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Teleoperator Coupling Dynamics Impact Human
Motor Control Across Pursuit Tracking Speeds

Jacob Carducci, Noah J. Cowan, Jeremy D. Brown

Abstract—Robotic teleoperators introduce novel electrome-
chanical dynamics between the user and the environment. While
considerable effort has focused on minimizing these dynamics,
we lack a robust understanding of their impact on user task per-
formance across the range of human motor control ability. Here,
we utilize a 1-DoF teleoperator testbed with interchangeable
mechanical and electromechanical couplings between the leader
and follower to investigate to what extent, if any, the dynamics of
the teleoperator influence performance in a visual-motor pursuit
tracking task. We recruited N = 30 participants to perform the
task at frequencies ranging from 0.55 - 2.35 Hz, with the testbed
configured into Mechanical, Unilateral, and Bilateral configu-
rations. Results demonstrate that tracking performance at the
follower was similar across configurations. However, participants’
adjustment at the leader differed between Mechanical, Unilateral,
and Bilateral configurations. In addition, participants applied
different grip forces between the Mechanical and Unilateral
configurations. Finally, participants’ ability to compensate for
coupling dynamics diminished significantly as execution speed
increased. Overall, these findings support the argument that
humans are capable of incorporating teleoperator dynamics
into their motor control scheme and producing compensatory
control strategies to account for these dynamics; however, this
compensation is significantly affected by the leader-follower
coupling dynamics and the speed of task execution.

Index Terms—Teleoperation, tracking, transparency, compen-
sation, dynamics, telerobotics

I. INTRODUCTION

Teleoperators allow humans to sense and manipulate remote
environments separated by distance or scale, often when
direct manipulation is not viable, safe, or preferred [1], [2].
Teleoperators are found in many fields including medicine
[3], [4], extreme environments [5], [6], and hazardous ma-
terial handling [7], [8]. A more comprehensive overview
of teleoperators is described in [1]. The ideal teleoperator
intuitively maps human input to end-effector output through
a direct coupling between the leader and follower side of
the device. In a similar fashion, ideal teleoperators accurately
reflect environmental feedback to the human operator through
the same leader-follower coupling. The original teleoperators
developed by Goertz attempted to achieve this ideal through
a direct mechanical coupling and a kinematically-identical
leader and follower [9], [10].
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Fig. 1. Experimental testbed and setup. A) Teleoperator testbed with
reconfigurable couplings (circled T) between the leader side (circled L) and the
follower side (circled F) (see [11] for complete details). A steel rod creates
a rigid mechanical coupling for the Mechanical teleoperator configuration,
whereas two DC motors (Maxon RE50) create an electromechanical coupling
for the Unilateral and Bilateral teleoperator configurations. The elastic and
damping transmissions in the background were decoupled and unused in this
experiment. The leader side of the testbed connects to a grip interface (not
pictured), while the follower side connects to a DC motor (Maxon RE50),
rendering a virtual environment. Torque sensors measure the input and output
torque on the leader and follower sides, respectively. B) A user controls the
grip interface with their wrist during the pursuit tracking task (displayed on
the monitor), while visual feedback of the testbed is occluded by an opaque
screen.

Unlike Goertz’s mechanical teleoperators, modern bilateral
force-reflecting teleoperators typically employ electromechani-
cal couplings between the leader and follower, which introduce
unwanted closed-loop dynamics that impact the accuracy of
leader-follower tracking and the quality of force feedback
[12]. These dynamics can also destabilize the control loop
due to sensor quantization, sample and hold effects, and
communication latency, which lead to energy leaks into the
system [1], [13], [14]. While closed-loop controllers can be
designed to dissipate such energy injections, these approaches
degrade the overall transparency of the teleoperator [15].
Therefore, while it is theoretically possible to ensure perfect
impedance reflection and kinematic correspondence in an
electromechanically coupled teleoperator, these systems are
practically unattainable in real-world implementations.

Given the practical reality of non-transparent teleoperation,
it is worth questioning to what extent humans can compensate
for the unwanted closed-loop dynamics introduced through
electromechanical control schemes. In human motor control,
it has been observed that humans use sensory information
to compensate for and incorporate the dynamics of tools
during use [16]–[18]. Based on a given set of kinematic goals,
humans are capable of learning from environmental interaction
to update their subjective experience and adapt their motor
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strategies [19]. Specifically, the central nervous system (CNS)
generates a compensatory inverse model of the environment
[20] to cancel out nonlinear dynamics [21]. The CNS then
modifies the impedance of the arm from muscle co-activation
to restabilize the interaction and updates the inverse model
from sensory mismatch to improve robustness [22], [23].

For teleoperation in particular, our understanding of these
compensation and adaptation strategies is relatively nascent.
Previous research from our lab and others has suggested that
teleoperator dynamics do affect users’ motor control strategy
[24], [25].

While insightful, these prior investigations have either fo-
cused on a narrow range of human motor control bandwidth,
a narrow range of teleoperation transmission couplings (e.g.,
unilateral), or have only focused on time-domain measures of
task performance. Thus, we lack a comprehensive and funda-
mental understanding of the manner in which human motor
control through a teleoperator varies as a function of both the
teleoperator’s transmission dynamics and the human operator’s
inherent motor controllability [26], [27]. More specifically, it
is unclear to what extent different teleoperator transmission
couplings (e.g., direct mechanical, unilateral, bilateral) impact
the human operator’s ability to accurately control the teleoper-
ator’s leader-follower behavior both temporally and spatially
across a wide range of task execution frequencies.

In this study, we address this gap in knowledge by inves-
tigating human users’ ability to perform a pursuit tracking
task through a variable transmission teleoperator across a wide
bandwidth of operation frequencies.

