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Abstract
The advent of the information age has revolutionized data collection and has led to a rapid expansion of 
available data sources. Methods of data integration are indispensable when a question of interest cannot be 
addressed using a single data source. Record linkage (RL) is at the forefront of such data integration efforts. 
Incentives for sharing linked data for secondary analysis have prompted the need for methodology 
accounting for possible errors at the RL stage. Mismatch error is a common consequence resulting from 
the use of nonunique or noisy identifiers at that stage. In this paper, we present a framework to enable 
valid postlinkage inference in the secondary analysis setting in which only the linked file is given. The 
proposed framework covers a variety of statistical models and can flexibly incorporate information about 
the underlying RL process. We propose a mixture model for linked records whose two components reflect 
distributions conditional on match status, i.e. correct or false match. Regarding inference, we develop a 
method based on composite likelihood and the expectation-maximization algorithm that is implemented in 
the R package pldamixture. Extensive simulations and case studies involving contemporary RL 
applications corroborate the effectiveness of our framework.
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1 Introduction
The digital revolution has not only changed the sheer volume of data that is being generated but 
has also substantially impacted the way data are collected, disseminated, and analysed. As part of 
this ongoing development, there are increasing efforts to synthesize complementary pieces of in-
formation residing in multiple data sources that were gathered in isolation. Such ‘data siloes’ 
are commonly discussed as a barrier to leveraging the full potential inherent in the available 
data (e.g. Japec et al., 2015). Methods of data integration have thus become a crucial component 
in many contemporary data analysis pipelines. Record linkage (RL) (e.g. Binette & Steorts, 2022; 
Christen, 2012; Newcombe & Kennedy, 1962) combines individual records contained in multiple 
files and thus constitutes the most granular method of data integration (Lohr & Raghunathan, 
2017). Record linkage comes with the promise of creating richer data sets from existing ones at 
virtually no extra cost, and has seen widespread use across many domains of applications. 
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Examples include the linkage of surveys and administrative records, insurance claims and hospital 
records, birth and death registers, historical censuses, etc.

The continuing importance of RL has catalysed efforts to improve the quality of linking proce-
dures in the absence of unique identifiers that—if available—would render the identification of 
matching records an easy task. The use of quasi-identifiers such as names and addresses can be 
error-prone, possibly because of variations in spelling, mix-ups between middle names and dou-
ble/hyphenated last names, change of residence over time, or data entry errors. Increasing aware-
ness of data privacy has further limited the information available to RL procedures. As a result, the 
process can be highly ambiguous, with one record yielding many candidate matches in another file. 
Probabilistic RL techniques, e.g. those based on the Fellegi–Sunter method (Fellegi & Sunter, 
1969), address such uncertainty systematically by assigning a matching score to each pair of re-
cords. Regardless of the increasing sophistication of the methods employed, by no means can it 
be guaranteed that linked files are free of errors. Mainstream implementations of probabilistic 
RL can be sensitive to the choice of the threshold for the matching score at which a pair is deemed 
a match. Proper choice of this threshold strikes a suitable balance between false matches (hence-
forth mismatches) and false nonmatches (missed matches). Both types of errors can negatively af-
fect downstream statistical analyses (postlinkage analysis) performed on the linked file. As 
elaborated below, how to account for such errors and how to suitably propagate uncertainty 
from RL to subsequent analysis stages in a seamless fashion has remained a significant challenge.

While missed matches can induce sample selection bias similar to nonresponse in survey data 
(Little & Rubin, 2019), mismatches can cause data contamination and typically attenuated rela-
tionships when analysing associations, e.g. in regression analysis. This is a well-studied problem 
dating back to Neter et al. (1965), and important follow-up work was conducted by Scheuren 
and Winkler (1993, 1997) and Lahiri and Larsen (2005). Subsequently, a variety of approaches 
have been proposed to account for mismatches in postlinkage data analysis. This work can be 
roughly divided according to whether it addresses primary analysis or secondary analysis. The for-
mer refers to scenarios in which record linkage and downstream analysis are performed by the 
same individual, or the analyst at least has significant insights into the details of the underlying 
RL. In this situation, it is possible to directly propagate the uncertainty from RL; examples include 
Han and Lahiri (2019) and Hof and Zwinderman (2015); and hierarchical Bayes methods (e.g. 
Dalzell & Reiter, 2018; Gutman et al., 2013; Steorts et al., 2018; Tancredi & Liseo, 2015). By con-
trast, in the secondary analysis setting, the analyst only has access to the linked file rather than the 
individual files, and has limited knowledge about how RL was performed. For instance, the analyst 
may be given scores reflecting the likelihood of every linked record being a correct match, as in the 
recent study by Abowd et al. (2021), or indicators of the blocks within which linkage was per-
formed as well as the mismatch rate within each block. A line of research pioneered by 
Chambers (2009) hinges on this information, typically in conjunction with the assumption of ex-
changeable linkage error in each block. Notable follow-up work along this line includes Chambers 
and da Silva (2020); Kim and Chambers (2012); Zhang and Tuoto (2021). We also refer to recent 
surveys of this literature (Chambers et al., 2023; Wang et al., 2022) and the references therein.

Driven by tendencies towards ‘Open Science’ and elevated requirements for reproducing scien-
tific analyses, enabling data access and disseminating research results beyond a specific research 
group that has collected and prepared the underlying data, the significance of the secondary ana-
lysis setting is expected to grow considerably in the future. Since the primary data owners will 
often find it infeasible to share individual data sources, e.g. because of the aforementioned privacy 
considerations or the mere complexity of the RL task that would be too burdensome to replicate 
for prospective secondary data users, it has become a common practice to simply provide the final 
linked files. Secondary analysts, however, frequently analyse the data provided without any spe-
cific regard for possible linkage error arising during their creation. In the sequel, we provide three 
illustrative examples representing contemporary secondary analysis scenarios involving linked 
data.

(I) Linkage of the Health and Retirement Study and Administrative Data. The Health and 
Retirement Study (HRS, see hrs.isr.umich.edu) is the largest and most comprehensive nationally 
representative multidisciplinary panel study of Americans over the age of 50. The primary goal 
of the HRS is to explore the challenges and opportunities of aging and the associated transitions 
in lifestyle. Administrative Data such as Centers for Medicare and Medicaid Services (CMS) claims 
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data or Census data can be used to complement or corroborate survey responses. By linking infor-
mation from the survey to such administrative data, researchers can obtain a better picture of the 
extent of inaccurate responses or self-assessment. In this context, it is common for RL and subse-
quent analysis to be performed by different teams. For instance, extracting the relevant informa-
tion from CMS claims data requires considerable expertize with specific software systems designed 
primarily for internal use. The team performing RL may provide an overall assessment of the re-
liability of the generated links (e.g. the fraction of links deemed unreliable) or pairwise confidence 
scores for each candidate link that can be in the form of posterior match probabilities derived from 
a Fellegi–Sunter-type model or a classifier trained on clerically reviewed links (Abowd et al., 2019). 
Various types of statistical models could be employed at the analysis stage. In Abowd et al. (2021), 
a regression model is fitted to analyse the relationship between wages (from the HRS) and estab-
lishment size (from the Census Business register). In the case study presented in Section 7.2 below, 
a two-way contingency table analysis is performed to study the association between self-reported 
nursing home residence from the HRS and the presence of corresponding billing records in the 
CMS data.

