114 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

Harnessing GNNs for Robust Representation
Learning in High-Level Synthesis

Atefeh Sohrabizadeh ¥, Yunsheng Bai

Abstract—The efficient and timely optimization of microar-
chitecture for a target application is hindered by the long
evaluation runtime of a design candidate, creating a serious
burden. To tackle this problem, researchers have started using
learning algorithms such as graph neural networks (GNNs) to
accelerate the process by developing a surrogate of the target tool.
However, challenges arise when developing such models for HLS
tools due to the program’s long dependency range and deeply
coupled input program and transformations (i.e., pragmas). To
address them, in this paper, we present HARP (Hierarchical
Augmentation for Representation with Pragma optimization)
with a novel hierarchical graph representation of the HLS design
by introducing auxiliary nodes to include high-level hierarchical
information about the design. Additionally, HARP decouples the
representation of the program and its transformations and in-
cludes a neural pragma transformer (NPT) approach to facilitate
a more systematic treatment of this process. Our proposed graph
representation and model architecture of HARP not only enhance
the performance of the model and design space exploration based
on it but also improve the model’s transfer learning capability,
enabling easier adaptation to new environments.

Index Terms—Design automation, graph neural network, high-
level synthesis, representation learning.

I. INTRODUCTION

N RECENT decades, the emergence of domain-specific

accelerators (DSAs) has provided a viable solution to
the end of Dennard’s scaling [11]. Consequently, the field-
programmable gate array (FPGA) has become an appealing
option for reconfigurable, energy-efficient high-performance
computing (e.g., [15], [41]). Despite their potential advantages,
FPGAs are not yet widely adopted to create DSAs in either
academia or industry, partially due to their poor programma-
bility. High-level synthesis (HLS) [9] has succeeded in reduc-
ing this burden, but exploiting HLS remains challenging for

Received 16 May 2024; revised 11 August 2024; accepted 7 October
2024. Date of publication 24 October 2024; date of current version 26
November 2024. This work was supported in part by the NSF 2211557,
NSF 1937599, NSF 2119643, NSF 2303037, NASA, SRC JUMP 2.0 Center,
Okawa Foundation, Amazon Research, Cisco, Picsart, Snapchat, and CDSC
industrial partners (https://cdsc.ucla.edu/partners/). The review of this article
was arranged by Associate Editor H. Amrouch. (Corresponding author: Atefeh
Sohrabizadeh.)

The authors are with the Computer Science Department, University of
California—Los Angeles, Los Angeles, CA 90095 USA (e-mail: atefehsz@cs.
ucla.eduucla.edu; yba@cs.ucla.edu; yzsun@cs.ucla.edu; cong@cs.ucla.edu).

Digital Object Identifier 10.1109/TCASAIL.2024.3485522

, Yizhou Sun

, Member, IEEE, and Jason Cong ?, Fellow, IEEE

non-experts. This is because, even with HLS, a microarchitec-
ture must be designed and described in code, which limits its
accessibility to hardware designers.

As a result, a new research direction aims to enhance FPGA
programmability by automating the optimization process of
microarchitecture design [37], [39], [42], [45]. In HLS C/C++,
the main instruments used to define the microarchitecture are
compiler directives in the form of pragmas. An essential re-
search question is how to incorporate the right combination of
pragmas into the code to enhance the quality of results (QoR).
This includes determining the type of required pragmas, where
to apply them, and their options, such as the unroll factor or
pipelining type. The complexity of this problem arises from
the exponential growth in the number of candidate pragmas,
the long synthesis time for each design, and the fact that the
pragmas do not have a monotonic effect on performance and/or
area, which makes it challenging to predict their impact. While
the optimal choice of pragmas can yield significant performance
improvements in the resulting microarchitecture, such as the
9000x speedup reported in [6], identifying the optimal com-
bination of pragmas remains a challenging task [6], [16], [42].

To address this problem, several previous works, as summa-
rized in [37], have treated the HLS tool as a black box and fo-
cused on developing efficient heuristics to explore the solution
space more intelligently. Notably, AutoDSE [42] is a state-of-
the-art approach that employs a bottleneck optimizer mimicking
the optimization strategies of an expert designer. However, these
works suffer from long runtimes as they rely on running the tool
directly for evaluating the design configurations, with each run
taking minutes to hours. This choice stems from the difficulty
of capturing the tool’s behavior with an analytical model [37],
[42]. Recent research has demonstrated that leveraging learning
algorithms can mitigate this problem. Graph neural networks
(GNNs) [47] have been found to be highly effective in the
electronic design automation (EDA) domain [13], [18], [22],
[36], [39], [43]. These works represent the input program or
circuit as a graph and utilize GNNs to summarize the graph
properties and produce a vector for graph/node embeddings.
The model then employs a post-processing stage that converts
these embeddings to the final objectives that it wants to pre-
dict. In addition to GNNs, recent advancements in large lan-
guage models (LLMs) like AlphaCode [25], ChatGPT [33], and
GPT-4 [1] make them potential candidates for addressing the
HLS optimization problem. However, all of these take huge
computing power to train and none of them has targeted FPGA

2996-6647 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-1156-3306
https://orcid.org/0000-0003-1623-6184
https://orcid.org/0000-0003-1812-6843
https://orcid.org/0000-0003-2887-6963
https://cdsc.ucla.edu/partners/
mailto:atefehsz@cs.ucla.edu
mailto:atefehsz@cs.ucla.edu
mailto:yba@cs.ucla.edu
mailto:yzsun@cs.ucla.edu
mailto:cong@cs.ucla.edu

SOHRABIZADEH et al.: HARNESSING GNNS FOR ROBUST REPRESENTATION LEARNING 115

accelerator designs with performance optimization in mind.
Therefore, for now, GNNs are a more practical solution for
the problem at hand and we consider utilizing LLMs at a later
time.

Although GNN-based models have shown promising perfor-
mance in the EDA domain, there are still some challenges that
need to be addressed to make them more effective. One of the
main challenges is how to represent the HLS design (C/C++
program with architectural pragmas) in a way that captures
all relevant details and makes it informative for the learning
model. Additionally, as the design objectives are influenced by
both program context and pragmas (i.e., transformations), it can
be beneficial to develop a model that can learn the effect of
each component separately. In response to these challenges,
we propose and implement HARP. To address the first chal-
lenge, it includes a novel hierarchical representation of HLS de-
signs. This representation incorporates program semantics and
pragmas, while also introducing auxiliary nodes that provide
high-level hierarchical information about the design. This graph
representation provides a coarsened view of the design, which
can assist with coping with the long-range dependencies within
the program. In fact, it helps to reduce the average shortest
path of our benchmark by a factor of 5. This permits the GNN
model to pass the nodes’ messages more easily throughout the
whole graph. To tackle the second challenge, HARP intends to
enhance modeling the pragma optimizations. Hence, we pro-
pose two approaches for decoupling the program representa-
tion from its transformations. The first approach separates the
vector representation of the program and pragmas generated
by the GNN and employs an autoencoder loop to ensure the
pragma vector representation can reconstruct its initial features.
The second approach introduces a neural pragma transformer
(NPT), which models pragmas as learnable functions applied
to the program representation. This architectural design aligns
more naturally with the transformative nature of pragmas. We
compare and evaluate these two approaches in our experi-
ments.

The next challenge emerges when deploying the model in
a new environment, where two types of shifts can occur that
can lead to different data distributions compared to the training
set. First, the domain shift arises when the model encounters
a kernel that was not seen by the model during the training
process. Second, the fask shift appears when there is a need
to predict a new objective that was not included in the model’s
training. A significant source of task shift occurs when the HLS
tool is updated, as changes in tool heuristics can affect design
objectives. Fig. 1 shows variations in latency and BRAM usage
(skipping the rest of the resources due to space limitations) for
1145 designs during the transition from SDx 2018.3 to Vitis
2020.2. The vertical (horizontal) axis represents results from
Vitis 2020.2 (SDx 2018.3). The outcomes are compared against
the diagonal line y = x for clarity. Given the cost of regener-
ating the database and retraining the model, it is preferable to
transfer the model using a smaller dataset. Our experimental
results show that HARP improves the performance of both the
original and transferred models. Even with large datasets, the
pretrained model of HARP yields better results after transfer

1e7 latency util-BRAM
35]
e Vitis20.2 vs SDx18.3 | 0.175 1° * Vitis20.2 vs SDx18.3
| 2
10 —— y=x [—— y=x
0.150 i D
25 » I :
01251 |
4o .
2.0 “
o -7 o100 ! .
4 -
9 . - r
15 : e 007s| &
-7 *_
- o
-
1.0 RV 0.050 1':-.-. 3
05 ._/’ " doguen 00 o0
oo e .| 0025 -
00, daeed o 0.000{ pomee o o
0.0 0.5 1.0 15 2.0 00 05 10 15 20 25
SDx18.3 1le7 SDx18.3

Fig. 1. The design objectives resulted from AMD/Xilinx Vitis 2020.2 over
SDx 2018.3. The points are compared against the y = x line.

learning. This strong transfer learning capability is due to our
novel graph representation and model architecture.!.

In summary, in this paper, we make the following contribu-

tions:

* We propose a novel hierarchical graph representation to
combine both a high-level view (combination of C/C++
level and LLVM IR level) and a low-level view (LLVM
IR level) of the HLS designs, which can help to reduce
the long range of dependencies.

* We propose how to decouple the representation of pro-
grams and their pragmas, allowing the model to learn the
individual impact of each component more effectively.