Utilizing a previously developed teleoperator testbed with
independent mechanical and electromechanical couplings be-
tween leader and follower [11], [25], we examine to what
extent users can accurately perform a visual-motor pursuit
tracking task of a predictable sinusoidal signal at various
frequencies across the range of human capabilities [26], [27].
We specifically focus on exploration at the wrist (prona-
tion/supination) given its important role in human motion
correction during upper-limb tasks [28]. In addition, we chose
a one-degree-of-freedom (DoF) tracking task of predictable
signals to better measure and understand any performance
changes before generalizing to higher-DoF tasks with unpre-
dictable signals, which can become more complicated due
to motor control synergies on the user side and kinematic
constraints on the teleoperator side. During this tracking task,
we also record the user’s interaction grip force, as arm flexor
activation has been shown to be a proxy for arm impedance
[29], [30].

Overall, we hypothesize that 1) teleoperator compensation
breaks down when the frequency of sinusoidal pursuit tracking
is too high, 2) the extent of compensation differs between
distinct transmission configurations with unique dynamics, and
3) the user modulates their limb impedance to adjust their
control strategy when compensating for different transmission
dynamics. In what follows, we introduce our experimental
apparatus, experimental protocol, and experimental findings,
followed by a discussion of the broader implications of this
work in the field of teleoperation.

t

Fig. 2. Tracking task progression. An example display of periodic object-
tracking over time. As the ball followed a path indicated by the red arrow,
the participant attempted to match the position of the ball by actively aligning
a pointer, as indicated by the blue arrow. The visco-elastic disk is the gray
circle in the background.

II. METHODS

A. Participants
N = 30 individuals (10 female, 20 male, age = 24.8 ± 7.49)

were recruited to participate in the pursuit tracking experiment.
All participants were affiliated with Johns Hopkins University
or Johns Hopkins Hospital. 25 participants self-reported as
being right-hand dominant, three self-reported as ambidex-
trous with a right-hand preference, and two self-reported as
ambidextrous with a left-hand preference. All participants
performed the experiment with their right hand regardless of
hand dominance. All participants provided written informed
consent according to a protocol approved by the Johns Hop-
kins School of Medicine Institutional Review Board (Study#
IRB00263386). Participants were compensated at $10/hour.

B. Pursuit Tracking Task
Participants utilized the teleoperator testbed (see Section

II-C) to perform a pursuit tracking task. In the task, partic-
ipants controlled the angle of a virtual rotational pointer (blue
rectangle in Fig. 2) that represented the follower output of the
teleoperator by pronating/supinating their wrist on the leader
input of the teleoperator. The virtual pointer was affixed to
a massless virtual disk object (grey circle in Fig. 2), which
was rendered as having the visco-elastic dynamics of a virtual
torsional spring of 1.25 ⇥ 10�3 N · m/

� (7.16 ⇥ 10�2 N ·
m/rad) and a virtual dampener of 5.00 ⇥ 10�5 N · m · s/�
(2.86⇥10�3 N·m·s/rad). These virtual environment dynamics
were designed to emulate a real physical environment with
visco-elastic dynamics that were separate from the teleoperator
dynamics. Although the inertia of the virtual disk was not
rendered, the real inertia of the DC motor rendering the virtual
disk was perceptible.

The goal of the task was to control the virtual pointer
through the teleoperator to track a virtual ball whose rotational
movement was governed by single-sine and sum-of-sine wave-
forms of varying frequency (see Fig. 2). The frequencies of
the sine waves were determined using a methodology adapted
from Zimmet et al. in which frequencies are generated as
prime multiples of a fundamental frequency [31]. With a
fundamental frequency of 0.05 Hz, 15 prime multiples were
generated up to 2.35 Hz.

Based on interesting spatial and temporal performance dif-
ferences we observed during pilot testing, we subsequently
down-selected from 15 frequencies to the following six fre-
quencies for the single-sine tracking frequencies: 0.55 Hz,
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Fig. 3. Visualization of sinusoidal stimulus amplitudes used for pursuit
tracking. All stimulus frequencies were prime multiples of the fundamental
frequency (0.05 Hz). Similar to [32], amplitudes were constant for frequencies
up to and including 1.15 Hz, and above this frequency, amplitudes were scaled
inversely proportional to frequency, maintaining a constant peak velocity. A
subset of frequency-amplitude pairs were selected for single-sine tracking,
emphasized in blue.

1.15 Hz, 1.55 Hz, 1.85 Hz, 2.05 Hz, and 2.35 Hz. 1.25 Hz was
selected as a separate training frequency, also based on pilot
results. Amplitudes for these single-sine periodic signals were
determined using a piecewise plateau-inverse-law function of
frequency. More specifically, lower frequencies below the
training frequency shared the same periodic amplitude, while
frequencies above 1.25 Hz had amplitudes proportional to the
inverse of their frequency. This frequency law is illustrated
in Fig. 3. This choice was made so participants could track
at constant rotational velocity and, therefore, prevented par-
ticipants from having to track large displacements at high
frequencies and arc velocities.

The final waveform was a sum-of-sines trajectory generated
from adding single-sine waves of all 15 prime multiples of
0.05 Hz up to 2.35 Hz, with amplitudes obeying the piecewise
law in Fig. 3. The purpose of the sum-of-sines task was to set
a baseline for unpredictable movement and to act as a catch
trial. This exploration of predictable and unpredictable targets
is a standard practice in tracking research [25], [31], [33], [34]
to investigate the generalizability of control and demonstrate
ecological validity.

C. Teleoperation Testbed
The teleoperation testbed is an experimental apparatus that

models a single-DoF teleoperator with modular couplings
between leader and follower, shown in Fig. 1. While key
features of the testbed relevant to this study are explained
below, complete details of the mechatronic design can be
found in [11]. In addition, a preliminary study of human
tracking using the testbed can be found in [25].