(II) Linkage of Historical Censuses. The digitization of historical documents enables researchers 
to obtain a better quantitative understanding of past events and socio-economic evolutions. For 
example, the Longitudinal Intergenerational Family Electronic Micro-Database (LIFE-M) 
Project (Bailey et al., 2022, see also life-m.org) has created a public-use database obtained from 
linking historical decennial censuses and vital records covering millions of records from the late 
19th and 20th centuries in the states of Ohio and North Carolina. The main purpose of the project 
is to study questions related to intergenerational mobility. The creators of LIFE-M acknowledge 
that a fraction of entries in this database might involve incorrect links of records in the underlying 
data sources. They report a suspected mismatch rate, quality indicators pertaining to the mode of 
linkage for each records (clerically reviewed vs. automatically linked), and name commonness 
scores indicative of the likelihood of a record being a correct match. Regression analysis is fre-
quently used to study substantive questions, e.g. regression of the son’s income on the father’s in-
come and other covariates (Bailey et al., 2020). Another example concerning longevity analysis is 
presented in Section 7.1 below.

(III) Linkage of Social Media Data. There is a growing interest in linking social media activity to 
a primary data source, such as survey data (Mneimeh, 2022; Stier et al., 2020). In this context, 
researchers have studied how social media activity aligns with behavioural patterns, political 
views, social status, etc. For instance, Liu et al. (2021) use predictive modelling to infer individual 
demographics, party affiliation, gun ownership, and other attributes (as provided in a correspond-
ing survey) from tweets and Twitter biographies. In this setting, mismatch errors may arise when 
the names provided by the survey respondents do not match with the names used for social media 
accounts, the full names provided do not uniquely identify individuals, when social media plat-
form handles associated with user accounts are provided with typos that prevent exact matching, 
or when platform handles change over time (Beuthner et al., 2021; Stier et al., 2020).

Contributions. In this paper, we develop a framework to account for mismatch errors in post-
linkage analysis in the type of secondary analysis settings as illustrated above. This framework is 
general in the sense that (i) it covers various types of statistical analysis and models including re-
gression modelling, curve fitting, covariance estimation, and contingency table analysis under one 
umbrella, and (ii) it can incorporate information of varying degrees about the preceding RL pro-
cess that has generated the linked file to be analysed. As referenced in the above examples, such 
information may include estimates of mismatch rates, block indicators associated with the block-
ing variables that were used, and variables indicative of the correctness of linked records (e.g. cler-
ically reviewed yes/no, scores from a probabilistic RL procedure or surrogates thereof). If no such 
information is available, the proposed approach will attempt to estimate the underlying mismatch 
rate from the data. This task can be accomplished under suitable conditions that include correct 
model specification.

In a nutshell, this framework relies on a two-component mixture model that ties together a mod-
el for the linked variables of interest and a model for a latent binary indicator of match status (cor-
rectly or incorrectly matched) for each record in the linked file. Estimation is based on composite 
likelihood (Lindsay, 1988; Varin et al., 2011), which provides a path towards valid (asymptotic) 
inference; we also sketch how the proposed method can be cast in a Bayesian framework. The 
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proposed approach extends prior work (Slawski et al., 2021) motivated by ‘shuffled data prob-
lems’ (DeGroot & Goel, 1980; Pananjady et al., 2018; Slawski & Ben-David, 2019) in multiple 
directions. In brief, the paper by Slawski et al. (2021) is limited to classical linear regression 
and a constant mismatch rate. The approach presented herein bears a close connection to the 
method in Hof and Zwinderman (2015). The main distinction is that the latter method is devel-
oped for the primary analysis setting and involves a pairwise composite likelihood, which renders 
the approach less scalable. Apart from that, we employ additional assumptions; while these as-
sumptions may be considered strong, they render inference much more tractable. An R package 
(Bukke et al., 2024) implementing our approach based on a formula interface enabling straight-
forward model specification and inference is available on the Comprehensive R Archive 
Network (CRAN).

Organization. Formal descriptions of the setup, our approach, and its assumptions are provided 
in Section 2. We then outline the framework for inference in Section 3. Specific examples of interest 
are discussed in Section 4. Additional technical details and extensions are presented in Section 5. 
Simulation studies and real data analysis are presented in Sections 6 and 7, respectively. We con-
clude with a summary of the main findings and discuss directions for future work in Section 8.

Notation. We use the following conventions regarding probability density functions (PDFs): in-
stead of writing fx(x0) for the density of a random vector x evaluated at a point x0, we drop the 
symbol in the subscript and simply write f (x0) with the convention that the corresponding random 
variable is inferred from the symbol in the argument. Similar conventions are adopted for joint and 
conditional PDFs, i.e. we use f (a0, . . . , z0) instead of fa...z(a0, . . . , z0) and f (x0 | y0) instead of 
fx | y=y0

(x0), etc. Subscripts in f will be present in case there is no argument. By default, symbols 
will be boldfaced to indicate vector-valued quantities, with the understanding that boldfaced 
quantities may also represent scalars as special case; occasionally, normal instead of bold font is 
used to highlight a scalar quantity. The dependence of PDFs on parameters is expressed via 
f (·; . . . ), where … represents a list of parameters. A table summarizing frequently used symbols 
is given below.

I(·) indicator function u⊥⊥v random variables u and v are independent

m mismatch indicator ϕ(y | x) conditional PDF of y given x (regression setup)

P( . . . ) probability θ parameter describing the (x, y)-relationship

E[ . . . ] expectation z covariates informative of mismatch indicator

[ . . . ](t) iteration counter h(z) P(m = 0 | z)

logit(x) log (x/(1 − x)) γ parameter associated with h

θ⇤, γ⇤ etc. ‘ground truth’ parameter values

2 Methods
The goal of record linkage is to merge two individual files F⋆

x = {x⋆
j }M

j=1 and F⋆
y = {y⋆

k }N
k=1 into a 

new file F⋆
x⋈y = {(x⋆

`i
, y⋆

`i
)}ν

i=1 of pairs corresponding to identical statistical units. For simplicity, 
we assume that every y⋆

i , 1 ≤ i ≤ N, has one and only one match in F⋆
x (and hence M ≥ N = ν). 

We also assume that the missing links in the larger file F⋆
x are ignorable.1 Data linkage is assumed 

to produce an imperfectly combined file Fx⋈y = {(xi, yi)}
n
i=1 with xi ∈ F⋆

x and yi ∈ F⋆
y , 

1 ≤ i ≤ n ≤ N, containing mismatched pairs (xi, yi) ∉ F⋆
x⋈y and lacking correct matches F⋆

x⋈y \
Fx⋈y (missed matches). Throughout this paper, we focus on mismatches and assume that missed 
matches are ignorable.