* We evaluate the effectiveness of our proposed hierarchical
graph representation and model architectures for trans-
fer learning by showcasing their capacity to enhance the
adaptability of the resulting model to changes in the ob-
jectives of HLS designs.

e The experimental results demonstrate that our approach
can decrease the prediction loss compared to a state-of-
the-art (SOTA) GNN-based work by 12-34%.

e In design space exploration (DSE), HARP achieves an av-
erage performance improvement of 2.54x over the SOTA
model-free DSE within a 25x reduced time limit, and
outperforms the SOTA model-based approach by 1.31x
on average after transfer learning with limited data.

* Even with large datasets, HARP shows strong transfer
learning capability, outperforming the SOTA model-based
approach by 1.26x on average.

II. BACKGROUND

In this section, we first review a common way to present a
program as a graph and provide an overview of GNNs. We then
review the pragmas that define the solution space we need to
explore.

A. Programs as Graphs
A popular way of representing a program as a graph is
to extract its control and data flow graph (CDFG) from its

lPreliminary versions of this work were presented in [39] and [40]. A more
systematic approach to the transfer learning problem is provided in [12].

116 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

intermediate representation (IR) in LLVM [23]. Thus, instead
of focusing on the grammar of the code, the semantics of the
program flow is captured. In a CDFG, the nodes represent the
LLVM instructions that are connected to each other based on the
control flow of the program. For the data flow of the program,
a second type of edge is added between the nodes based on the
operands of the instructions. Note that a CDFG includes many
low-level operations (e.g., memory management) which makes
it desirable for FPGA kernels.

B. Graph Neural Networks

A GNN [47] extracts information from a given graph by
learning the features, known as embeddings, for its nodes. This
is achieved through a sequence of layers, performing aggrega-
tion (AGG) of the information from neighboring nodes (N (7)),
and applying a transformation function (TF) to the aggregated
result. The computation of a single layer in a typical GNN can
be represented as follows:

h! = o(TF(AGG({h;]j € N(i)}))) (1)

where h; € RF (b} € RF) represent the input (output) embed-
dings of node i, with F' and F” denoting the number of features,
and o is an activation function to introduce non-linearity to the
model.

C. HLS Design Space and Pragmas

HARP is developed on top of the open-source AMD/Xil-
inx Merlin Compiler [8], which offers the advantage of re-
ducing optimization pragmas and applying source-level code
transformations to enable various architectural optimizations
such as memory burst, memory coalescing, and coarse-grained
optimizations [6], [42]. The solution space using the Merlin
Compiler includes three types of pragmas, as listed in Table I:
pipeline, parallel, and tile. However, these pragmas
correspond to several HLS pragmas, including pipeline,
unroll, array partition, inline, dependence,
and loop_flatten. This is because the Merlin Compiler only
needs a high-level description of the design with its pragmas
in order to transform the input code and generate an HLS
C/C++ code with the required HLS pragmas to implement the
described design. The pipeline pragma can be configured
to implement either fine-grained (fg) or coarse-grained (cg)
pipelining. By utilizing the pipeline pragma with the cg
option, the Merlin Compiler eliminates the need for manual
code rewriting to implement double buffering, since it auto-
matically transforms the code accordingly. The parallel and
tile pragmas allow us to adjust the duplication factor of the
processing elements (in the case of cg parallelization) or the
arithmetic operations (in the case of fg parallelization) as well as
the amount of cached data, respectively. As a result, the Merlin
Compiler provides a much more compact design space and is
used in this study. Our approach, however, can be generalized
and applied to other HLS tools directly, such as Vitis HLS [4]
or Intel HLS with proper training.

TABLE I
MERLIN PRAGMAS WITH ARCHITECTURE STRUCTURES

[Keyword | Available Options | Architecture Structure |

pipeline mode=cg/fg/off CG or FG or no pipelining
parallel factor=<int> CG & FG parallelism
tile factor=<int> Loop Tiling

CG: Coarse-grained; FG: Fine-grained.

III. PROBLEM FORMULATION

In this work, we aim to speed up the DSE problem for
HLS. For this matter, we propose solutions for the following
problems:

Problem 1: Build the Prediction Model. Let P be a C
program as the FPGA accelerator kernel with design config-
urations (). Let H be a vendor HLS tool that outputs the true
execution cycle Cycle(H,P(f)) and the true resource utiliza-
tion Util(H, P(0)):

Qu(P(9)) = (Cycle(H,P(9)),Util(H,P(6))) (2)

Find a prediction function (F') that approximates the results of
H for any given program P with any design configurations ():

min (avegage (Loss(Qr(P(0)), Qu(P(9))))) (3

Problem 2: Identify the Optimal Configuration. For the
program P defined above, find a configuration § € Rp in a
given search time limit so that the generated design P(6) can
fit in the FPGA and the execution cycle is minimized.

IV. RELATED WORK

Machine Learning for EDA. Since most problems in EDA
are classified as NP-complete, machine learning algorithms
are gaining popularity in this domain due to their ability to
efficiently solve them and produce high-quality solutions [16].
Additionally, these algorithms can aid in reducing manual effort
and introducing greater automation into the design process.
Machine learning (ML) and deep learning (DL) models have
demonstrated remarkable success in various phases of the EDA
flow, such as high-level synthesis [5], [27], [39], [43], [45],
logic synthesis [32], [50], placement and routing in physical
design [2], [21], [22], [28], [31], [48], etc. Huang ef al. [16]
identify four primary tasks in this field: (1) decision-making in
conventional approaches, where an ML model substitutes for
brute-force search or empirical configuration selection; (2) per-
formance prediction, in which a model is employed to rapidly
estimate QoR; (3) black-box optimization, where a surrogate
model is constructed to explore the solution space more effi-
ciently for optimal design; and (4) automated design, where
both the predictor and policy are learned and continually ad-
justed online to significantly reduce human effort in complex
design tasks. This work aims to enhance performance prediction
to facilitate HLS black-box design optimization.

GNN for EDA. When a larger dataset is available, DL al-
gorithms have demonstrated significant performance improve-
ments in EDA. GNNs are one of the most widely used al-
gorithms for this purpose, as graphs provide an intuitive way

SOHRABIZADEH et al.: HARNESSING GNNS FOR ROBUST REPRESENTATION LEARNING 117

to model programs, Boolean functions, netlists, and layouts
commonly used in many EDA problems [18], [29], [36]. This is
also true for the HLS problem, where analytical models cannot
achieve acceptable accuracy [37], [42], but learning algorithms
have demonstrated superior performance. However, applying
learning algorithms to the HLS problem, which constitutes
an early stage of design optimization, can pose considerable
challenges due to the extensive and intricate optimization pro-
cedures that a design must undergo before reaching its final
microarchitecture.

ML and GNN for HLS. Although traditional ML algo-
rithms such as random forest, decision tree, and linear regres-
sion have been employed to model HLS tools [37], recent stud-
ies have shown that GNNs can significantly improve accuracy
[51, [39], [43], [45], [46]. Moreover, using GNNs can help unify
the model for several applications, as opposed to developing
a separate model for each application. For instance, GNN-
DSE [39] proposes a graph representation to capture both the
program semantics and the pragma flow and develops a GNN-
based model to build a surrogate of the HLS tool that can predict
the latency and resource utilization for BRAM, DSP, FF, and
LUT. Bai et al. [5] extend GNN-DSE by presenting a meta-
learning-based framework to adapt to domain changes. Ustun
et al. [43] represent the HLS design (without pragmas) as a data
flow graph (DFG) and build a GNN-based model to predict the
mapping of arithmetic operations to the DSPs and LUTs, which
can improve the accuracy of delay prediction. Similarly, Iron-
Man [45] converts the program (without optimization pragmas)
to DFG and predicts the critical path under different resource
allocations (DSP or LUT) to the computation nodes using graph
convolutional networks (GCNs) [20]. Wu et al. [46] also work
with HLS designs without pragmas and construct a hierarchical
GNN that first performs node-level classification to predict the
resource type (DSP, LUT, or FF) for implementing the node
and then uses this information to estimate the critical path as
the graph-level prediction.

HLS Design Space Exploration (DSE). Learning algo-
rithms have been also utilized for expediting the HLS DSE
process to discover the Pareto-optimal points [44], [45]. Un-
like the prior works that use general-purpose heuristics [37]
or dedicated heuristics [42] to explore the solution space, this
research approach employs a data-driven method for the search.
For instance, IronMan trains a reinforcement learning agent
that identifies the optimal resource allocation between DSP
and LUT under user-specified constraints, such as minimizing
resource consumption or optimizing the critical path.

Although optimization pragmas are the primary source for
improving the resulting microarchitecture [6], only a few stud-
ies have developed a comprehensive learning model for HLS
that utilizes optimization pragmas and can be applied to explore
the solution space for numerous applications [5], [39]. In this
work, we aim to pinpoint the challenges associated with devel-
oping such a model and propose solutions to address them.