The testbed can be reconfigured into a mechanical teleoper-
ator or an electromechanical (EM) teleoperator with unilateral
or bilateral modes. The testbed consists of four subsystems: 1)
operator interface, 2) reconfigurable leader/follower coupling,

3) environment, and 4) data acquisition and control. Notably,
this design allows the testbed to be configured into different
teleoperator architectures while preserving the same user input
and environmental output.

1) Operator Input: The operator input is equipped with a
grip interface made from 3D-printed grips mounted to either
side of a 10 kg rated beam load cell (Transducer Techniques
LSP-10) to capture grip force. The entire user input interface
is connected to the teleoperator leader through a 316 stainless
steel shaft.

2) Reconfigurable Leader/Follower Coupling: The input
shaft (316 stainless steel) on the teleoperator leader con-
nects to a Futek TRS600 (5 N-m) torque sensor and then
to Maxon RE50 (200 W) motor equipped with a 500 CPT
HEDL encoder. Likewise, the output shaft on the teleoperator
follower connects to a Maxon RE50 (200 W) motor equipped
with a 500 CPT HEDL encoder and a Futek TRS600 (5 N-m)
torque sensor before connecting to the environment. Between
the leader and follower, multiple transmission shafts can
be selectively coupled or uncoupled (using screw-type shaft
couplings) to create distinct mechanical and electromechanical
teleoperator architectures. Capstan drives are used to transmit
energy through each of the transmissions from leader to
follower (and vice versa). For this study, the following three
teleoperator transmission configurations were used:

a) Mechanical: The Mechanical teleoperator utilizes a
mechanical transmission to couple leader and follower that
consist of a 316 stainless steel rod directly coupled to each side
without any torque or position scaling. This bilateral configura-
tion inherently provides kinematic correspondence and force
reflection. The leader and follower motors are mechanically
connected but not energized for this configuration.

b) Unilateral (EM): The Unilateral teleoperator config-
uration utilizes an electromechanical transmission to couple
the leader and follower. In this configuration, the position of
the follower motor tracks the position of the leader motor
in a position-control scheme; however, no feedback torque is
rendered on the leader motor. The rigid mechanical rod is
decoupled for this configuration.

c) Bilateral (EM): The Bilateral teleoperator configu-
ration utilizes an electromechanical transmission to couple
leader and follower. In this configuration, the position of the
follower motor tracks the position of the leader motor, and
the position of the leader motor tracks the position of the
follower motor in a position-position control scheme. The rigid
mechanical rod is decoupled for this configuration.

3) Virtual Environment: The output shaft on the teleopera-
tor follower connects to the environment, which consists of a
Maxon RE50 (200 W) motor equipped with a 500 CPT HEDL
encoder. The motor can render virtual environments with a
4.67⇥10�1 N·m peak torque and 2.33⇥10�1 N·m continuous
torque. This motor was used to generate the virtual visco-
elastic disk connected to the follower end of the teleoperator.

4) Data Acquisition and Control: All Maxon motors are
current-controlled with a Quansar AMPAQ L4 amplifier,
which receives commands from a Quansar QPIDe DAQ oper-
ating at 1 kHz from Simulink 10.2 in MATLAB 2020b (Math-
works; Natick, MA, USA) with QUARC 2020 SP2 (Quanser
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TABLE I
TRANSFER FUNCTIONS (FROM TORQUE (mNm) TO POSITION (DEGREES))

IN DIFFERENT VIRTUAL ENVIRONMENTS ACROSS ALL TELEOPERATOR
TRANSMISSION MODES

Free-space Visco-elastic disk

Mechanical 271.26
s2+0.02s+0.08

528.32
s2+14.61s+586.28

Unilateral 1077.0
s2+0.00s+0.74

890.24
s2+0.00s+0.08

Bilateral 234.68
s2+0.26s+0.00

667.77
s2+15.80s+592.02

Software; Markham, ON, CA) on a Dell Precision T4810
Workstation. To generate the electromechanical transmission
for the Bilateral configuration, the following proportional-
derivative (PD) control law was utilized:

⌧f = kp(✓l � ✓f ) + kd(✓̇l � ✓̇f ) (1)

⌧l = kp(✓f � ✓l) + kd(✓̇f � ✓̇l) (2)

where ⌧l and ⌧f are the torques commanded to leader and
follower motors in N · m, ✓l and ✓f are the encoder angles
from the leader and follower motors in radians, kp = 2.68 ⇥
10�1 N · m/rad is the proportional gain, and kd = 2.68 ⇥
10�2 N ·m · s/rad is the derivative gain. These coupling gains
were determined through pilot testing in a previous study [25]
to be the best balance of transparency and stability. For the
Unilateral teleoperator, the same PD control law was utilized,
except the leader motor did not output torque (⌧l = 0).