With each linked pair in Fx⋈y, we may additionally observe variables zi pertaining to the confi-
dence in the correctness of the link, 1 ≤ i ≤ n, which yields triplets {(xi, yi, zi)}n

i=1. Accordingly, we 
define latent mismatch indicators mi = I((xi, yi) ∉ F⋆

x⋈y), 1 ≤ i ≤ n.

1 Missing at random in regression settings with the y variable as the response, missing completely at random in un-
supervised settings. See Section 4.3 for a definition of ‘unsupervised settings’.
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Assumptions (A1) The {(mi, zi)}n
i=1 are independent of both {xi}n

i=1 and {yi}
n
i=1.

(A2) The following two-component mixture model is assumed for each pair 
(xi, yi):

(xi, yi) | zi, {mi = 0} ∼ ϕi(·; θ⇤), (IND): yi⊥⊥ xi | zi, {mi = 1}, (1) 

where the ϕi(·; θ⇤) are PDFs depending on an unknown parameter of 
interest θ⇤ but neither on mi nor zi, 1 ≤ i ≤ n. The second item in (1) 
will be referred to via the abbreviation (IND) in the sequel.

(A3) P(mi = 0 | zi) = h(zi; γ⇤) for some known function h and unknown par-
ameter γ⇤ (of secondary interest), 1 ≤ i ≤ n.

Given (A1)–(A3), the likelihood in the parameters (θ, γ) of a single triplet (xi, yi, zi) can be shown 
to be of the form (cf. Section A in the online supplementary material for a derivation)

Li(θ, γ) ∝ f (xi; θ) × f (yi; θ) × 1 − h(zi; γ)
�  

+ ϕi(xi, yi; θ) × h(zi; γ), (2) 

where ∝ here means equality up to multiplicative constants not involving θ or γ.
In a regression setup, ϕi(·; θ) depends on θ only via the conditional PDF of the response variable 

given covariates, here denoted by ϕi(· | ·; θ), 1 ≤ i ≤ n. Moreover, f (xi; θ) = f (xi), 1 ≤ i ≤ n, typic-
ally does not depend on the regression parameter. The likelihood (2) accordingly can be decom-
posed as

Li(θ, γ) = f (xi; θ) × f (yi; θ) × 1 − h(zi; γ)
�  

+ ϕi(yi | xi; θ) × f (xi; θ) × h(zi; γ)
∝ f (yi; θ) × 1 − h(zi; γ)

�  
+ ϕi(yi | xi; θ) × h(zi; γ), 1 ≤ i ≤ n,

(3) 

The corresponding representation as a directed acyclic graph (DAG) is shown in Figure 1. Observe 
that as a consequence of (A1), the match indicator only depends on the {zi}n

i=1 but not on the co-
variates {xi}n

i=1.
We here briefly note that while the marginal densities f (x) and f (y) are typically not known, their 

estimation is not affected by mismatch error and is thus straightforward; we refer to Section 5.1 for 
more details.(Composite) likelihood. Multiplication of the individual terms Li(θ, γ), 1 ≤ i ≤ n, 
yields the likelihood

L(θ, γ) =
Yn

i=1

Li(θ, γ), (4) 

to be maximized with respect to θ and γ. We note that the product over the observation-specific 
Li’s (referred to as marginal likelihoods) in general may not qualify as a ‘proper’ (joint) likelihood 
of the set of pairs {(xi, yi)}

n
i=1. Dependencies among pairs may arise from the mismatch indicators 

{mi}n
i=1 since (in)correct linkage of one pair may affect (in)correct linkage of another pair, specif-

ically if one-to-one matchings are enforced. For example, consider the situation of two records 

Figure 1. Directed acyclic graph representation of the model associated with the likelihood (3) for regression 
settings. Note that the covariates for modelling the latent match indicator and the covariates for modelling the 
response variable are assumed to be independent.
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{a, b} in the first file with correct matches {a0, b0} in the second file. Incorrectly matching a to b0 will 
cause b to be mismatched as well since the requirement of a one-to-match entails that (i) at least 
one match has to be found for b and (ii) b cannot match to b0 since none of the records can appear 
in more than one linked pair. In light of these considerations, (4) is more adequately referred to as a 
composite likelihood, which is a general term used for likelihoods constructed from factorizing 
terms that individually represent proper likelihoods, whereas their product may not. 
Regardless, maximizers of composite likelihoods can be studied within the framework of 
M-estimation and enjoy properties similar to (proper) maximum likelihood estimators such as ÅÅ

n
p

-consistency and asymptotic normality with an asymptotic covariance matrix that exhibits 
the familiar sandwich form (e.g. Lindsay, 1988; Varin et al., 2011); cf. Section 3.2 below.

We also note that the above composite likelihood can be extended to accommodate survey data 
arising from a complex probability sample in finite population settings, following Binder (1983). 
The factors in (4) can be raised to powers of survey weights {wi}n

i=1 available for each survey re-
spondent to form a consistent estimator of the population pseudo-likelihood. While we do not 
consider applications involving survey weights in the remainder of this paper, future applications 
could certainly consider this possibility.

Secondary analysis setting. We here emphasize that the proposed approach is motivated by sec-
ondary analysis in which no additional information beyond the imperfectly linked file Fx⋈y may be 
available. In particular, none of the two individual files F⋆

x , F⋆
y may be given. Additional informa-

tion from the linkage process such as match probabilities can be incorporated in terms of the var-
iables {zi}n

i=1 in a model for the mismatch indicators (cf. Section 4.4 below). Note that the {zi}n
i=1 are 

allowed to be empty, in which case the {mi}n
i=1 are treated as identically distributed Bernoulli ran-

dom variables.
A related approach addressing the primary analysis setting (in which linkage and subsequent 

data analysis are considered in an integrated fashion) is developed in Hof and Zwinderman 
(2015). Their formulation is based on a pairwise composite likelihood over all pairs F⋆

x × F⋆
y 

and associated comparison vectors {c jk}.

3 Inference
In the following, we describe the main ingredients of our inferential framework, with specific de-
tails and extensions postponed to Section 5. Selected examples are reviewed in Section 4.

3.1 EM algorithm
Direct maximization of the composite likelihood tends to be challenging. Treating the mismatch 
indicators {mi}n

i=1 as missing data naturally prompts the use of the EM algorithm. The resulting 
E-step involves simple closed-form updates akin to those in conventional mixture models (cf. 
Section B in the online supplementary material for their derivations), and the M-step updates 
for θ and γ decouple into separate optimization problems. Moreover, the update for θ typically 
reduces to an optimization problem that would be encountered in the absence of mismatches 
with additional observation weights. As a result, existing software can be used as long as these 
weights can be incorporated. The general template is presented below, assuming for now that fx 
and fy are known; we refer to Section 5.1 for details on this aspect.