V. METHODOLOGY OVERVIEW

Our objective is to enhance the efficiency of exploring the
HLS design space by developing a model capable of predicting

the behavior of the HLS tool. To this end, we first collect a
database from various applications as explained in Section V-A.
We then explain how we can employ the trained predictive
model as a surrogate to the HLS tool to run the inference
and DSE stages in Section V-B. In this context, we develop
a novel hierarchical graph representation, introduced in Sec-
tion VI, which facilitates the propagation of graph information
throughout the graph. Furthermore, HARP utilizes an advanced
model architecture to improve the prediction accuracy. Un-
like traditional machine learning models, which may incor-
rectly carry correlations between program P and transforma-
tions (i.e., pragmas) T into predictions, HARP learns the impact
of each component separately, as detailed in Section VII. In
Section V-C, we explain that this novel graph representation and
model architecture can also be advantageous when moving to
new programs or tasks that cause shifts in the data distribution,
as the model can adapt more easily to the shift.

A. Database Generation

Followed by our GNN-DSE [39] work, we utilize AutoDSE
[42] to generate the initial database for our target applications.
As mentioned in Section II-C, each for loop can take up to
three pragmas: pipeline, parallel, and tile and the
solution space is defined as in AutoDSE. To enable the model
to learn to differentiate between design points ranging from
“bad” to “good”, we enhance AutoDSE to utilize three types
of explorers:

* The existing explorer of AutoDSE, the bottleneck-based

optimizer, which can find high-quality designs.

* A hybrid explorer integrates bottleneck-based optimiza-
tion with exhaustive search. It assesses up to P neighbors
of the optimal design point following a X % enhancement
in quality. In this context, a neighbor is defined as a point
where only one pragma option differs from its origin point.
This exploration approach enables the model to observe
the impact of altering only one pragma within each local
neighborhood.

* A random explorer that may explore configurations over-
looked by the previous two explorers.

Once the explorer picks a design point, it is passed to the
Merlin Compiler for evaluation. The result will be commit-
ted to a common database along with the program’s graph
representation (Section VI). We gradually collect results from
different applications in a shared space to be used for training
the model. Obtaining the true values of a design’s objectives
is time-consuming. This makes gathering the dataset for train-
ing the model to be the primary bottleneck in our approach.
After building an initial database, we leverage the top points
generated by our DSE (Section V-B) to augment the database.
It is important to note that the DSE aims to evaluate the model
on numerous unseen data points, necessitating a comprehensive
representation of all design choices in our database. On the
other hand, if our DSE mistakenly believes that an unseen
design point has a high QoR, it indicates that the model lacks
enough data to generalize across the entire solution space.
These particular data points, which led to mispredictions of

118 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

Pareto-optimal design points, are more likely to contribute to
a more accurate representation of the data distribution in sub-
sequent rounds.

B. Design Space Exploration

The predictive model can be used for finding the Pareto-
optimal design points. Given that not all pragma configurations
may yield valid hardware designs, we first need to have a
classification model to determine the validity of each design
point. If it is valid, we proceed to utilize a regression model to
estimate the objectives of the design. If, for any of the resources,
the utilization is higher than 0.8 (80%), we reject that design due
to over-utilization. This threshold is empirically set, as exceed-
ing it leads to frequency degradation and mapping difficulties.
Subsequently, from the remaining designs, we select the top 10
designs with the lowest latency numbers for evaluation using
the HLS tool. As a result, our model enables us to reduce the
number of evaluations with the HLS tool to only 10, rather than
invoking it for every design point.

Since our models can complete inference for each design
point within milliseconds, we can efficiently examine numerous
design points. However, when dealing with enormous solution
spaces, an exhaustive search within a reasonable timeframe
might not be feasible. Therefore, as we proposed in GNN-DSE,
we set a time limit for running the DSE and employ a heuristic
to prioritize the exploration of the most promising candidates.
As the HLS tools can implement the fine-grained optimizations
better, we adapt a BFS-like traversal of the pragmas starting
with the inner-most loops to create an ordered list of them. As
aresult, the pragmas of the inner-most loop levels are evaluated
sooner.

If there are multiple pragmas at a loop level, we prioritize
parallel over pipeline over tile. If the picked pragma
(Pp) depends on another pragma (F;) from the same loop level
or one loop level further, we move pragma P, up in the ordered
list. Pragma dependencies come from the rules AutoDSE sets
in defining the solution space. For instance, there is always a
dependency between the parallel pragma of one loop level
and the pipeline pragma of its upper loop level because
fg pipelining fully unrolls the sub-loops, making the paral -
lel pragma unnecessary. Since there is always a dependency
between the parallel pragma of one loop level with the
pipeline pragma of its upper level, for the second-inner-
most loop level upwards, this ordering results in evaluating the
pipeline pragma before any other optimizations (even before
pipelining or tiling of its inner loop). This prioritization is de-
sirable because successful pipelining can lead to either double
buffering or full unrolling of the inner loops, both of which are
typically preferred over other optimizations on the inner loop.
After evaluating this pragma, the same process is repeated for
the next loop section until all pragmas are visited.

C. Transfer Learning

When faced with new programs or tasks, the data distribution
may shift from the training data distribution, making the predic-
tion model unreliable. In Section I, we discussed one form of

task shift that occurs when the HLS tool, used for synthesizing
and implementing the design, changes. In such cases, collecting
all the labels again, including the latency and resource usage,
and retraining the entire pipeline can be time-consuming. To
address this issue, we aim to adapt to the new environment using
less labeled data by leveraging transfer learning. We might also
want to introduce new applications to the model, which further
requires this capability. Specifically, we use the model trained
on the previous version of the tool and fine-tune it to adapt the
predictions to the newly acquired labels with the new version
of the tool.

Transfer learning [52] can be viewed as a form of task adapta-
tion, where knowledge learned from a source task is transferred
to a target task with limited labeled data. In our case, the source
task refers to the previous version of the HLS tool, where a
large amount of labeled data is available, and the target task
refers to the new version of the tool, where limited labeled
data is available. Additionally, as we transition to the new tool
version, we introduce new kernels to contain domain shifts
as well. We speculate that one important requirement for the
success of transfer learning in this context is that the model
must have a clear understanding of the components that impact
optimization results, namely the program semantics and the
impact of transformations. By distinguishing between these two
components, the model can better update its predictions when
the data distribution shifts.

Notably, we observe a high correlation not only among some
objectives within the same version but also among the same ob-
jectives across different versions. When the pretrained model’s
target and the fine-tuned model’s target are highly correlated, it
suggests that the knowledge encoded in the pretrained model
is relevant to the fine-tuning task. This can accelerate the
learning process for new tasks. This correlation suggests that
the pretrained model has already acquired representations or
features beneficial for predicting the fine-tuned target. During
fine-tuning, the weights of the pretrained model are adjusted
to better align with the new target task. A strong initialization
from the pretrained model can facilitate quicker convergence
during fine-tuning and potentially yield improved performance.
Moreover, the risk of overfitting during fine-tuning is mitigated,
as the pretrained model has learned generalizable features or
patterns relevant to both tasks, aiding in regularization and
preventing the fine-tuned model from excessively fitting the
training data. Furthermore, fine-tuning may demand less la-
beled data to achieve satisfactory performance compared to
training the model from scratch, as the pretrained model has
already acquired useful representations from a potentially larger
dataset.

Our experimental results indeed demonstrate that our graph
representation and model architecture are effective in improving
the model’s performance after transfer learning. Specifically,
our approach achieves significant performance gains in terms of
both the model accuracy and the DSE results when fine-tuned
on the limited labeled data (in this case, about half the size of
the previous dataset) from the new version of the tool. We also
demonstrate that even in scenarios with ample data availability,
transfer learning through fine-tuning remains highly effective,

SOHRABIZADEH et al.: HARNESSING GNNS FOR ROBUST REPRESENTATION LEARNING 119

Code 1:

foo ¢ cond-I
for (int i = 0; i < I; i++) { + body-I
for (int j = 0; J < J; j++) { : cond-J
for (int k = 0; k < K; k++) { + body-J
. ¢ cond-K
R * body-K
¢ inc-K
¢ end-K
Code 2: * inc-J
for (int i = 0; 1 < I; i++) { H gnd-J
for (int § =0; j < J; j++) { ... } 1 inc-1
for (int k = 0; k < K; k++) { ... } ° end-1
! Code 1

(a) Sample base graph

(b) Code snippet 1 and 2

Fig. 2.

o
(c) Hierarchical structures of sample codes

Sequential blocks (1t hierarchy)

cond-I “for” loop hierarchy (2"? hierarchy)

+ body-I
¢ cond-J
$ body-J
2 inc-J

¢ end-J

¢ cond-K
t body-K
¢+ inc-K

¢ end-K
¢+ inc-I

* end-1

Pseudo node to actual nodes

Code 2

/" ‘)/
q
1

\ /A P e e « lalib
(d) Sample hierarchical graph representation

(a) The base (original) graph representation from GNN-DSE [39]; (b) Two sample code snippets; (c) The hierarchical structures of the two sample

code snippets, showing only the pseudo nodes and the connection between them; (d) A sample hierarchical graph focusing on demonstrating the pseudo nodes

and their connections.

further enhancing our performance metrics. Importantly, our
HARP design exhibits significantly greater capability in transfer
learning compared to other models, underscoring the impor-
tance of the optimizations we implemented in the graph rep-
resentation and model architecture. These optimizations enable
better learning of each problem component, ultimately leading
to a robust representation.