D. Teleoperator Testbed Dynamics
Transfer functions for each teleoperator configuration mode

at the leader interface are listed in Table I. The transfer func-
tions were characterized for two different virtual environments,
rendered using the environment motor: (1) a free-space envi-
ronment with the environment motor de-energized, and (2) the
visco-elastic disk environment used in the experiment. These
transfer functions were obtained by driving the leader to follow
a desired chirp signal that oscillated between ± 90 degrees
relative to the initial position at the chirp start (physically set
as the midpoint between rotational limits of the teleoperator).
The chirp frequency increased linearly from 0.05 to 3.0 Hz
over 30 seconds, covering the general bandwidth of human
motion expected during the pursuit tracking task [26], [31],
[32]. The chirp signal was repeated twice for each combination
of teleoperator configuration (Mechanical, Bilateral, and Uni-
lateral) and environment (Free-space and Visco-elastic disk).
Second-order system models (with applied shaft torque as
input and leader shaft displacement as output) were estimated
with the MATLAB 2021a System Identification Toolbox using
the tfest command. Before linear fit estimation, the torque
and displacement signals had frictional features isolated and
removed, and both signals had sensor noise filtered out with
a Butterworth filter at 6 Hz half-power cutoff frequency. The
filter was applied forwards and backwards as a zero-phase
digital filter using the filtfilt command. Complete details
of the signal conditioning and transfer function fitting are
included in the Supplemental Section. Corresponding Bode

0.3 0.5 1 2 3

0

10

20

30

40

M
ag

ni
tu

de
 (

dB
)

Free-space EnvironmentA)

Mechanical
Unilateral
Bilateral
Testing Range

0.3 0.5 1 2 3

0

10

20

30

40

Visco-elastic EnvironmentB)

Mechanical
Unilateral
Bilateral
Testing Range

0.3 0.5 1 2 3
Frequency (Hz)

135

180

225

270

315

360

P
ha

se
 (

de
g)

C)

Mechanical
Unilateral
Bilateral
Testing Range

0.3 0.5 1 2 3
Frequency (Hz)

135

180

225

270

315

360D)

Mechanical
Unilateral
Bilateral
Testing Range

Fig. 4. Frequency response fits for teleoperator transmission system
identification. Bode plots showing magnitude (A & B) and phase (C & D)
spectrums of the frequency responses from the teleoperator interfacing with
free-space (A & C) and with a virtual visco-elastic disk object (B & D).
Different configuration modes are indicated by thick colored lines. The prime
frequencies in the green-shaded region indicate the frequencies used in the
experiment. The input motor torque (mNm) acts as input, and the leader shaft
rotation (degrees) acts as output.

plots of the resulting frequency response functions are shown
in Fig. 4.

E. Study Design
Upon confirmation of written informed consent, participants

were seated in front of the testbed, and the seat and forearm
rest were height-adjusted until the arm was comfortable and
approximately co-linear with the input shaft. Regardless of
self-reported handedness, all participants used their right hand
and wrist to interact with the testbed. An opaque screen was
fastened to the front of the testbed, shown in Fig. 1B, to
ensure the participant did not get visual rotational cues from
the transmission mechanics. A high-definition monitor was
placed above the opaque screen to provide instructional cues
and visual feedback. In addition, noise-cancelling headphones
were fitted to the participant’s ears to mitigate audio cues.

The study utilized a within-subjects design in which each
participant performed the pursuit tracking task with all three
teleoperator transmission configurations. The testing session
for each participant was divided into three blocks into which
the three transmission configurations were counterbalanced.
Each configuration block consisted of 30 trials, with the first
two trials always containing the training frequency (1.25 Hz,
based on pilot testing). The remaining 28 trials consisted
of four trials of each of the seven tracking frequencies
(six single-sine and one sum-of-sine), with the frequency
presentation order pseudo-randomized and counterbalanced
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Fig. 5. Experimental protocol illustration. The protocol progression of the tracking experiment for a typical participant session. Note that training frequencies
lasted only two trials, whereas other task frequency subblocks lasted four trials.

across participants. The number of training and tracking trials
was determined from pilot testing and guidance from prior
investigations with the testbed [25] in an effort to balance
statistical power and participant retention. After all 30 trials
for a given configuration block, the participant took a survey
followed by a 3-minute-minimum break before starting the
next configuration block. A graphical summary of a typical
study session is depicted in Fig. 5.

During each trial, the participant pinched onto a grip inter-
face to operate the teleoperator, shown in Fig. 1B. Participants
oriented their hands such that at least one finger was in
contact with the 3D-printed contact on each side, and their
fingers were not contacting the interior load cell. In this
way, participants interacted with the teleoperator by squeezing
and rotating only the designated plastic contacts of the grip
interface. During each trial, participants were instructed to
pronate and supinate their wrists to control the pivot of the
virtual rotational pointer using the grip interface.

Each trial began with an auditory cue stating “Start”.
When a virtual ball object started orbiting the disk perimeter
independently, the participant had to align the pointer to the
ball as well as they could throughout the task duration.

The target ball always started at zero position above the disk,
ramped up to a full oscillation centered around zero position
after 5 seconds, and continued full oscillation for 20 seconds
at one of the predetermined frequencies discussed in Section
II-B.

The participant repeated the tracking task for all configura-
tion blocks until session conclusion or a request for early study
termination. Early termination of the session occurred if the
participant expressed significant discomfort or the investigator
deemed it unsafe for the participant to continue in the study.

Target Follower

Human
User

+
–

r(t) h(t) y(t)

Leader

EnvironmentTeleoperator

Fig. 6. Human-teleoperator closed-loop feedback model. A simplified
closed human-in-the-loop control system where the human user controls a
leader input h(t), attempting to rotationally align an output pointer y(t) to a
reference target ball r(t) through a teleoperator.

F. Survey
Before the first experimental block, each participant com-

pleted a demographic survey with questions regarding age,
gender, and handedness. After each experimental block, par-
ticipants completed the following questionnaire on a scale of
1-6 (Strongly Disagree to Strongly Agree):

1) The task was easy to perform.
2) I was able to accurately track the moving ball.
3) My tracking accuracy improved with time.
4) My tracking accuracy was worse during tasks that

seemed fast.
5) My tracking accuracy was better during tasks that

seemed slow.
6) I relied on visual feedback for ball tracking.
7) I relied on haptic feedback for ball tracking.
8) I was in control of the disk/stick.
9) The motion of the disc/stick was unpredictable.