The complete data (composite)likelihood is given by

Lc(θ, γ) =
Yn

i=1

f (xi, yi, zi, mi; θ, γ)

∝
Yn

i=1

f (xi, yi | zi, mi; θ, γ) f (mi | zi; γ)

=
Yn

i=1

[f (xi) × f (yi) × (1 − h(zi; γ))]mi × [ϕi(xi, yi; θ) × h(zi; γ)]1−mi

n o
, 
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where for the last line we use the assumption that fx and fy known. Taking logarithms, the com-
plete data negative (composite) log-likelihood is given by (modulo additive constants):

`c(θ, γ) = −
Xn

i=1

mi log (1 − h(zi; γ)) + (1 − mi) log (h(zi; γ))
�  

−

−
Xn

i=1

(1 − mi) log (ϕi(xi, yi; θ))
(5) 

E-step. In the E-step, we evaluate bm(t)
i = P(mi = 1 | (xi, yi, zi); θ(t), γ(t)), 1 ≤ i ≤ n, given the ob-

served data {(xi, yi, zi)}n
i=1 and current iterates (θ(t), γ(t)) for the parameters.

M-step. The expected complete data negative (composite) log-likelihood then results as

`(t)(θ, γ) = −
Xn

i=1

bm(t)
i log (1 − h(zi; γ)) + (1 − bm(t)

i ) log (h(zi; γ))
n o

−

−
Xn

i=1

(1 − bm(t)
i ) log (ϕi(xi, yi; θ))

(6) 

Note that minimization over γ involves only the first term, which is seen to be the log-likelihood of 
a binary regression model with ‘responses’ {bm(t)

i }n
i=1, covariates {zi}n

i=1, and link function h. 
Minimization over θ involves the log-likelihood encountered in the absence of mismatches with 
additional observation-specific weights.

3.2 Standard errors
For fully parametric models, asymptotic standard errors can be obtained from well-known prop-
erties of composite maximum likelihood estimators. Specifically, letting (bθn,bγn) denote the maxi-
mizer of the composite likelihood (4) and (θ⇤, γ⇤) the corresponding population parameters, we 
have (under suitable regularity conditions) that

ÅÅ
n
p bθn

bγn

✓ ◆
! N θ⇤

γ⇤
✓ ◆

, E[r2`(θ⇤, γ⇤)]−1 E[r`(θ⇤, γ⇤)r`(θ⇤, γ⇤)⊤] E[r2`(θ⇤, γ⇤)]−1
✓ ◆

, 

in distribution, where r` and r2` denote the gradient and Hessian of ` = − log L. Moreover, the 
above covariance can be estimated consistently by substituting the expectations with their empir-
ical counterparts.

4 Specific examples
In this section, we work out the specifics of the general template in the previous section for several 
popular regression setups. We also present applications to covariance estimation and contingency 
table analysis. Modelling of the latent mismatch indicators is discussed in a dedicated subsection.

4.1 Generalized linear models
We start by considering linear regression with Gaussian errors, reproducing results in earlier work 
(Slawski et al., 2021, Section 3). In this case, we have

− log ϕi(yi, xi; θ) = − log ϕ(yi | xi; θ) = 1
2

log (σ2) + 1
2σ2 (yi − x⊤

i β), 1 ≤ i ≤ n, 

with θ = (β, σ2). As a result, the M-step for θ based on (6) reduces to the following:

bβ(t+1)  argmin
β

Xn

i=1

{(1 − bm(t)
i )(yi − x⊤

i β)2}, bσ2 (t+1)  
Pn

i=1 (1 − bm(t)
i )(yi − x⊤

i
bβ(t+1))

Pn
i=1 (1 − bm(t)

i )
.

We note that unless stated otherwise, the intercept is included in the {xi}n
i=1.
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An extension to the class of generalized linear regression models (GLMs, McCullagh & Nelder, 
1989) is obtained via the specification

− log ϕi(xi, yi; θ) = − log ϕ(yi | xi; θ) = ψ(ϑ(x⊤
i β)) − yiϑ(x⊤

i β)
σ

+ c(yi, σ), 1 ≤ i ≤ n, 

for a link function ϑ, cumulant ψ, scale parameter σ, and partition function c. It is customary to use 
the canonical link in which case ϑ equals the identity map. Popular examples include (i) logistic 
regression with ψ(·) = log (1 + exp(·)) and σ = 1, and (ii) Poisson regression with ψ(·) = exp(·) 
and σ = 1. A popular example with a noncanonical link is (iii) Gamma regression with log-link 
with ϑ = −exp(−·), ψ(·) = − log (−·), and c(y, σ) = σ − 1

σ log (y) + log (σ)
σ + log (ī(1/σ)).

In all three cases, the M-step for θ based on (5) is performed by first obtaining bβ(t+1) via a (regu-
lar) GLM fit with data {(xi, yi)}n

i=1 and observation weights {1 − bm(t)
i }n

i=1, and then (if necessary) 
updating the scale parameter σ by minimizing the M-step objective (5) over σ with β fixed to 
β(t+1). The latter is a one-dimensional optimization problem and hence easy to solve via appropri-
ate routines.

4.2 Cox proportional hazards regression
For the (semiparametric) Cox proportional hazards (PH) model, the response variable is given by a 
right-censored survival time. Accordingly, the data set is of the form {((yi, δi), xi)}n

i=1, where δi = 1 
if yi is observed without right-censoring and δi = 0 otherwise, 1 ≤ i ≤ n. The Cox PH model pos-
tulates that

− log ϕ(yi, δi | xi, ; θ) = −δi log λ(yi | xi; θ) + ȁ(yi | xi; θ), 1 ≤ i ≤ n, 

with λ(yi | xi; θ) = λ0(yi) · exp(x⊤
i β) and ȁ(yi | xi; θ) = exp(x⊤

i β)ȁ0(yi), 1 ≤ i ≤ n, where λ and ȁ�de-
note the (conditional) hazard and cumulative hazard functions, respectively, depending on base-
line hazard and cumulative hazard functions λ0 and ȁ0, respectively. Here, θ = (β, λ0) contains the 
nuisance parameter λ0. The M-step for θ is given by

min
β, λ0

−
Xn

i=1

(1 − bm(t)
i ) δi log (λ0(yi)) + x⊤

i β
⇥ ⇤

+ exp(x⊤
i β)ȁ0(yi)

�  
( )

, 

where the term inside the curly brackets equals the (full) negative log-likelihood of the Cox model 
with observation weights {(1 − bm(t)

i )}n
i=1. In a nutshell, the M-step can be performed based on an 

accordingly weighted partial negative log-likelihood in β and a weighted Breslow estimator for up-
dating the baseline hazard; cf. Section D in the online supplementary material for details.

4.3 Unsupervised problems
To illustrate the unsupervised setting, we consider (i) estimation of the covariance matrix of a 
multivariate normal random vector (x⊤ y⊤)⊤, and (ii) parameter estimation for a two-way contin-
gency table for categorical variables. Here, the term ‘unsupervised’ refers to the fact that the roles 
of x and y are symmetric in the sense that there is no distinction between predictor and response 
variables.