VI. GRAPH REPRESENTATION

As mentioned in Section II-A, CDFG is a popular choice
for representing FPGA kernels. However, CDFGs overlook
operand precision and values, which are crucial in determin-
ing the QoR. ProGraMLL [10] is a proposed alternative that
extends CDFG by assigning nodes to operands explicitly and
including design call flow to preserve function hierarchies. As
such, followed by our previous work GNN-DSE [39], we adapt
ProGraML and extend it by including the pragma flow to repre-
sent a program. Candidate pragmas are defined in the following
form

#pragma ACCEL [PragmaTypel] [factor=]auto{name}

name is a placeholder for the option of the pragma as defined in
Table 1. The base graph comes from our previous work, GNN-
DSE. Specifically, we assign a node for storing the placeholder
pragma for each candidate pragma. Since the pragmas are ap-
plied to the loops, we connect this node to one of the instruction
nodes corresponding to the loop: icmp.

A. Hierarchical Graph Representation

A common issue in GNNs is that their performance tends
to degrade as the number of layers increases, leading to a phe-
nomenon known as over-smoothing. This occurs when repeated
graph convolutional layers create too similar node embeddings,
thus losing important information about the graph structure.
Consequently, GNNs typically have shallow networks, which
focus on learning local neighborhoods, leading to limited re-
ceptive fields and difficulties in capturing a global view of the
graph [13], [24]. This poses a significant challenge in effectively
learning programs that are typically characterized by exten-
sive dependency chains, wherein the performance of a given

program element depends on the operation of another element
located far away in the code.

We aim to tackle this challenge by developing a hierarchical
graph representation that integrates both high-level and low-
level perspectives of the program, specifically, the HLS design.
By introducing nodes in the graph that can establish relation-
ships at various levels, we can coarsen the graph representation
to mitigate the impact of the long range of dependencies. To this
end, our method incorporates a high-level view that combines
the C/C++ code level and LLVM IR [23] level and a low-level
view that relies solely on the LLVM IR level. We construct the
graph starting from LLVM IR and subsequently augment it to
include two further abstraction tiers within the program.

To build the second level of representation in the graph,
we insert auxiliary nodes (pseudo nodes), where each pseudo
node corresponds to a distinct LLVM IR block. A block in
LLVM 1R is a sequence of instructions that end with a ter-
minator instruction, such as a branch, return, or switch. Each
basic block in LLVM IR has a single entry point and a single
exit point. We define a new node called pseudo_block for
each block. Fig. 2(b) and 2(c) illustrate two toy examples for
showcasing these nodes and the hierarchical structures between
them. In LLVM IR, each for loop is typically translated into
4 blocks. These blocks consist of the loop condition block, the
loop body block, the block for updating the loop iterator, and
the final block with a branch instruction to transition to the
subsequent block after the loop’s completion. Fig. 2(c) portrays
the pseudo nodes assigned to each of these blocks, along with
their order and connectivity. The pseudo nodes are linked to
one another based on their sequential order. Additionally, the
pseudo nodes representing the initial blocks of the for loops
establish connections based on their order in the C/C++ code.
As demonstrated, each for loop is linked to its parent for
loop (if any) and its first-level children (if any).

Fig. 2(d) shows a partial view (due to the space limit) of a
graph for a real case. Each pseudo block node has three
types of edges. First, it links to all instruction and data nodes
within that block. Second, it connects to other pseudo-nodes
in sequential order, thereby creating the first level of hierarchy.
Third, it establishes connections based on the hierarchy level
of the for loops in the C/C++ code, linking their first blocks

120 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

%‘

+ activation

P vector (TT)

ll MLP
Decoders

Program
attention
layer

Classification:
valid vs invalid

GNN layer

Pragma
attention
layer

Regression:

-
(] c
T EE B B EE E
e : BELEBE Bl B B
ks SN & I K
= L-» graph —p & zZ 5 z 5 z = = z
design | o Z 3 Z o = 2 =z Q =
\ S C T O © ®
\ & + + o 4 (Gl o
\ =l
N
" © GNN encoder——
 [|cosine
pragma options - —
é loss Reconstruct the pragma

Fig. 3.

latency, BRAM,
DSP, FF, LUT

T vector (E)

MLP
(auto-encoder) __//

Separating the vector representation of the program P and its transformation T. Distinct vectors are generated for each one. A further reconstruction

loss with an autoencoder is used to enhance the influence of pragmas on the T vector.

according to their hierarchy in the code. This creates the second
level of hierarchy in the graph representation. By adopting a
hierarchical graph representation that combines high-level and
low-level views, our approach can provide a more comprehen-
sive understanding of the design and reduce the complexity
of modeling long-range dependencies. This is achieved by de-
creasing the shortest path between the nodes via the pseudo
nodes and their connections, which helps the GNN model to
pass messages throughout the graph. For the kernels in our
benchmark (comprising 41 unique kernels), the average shortest
path between every two nodes in the graph is reduced from 25.3
(24.5) for the original graph to 5.1 (5) for the hierarchy graph,
on average (the geometric mean).

To incorporate additional C-level and/or LLVM-level infor-
mation in the graph, we define various attributes that can assist
the model in gaining a deeper understanding of the role of each
node within the graph. More specifically, each node/edge has
the following attributes:

Node = {’function’: Function ID, ’‘block’: LLVM block
ID, ’'type’: Node type, ’‘key text’: Node task}
Edge = (Src node ID, Dst node ID, {’flow’: Flow type,

'position’: Position ID})

the type, flow, and position attributes encode this
information (for non-pragma edges, position denotes their
ordering):

tvpe 0: instruction 1: variable 2: constant value
yp 3: pragma 4: pseudo node
0: control 1: data 2: call
flow 3: pragma 4: pseudo node 5: Ist hierarchy
6: 2nd hierarchy
position || 0: tile [1:pipeline | 2: parallel

The key text attribute represents the primary functional-
ity of the node. For example, it may be pseudo block,
PIPELINE, load, i32* for each of the pseudo node, pragma,
control, and data node types. The pragma nodes have an addi-
tional attribute to encode the pragma option. This means that the
only differences among the graphs for different design points
of the same application are the attributes of their pragma nodes.

VII. MODEL ARCHITECTURE

At a high-level overview, the model begins by taking the
graph representation of the program as input. It then proceeds
to generate initial node and edge embeddings by concatenating
the one-hot encoding of their attributes and important numeric

values, including pragma options and loop trip counts. This en-
coding strategy helps to prioritize attributes that contribute more
significantly to the final prediction. Following the initialization
of embeddings, the model employs a GNN encoder to update
these embeddings. The base GNN encoder is adopted from
GNN-DSE. It has stacked TRANSFORMERCONV [38] layers to
produce node embeddings. Subsequently, a Jumping Knowl-
edge Network (JKN) [49] mechanism is utilized to selectively
choose varying neighborhood ranges for each node, recognizing
that different nodes may require distinct neighborhood ranges
to build meaningful embeddings. Finally, to generate a single
vector representation for the entire graph, it leverages an atten-
tion mechanism [26] to enable the model to learn the impor-
tance levels of different nodes within the graph. Formally, the
computation here can be modeled as:

hg =Y softmax (MLP(/{,-)) T ()

i€ENg

where MLP maps the node embedding from R” to R.

After encoding the graph as a vector, additional transforma-
tion steps are required to make the final prediction. We define
two learning tasks to assess a design point. Firstly, a classifi-
cation task determines the validity of a design configuration.
Invalidity can arise from various factors, including challenges
faced by the HLS tool in implementing certain pragma combi-
nations. Designs failing to complete synthesis within a certain
timeframe are flagged as invalid. Moreover, some pragma com-
binations may inherently be infeasible. Although we identified
some invalid cases in our previous work, AutoDSE, not all the
cases were covered so we let the model learn them.

Once a design is deemed valid, another model estimates
its quality by predicting cycle count and resource utilization,
forming our regression task. For both tasks, we utilize MLPs
to make predictions based on graph-level embeddings. Since
our regression task predicts correlated objectives, we share the
GNN encoder backbone and apply multi-task prediction with
separate MLPs (see Fig. 3). As aresult, they can help each other
in creating a better graph-level embedding.

A. Decoupling Program and Transformation

The input to HLS tools is composed of two primary com-
ponents that significantly influence the final microarchitecture.

SOHRABIZADEH et al.: HARNESSING GNNS FOR ROBUST REPRESENTATION LEARNING 121

(a) The coupled graph-level embedding.

Fig. 4.
a coupled embedding of the program and its transformations.

The first component is a high-level program description, de-
noted as P, expressed in C/C++, which defines the semantics and
functionality of the DSA to be designed. The second component
is a set of pragmas that include parallelizing, pipelining, and
tiling directives, which are applied as transformations (T). As
explained in Section II-C, these pragmas modify the microar-
chitecture which in turn affects the performance, power, and/or
area of the DSA. The resulting HLS design is a function of both
P and T. This work focuses on minimizing the latency L(P, T)
of the design, given the available resource constraints of the
FPGA on which the design will be implemented. The resource
constraints are determined by the utilization of BRAM, DSP,
flip-flops (FF), and lookup-tables (LUT), which are denoted as
BRAM(P, T), DSP(P, T), FF(P, T), and LUT(P, T), respectively,
and must be within certain preset thresholds. Thus, the GNN
task is to learn the impact of T on P. Although GNN-DSE learns
a coupled representation vector containing both P and T, we
propose to separate the modeling of each component as it allows
for a more natural understanding of their individual impacts. In
sections VII-A1 and VII-A2, we present two optimizations for
effectively implementing such a modeling strategy.