Furthermore, participants were allowed to voluntarily share
general comments at the conclusion of the session.
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Fig. 7. Representative time-domain and frequency-domain tracking
signals. A) Rotational trajectories of the virtual target r(t) (red-dotted),
follower output y(t) (blue-dashed), and leader input h(t) (yellow-solid) from
a representative training trial. Note that the target exhibited transient ramping
at trial start for 5 seconds and maintained constant oscillation for another 20
seconds. B) Rotational trajectories from a representative sum-of-sines task. C)
Amplitude spectrums in frequency-domain from FFT decompositions applied
to time-series rotational trajectories of the virtual target R(f), environment-
connected follower shaft Y (f), and participant-controlled leader shaft H(f)
from the same representative training trial as in A). D) Amplitude spectrums
obtained from time-series rotational trajectories of the sum-of-sines task in
B).

G. Task Performance Metrics
The following data analysis methodology has been adapted

from [31], [35] and utilizes a frequency-domain approach to
analyze task performance. This frequency-domain approach is
built on the fact that our teleoperator testbed and the human
operators can be modeled as a human-in-the-loop closed-loop
dynamical system, as illustrated in Fig. 6.

For each pursuit tracking task, our system tracks time-
series rotational positions from the leader encoder h(t), fol-
lower encoder y(t), and virtual ball r(t). During analysis
of each task, these three position signals are the signals
of interest. These time-series signals are shown in Fig. 7A
for a representative training trial. Each vector of time-series
rotational positions is converted into a single-sided spectrum
of frequency components via a fast Fourier transform (FFT)
implementation of the discrete Fourier transform (DFT) in
MATLAB 2021a (Mathworks; Natick, MA, USA). Complex-
valued FFTs for the leader signal, follower signal, and virtual
target are H(f), Y (f), and R(f), respectively. The resulting
spectral output from time-to-frequency conversion for the
training trial is shown in Fig. 7C. After frequency-domain
conversion, both leader and follower responses were compared
to the target at task-specific frequencies, resulting in ratios
of complex phasors for the leader TFL(f) = H(f)/R(f)
and for the follower TFY (f) = Y (f)/R(f). From these
phasor ratios, profiles of gain (phasor magnitude) and phase
(phasor angle) can be computed. Relative gains and phases act
as tracking performance metrics to determine how well the
teleoperator leader/follower positions tracked the target. For
phasor magnitude, perfect tracking corresponds to a gain ratio

of 1, with ratios > 1 corresponding to leader/follower over-
shoot and ratios < 1 corresponding to undershoot with respect
to the target. For phasor angle, perfect tracking corresponds
to a phase difference of 0, with differences < 0 indicating
leader/follower lag and higher differences > 0 indicating
leader/follower lead with respect to the target. Taken together,
these metrics measure the spatial and temporal adjustments
of the user on the leader side of the teleoperator to track the
target with the follower side of the teleoperator.

In addition to tracking performance, we also measured grip
force on the user input. Forces from the grip interface sensor
were reported in Newtons, averaged at task frequencies across
participants, and clustered by teleoperator configuration.

H. Statistical Analysis
Linear mixed-effects (LME) models were fitted to perfor-

mance measures of gain ratios, phase ratios, and grip forces.
For each measure, we ran separate LME models for each
factor, controlling for random effects. Specifically for each
model, one independent measure is set as the main effect
(e.g., teleoperator configuration), and the other factors are
set as random effects (e.g., trials and frequency). With 5
dependent measures and 3 independent factors, we had a total
of 15 separate LME models fitted. The performance measures
were then compared pairwise using general linear hypothesis
testing (GLHT) to reveal two-sided significant differences
between teleoperator configurations, target frequencies, and
trial repetitions.

When needed, tests for normality and for homogene-
ity of variance were conducted. Due to multiple com-
parisons, post-hoc Tukey corrections were applied. RStu-
dio 2022.02.3 Build 492 (Posit Software; Boston, MA)
with the lmer4_1.1-35.5, lmerTest_3.1-3, and
multcomp_1.4-26 packages were used for all analyses.

To determine any significant differences in survey re-
sponses between configuration modes, a one-way within-
subjects ANOVA test was conducted for all nine survey
questions. If any significant differences were found, multiple
comparison t-tests would be conducted with post-hoc Tukey
corrections.

Given that there were two participants with a left-hand
preference, we conducted a sensitivity analysis, in which
we reran all statistical analyses with these two participants
excluded. Overall, the findings changed very little from those
of the N = 30 results presented below. Still, we have included
these results in the Supplemental Section for a full review.

III. RESULTS

All performance measure samples passed Shapiro tests
for normality and passed Bartlett’s tests for homogeneity of
variance. Therefore, we conducted statistical analysis with
parametric testing. A graphical summary of frequency-domain
metrics from each transfer function response is shown in
Fig. 8 (next page). From this figure, we observe differences
in tracking performance that are discussed further in the
following sections.
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Fig. 8. Frequency-domain responses during human tracking. Ribbon-style
interpolated Bode plots of the median (solid line) and interquartile range
(shaded area) across all single-sine task frequencies for A) follower-target
gain ratio, B) leader-target gain ratio, C) follower-target phase difference,
and D) leader-target phase difference. Phasor metrics were aggregated across
participants and trials, and teleoperator configurations are indicated by color.

A. Follower Tracking Performance is Similar Across Teleop-
erator Configurations

We found a significant main effect of configuration on fol-
lower gain (intercept = 0.733, SE = 0.078, p < 0.001) but not
on follower phase (intercept = -4.982, SE = 8.333, p > 0.05).
We observed no statistical difference in the follower-target
gain ratio (p > 0.05 for all pairwise comparisons) between
the three teleoperator configurations. We also observed no
statistical difference in the follower-target phase difference
(p > 0.05 for all pairwise comparisons) between the three
teleoperator configurations. These results are supported by the
visually similar gain and phase ratio/difference plots shown in
Fig. 9 between each configuration across all frequencies. These
findings demonstrate that teleoperation configuration did not
have a significant impact on participants’ ability to perform
the pursuit tracking task.