(i) Multivariate normal data. The parameter is given θ = Ȉ, structured according to blocks Ȉxx, 
Ȉxy, Ȉyy (and Ȉyx = Ȉ⊤

xy), with Ȉxx = Cov(x), Ȉyy = Cov(y), and Ȉxy = Cov(x, y). For simplicity, we 
assume that E[x] and E[y] are both zero; in fact, the estimation of these quantities is not affected by 
mismatch error in the linked file {(xi, yi)}

n
i=1, nor is the estimation of the (marginal) covariances Ȉxx 

and Ȉyy. We here slightly depart from the principle according to which the marginals fx and fy are 
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considered fixed (known or substituted by a plug-in estimator), and instead jointly estimate fȈxx, 
fȈyy, and fȈxy in a way that is computationally most convenient. Specifically, noting that

f (xi; θ) × f (yi; θ) ∝ |ī|−1/2exp − 1
2

xi
yi

✓ ◆⊤
ī−1 xi

yi

✓ ◆ !

, ī := Ȉxx 0
0 Ȉyy

✓ ◆
, 1 ≤ i ≤ n, 

we can consider a modification of the objective in the M-step (6) by not dropping the terms de-
pending on the marginals fx and fy. The resulting modified expected complete data negative (com-
posite) log-likelihood then takes the form

−
Xn

i=1

(1 − bm(t)
i ) log (ϕi(xi, yi; θ)) + bm(t)

i · f (xi; θ) · f (yi; θ)
n o

∝ − log |ȍ|
Xn

i=1

(1 − bm(t)
i )

 !

+ tr(ȍS(t)) − log |Ȍ|
Xn

i=1

bm(t)
i

 !

+ tr(ȌS(t)
ind)

( )

,

ȍ = Ȉ−1, Ȍ = ī−1, S(t) =
Xn

i=1

(1 − bm(t)
i )

xi

yi

✓ ◆
xi

yi

✓ ◆⊤
, S(t)

ind =
Xn

i=1

bm(t)
i

xix⊤
i 0

0 yiy⊤
i

 !

.

(7) 

Minimization with respect to ȍ�and Ȍ�yields the following closed-form updates:

ȍ(t+1) = S(t)
Xn

i=1

(1 − bm(t)
i )

 !, !−1

, Ȍ(t+1) = S(t)
ind

Xn

i=1

bm(t)
i

 !, !−1

.

(ii) Two-way contingency tables. Consider two categorical random variables x and y taking values 
in categories numbered {1, . . . , K} and {1, . . . , L}, respectively. Let θkl = P(x = k, y = l), 1 ≤ k ≤ K, 
1 ≤ l ≤ L, denote the corresponding joint probabilities, and accordingly let θ = (θkl)k,l. Given a 
linked file {(xi, yi)}n

i=1 whose correctly matched pairs are distributed as (x, y), we note that the in-
dependence assumption in (1) implies that for mismatched pairs the resulting contribution to the 
likelihood is given by f (xi; θ) × f (yi; θ) = θxi + · θ+ yi , where the subscript + indicates summation 
over the corresponding index. As a notable difference from models discussed above, we note 
that the parameter γ of the model h(·; γ) for the mismatch indicators can no longer be inferred 
from the data. In fact, consider the case in which h(·; γ) = 1 − γ, γ ∈ (0, 1), is a constant: it is 
easy to see that the resulting composite likelihood (4) is always maximized by setting γ = 0 since 
the parameters (θkl) correspond to a saturated model achieving perfect fit regardless of the specific 
{(xi, yi)}n

i=1. This issue can be addressed by fixing γ. Similar to the approach taken for the multivari-
ate Gaussian model in (7), we propose to work with two separate sets of parameters representing a 
saturated and an independence model, respectively, and to drop the associated (linear) constraints 
that would couple these two sets of parameters. Specifically, the expected complete data negative 
(composite) log-likelihood takes the form

−
Xn

i=1

(1 − bm(t)
i ) log (ϕi(xi, yi; θ)) + bm(t)

i · f (xi; θ) × f (yi; θ)
n o

= −
X

k,l

(1 − bm(t)
kl ) log (πkl) +

X

k,l

bm(t)
kl log (ψk+ · ψ+l), 

where we note that the {bmi}n
i=1 are constant across observations falling into the same cell (k, l) of 

the associated contingency table, 1 ≤ k ≤ K, 1 ≤ l ≤ L. In the above display, ψk+ =Pl πkl, 
1 ≤ k ≤ K, and ψ+l =Pk πkl, 1 ≤ l ≤ L, but for computational simplicity this constraint is dropped 
when performing the minimization with respect to {πkl}, {ψk+}, and {ψ+l}. This minimization 
amounts to fitting separate saturated and independence models to reweighted samples with (effect-
ive) sample sizes of 

P
k,l (1 − bm(t)

kl ) and 
P

k,l bm
(t)
kl , respectively, and can be implemented via weighted 
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Poisson regressions in light of connections between log-linear models and Poisson regression 
(Agresti, 2012).

4.4 Modelling the latent mismatch indicator
In the preceding sections, we have elaborated on the specifics of various models concerning the re-
lationship between x and y. The second major aspect of modelling concerns the latent mismatch 
indicators. Since these are binary, the use of a logistic regression model can be considered the 
standard choice, i.e. in the context of (2) and (3)

P(mi = 0 | zi) = h(zi; γ) = exp(z⊤
i γ)

1 + exp(z⊤
i γ)

, 1 ≤ i ≤ n.

Note that the above specifies a marginal model and does not entail independence of the {mi}n
i=1. If 

no auxiliary covariates {zi}n
i=1 informative of the match status are available, an intercept-only mod-

el can be employed which is equivalent to assuming a constant mismatch rate (regardless of the 
choice of the link function). It is worth stressing that despite the similarities in modelling, estima-
tion of the parameters is more challenging than in (plain) binary regression since the {mi}n

i=1 are not 
observed. To facilitate parameter estimation, it can be helpful to integrate prior knowledge about 
the underlying mismatch rate by imposing a linear constraint on the average linear predictor of the 
form ( 1

n

Pn
i=1 zi)⊤( −γ) ≤ b, where b ∈ R corresponds to the logit of the assumed mismatch rate. 

Such a constraint can be incorporated in a straightforward manner within the approach to infer-
ence presented in Section 3.

5 Miscellaneous details and extensions
This section complements Sections 3 and 4, filling in additional details on the estimation of mar-
ginal PDFs and outlining an extension to a Bayesian setup.

5.1 Estimation of marginal PDFs
In Section 3, the marginal densities fx and fy were treated as known quantities. In practice, this is 
not the case even though the estimation is considered less of a challenge given that mismatch error 
affects the estimation (of parameters) of the joint distribution but not of the marginals. We distin-
guish between two approaches: (i) plug-in estimation and (ii) integrated estimation. In the first ap-
proach, the marginal PDFs are estimated beforehand and substituted in place of the corresponding 
population quantities; in the second approach, the marginal PDFs are updated along with the par-
ameter θ of primary interest. (i) The plug-in approach reduces to plain density estimation of fy (and 
also of fx outside regression setups), and various methods ranging from fully nonparametric to 
parametric are available to perform this task. Particular examples include kernel density estima-
tion or the use of empirical probability mass functions if the range of the associated random vari-
able is discrete and small in size. Note that while in the plug-in approach, the marginal PDFs are 
not updated during the EM iterations, they enter in the E-step as well as in the evaluation of the 
composite likelihood at the iterates {(bθ(t), bγ(t))}t≥1. (ii) In the integrated approach, fx and fy are up-
dated with θ. If correctly paired observations are i.i.d. with joint PDF fx,y(·, ·; θ), the relationships 
fx(·; θ)= � fx,y(·, y; θ) dy and fy(·)= � fx,y(x, ·; θ) dx prompt updates along with θ. The possibility of 
such updates typically arises in unsupervised settings, and results in additional constraints on θ 
that may not be easy to implement(cf. Section 4.3). In standard fixed design regression setups, 
fy can be expressed as the finite mixture

fy(·; θ)= � ϕ(·| x; θ) dP(x) = 1
n

Pn
i=1 ϕ(·| xi; θ), where P denotes the atomic measure with atoms 

{xi}n
i=1 each having mass 1/n. For example, in classical linear regression with i.i.d. Gaussian errors 