1) Separating Vector Representation of Program and Trans-
Sformation: Fig. 3 depicts the model architecture for separating
the vector representation of P and T. Once the GNN encoder
is finished, the nodes have seen the program and the pragma
structure, and their embeddings are produced based on that. We
employ two attention layers to build the final P and T vectors.
The attention layer is responsible for learning an attention (im-
portance) score for each node and applying a weighted addition
accordingly on their embeddings as expressed in Eq. 4. The
program attention layer merges the nodes corresponding to
the program context (Np) while the pragma attention layer
pools only the pragma nodes (N). In addition to separating the
learning of the program and its transformation, this architecture
helps to amplify the effect of the pragmas in predicting the final
objectives.

To make the T vector (h}) more meaningful, we utilize
an autoencoder [14] structure. Autoencoders are designed to
reconstruct part of the input data given its context. We use
them to make sure h_%, which summarizes the pragmas, can
reconstruct the input pragmas stored as a vector §. This can help

e

(b) Our proposed P vector (h;:) representation.

t-SNE visualization of the generated embeddings that are color-coded by the kernel name. Our P vector embedding is compared to when we learn

us increase the effect of a change in the input pragma options
in the final vector representation. The autoencoder architecture
consists of an MLP encoder and an MLP decoder, which take
as input h;— and aim to produce (5). Despite the varying number
of pragmas in different programs (HLS designs), we employ a
fixed-sized vector for § to enable training a shared MLP decoder
for all programs. In cases where programs have fewer pragmas,
the remaining elements of § are filled with zeros. The total loss
of the model would be calculated as:

It =lop(AE(hT),0) + > lyup(Fo(P.T), Hy(P,T))
ocobj
(5)

where [cg and [;;p denote the cosine error and the loss in
the model’s prediction, respectively. For the regression task, we
measure [y p by calculating the mean squared error, and for
the classification task, we use the cross-entropy loss. AE(hjr)
is the generated vector from the autoencoder. F,(.) and H,(.)
show the predicted value and the groud-truth value (HLS re-
sults) for objective o, respectively.

The t-SNE [30] visualizations of the embeddings generated
by a coupled vector representation and our proposed P vec-
tor (h;;) are compared in Fig. 4. t-SNE is a method that is
capable of representing data with high dimensionality through
2-D points, where data points that are close together in the 2-D
space are indicative of similar data, and those far apart indicate
dissimilar data. Each point in the figure represents a different
design point from a different kernel and is color-coded based
on its kernel name. The embeddings generated from GNN-
DSE are interleaved when labeled by kernel name, whereas
our proposed model successfully clusters the embeddings based
on the kernel they belong to. To quantitatively assess the im-
provement in clustering, we compute the Euclidean distance be-
tween every pair of embeddings for a given kernel and measure
the maximum and average distance among them. The average
(across kernels) of the average and maximum distance using
h;p decreases by 3.7x and 2.5 x respectively, compared to the
embeddings generated by GNN-DSE. These findings highlight
the effectiveness of h;; in understanding the program scope and
its semantics.

122
6
40 - >
5
20 A
‘_’:-‘ ° a
0 >
= & -. 3
—20 A - -
—a0 < 2
-3
-
—60
—40 —20 o 20 40
(a) The input pragma options (6).
Fig. 5.

colors indicate higher performance (lower latency).

<

Pseudo node

> g embedding
I g Pragma option B0
forl.body > = g
o Is
RS DU I T
L =2 s encoder
. g
v - $ o
-
3 =
B
a forl.end <> £

@ icmpnode @ pragmanode @ pseudonode [l block of nodes

Fig. 6.

MLP as tile

Transform the node embeddings of pseudo

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

60 -

20

—40

—30 —20 —10 o 10 20 30

(b) Our proposed T vector (h;—) representation.

t-SNE visualization of the T vector compared to input pragma options that are color-coded by the performance value (log of speedup). Warmer

P vector (E);
from program nodes

Program
attention
layer

MLP to
Merge
pragmas

MLP as
pipeline

GNN layer

|| MLP
Decoders

Pseudo
node
attention

MLP as
parallel

E -
Neural Pragma

Transformer (NPT)

B vector (E):
from pseudo nodes for LLVM

nodes with pragma in their block blocks

Modeling pragmas as function transformations using NPT: each pragma type is modeled as a learnable MLP which takes in the embeddings of the

pseudo node of the pragma block along with the pragma option. A second level of MLP is used to merge the results.

Furthermore, Fig. 5 shows the t-SNE visualization of h;— for
arandom kernel, gemm-blocked from the MachSuite bench-
mark [35], which is color-coded based on the perf value. The
perf value represents the log speedup of the design points to
a reference latency value. In order to better illustrate the effec-
tiveness of h;—, we compare it with visualization using pragma
options g. As the figure shows, there are some points that are
similar to each other when they are compared with their pragma
options 0 but have large differences in their perf value. This is
expected as a small change in the pragma options (for example,
changing the pipelining from coarse-grained to fine-grained)
can have a significant effect on the resulting microarchitecture
and the final performance. However, h_% can effectively capture
the impact of transformations, leading to improved clustering of
design points. This helps us further in distinguishing the design
points within the same program. Therefore, our proposed P and
T vector representations together provide a better understanding
of the program scope and the transformations that are applied to
it. Experimental results (Section VIII-B) reveal that this model
can decrease the loss by 10-23%.

2) Modeling Pragmas as Function Transformation via Neu-
ral Pragma Transformer (NPT): The primary goal of this
study is to predict the objectives of an HLS design after ap-
plying a specific transformation T to its behavioral description
in program P. These transformations are applied in the form of

pragmas that alter the microarchitecture of the target application
(Section II-C). For example, the parallel pragma duplicates
statements within a loop and creates parallel units to process
them simultaneously. Therefore, it is appropriate to model the
pragmas (T) as functional transformations that are applied to
the program P, which is represented as a graph. Our model for
achieving this goal is illustrated in Fig. 6.

The model in Section VII-A1 can work with both the original
graph and the hierarchy graph. However, this model needs to
be applied to the hierarchical graph. Since the actual graphs are
too crowded to visualize (~ 400 nodes on average), a schematic
of the hierarchical graph is presented in Fig. 6. The blue boxes
represent the LLVM blocks, and only one representative node,
namely, the icmp node, is depicted inside each box, which is
connected to the pragma node. Each box has a correspond-
ing pseudo node, and these pseudo nodes are connected with
the hierarchical structure of the program as described in Sec-
tion VI-A.

A GNN encoder with the same architecture as the one shown
in Fig. 3 encodes the graph. This encoder is intended to focus on
the program’s structure along with the domain of its pragmas.
Therefore, all pragma nodes have the same attribute as their
default option (1 for PARALLEL and TILE pragmas. ‘off’ for
PIPELINE pragma). As a result, unlike in Section VII-A1, the
input one-hot encoder to this GNN encoder does not encode the

SOHRABIZADEH et al.: HARNESSING GNNS FOR ROBUST REPRESENTATION LEARNING 123

TABLE II
STATISTICS OF OUR THREE DATABASES WHICH CONSIST OF 41 UNIQUE KERNELS, WITH 21 OF THEM BEING SHARED ACROSS ALL VERSIONS

Version # #points Original range [min — max] Normalized range [min — max]
kernels | (All/Valid) latency BRAM DSP LUT FF perf BRAM DSP LUT FF

SDAccel 23,524/ [660 — [0 - [0 - [0 - [0 - [-1.62 — [0 - [0 - [0 - [0 -
2018.3 (v18) 35 8,481 94.1M] 12,950] 57,5311 7.7M] 7.6M] 6.94] 2.99] 8.41] 6.54] 3.19]
Vitis 12,168/ [992 — [0- [0- [0 - [0- [-3.59 — [0 - [0 - [0 - [0 -
2020.2 (v20) 27 4,569 1.5B] 3,182] 45,056] 6.6M] 4.4M] 6.65] 0.73] 6.58] 5.59] 1.86]
Vitis 45,371/ [1,243 — [0 - [0- [0 - [0- [-2.01 — [0- [0 - [0- [0 -
2021.1 (v21) 40 10,886 162M] 13,750] 89,728] 13.2M] 41.7M] 6.49] 3.18] 13.11] 11.23] 17.61]

pragma options. After the GNN encoder has finished, the nodes
have gained insight into the program’s semantics in addition
to the domain of the pragmas. We then utilize the learnable
NPT module to apply pragmas as function transformations.
NPT takes the embedding of the pseudo nodes that contain
a pragma node in their block as the input and transforms it
based on the type of the pragmas and their actual options. Each
pragma type is modeled using a learnable MLP that accepts the
node embedding and the pragma option as input and transforms
the node embedding. If a pragma type is not present in the
block, the default option is employed. The results of the MLP
transformation for each pragma type are concatenated, and
another MLP is used to learn their interactions and transform
the concatenated result to the final node embedding of the
corresponding pseudo node. After this stage, the pseudo nodes
have acquired knowledge of the program semantics, the pragma
domains, and their options. A further GNN layer is utilized to
propagate the new information (pragma options) to the rest of
the program nodes via message passing.

Once the final node embeddings have been generated, they
are pooled to create the graph-level embedding. Consistent with
the approach used in Section VII-A1, two vectors are generated
with the attention mechanism in Eq. 4 to represent the program
P and transformation T separately. Note that in this architecture,
the transformations T are applied to the pseudo nodes. P vector
(h;a) is generated by pooling the program nodes and B vector
(h;;) is the result of pooling the pseudo nodes, which are the
primary sources containing the pragma information. As before,
h_7'> and hyp are concatenated, and the result is passed through
MLP decoders to predict the final objectives.