B. Tracking Frequency Impacts Follower Performance
We found a significant main effect of frequency on follower

gain (intercept = 0.980, SE = 0.035, p < 0.001), but not on
follower phase (intercept = 4.790, SE = 5.987, p > 0.05). We
observed several significant differences in the follower-target
gain ratio (see Table II) and phase difference (see Table III)
between task frequencies. These findings are irrespective of the
teleoperator configuration used and demonstrate that partici-
pants’ tracking performance accuracy decreased both spatially
and temporally as task frequency increased.

A)

B)

Fig. 9. Follower-target performance by tracking frequency. Gain and phase
ratio/difference plots of the follower-target frequency response expressing
relative A) gain ratio and B) phase difference for all three teleoperator
configurations. Ratios and differences are aggregated across participants and
trials.

TABLE II
P-VALUES FROM PAIRWISE COMPARISONS OF FOLLOWER-TARGET GAIN

RATIOS BETWEEN TRACKING FREQUENCIES.

Freq
(Hz) 1.15 1.55 1.85 2.05 2.35

0.55 <0.001 <0.001 <0.001 <0.001 <0.001
1.15 0.010 <0.001 <0.001 <0.001
1.55 <0.001 <0.001 <0.001
1.85 <0.001 <0.001
2.05 <0.001

TABLE III
P-VALUES FROM PAIRWISE COMPARISONS OF FOLLOWER-TARGET PHASE

DIFFERENCES BETWEEN TRACKING FREQUENCIES.

Freq
(Hz) 1.15 1.55 1.85 2.05 2.35

0.55 0.319 >0.999 0.043 <0.001 <0.001
1.15 0.520 <0.001 <0.001 <0.001
1.55 0.016 <0.001 <0.001
1.85 0.773 <0.001
2.05 <0.001

C. Leader Tracking Adjustment Differs between Teleoperator
Configurations

We found a significant main effect of teleoperator configura-
tion on leader gain (intercept = 1.156, SE = 0.110, p < 0.001),
but not on leader phase (intercept = 2.278, SE = 8.541,
p > 0.05). We found a significantly different gain ratio be-
tween the Mechanical and Bilateral configurations (p < 0.001)
and between the Mechanical and Unilateral configurations
(p < 0.001) (see Fig. 10A next page). We found no statistical
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A)

B)

Fig. 10. Leader-target adjustment by tracking frequency. Gain and
phase ratio/difference plots of the leader-target frequency response expressing
relative A) gain ratio and B) phase difference for all three teleoperator
configurations. Ratios and differences are aggregated across participants and
trials.

difference in the leader-target phase difference (p > 0.05
for all pairwise comparisons) between the three teleoperator
configurations (see Fig. 10B next page). These configuration-
dependent findings are irrespective of the frequency of ex-
ploration. Together, these findings highlight how participants
had to make significantly different spatial adjustments, but
not significantly different temporal adjustments, on the leader
input of the teleoperator to achieve tracking accuracy on the
follower output.

D. Tracking Frequency Impacts Leader Adjustment
We found significant main effects of frequency on leader

gain (intercept = 1.391, SE = 0.043, p < 0.001) and leader
phase (intercept = 13.117, SE = 6.254, p < 0.05). We observed
several significant differences in the leader-target gain ratio
(see Table IV) and phase difference (see Table V) across task
frequencies. These frequency-dependent findings are irrespec-
tive of the teleoperator configuration used and demonstrate
that participants’ tracking adjustment decreased both spatially
and temporally as task frequency increased.

E. Teleoperator Configuration and Tracking Frequency Influ-
ence Grip Force

We found significant main effects of configuration on grip
force (intercept = 1.689, SE = 0.298, p < 0.001) and frequency
on grip force (intercept = 1.660, SE = 0.266, p < 0.001). There
was a significant pairwise difference in grip force between
Mechanical and Unilateral configurations (p = 0.004). All
other comparisons between teleoperator configurations were
not significant (p > 0.05). Fig. 11 shows the grip force

TABLE IV
P-VALUES FROM PAIRWISE COMPARISONS OF LEADER-TARGET GAIN

RATIOS BETWEEN TRACKING FREQUENCIES.

Freq
(Hz) 1.15 1.55 1.85 2.05 2.35

0.55 <0.001 <0.001 <0.001 <0.001 <0.001
1.15 0.002 <0.001 <0.001 <0.001
1.55 <0.001 <0.001 <0.001
1.85 <0.001 <0.001
2.05 <0.001

TABLE V
P-VALUES FROM PAIRWISE COMPARISONS OF LEADER-TARGET PHASE

DIFFERENCES BETWEEN TRACKING FREQUENCIES.

Freq
(Hz) 1.15 1.55 1.85 2.05 2.35

0.55 0.910 0.990 0.006 <0.001 <0.001
1.15 0.571 <0.001 <0.001 <0.001
1.55 0.044 <0.001 <0.001
1.85 0.792 <0.001
2.05 <0.001

Fig. 11. Grip force by tracking frequency. Box-whisker plots showing
the frequency response of participant pinch force for all three teleoperation
configurations. Grip forces are aggregated across participants and trials.

distributions across all frequencies for the three different
teleoperator configurations. Additionally, there were several
significant differences in grip force between task frequencies,
highlighted in Table VI. Together these findings highlight how
the availability of force-reflection in the teleoperator caused
the participant to adjust their limb impedance. In addition,
these findings demonstrate that changes in limb impedance
can occur as a result of tracking frequency.