(cf. Section 4.1), the above mixture density becomes the Gaussian location mixture

fy(·; β, σ) = 1
n

Xn

i=1

1
σ

φ
· − x⊤

i β
σ

✓ ◆
, (8) 
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where φ denotes the PDF of the N(0, 1)-distribution. Incorporating this into the EM approach in 
Section 3.1 would break the simplicity of the updates, which appears too much of a price to pay 
given only minor gains in statistical efficiency over the plug-in approach in which fy could simply 
be replaced by a kernel density estimator based on the {yi}n

i=1. As a compromise, an initial kernel 
density estimator can be replaced by the representation in (8) with (β, σ) substituted by estimates 
(bβ,bσ) obtained from a first round of EM iterations.

A simplified approach for GLMs is to model fy in terms of an intercept-only GLM (and poten-
tially a scale parameter). In particular, this is relevant to binary GLMs in which case the intercept is 
simply a one-to-one transformation of P(yi = 1), 1 ≤ i ≤ n. In Normal GLMs, if the predictor var-
iables follow a Normal distribution, then fy is also a Normal distribution with unknown mean 
(intercept) and standard deviation (scale parameter). It is justifiable to adopt the latter model at 
least as a simple approximation outside the setting of Normal predictors (cf. Slawski et al., 2021).

5.2 Bayesian inference
There are situations where it can be useful to recast the proposed approach in a Bayesian frame-
work to facilitate inference. In particular, this is the case in which regularization is imperative to 
deal with a large number of parameters. For example, RL is often performed after blocking, and 
each (of the potentially many) blocks may be associated with its own mismatch rate. We do not 
pursue this case further and instead consider another scenario of interest, namely smooth curve 
fitting via penalized splines. Specifically, the ‘roughness penalty’ (Green & Silverman, 1993) is 
realized via an (improper) Gaussian prior on the spline coefficients. This connection facilitates 
the data-driven choice of the level of smoothing, which is particularly helpful when other criteria 
such as Generalized Cross-Validation (Craven & Wahba, 1978) are not easily applicable. 
Moreover, subsequent inference (e.g. point-wise standard errors for the regression curve) becomes 
rather straightforward within a Bayesian framework.

Specifically, we consider the following setup expressed in a hierarchical Bayes fashion:

f (α) ∝ 1, f (σ2) ∝ (σ2)−1, f (τ2) ∝ (τ2)−1

{mi}n
i=1 | α ∼i.i.d Bernoulli(α), f (β | τ2) ∝ (τ2)−r/2(det S+)1/2exp − 1

2τ2 β⊤Sβ
✓ ◆

yi | xi, {mi = 0}, β, σ2 ∼ N(sβ(xi), σ2), yi | {mi = 1} ∼ fy, i = 1, . . . , n,

(9) 

where for β ∈ Rd, the function sβ(x) =Pd
j=1 βjBj(x) is a cubic spline expansion with coefficients β = 

(βj)
d
j=1 and basis functions {Bj}d

j=1 on some interval [a, b] covering the range of the predictor vari-
able. To keep the setup simple, the mismatch indicators are assumed to be i.i.d. Bernoulli random 
variables.2 The prior f (β | τ2) is an established construct in the spline literature, (cf., e.g. Ruppert 
et al., 2003); in (9), + denotes the Moore–Penrose pseudo-inverse, and r equals the rank of the 
roughness penalty matrix S. Note that improper Gamma priors are placed on σ2 and τ2, with 
σ2/τ2 corresponding to the effective smoothing parameter. Conveniently, under (9) posterior infer-
ence can be performed via Gibbs sampling with standard distributions for the full conditionals (cf. 
Section E.3 in the online supplementary material).

As an illustration, we simulate data yi = sin( 3
2 πxi) + 0.25 · εi, {εi}n

i=1 ∼i.i.d. N(0, 1), 
xi = (i − 1)/(n − 1), 1 ≤ i ≤ n = 1, 000, and randomly shuffle 20% of the (xi, yi)-pairs. We then 
fit a cubic spline (25 equispaced knots) to the resulting data, without any adjustment, using the 
R package mgcv (Wood, 2017) as well as with the approach outlined above (a kernel density es-
timator based on the {yi} is used for fy). The results are shown in Figure 2. It can be seen that the 
proposed approach successfully remediates the effect of mismatches and that all model parameters 
are estimated accurately. Moreover, the level of smoothing with the proposed approach aligns 
closely with the level of smoothing for correctly matched data, whereas ignoring mismatches yields 
an oversmoothed fit. In this regard, the Bayesian perspective is particularly helpful since it is 

2 More accurately, one could assume that the {mi}n
i=1 arise from a permutation that moves a fraction of α indices. 

Under this assumption, the mismatch indicators are pairwise independent asymptotically as n!∞, cf. Section E.2 in 
the online supplementary material.
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unclear how to select the smoothing parameter in a penalized likelihood framework and conduct 
subsequent statistical inference. For more discussion and additional numerical studies regarding 
the impact of mismatch error on nonlinear regression, the interested reader is referred to 
Section E.1 of the online supplementary material of this article.

6 Simulations
We here present the results of a set of simulation studies to investigate the empirical performance 
of our approach in a series of different scenarios, including the case of (partial) model misspecifi-
cation and gentle violations of some of the underlying assumptions listed at the beginning of 
Section 2. We consider a single predictor variable x and an outcome variable y following a 
Poisson distribution with E[y | x] = exp(β⇤0 + β⇤1x). Specifically, we consider a fixed design with 
{xi}n

i=1, n = 1, 000 uniformly spaced between 1 and 5 and β⇤0 = 0.5, β⇤1 = 2. Several settings are con-
sidered for the mismatch indicator:

Constant. The {mi}n
i=1 are sampled i.i.d. from a Bernoulli distribution with probability of success 

α⇤ ∈ {0, 0.05, . . . , 0.3}. Given the {mi}n
i=1 the corresponding subset of the {yi}n

i=1 is permuted ac-
cording to a right circular shift.3

Blockwise. The data set is subdivided into four subsets (blocks) of equal size. Within each of the 
blocks, the mismatch rates are constant (equal to 0, 0.1, 0.4, 0.6, respectively), and the procedure 
described under Constant is applied.