VIII. EXPERIMENTAL RESULTS
A. Experimental Setup

Our database includes kernels of intermediate complexity
that can be used as building blocks of larger applications.
Specifically, we selected 41 kernels from the widely used Mach-
Suite benchmark [35] and the Polyhedral benchmark (Poly-
Bench) [51]. They include kernels with different computation
intensities including linear algebra operations on matrices and
vectors (e.g., BLAS kernels), data mining (correlation
and covariance), stencil operations, encryption (aes), and
a dynamic programming application (nw). For synthesis, we
employ three AMD/Xilinx HLS tools, SDAccel 2018.3 (v18)
[3], Vitis 2020.2 (v20), and Vitis 2021.1 (v21) [4], targeting

the Xilinx Alveo U200 FPGA with a frequency of 250MHz.
The v20 and v21 datasets are solely collected using AutoDSE
after running each of its explorers for a day. We allocated 8
CPU cores and 25 GB of memory from the AMD EPYC 7V13
processor to run the explorers for each kernel. In addition, the
design points in v18 include those obtained through our active
learning approach (Section V-B).

For each design point, we collect the latency in terms
of cycle counts and resource utilization for DSP, BRAM, LUT,
and FF. We normalize the resource usage with the available
resources on the board and the latency with Normyecior *
logg(%) which we call perf with Norm fqctor being
set to 0.5 and Latencyy,.s to 1e7. Table Il presents our database
statistics. As mentioned in Section VII not all combinations of
pragmas yield valid design points. The three versions of the
database consist of a total of 41 unique kernels, with 21 kernels
existing in all versions.

Our framework is implemented and trained using PyTorch
[34]. The dataset is split into 70:15:15% for training, valida-
tion, and testing. We employ the Adam optimizer [19] with
a maximum learning rate of le-3, which is linearly increased
from zero over the first 2000 updates and then annealed to
zero using a cosine schedule. Separate models are trained for
classification and regression tasks. The classification/regression
model is trained for 200/1500 epochs (taking less than 10h with
1 NVIDIA Tesla V100 GPU) for the first version of the database
(v18) and 200 epochs for transfer learning to the v20 database.
We pick the model with the lowest validation loss and report its
performance on the test set. The initial embeddings have 154
features. We utilize 6 TRANSFORMERCONV [38]) with a feature
dimension of 64 for the GNN encoder. The final objective
prediction is performed using 4 MLP layers (one MLP network
for each objective). The GNN and MLP layers are followed by
ELU activation [7]. To mitigate overfitting, we apply dropout
with a probability of 0.1 to the neurons in the GNN layers.
The NPT module utilizes two layers for each of the MLPs. The
autoencoder is an MLP with 4 layers that gradually reduces the
feature size from 64 to 8 and then increases it to 21 which is
the dimension of the vector containing the pragma options.

B. Model Accuracy

We conducted a series of experiments to evaluate the ef-
fectiveness of various components of our approach. We first
investigated our previous work GNN-DSE [39] that employs

124

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

TABLE III
TOTAL ROOT MEAN SQUARED ERROR (RMSE), MEAN ABSOLUTE ERROR (MAE), AND perf RANKING (TAU) OF THE MODELS. FOR RMSE AND MAE,
THE LOWER THE BETTER. FOR TAU, THE HIGHER THE BETTER. THE PERCENTAGE OF DIFFERENCE IS MEASURED WITH RESPECT TO GNN-DSE [39]

v18 database v20 database
Graph Model Name Train from scratch Train from scratch Fine-tuned from v18
RMSE MAE perf tau RMSE MAE perf tau RMSE MAE perf tau
Original Coupled P&T GNN-DSE 1.1041t 0.357 0.90 :.253 0.770 0.78 0.955 0.479 0.85
Separte PACT v || O 0T g, |0 0T 0T 0
Sepur PAT W || Q0BT gy | L oss T oS s
Hierarchy Sequential pragma as NPT | M4 (]_3273) ?_57’%9) 091 (_:_25(27%) (2'2923(2) 0.73 ?_88;;;6) :)_g;t?) 0.86
Parallel & merge as NPT M5 ((_)i%i;z) (?53?73) 0.92 (}i(é)tg) ((_)i(;%,/g) 0.81 ((_)ZS% ((_]é:;(g) 0.89
Pmﬂlzloi E}nlflrliglels;elr\IPT HARP ((-)iZZ;:) ((-)ié?g) 0.93 (%ig};) ((-)562?72) 082 (%ZZ) fﬁ% 0-90

* NPT: neural pragma transformer

the original graph to represent the design and obtained a cou-
pled vector representation for both the program (P) and its
transformations (T). Then, we developed M2 by replacing the
model architecture with our proposed approach described in
Section VII-A1. This involved generating separate vector rep-
resentations for P and T. Additionally, we constructed M3 by
replacing the graph representation with our hierarchical graph.
Furthermore, we implemented HARP based on the approach
outlined in Section VII-A2. Note that it also exploits the idea of
separating vector representations discussed in Section VII-Al.
We also examined two variations of this model: M5, where the
last GNN layer after the NPT module was excluded, and M4,
which additionally applied the pragmas sequentially instead of
using the existing parallel and merge structure of the NPT mod-
ule. For each model, we evaluated its performance under three
different scenarios. The first two scenarios involved training
the model on datasets v18 and v20, respectively. In the third
scenario, we employed the model pre-trained on dataset v18 and
fine-tuned it on dataset v20. Our empirical results demonstrated
that freezing the parameters of the first GNN layer, which helps
reduce the number of parameters requiring updates, resulted in
the best performance after fine-tuning.

Table III summarizes the performance of each model, using
three metrics to assess their effectiveness. The first metric uses
root mean squared error (RMSE) for each objective and cal-
culates the total loss by summing the losses of all objectives.
The second one utilizes mean absolute error (MAE) instead. For
both metrics, we also provide the percentage difference com-
pared to the results obtained from GNN-DSE. Since our primary
objective is to conduct DSE for design optimization, the ranking
of the per £ values holds significant importance. Therefore, we
employ Kendall’s tau [17], a correlation coefficient that mea-
sures the similarity between two variables’ rankings. A value
of 1 indicates a perfect positive association. Hence, for RMSE
and MAE, lower values indicate better performance, while for
tau, higher values indicate superior performance.

The analysis of the results reveals several key observations.
Firstly, when we employ separate learning of representations
for program P and transformation T (M2), we observe a de-
crease in both losses and an improvement in the tau ranking
of perf. However, an exception occurs when the model is
trained from scratch on the v20 database. In this case, the in-
creased number of parameters in the new model makes it harder
to converge in a limited training budget (dataset and training
time). Nonetheless, when utilizing the pre-trained model from
the v18 database, the performance is able to catch up and
even surpass GNN-DSE. A similar trend is observed when
incorporating the hierarchical graph (M3), which further im-
proves the results. Additionally, our findings highlight that the
optimal architecture for the NPT involves modeling the prag-
mas as parallel learnable MLPs, with another MLP responsi-
ble for managing their interaction and merging their results.
Finally, the most effective model for all scenarios (HARP)
utilizes the hierarchy graph and consists of NPT employing the
parallel and merge structure, followed by an additional GNN
layer to propagate the pragma options throughout the program.
It is important to note that this architecture, as depicted in
Fig. 6, also generates separate embeddings for program P and
pseudo nodes B, which contain the pragma (transformation)
information here.

Moreover, the results in Table III align with our expecta-
tions, indicating a correlation between the objectives obtained
from the two different versions of the HLS tool. Importantly,
we observe that the pre-trained model from one version can
effectively enhance the performance on the other version. This
eliminates the need to regenerate the whole training set with
each new version of the tool, streamlining the adaptation pro-
cess. In addition, the results demonstrate that HARP exhibits the
best graph representation and model architecture for effectively
adapting to task shifts. This validates our hypothesis that by
decoupling the learning and representation of the program and
its transformations (i.e., pragmas), the model not only acquires

SOHRABIZADEH et al.: HARNESSING GNNS FOR ROBUST REPRESENTATION LEARNING 125

a deeper understanding of each component but also enhances
its adaptability to new environments.

C. DSE Results

To verify the effectiveness of our model, we use it to identify
the Pareto-optimal design points by performing a DSE of the
design parameters. We adopt the exploration technique men-
tioned in Section V-B in searching through the solution space.
We employ a classification model to assist in pruning invalid
design points. Given the ample points available for training the
classification model and the relatively simpler task involved,
we opt to train a model from scratch for each version using
its respective dataset. These models exhibit high accuracy, with
rates of 95% for the v18 database and 93% for the v20 database.
Given their already high accuracy, we do not employ additional
transfer learning methods for them. We set a time limit of 1h/
kernel on our exploration and can explore approximately
100,000 points during this time. Once the exploration is fin-
ished, we synthesize the top 10 points using the HLS tool to get
their true labels for comparison. We also run DSE utilizing the
GNN-DSE approach, trained on our datasets in the same fash-
ion. For the baseline comparison, we employ AutoDSE, which
directly runs the HLS tool to evaluate design points. Due to
the nature of this approach, AutoDSE requires a more extended
runtime. Thus, we set a time limit of 25h/kernel for its DSE.
During this period, AutoDSE typically explores an average of
250 valid points. The design space for our target kernels consists
of 260,762 design points on the geometric mean. Therefore,
obtaining an oracle design is impractical due to the complexity
and time required for direct HLS tool execution. AutoDSE
was evaluated against 45 applications, including those manually
optimized by Xilinx, and outperformed previous DSE meth-
ods while matching the performance of manual optimizations.
Thus, AutoDSE is a strong benchmark for assessing DSE effi-
ciency.