F. Trial Repetition Impacts Tracking and Grip Force
We found significant main effects of trial repetition on fol-

lower gain (intercept = 0.726, SE = 0.077, p < 0.001), leader
gain (intercept = 1.007, SE = 0.108, p < 0.001), and grip
force (intercept = 1.803, SE = 0.279, p < 0.001). However,
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TABLE VI
P-VALUES FROM PAIRWISE COMPARISONS OF GRIP FORCE BETWEEN

FREQUENCIES.

Freq
(Hz) 1.15 1.55 1.85 2.05 2.35

0.55 <0.001 0.100 0.048 >0.999 <0.001
1.15 0.538 <0.001 <0.001 <0.001
1.55 <0.001 0.058 <0.001
1.85 0.084 0.034
2.05 <0.001

we did not find significant main effects of trial repetition on
follower phase (intercept = -7.334, SE = 8.168, p > 0.05)
and leader phase (intercept = -1.044, SE = 8.256, p > 0.05).
Follower-target gain ratios differed significantly between the
first and third trials and between the first and fourth trials
(p = 0.042 and p = 0.007, respectively), irrespective of tracking
frequency or teleoperator configuration. Additionally, leader-
target gain ratios differed between the first and fourth trials
(p = 0.011) overall throughout the study. However, no statis-
tical significance was found between trials for follower-target
and leader-target phase differences (p > 0.05). Furthermore,
grip force became significantly different by the third and fourth
trial repetitions compared to the first tracking trial (p = 0.003
and p < 0.001) and between the second and fourth trials
(p = 0.032) across all tracking frequencies and teleoperator
configurations. These findings demonstrate that participants’
tracking accuracy decreased with repeated trials and that limb
impedance changed with repeated trials.

G. Participants’ Subjective Experience Remained Consistent
Across Teleoperator Configurations

Box-and-whisker charts of response distributions from the
post-configuration surveys are shown in Fig. 12. The one-way
ANOVA did not yield any statistically significant differences
between configurations in any survey question, indicating that
participants did not subjectively experience the teleoperator
configurations differently. Meanwhile, higher average scores
(>3) in Slow Task Accuracy and Perceived Improvement
indicate that participants were perceptive of changes in their
motor ability throughout the experiment.

IV. DISCUSSION

In this study, we investigated to what extent the dynamics
introduced by different teleoperator transmission couplings
impact a user’s pursuit tracking task performance across a wide
range of task execution speeds. Using a teleoperator testbed
that featured interchangeable mechanical, unilateral, and bi-
lateral transmission configurations, we asked participants to
perform a visual-motor pursuit tracking task across a wide
range of frequencies within the human motor-control band-
width. Task performance was evaluated using a frequency-
based approach to separately analyze how well both the tele-
operator leader and follower tracked the virtual target. We also
analyzed participants’ grip force to understand to what extent
participants attempted to match the impedance of their limb
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Fig. 12. Task load survey responses. Agreement scores from participants in
the post-task survey, scaled from 1 (Strongly Disagree) to 6 (Strongly Agree)
and clustered into teleoperator configuration by color. Scores are aggregated
across individuals, with the horizontal line in each box indicating the sample
medians and vertical x-marks indicating the sample means.

to that of the teleoperator and how this adjustment changed
with teleoperator configuration and tracking frequency.

Our utilization of different frequency trajectory profiles was
intended to test the limits of human teleoperator control.
As the tracking frequency increased, participants’ tracking
performance in all three teleoperator configurations decreased.
The gain ratio error from ideal target tracking at both the
teleoperator leader and follower increased as tracking fre-
quencies increased, and the synchronization represented by
phase difference worsened at especially higher frequencies
above 1.75 Hz. Thus, our first hypothesis is supported, given
that task difficulty represented by target frequency impacted
performance. These results of performance breakdown over
task speed generally agree with hand joystick tracking obser-
vations in prior literature [26]. Whereas our original study [25]
only tested a composite trajectory of three frequencies from
the low end of the bandwidth tested by previous hand joystick
tracking [26], our new study investigated performance over
a larger bandwidth of task frequencies. This frequency range
included frequencies high enough that tracking was subjec-
tively too difficult. These quantitative results are confirmed
through higher average scores in Slow Task Accuracy and Fast
Task Inaccuracy from participants’ subjective responses. Thus,
we know that participants had a conscious awareness of their
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decreasing performance.
While the choice of teleoperator configuration did not have

an impact on the follower’s tracking performance, we did
observe significant differences in tracking adjustment on the
leader side. Notably, we found differences in gain ratios
between the Mechanical teleoperator and the Unilateral tele-
operator and between the Mechanical teleoperator and the
Bilateral teleoperator. These differences, however, were not
replicated with the phase differences. Overall, this finding
supports our second hypothesis, suggesting that participants
had to compensate for the teleoperators differently. The Me-
chanical teleoperator used a mechanical coupling (via a rigid
rod) that provided no position or torque scaling nor introduced
any unknown dynamics beyond extra inertia and stiffness. On
the other hand, the electromechanical transmissions employed
by the Unilateral and Bilateral teleoperators introduced delays
and varying amounts of position or torque scaling (due to the
controller’s stiffness and damping) between the operator and
the virtual disk. Therefore to accurately perform the tracking
task, the operator had to compensate for these dynamics as
they rotated the hand fixture. Thus, our results suggest that
electromechanical coupling dynamics are harder to compen-
sate for than mechanical coupling dynamics, in particular for
spatial accuracy in pursuit tracking.