Logistic. In an attempt to mimic the situation in which output from probabilistic record linkage 
is available to the data analyst operating on linked data, we consider auxiliary data zi = logit(pi), 
where the pi’s take the place of match ‘probabilities’ assigned to the ith linked pair (as potentially 
supplied by a record linkage procedure), 1 ≤ i ≤ n. Here, the {pi}n

i=1 are drawn i.i.d. from a Beta 
distribution with parameters 4.5 and 0.5. Subsequently, the {mi}n

i=1 are generated according to 
the logistic model

logit{P(mi = 0 | zi)} = γ⇤0 + γ⇤1zi, 1 ≤ i ≤ n, (10) 

where γ⇤0 = −0.5 and γ⇤1 = 1. Given the {mi}n
i=1, the yi’s are permuted as described under Constant.

For all three settings, the model for the mismatch indicator is specified accordingly when apply-
ing our approach. The marginal density fy is estimated via a kernel density estimator with a rect-
angular kernel and bandwidth fixed to 100 throughout all simulations.

In addition to the above settings, we consider three further settings associated with model mis-
specification and/or violation of assumptions. We conduct 10k replications per setting.

Mis-y. The linear predictor in the Poisson model is misspecified in that a quadratic model in x is 
used to generate the y’s. Specifically, E[y | x] = β⇤0 + β⇤1x + β⇤2x2 with β⇤2 = 0.05. This model for y is 
combined with the constant mismatch rate scenario described above.

0.0 0.2 0.4 0.6 0.8 1.0

 1
.5

 0
.5

0.
5

1.
0

1.
5

x

y
unadjusted spline fit

adjusted spline fit (point-wise posterior means)

95% point-wise credible bands

underlying sine function

Figure 2. Left: Realizations from a noisy sine function with 20% random mismatches, unadjusted spline fit, and 
adjusted spline fit (point-wise posterior mean and credible bands).

3 The corresponding index permutation π on is of the form π(i1) = i2, . . . , π(ik−1) = ik, π(ik) = i1.
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Mis-m. As a modification of the setting ‘logistic’ above, model (10) is changed as follows:

logit{P(mi = 0 | zi)} = 0.5(γ⇤0 + γ⇤1)ziI(2 ≤ xi ≤ 4), 1 ≤ i ≤ n, (11) 

When applying our approach, we instead fit a logistic model linear in z in accordance with (10). 
Note that in addition to using a misspecified model for the mismatch indicator, the fact that the 
mismatch indicator depends on x also constitutes a violation of the independence assumption 
(A1).

Mis-ind. In this setting the xi’s are partitioned into 50 blocks of size 20. Within each block, the 
xi’s are simulated according to a Gaussian copula inducing dependence between each set of 20 xi’s 
whose marginal distribution is uniform on [1, 5]. The associated covariance matrix of the 
Gaussian copula is taken as the equi-correlation matrix with unit diagonal elements and off- 
diagonal elements equal to 0.5. A constant mismatch rate is assumed within each block and the 
yi’s for which mi = 1 are permuted as described under Constant. Note that this simulation design 
violates assumption (A2), part (IND).

Results. Under correct model specifications, the proposed approach largely performs as ex-
pected. Confidence interval coverage levels achieve the nominal 95% for all model parameters, 
with slight undercoverage for the parameter γ⇤ (the logit of the correct match rate 1 − α⇤) only 
under the Blockwise setting; we suspect that this might be attributable to the reduced sample 
size in each block. Table 1 also shows that the impact of mismatches becomes noticeable once 
10% of the observations are incorrectly matched. Plain GLM estimates for the regression param-
eters follow a typical pattern of attenuation characterized by an inflated intercept and a reduced 
slope. By contrast, with the proposed adjustment, the estimation of the regression parameters is 
not visibly affected. In addition, substantial losses in statistical efficiency in the absence of mis-
matches (α⇤ = 0) are not observed either.

In the presence of model misspecification and/or violation of assumptions, the regression coef-
ficients are still estimated accurately and confidence level coverage is maintained, with the excep-
tion of setting Mis-y in which the linear predictor is misspecified. For the latter setting, 
performance is evaluated in terms of the Kullback–Leibler divergence (KLD) between the {μ⇤i = 
E[yi | xi]}n

i=1 and the corresponding estimates {bμi}
n
i=1 given an incorrectly specified linear predictor; 

the KLD with adjustment range between 6.0 (α⇤ = 0) and 7.8 (α⇤ = 0.3) after adjustment, whereas 
without adjustment the KLD equals only 1.9 for α⇤ = 0 but then jumps to 208 for α⇤ = 0.05 and 
increases to almost 3.3k for α⇤ = 0.3. While it is found that the different forms of mis-specifications 
studied here do not have a noticeable impact concerning the estimation of the x–y relationship, 
estimation of the model parameters pertaining to the latent mismatch indicators {mi}n

i=1 is affected 
more noticeably. For instance, in the setting Mis-y the mismatch rate is consistently overestimated 
by about 10% , and in the setting Mis-ind the mismatch rate is slightly underestimated. This would 
be expected since substantial correlations within blocks of observations reduce the impact of mis-
match error. Similarly, for the setting Mis-m in which the generation of the mismatch indicators 
departs from the assumed logistic regression model, the impact of mismatch error is still clearly 
noticeable but reduced. This is because the overall mismatch rate is lower and mismatch error af-
fects a narrower range of the predictor variable (only observations with x taking values in [2, 4] 
instead of the full range [1, 5]), which in turn limits the range of error in the response resulting 
from mismatches.

Section F of the online supplementary material contains the corresponding simulation results for 
a smaller sample size (n = 100). While the coverage rates tend to be slightly below the nominal 
coverage level, the results generally agree with what is reported here.

7 Applications
In this section, we illustrate our methodology in three case studies involving real data sets obtained 
from record linkage, including (i) a longevity analysis based on historical linkage, (ii) an analysis of 
two-way contingency tables obtained from linking Medicare claims and survey responses, and (iii) 
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the investigation of time trends in the issuance of nurse licenses. The data sets for (i) and (iii) are 
open access.4

7.1 Longevity analysis
As mentioned in the Introduction, the Life-M project provides multigenerational data from the 
20th century that was gathered from various data sources including birth certificates, death certif-
icates, marriage certificates, and decennial censuses. In our case study, we study the relationship 
between the age of death and the year of birth obtained from linking birth and death certificates. 
Longitudinal Intergenerational Family Electronic Micro-Database used a hybrid of two linkage 
procedures: a fraction of the records were selected for manual linkage by trained research assis-
tants (‘hand-linked’ records); the remaining records were linked based on probabilistic record 
linkage without clerical review (‘machine-linked’ records). The latter records are more inclined 
to have mismatch errors (Bailey et al., 2022).

Initial analyses of these data suggest that the death record sources and collection periods influ-
ence the trend in the age at death as a function of the year of birth. Therefore, we focus on birth 
cohorts where longevity tends to increase overall as expected. After visual exploration of the entire 
data available (n ≈ 155k), we decided to use a cubic polynomial to model the relationship between 
year of birth and age at death (dependent variable); a cubic fit is used to capture the nonlinear re-
lationship between the two variables during a specific time period (1883–1906).

