Obstructive Pulmonary Disease
(COPD), Bacterial Vaginosis (BV), and the healthy class.

We divided our dataset into two main subsets: a training
dataset and a test dataset. The training dataset comprised
samples from 10 projects, totaling 4380 samples. For the test
dataset, we selected a different set of 6 projects (no overlaps

between projects for train and projects for testing) for a total of
869 samples (see Supplemental Table S3 for the list of projects).
This partitioning strategy aimed to provide a comprehensive
evaluation of our model’s performance on a diverse range of
projects and diseases. We trained and compared two models:
one that utilized metadata and another that did not include
this additional information.

We examined the performance of the models on the
training and test datasets, respectively (see Table 4). On
the training dataset, all models achieved high accuracy (RF
slightly outperformed other models) with F1 score > 0.96,
except SVM which had F1 score of 0.856. In addition, the
model using metadata yielded a slightly improved performance,
highlighting the potential benefits of incorporating additional
contextual information even in familiar data scenarios. On the
test dataset, all models had worse performance (e.g., RF’s
F1 score dropped from 0.998 to 0.674). However, what is
encouraging is that our model incorporating metadata still
gave reasonable predictions with F1 score of 0.856, drastically
outperforming the counterpart that lacked this additional
information (F1 score = 0.695). This comparison showcases
the superior generalizability of our model that incorporates
metadata on previously unseen data. It suggests that the
integration of metadata plays a pivotal role in bolstering the
model’s predictive capacity, particularly in scenarios where
it encounters diverse and unfamiliar data. However, the
results suggest there is still room for further improvement for
generalization, as we saw a significant performance degradation
on the unseen samples, despite that metadata helped.
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Supplemental Figure 1 for confusion matrices that show the counts of samples in each cell.
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Fig. 5. Example interpretations of the predictive models. (A) Impacts of metadata on disease prediction, where the x-axis represents metadata types,

including age, gender, BMI, and body site, and the y-axis represents disease names. (B) Impacts of the meaningful hidden nodes on the age prediction,

where the x-axis represents the importance scores, and the y-axis lists the names of the relevant metabolites, taxa, and community nodes. The importance

scores shown as numbers in (A) and represented along x-axis in (B) were computed using the Integrated Gradients and Layer Conductance approaches

(see Methods). The relative values of the importance scores indicate the impacts of metadata/hidden nodes on the predictions, with higher numbers

representing larger impacts.

Interpretation of the predictive models
Importance scores of the metadata and the individual nodes
computed from the predictive models can be used to shed
light on the impacts of metadata on disease prediction and to
explain predictions. Figure 5 shows some example applications
of importance scores.

Figure 5A shows the impacts of metadata on disease

prediction. Most of the impact values are non-zero, suggesting

that the metadata consistently enhances prediction accuracy
across all diseases. Among the metadata we used, age and
BMI have large impacts on the prediction of a few diseases
including pneumonia, asthma, necrotizing enterocolitis (NEC),
and granulomatosis with polyangiitis (GPA). We note that
one needs to be cautious with the interpretation for GPA,
as GPA was one of the diseases that were not well predicted
by MicroKPNN-MT (see Figure 3). For the two respiratory
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diseases, the metadata has a larger impact on the prediction of
asthma than COPD. We note that age and BMI showed similar
patterns in their contribution to disease prediction, which could
partially be caused by the correlation between age and BMI.
Figure 5B shows the impacts of the metabolite, taxon,
and community nodes on age prediction. It lists the top 15
contributing hidden nodes (in the Maskedlinear layer that
have biological meaning) to the age prediction, including
and 11
genera. Interestingly, the genus that is ranked second is

two metabolite nodes, two community nodes,
Brevibacterium, which contains species such as Brevibacterium
epidermidis that are typically found on the skin. This result
is consistent with a previous study, which showed that using
skin microbiome resulted in the most accurate prediction of age
compared to microbiome from other body sites (Huang et al.,
2020).