That we did not find differences in phase tracking from
single-sine tasks would separately suggest that participants
may have prioritized the temporal demands of tasks over
the spatial demands. This is further supported by the fact
that the target single-sine trajectories analyzed were all pre-
dictable periodic signals of varying frequency. Together with
changed gain performance with more task repetitions, our
findings imply that compensation of the teleoperator improved
as users became more familiar with the configuration and
speed from repeated tracking. Above-average scores in Per-
ceived Improvement from post-configuration responses across
all transmissions support this conclusion. It is also worth
mentioning here that these results validate those of our original
study [25], given that our broader investigation into higher-
frequency task execution still included lower frequencies con-
sistent with that study. Extended task execution may have
introduced learning effects but may have also caused fatigue
or other order effects that counteract. Knowing the specific
performance mechanisms from task exposure and familiarity
in teleoperative tracking requires further study.

In addition to finding differences in compensatory strategies
between our teleoperator configurations, we also observed
that our participants used different amounts of grip force
when using the Mechanical teleoperator as compared to the
Unilateral teleoperator. This finding provides support for our
third hypothesis and is consistent with literature demonstrating
that humans match their limb impedance to the impedance
of their tool [22], [23], including our prior study [25]. In-
terestingly, we did not find significant differences in grip
force between the Mechanical teleoperator and the Bilateral
teleoperator, nor between the Bilateral teleoperator and the
Unilateral teleoperator. While the Bilateral teleoperator did
provide force reflection, the dynamics of the virtual environ-
ment did not have the same impact on participants as they

did with the Mechanical teleoperator. This may be due to the
way in which the dynamics of the electromechanical coupling
shaped the effective impedance displayed to participants [12],
[13], [24]. Ultimately, this reflected impedance led participants
to choose limb impedance values that were not significantly
different from both the Mechanical teleoperator and the Uni-
lateral teleoperator. Perhaps the Bilateral teleoperator reflects
impedance somewhere in between, but this speculation should
be rigorously tested in future studies. The biggest differences
in grip force came at the highest task execution frequencies
(e.g., 2.35 Hz), which also happens to be where the largest
differences in follower tracking performance and leader ad-
justments were seen. Additionally, the grip force changed with
more task repetitions, which further suggests an adaptive user
strategy as the dynamics became more familiar to the user.

Our quantitative task performance findings are also sub-
stantiated by participants’ subjective responses. In particular,
participants strongly agreed that they relied on visual cues,
which held across all teleoperator configurations. Meanwhile,
participants reported slight-to-moderate disagreement that they
relied on haptic cues, regardless of configuration. We expected
users in a visual-motor task to utilize their vision more, and
we found that our participants did not believe they used
haptics as much as vision. Both senses can still play a role
in incorporating teleoperator dynamics, but tool compensa-
tion likely draws heavier from visual information rather than
kinesthesia. It is also worth considering that participants may
not have completely understood the term “haptic” used in
the survey, which could have caused confusion for some.
Still, the difference in responses between sensory modalities
(Visual and Haptic) and the consistent response scores between
configurations match our observations from surveys in our
previous study [25]. Participants also generally agreed that
the tool is easy to use and control between transmissions,
which may imply that the process of tool incorporation and
compensation does not take much physical or cognitive effort.
Therefore, the process of incorporating different dynamics was
intuitive for participants.

Overall, these results provide a foundational understanding
of the manner in which teleoperator dynamics affect the hu-
man operator’s visual-motor task performance. The knowledge
gained from this study can be applied and expanded on in a
number of different ways. First, the protocol can be expanded
from 1-DoF to 3-DoF tasks. At the wrist alone, there are
two other anatomical directions with similar neural control
and learning mechanisms, despite different muscle activation
patterns. Thus, while users in a 3-DoF wrist teleoperation
task should exhibit similar compensation and motor control
adaptation in spatial and temporal tracking with different
dynamics and speed difficulties, it is still unknown. This is also
true for higher-DoF tasks involving the entire arm. Also, the
findings from our Unilateral and Bilateral configurations can
be compared against those utilizing more advanced teleopera-
tion control laws in multi-DoF task scenarios with predictable
and unpredictable task goals. Future studies with novel con-
trollers can utilize the findings we established to measure how
well performance improves from operators interacting with
these controllers at various task frequencies. Second, while
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we postulate that users are inverting the plant dynamics of
each teleoperator configuration, this theory should actually
be tested. Utilizing the approach developed by Yamagami et
al. [36], we could utilize the display monitor and motors in
the testbed to inject visual and kinesthetic disturbances. This
would allow for a more robust estimation of the feedforward-
feedback models participants utilize. This approach would
allow for comparisons to be made with individuals who
have known neurological disorders that limit the formation
of feedforward control strategies, such as cerebella ataxia.
Finally, future studies should include EMG measures and
effective impedance analysis alongside grip force measures to
produce more accurate estimations of participants’ impedance-
matching abilities.

V. CONCLUSION

While teleoperators in the 20th century originally utilized
mechanical transmissions to couple leader and follower, cur-
rent devices rely on electromechanical couplings, which im-
pact device transparency by introducing undesirable closed-
loop dynamics. By testing pursuit tracking on a reconfigurable
teleoperator testbed, we have demonstrated that users adjust
limb effort and behavioral strategy to compensate for different
teleoperator dynamics. This compensation, however, breaks
down when the task becomes too difficult to track. Overall, we
found that the dynamics associated with different couplings
do impact tracking performance, especially near the limits
of human motor control. Our results provide useful insights
into the functional control abilities of users performing visual-
motor tasks through a teleoperator. While these results only
focus on pursuit tracking of predictable periodic signals in 1-
DoF, our experimental setup and protocol serve as a foundation
for future investigations with complex unpredictable signals
and novel teleoperator control laws in multi-DoF.
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