Table IV summarizes the DSE results obtained using versions
v18 and v20 of the HLS tool. The DSE is conducted on a total
of 35 kernels for SDx 2018.3 (v18) and 27 kernels for Vitis
2020.2 (v20). It is important to note that among the 22 kernels
shared between the v18 and v20 databases, the average latency
of optimal design in v18 is 5.54x (1.36x on the geometric
mean) higher than that in v20, suggesting improvements in the
heuristics of the HLS tool over time. Due to space limitations,
we only report the arithmetic (avg) and geometric mean (geo
mean) of the speedup of the optimal design found by each
DSE with respect to the best design discovered by AutoDSE.
As the model-based DSEs get to explore a much larger space,
they can find better points compared to a model-free DSE. No-
tably, for 3mm kernel from PolyBench with a solution space of
over 17 trillion points, both HARP and GNN-DSE demonstrate
speedups of 70x. The results reveal that HARP outperforms
both AutoDSE and GNN-DSE. Specifically, HARP showcases
its competence in adapting to new versions of the HLS tool
(v20 kernels), surpassing the performance of GNN-DSE by
an average (geometric mean) speedup of 1.31x (1.33x). It is
important to highlight that when transitioning to the v20 dataset,

TABLE IV
THE PERFORMANCE OF THE BEST DESIGN FOUND BY EACH DSE WITH
RESPECT TO THE BEST ONE FOUND BY AUTODSE [42] IN 25h

Time v18 kernels (#:35) || v20 kernels (#:27)
Approach Limi
imit avg geo mean avg geo mean
AutoDSE 25h/kernel 1x 1x 1x 1x
GNN-DSE | Ih/kernel || 3.51x 0.99 % 0.88% 0.79x
HARP 1h/kernel 3.61x 1.23x 1.15% 1.05%

in addition to the task shift, we also have included 5 new kernels,
resulting in a domain shift as well. The results validate our
hypothesis that the hierarchical graph structure in addition to the
decoupling of program and transformation learning contributes
to better adaptation capabilities in the face of shifts from the
original training data distribution.

D. Ablation Study: Transfer Learning With Abundant Data

In Section VIII-B, we demonstrated that higher prediction ac-
curacy can be achieved through transfer learning when limited
data is available. This in turn leads to improved DSE results.
To investigate the effectiveness of transfer learning with a large
dataset, we developed a larger dataset with Vitis 2021.1 (v21)
as detailed in Table II. Similar to previous findings, training
a classification model on this dataset yielded 99% accuracy,
eliminating the need for further transfer learning. However, for
the regression model, we pursued two different approaches.
Initially, we fine-tuned the v20 model using the v21 dataset
for 400 epochs. Then, considering the large number of data
available for this version, we trained another model from scratch
on the dataset for 1500 epochs until it nearly matched the
accuracy of the fine-tuned model on the test set.

We use the same experimental setting as in Section VIII-C.
Similar to the improvement we saw in designs’ performances
when we transitioned from v18 to v20, we see an average
latency reduction of 2.69x (1.61x on the geometric mean) in
the optimal design points for the 26 common kernels when we
transition from the v20 to the v21 HLS tool. This further shows
the improvements in the HLS tools with each new version.

Table V presents a summary of the arithmetic and geometric
mean speedup achieved by each approach compared to the
best results obtained by AutoDSE. Notably, model-based ap-
proaches demonstrate strong performance when trained from
scratch due to their extensive training data. This, coupled with
their ability to explore a larger solution space, enables them to
discover better design points. However, fine-tuning a pretrained
model from a previous version of the HLS tool yielded no
advantages for GNN-DSE. It is noteworthy to mention that
alongside the task shift, we also encounter a domain shift, with
14 new kernels introduced compared to v20 and 6 new kernels
compared to v18 (the pretrained model for v20). In contrast,
HARP exhibits more robust results and notable improvements
post-transfer learning. This feature is highly desirable as it
allows us to leverage previously gathered data, a process that
incurred significant costs. Rather than discarding efforts and ex-
penses associated with collecting datasets from prior HLS tool
versions and kernels, we can utilize them to achieve enhanced

126 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 2, DECEMBER 2024

TABLE V
THE TRANSFER LEARNING RESULTS WHEN LARGER DATASET IS
PRESENT. THE PERFORMANCE COMPARISON SHOWS THE BEST DESIGN
FounD BY EACH DSE WITH RESPECT TO THE BEST ONE FOUND BY
AUTODSE [42] IN 25h

Time v21 kernels (#:40)
Approach Limit Trained from scratch || Fine-tuned from v20
h/kernel avg geo mean avg geo mean
AutoDSE 25 1x 1x 1x 1x
GNN-DSE 1 1.17x 1.04x 1.16 % 0.98 %
HARP 1 1.19x% 0.82x 1.46 % 1.15x
TABLE VI

IMPACT OF THE CLASSIFICATION MODEL. THE BASELINE IS
AUTODSE [42] AFTER RUNNING FOR 25h

D Without Classification | With Classification
ataset =

avg]| geo mean*® avg [geo mean*
[vI8#35 [3.14x [0.89x [3.61x [1.37x |
[V20 #27 [0.96x [0.85x [1.15x [1.05x |
[V2T #40 [1.3d4x || 0.92x | 1.46x | 1.09x |

optimization outcomes. Note that in the current setup, the model
trained from scratch underwent 3.75x more epochs to achieve
the same test set accuracy as the fine-tuned model. Neverthe-
less, the fine-tuned model demonstrates superior generalization
across the entire solution space, which includes many unseen
points.

E. Ablation Study: Impact of the Classification Model

In Section VII, we discussed that numerous pragma combina-
tions result in an invalid design. We defined an invalid design as
one that either cannot be synthesized, exceeds a given synthesis
time limit, or at least one of the pragmas could not be applied.
Table II shows that in our database, only 30% of the points
created a valid design point. Therefore, it is crucial for our opti-
mizer to identify and discard design points that cannot produce a
valid microarchitecture. Our classification model is responsible
for this task. Table VI compares the speedup performance we
achieve compared to AutoDSE when our classification model is
absent. Here, we focus solely on the top 10 designs generated by
the model. Acknowledging that they may all be invalid designs,
we calculate a modified version of the geometric mean (denoted
as geo mean*), where we add one to all speedup values and
subtract one from the resulting geometric mean. The results
show that the classification model can help to improve the DSE
results since it can prune the invalid points.

IX. CONCLUSION Future Work

In this work, we discussed three key challenges in developing
a GNN-based model for HLS and developed HARP for address-
ing them. Firstly, we tackle the long-range dependency issue in
HLS kernels by proposing a hierarchical graph structure, reduc-
ing the average shortest path in our benchmark kernels by 5x.
Secondly, recognizing that the final objectives are influenced

by two main components, program structure and its transfor-
mations in the form of pragmas, we decouple their representa-
tion to enhance the model’s performance. This improved graph
representation and model architecture enable better adaptation
to the inevitable task shifts. Although our focus in this paper
is on FPGAs, our design decisions are not dependent on them.
We believe that our approach can be applied to other platforms
and HLS tools as well. Switching the HLS tool (e.g., from Vitis
HLS to Catapult HLS) not only changes the target hardware
significantly but also the programming style and pragmas. We
need to assess if transfer learning can adapt to these changes
or if separate domain-specific models would be more effective.
Moving forward, we aim to investigate the minimum number of
points required for effective adaptation to these shifts and ex-
plore appropriate sampling techniques. Additionally, we plan to
extend our data-driven approach to DSE exploration using rein-
forcement learning methods. We envision further advancements
by developing hierarchical GNNs operating at the subgraph
level to enhance compositional objective prediction. Finally, we
will explore the integration of GNNs and LLMs, leveraging
multiple design modalities—graph representation and source
code—to address this problem more effectively.

ACKNOWLEDGMENT

All materials available at https://github.com/UCLA-VAST/
HARP

REFERENCES

[1] J. Achiam et al., “GPT-4 technical report,” 2023, arXiv:2303.08774.

[2] M. B. Alawieh, W. Li, Y. Lin, L. Singhal, M. A. Iyer, and D. Z. Pan,
“High-definition routing congestion prediction for large-scale FPGAs,”
in Proc. 25th Asia South Pacific Des. Automat. Conf. (ASP-DAC),
Piscataway, NJ, USA: IEEE Press, 2020, pp. 26-31.

[3] “AMD/Xilinx SDAccel - Vivado HLS,” Accessed: 2024. [Online].
Available: https://docs.xilinx.com/v/u/2018.3-English/ug902- vivado-
high-level-synthesis

[4] “AMD/Xilinx Vitis HLS,” Accessed: 2024. [Online]. Available: https:/
docs.xilinx.com/v/u/2020.2-English/ug1416-vitis-documentation

[5] Y. Bai, A. Sohrabizadeh, Y. Sun, and J. Cong, “Improving GNN-
based accelerator design automation with meta learning,” in Proc. 59th
ACM/IEEE Des. Automat. Conf. (DAC), 2022, pp. 1347-1350.

[6] Y. Chi, W. Qiao, A. Sohrabizadeh, J. Wang, and J. Cong, “Democratizing
domain-specific computing,” Commun. ACM, vol. 66, no. 1, pp. 74-85,
2022.