Discussion

We developed MicroKPNN-MT and its application to a
large collection of human microbiome datasets in mBodyMap
showed that our new method achieved promising results for
disease predictions based on microbiome data. In addition, it
provided predictions of missing metadata of the microbiome
samples, which we anticipate could be utilized by other
applications, considering that metadata are largely missing
for the existing microbiome datasets. The comprehensive
architecture we designed for MicroKPNN-MT enables the
model to learn intricate relationships within microbiome
samples by combining information from species abundance,
prior knowledge about microbial interactions, taxonomic
relationships, and community structures. The use of customized
layers and metadata-specific encoders contributes to the
model’s interpretability and performance across multiple
prediction tasks. It is worth noting that the metadata cannot
be directly integrated into the benchmark models (SVM, RF
and XGBoost) for two main reasons: a significant portion of
the metadata is missing from the dataset, and the benchmark
models are typically designed for single modal, which are not
optimal for handling inputs from different domains (e.g., species
abundance and various metadata).

Our experiments focus not only on the performance within
datasets from the same project as shown in Table 1 and
Table 3 but also on the generalizability of models on the
data from unseen projects as shown in Table 4. Testing on
samples from unseen projects showed a substantial reduction
in the accuracy of the models due to the heterogeneous
nature of the microbiome datasets. The observed divergence
in performance between the models using and without using
the metadata, especially on the unseen samples, showcased
the significance of using metadata to enhance the model’s
robustness beyond the confines of the training data. These
results further emphasize the potential of metadata-driven
approaches to improve predictive outcomes in real-world
healthcare applications.

Although it was built upon MicroKPNN, MicroKPNN-MT is
a very different tool for multi-class predictions and at the same
time provides predictions for missing metadata. It is a unique
model from these perspectives, and to our best knowledge there
are no such existing tools available that does all at the same
time. There were models that have been developed for example
for age prediction based on microbiomes, and separate models
have to be trained for different diseases, but our model can

provide predictions of all metadata and all diseases currently
included in the model. We also note that for comparison
purpose, we reported the accuracy of the metadata prediction
by traditional methods such as SVM and RF, however, unlike
our method, different models have to be trained for these
methods for different metadata.

We used microbiome datasets collected in mBodyMap
to train and test the models. The mBodyMap dataset is
comprehensive containing tens of thousands of samples, and the
datasets from different projects were reanalyzed using the same
procedures. Limitations include that there are other methods
that can be used to infer species profiles from metagenomes, and
studies have shown that the choice of bioinformatics analyses
could have an impact on the utility of microbiome data (Liu
et al., 2024).

We note that the prior-knowledge wused in current
MicroKPNN-MT is incomplete. For example, the community
structure used in MicroKPNN-MT was inferred from gut (stool)
microbiomes. Although there are significant overlaps of the
microbial species found in the different body sites with those
found in gut microbiome, different body sites have distinct
microbial species profiles. We anticipate that such community
structures can be refined when human microbiomes from
different body sites are included for the co-occurrence and
community detection.

‘We anticipate that MicroKPNN-NT can be further improved
with additional optimization of the models and adding
additional functionality. We observed that the model for
both disease and BMI prediction actually resulted in slightly
worse performance for disease prediction compared to the
model that did disease prediction only (see Table 1). One
direction of optimization is to try different combinations of
the metadata and see how that changes the performance.
Second, MicroKPNN-NT can be improved for predicting
multiple diseases (a person could have disease A and
disease B). Currently, MicroKPNN-MT only predicts one
class for the health status prediction (healthy or one of
the other 25 diseases). Finally, it is important to further
develop MicroKPNN-MT so that it can provide confidence
for prediction so if a microbiome dataset is derived from an
individual who doesn’t have any of the included phenotypes,
MicroKPNN-MT prediction should be able to reflect that.
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Table 1. Comparison of the accuracy of disease prediction with and without using metadata.
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Model

Accuracy (std)

AUC (std)

F1 score (std)

AUPRC (std)

disease only
disease + age

disease + gender

disease + BMI

disease + body site

0.913 (0.00274)
0.917 (0.00166)
0.911 (0.00337)
0.911 (0.00224)
0.919 (0.00241)

0.965 (0.048)
0.967 (0.049)
0.968 (0.044)
0.964 (0.048)
0.967 (0.049)

0.764 (0.203)
0.779 (0.185)
0.760 (0.199)
0.760 (0.198)
0.796 (0.170)

0.519 (0.296)
0.573 (0.290)
0.563 (0.273)
0.523 (0.299)
0.544 (0.287)

disease + all metadata 0.924 (0.00266) 0.968 (0.049) 0.810 (0.178) 0.620 (0.289)

The best performances for each evaluation metric are highlighted in bold.

Table 2. Performance for SVM, RF, XGBoost, and Ours on the Disease task.

Model ACC AUC F1 AUPRC # parameters Inference Time (s)
SVM 0.808 (0.003)  0.969 (0.002)  0.503 (0.006)  0.582 (0.015) 80 M 856.122 (76.979)
RF 0.908 (0.002)  0.996 (0.010)  0.643 (0.345) 0.881 (0.165) 10M 0.609 (0.050)
XGBoost 0.916 (0.003)  0.996 (0.009) 0.773 (0.190)  0.876 (0.152) 30 M 0.707 (0.292)
S;:Z d;;:)sease +oall 924 (0.003) 0968 (0.049) 0.810 (0.178)  0.620 (0.289) 39 M 140.400 (12.876)

All the ACC, AUC, F1, and AUPRC scores and running times are averaged across 5 folds, formatted as mean (std). The unit for the parameter number
is count, and M stands for million. The best performances for each evaluation metric are highlighted in bold.

Table 3. Summary of the metadata prediction in ACC and Fl-score (std).

Age Gender BMI Body site
Model ACC F1 ACC F1 ACC F1 ACC F1
. 0.763 0.684 0.933 0.901 0.592 0.480 0.936 0.647
disease + one metadata
(<0.01) (0.136) (<0.01) (0.055) (0.019) (0.211) (<0.01) (0.332)
. 0.761 0.684 0.931 0.899 0.584 0.465 0.934 0.633
disease + all metadata
(<0.01) (0.137) (<0.01) (0.057) (0.026) (0.225) (<0.01) (0.343)
0.366 0.355 0.903 0.774 0.253 0.247 0.896 0.533
SVM
(0.013) (0.006) (0.004) (0.008) (0.023) (0.037) (0.003) (0.007)
0.632 0.461 0.937 0.909 0.406 0.363 0.943 0.556
RF
(0.008) (0.235) (0.004) (0.051) (0.020) (0.194) (0.003) (0.405)
XGBoost 0.611 0.494 0.900 0.865 0.386 0.346 0.944 0.638
o8 (0.009) (0.214) (0.005) (0.069) (0.031) (0.180) (0.003) (0.352)

The best performances for each evaluation metric are highlighted in bold. Evaluations in additional metrics including AUC and AUPRC are shown in
Supplemental Table S1 and S2.

Table 4. Comparison of the accuracy of disease prediction with and without using metadata on samples from unseen projects (not used for
training).

Model Accuracy (std) AUC (std) F1 score (std) AUPRC (std)
SVM (train) 0.829 (0.014) 0.962 (0.005) 0.856 (0.014) 0.913 (0.013)
RF (train) 0.997 (0.002) 0.999 (0.001) 0.998 (0.002) 0.999 (0.001)

XGBoost (train)
disease only (train)

disease + all metadata (train)

0.996 (0.002)
0.983 (0.005)
0.991 (0.001)

0.999 (0.001)
0.987 (0.016)
0.994 (0.012)

0.996 (0.002)
0.986 (0.012)
0.993 (0.006)

0.999 (0.001)
0.962 (0.047)
0.988 (0.019)

SVM (test)
RF (test)
XGBoost (test)

disease only (test)

disease + all metadata (test)

0.741 (0.009)
0.703 (0.005)
0.668 (0.012)
0.727 (0.017)
0.871 (0.026)

0.937 (0.004)
0.917 (0.003)
0.902 (0.005)
0.895 (0.080)
0.966 (0.023)

0.700 (0.010)
0.674 (0.004)
0.610 (0.024)
0.695 (0.115)
0.856 (0.140)

0.789 (0.013)
0.748 (0.005)
0.749 (0.014)
0.734 (0.159)
0.900 (0.095)
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