[7]1 D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accu-
rate deep network learning by exponential linear units (elus),” 2015,
arXiv:1511.07289.

[8] J. Cong, M. Huang, P. Pan, Y. Wang, and P. Zhang, “Source-to-source
optimization for HLS,” in FPGAs Softw. Programmers, 2016, pp. 137—
163.

[9] J. Cong, J. Lau, G. Liu, S. Neuendorffer, P. Pan, K. Vissers, and Z.
Zhang, “FPGA HLS today: Successes, challenges, and opportunities,”
ACM Trans. Reconfigurable Technol. Syst., vol. 15, no. 4, pp. 1-42,
2022.

[10] C. Cummins, Z. V. Fisches, T. Ben-Nun, T. Hoefler, M. F. P. O’Boyle,
and H. Leather, “ProGraML: A graph-based program representation for
data flow analysis and compiler optimizations,” in Proc. Int. Conf. Mach.
Learn. (PMLR), 2021, pp. 2244-2253.

[11] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous,
and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very
small physical dimensions,” IEEE J. Solid-State Circuits, vol. 9, no. 5,
pp. 256-268, 1974.

[12] Z. Ding, A. Sohrabizadeh, W. Li, Z. Qin, Y. Sun, and J. Cong, “Efficient
task transfer for HLS DSE,” in Proc. IEEE/ACM Int. Conf. Comput.
Aided Des. (ICCAD), Piscataway, NJ, USA: IEEE Press, 2024, pp. 1-9.

https://github.com/UCLA-VAST/HARP
https://github.com/UCLA-VAST/HARP
https://docs.xilinx.com/v/u/2018.3-English/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/2018.3-English/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/2020.2-English/ug1416-vitis-documentation
https://docs.xilinx.com/v/u/2020.2-English/ug1416-vitis-documentation

SOHRABIZADEH et al.: HARNESSING GNNS FOR ROBUST REPRESENTATION LEARNING

[13]

[14]

[15]

[16]

(171
(18]
[19]
[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]
(311

(32]

[33]

Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,”
in Proc. 59th ACM/IEEE Des. Automat. Conf. (DAC), 2022, pp. 1207-
1212.

G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504-507,
Jul. 2006.

Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “GraphLily: Accelerating graph
linear algebra on HBM-equipped FPGAs,” in Proc. IEEE/ACM Int. Conf.
Comput. Aided Des. (ICCAD), Piscataway, NJ, USA: IEEE Press, 2021,
pp. 1-9.

G. Huang et al., “Machine learning for electronic design automation: A
survey,” ACM Trans. Des. Automat. Electron. Syst. (TODAES), vol. 26,
no. 5, pp. 1-46, 2021.

M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol.
30, no. 172, pp. 81-93, 1938.

B. Khailany, “Accelerating chip design with machine learning,” in Proc.
ACM/IEEE Workshop Mach. Learn. CAD, 2020, p. 33.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

R. Kirby, S. Godil, R. Roy, and B. Catanzaro, “CongestionNet: Routing
congestion prediction using deep graph neural networks,” in Proc.
IFIP/IEEE 27th Int. Conf. Very Large Scale Integr. (VLSI-SoC), Pis-
cataway, NJ, USA: IEEE Press, 2019, pp. 217-222.

M. Kou, J. Zeng, B. Han, F. Xu, J. Gu, and H. Yao, “GEML: GNN-
based efficient mapping method for large loop applications on CGRA,”
in Proc. 59th ACM/IEEE Des. Automat. Conf. (DAC), 2022, pp. 337-
342.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. Int. Symp. Code Gener.
Optim. (CGO), IEEE, 2004, pp. 75-86.

Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proc. AAAI Conf. Artif.
Intell., vol. 32, no. 1, 2018.

Y. Li et al., “Competition-level code generation with alphacode,” Sci-
ence, vol. 378, no. 6624, pp. 1092-1097, 2022.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” 2015, arXiv:1511.05493.

H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-
space exploration with high-level synthesis,” in Proc. 50th Annu. Des.
Automat. Conf. (DAC), 2013, pp. 1-7.

Y.-C. Lu, S. Pentapati, and S. K. Lim, “VLSI placement optimiza-
tion using graph neural networks,” in Proc. 34th Adv. Neural Inf.
Process. Syst. (NeurlPS) Workshop Mach. Learn. Syst., Virtual, 2020,
pp. 6-12.

Y. Ma, Z. He, W. Li, L. Zhang, and B. Yu, “Understanding graphs in
EDA: From shallow to deep learning,” in Proc. Int. Symp. Phys. Des.
(ISPD), 2020, pp. 119-126.

L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, no. Nov, pp. 2579-2605, 2008.

A. Mirhoseini et al., “A graph placement methodology for fast chip
design,” Nature, vol. 594, no. 7862, pp. 207-212, 2021.

W. L. Neto, M. Austin, S. Temple, L. Amaru, X. Tang, and
P-E. Gaillardon, “LSOracle: A logic synthesis framework driven
by artificial intelligence,” in Proc. IEEE/ACM Int. Conf. Comput.
Aided Des. (ICCAD), Piscataway, NJ, USA: IEEE Press, 2019,
pp. 1-6.

“OpenAl: Introducing ChatGPT,” OpenAl. 2022. Accessed: 2022. [On-
line]. Available: https://openai.com/blog/chatgpt

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

127

A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” Adv. Neural Inf. Process. Syst., vol. 32, 2019.

B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “Machsuite:
Benchmarks for accelerator design and customized architectures,” in
Proc. IEEE Int. Symp. Workload Characterization (IISWC), IEEE, 2014,
pp. 110-119.

H. Ren, S. Nath, Y. Zhang, H. Chen, and M. Liu, “Why are graph neural
networks effective for EDA problems?” in Proc. IEEE/ACM Int. Conf.
Comput. Aided Des. (ICCAD), 2022, pp. 1-8.

B. C. Schafer and Z. Wang, “High-level synthesis design space explo-
ration: Past, present, and future,” IEEE Trans. Comput. Aided Design
Integr. Circuits Syst., vol. 39, no. 10, pp. 2628-2639, Oct. 2020.

Y. Shi, Z. Huang, W. Wang, H. Zhong, S. Feng, and Y. Sun, “Masked
label prediction: Unified message passing model for semi-supervised
classification,” 2020, arXiv:2009.03509.

A. Sohrabizadeh, Y. Bai, Y. Sun, and J. Cong, “Automated accelerator
optimization aided by graph neural networks,” in Proc. 59th ACM/IEEE
Des. Automat. Conf. (DAC), 2022, pp. 55-60.

A. Sohrabizadeh, Y. Bai, Y. Sun, and J. Cong, “Robust GNN-based
representation learning for HLS,” in Proc. IEEE/ACM Int. Conf. Comput.
Aided Des. (ICCAD), Piscataway, NJ, USA: IEEE Press, 2023, pp. 1-9.
A. Sohrabizadeh, J. Wang, and J. Cong, “End-to-end optimization of
deep learning applications,” in Proc. ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays (FPGA), 2020, pp. 133-139.

A. Sohrabizadeh, C. H. Yu, M. Gao, and J. Cong, “AutoDSE: Enabling
software programmers to design efficient FPGA accelerators,” ACM
Trans. Des. Automat. Electron. Syst. (TODAES), vol. 27, no. 4, pp. 1-27,
2022.

E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, “Accurate operation
delay prediction for FPGA HLS using graph neural networks,” in Proc.
39th Int. Conf. Comput. Aided Des. (ICCAD), 2020, pp. 1-9.

Z. Wang and B. C. Schafer, “Machine leaming to set meta-heuristic
specific parameters for high-level synthesis design space exploration,”
in Proc. 57th ACM/IEEE Des. Automat. Conf. (DAC), Piscataway, NJ,
USA: IEEE Press, 2020, pp. 1-6.

N. Wu, Y. Xie, and C. Hao, “IronMan-pro: Multi-objective design space
exploration in HLS via reinforcement learning and graph neural network
based modeling,” in Proc. IEEE Trans. Comput. Aided Design Integr.
Circuits Syst., vol. 42, no. 3, pp. 900-913, Mar. 2023.

N. Wu, H. Yang, Y. Xie, P. Li, and C. Hao, “High-level synthesis
performance prediction using GNNs: Benchmarking, modeling, and
advancing,” in Proc. 59th ACM/IEEE Des. Automat. Conf. (DAC), 2022,
pp. 49-54.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 1, pp. 4-24, 2020.

Z. Xie et al., “RouteNet: Routability prediction for mixed-size designs
using convolutional neural network,” in Proc. IEEE/ACM Int. Conf.
Comput. Aided Des. (ICCAD), Piscataway, NJ, USA: IEEE Press, 2018,
pp. 1-8.

K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in Proc. Int. Conf. Mach. Learn. (PMLR), 2018, pp. 5453-5462.

C. Yu, H. Xiao, and G. De Micheli, “Developing synthesis flows without
human knowledge,” in Proc. 55th Annu. Des. Automat. Conf. (DAC),
2018, pp. 1-6.

T. Yuki and L.-N. Pouchet, “PolyBench/C,” Accessed: 2024. [Online].
Available: https://web.cse.ohio-state.edu/pouchet.2/software/polybench/
F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” /EEE, vol. 109,
no. 1, pp. 43-76, 2020.

https://openai.com/blog/chatgpt
https://web.cse.ohio-state.edu/%20pouchet.2/software/polybench/