Our approach is applied as follows. We assume a Gaussian regression model for the predictor– 
response relationship. Regarding the latent mismatch indicators {mi}n

i=1, we assume that all 2,159 
hand-linked records are correctly matched (i.e. for the corresponding records it holds that mi = 0). 
For machine-linked records, the mismatch indicator is considered unknown and is modelled via a 
logistic regression model whose predictors are given by the commonness of the first name (commf) 
and the last name (comml) of the associated individuals. Since these variables are readily available 
and probabilistic record linkage was primarily based on names, they are considered suitable sur-
rogates in lieu of more specific information about the correctness of matches as would be output by 
a probabilistic record linkage procedure. The marginal distribution of the response variable is as-
sumed to follow a Gaussian distribution whose parameters are estimated from the entire data and 
subsequently treated as fixed. In summary, the inference is based on the specifications

yi | xi, {mi = 0} ∼ N(β0 + β1xi + β2x2
i + β3x3

i , σ2), yi | {mi = 1} ∼ N(μ, τ2),

mi | commfi, commli ∼ Bernoulli
exp(γ0 + γ1 · commfi + γ2 · commli)

1 + exp(γ0 + γ1 · commfi + γ2 · commli)

✓ ◆
, 1 ≤ i ≤ n.

(12) 

Additionally, the Life-M team expects the mismatch rate among the machine-linked rates to be 
around 5% (Bailey et al., 2022). This information is incorporated by imposing corresponding con-
straints on the average of the linear predictors as described in Section 4.4. Specifically, we consider 
the upper bounds −3 and −2.5 on the logit scale, corresponding to about 5% and 7.5%, respect-
ively, on the probability scale; the latter bound allows for a slightly higher fraction of mismatches 
as expected. While date of birth is used as a matching variable during linkage, there are no indi-
cations that mismatch rates depend (substantially) on the year of birth, the predictor variable in 
(12). Therefore, the assumption of no overlap between the predictors and variables informative 
of match status as mandated by (A1) in Section 2 is justifiable here.

Results are summarized in Figure 3 and Table 2. The estimated coefficients and predictions of 
the cubic fit generated by approach (12) are well within the realm of the naive analysis without 
adjustment for mismatches and an analysis confined to the much smaller subset of hand-linked re-
cords only. Figure 3 indicates that predictions under the naive and adjusted approaches start di-
verging from birth cohort 1897, with predictions under the naive approach falling below those 
under the adjusted approach and those under the hand-linked only analysis. Adjustment yields 
small reductions of the estimated residual standard error (about 2.5% and 4%, respectively) 
and the standard errors of the coefficients of the cubic polynomial tend to be slightly smaller as 
well. First-name commonness and last-name commonness are both predictive of the latent match 

4 (i) https://tinyurl.com/4wwv4uzf and (iii) https://tinyurl.com/5xs8pwsf.
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status. The sign of the coefficient for first name commonness is unexpected though (since intuitive-
ly the more common a name, the more likely mismatches tend to occur). We hence also explored 
the use of an interaction model with the same two predictor variables but since this change neither 
improved interpretability nor model fit we decided to retain the main effect model.

7.2 Agreement of Medicare claims and survey responses
The second case study presents an application of the two-way contingency table methodology out-
lined in Section 4.3. This case study is based on a linkage between a survey conducted as part of the 
HRS and Medicare claims data (see the Introduction). Such linkages to administrative data are 
routinely performed as part of the HRS, e.g. to online supplementary material or validate data re-
ported by survey respondents given their consent to link.

In 2020, the HRS reevaluated the Medicare record linkage performed in 2018, and identified 59 
cases in the 2018 linkage that were likely mismatches, either because these cases were linked to 
different claims records in the new linkage in 2020, or these cases could not be linked to a claims 
record in 2020. In this case study, we focus on the effects of including these likely mismatched 
cases in a contingency table analysis of the 2018 HRS data. Specifically, we look at the bivariate 
association between self-reports of nursing home attendance in the past 2 years and administrative 
records of nursing home attendance in that same time frame. Of specific interest to the HRS is the 
level of agreement between these two measures, for the purpose of investigating potential meas-
urement error.

We note that the overall rate of likely mismatches in 2018 is rather small, given that there were 
8,665 consenting respondents in total. For the sake of this illustration, we, therefore, selected a 
simple random sample of 300 HRS respondents who were not deemed to be mismatches in 
2018, effectively simulating a mismatch rate of 59/359 = 0.164. In this scenario, the mismatched 
cases may have an effect on the contingency table analysis.

In the analysis, we used the four proportions defining the two-by-two contingency table based 
on the 300 exact matches as the benchmark proportions for evaluation. For reasons explained in 
Section 4.3, the mismatch rate is assumed to be known. We computed the mean relative absolute 
error (MRAE) of the four proportions defining the contingency table, the KLD as a measure of 
distance between the proportions in the contingency table and the proportions based on the exact 
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Figure 3. Predicted survival times for birth cohorts 1883–1906 based on the Life-M data with point-wise confidence 
intervals (grey-shaded areas; the wide light grey area corresponds to the results based on the ‘hand-linked’ records 
only). ‘Adjusted’ refers to the results under model (12) with the average linear predictor in the model for the {mi } 
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matches, the one-sample χ2 goodness of fit (GOF) measure for the four proportions (again using 
the benchmark proportions), the χ2 measure of association between the two variables, and 
Cohen’s κ statistic.

Table 3 presents the results of our analysis. Compared to an analysis of the 300 known exact 
matches, the naive analysis of the 359 cases would result in a higher MRAE of the four proportions 
defining the table, a larger KLD based on the four proportions, a larger χ2 GOF measure, an atte-
nuated χ2 measure of association, and an attenuated kappa statistic (understating the level of 
agreement between the two variables). The adjustment approach described in Section 4.3 assum-
ing the aforementioned mismatch rate of 0.164 would reduce the errors and yield measures of 
agreement that are more consistent with the known true values.

7.3 Investigation of trends in nurse license processing times
In this section, we evaluate the utility of the proposed approach on curve fitting via penalized 
splines (cf. Section 5.2). Specifically, we study an application to a nurse credential database 
from the state of Washington between 1 January 2009 and 31 December 2021. Each entry in 
this database corresponds to one specific nurse practice license issued to one specific nurse, con-
taining the following information: full name of the nurse and their year of birth, credential num-
ber, issue, and expiration dates, status (active, closed, expired), and type of license (e.g. ‘registered 
nurse license’, ‘medical assistant certification’, ‘registered nurse temporary practice permit’). 
Nurses are commonly issued temporary permits prior to receiving a regular license. In our study, 
we investigate the average duration of the associated transitional period (in #days), which is of 
interest to researchers in health metrics (Flaxman, 2022, Personal communication). For this pur-
pose, the two data subsets corresponding to temporary permits and regular licenses, respectively, 
are extracted and subsequently linked.

Data linkage is performed by first blocking on the year of birth and first initial of the last name of 
the nurse, and then string matching of first, middle, and last names within each block using the 
Jaro–Winkler metric (Winkler, 1990). We consider both exact name matching (restrictive linkage) 
and inexact name matching (generous linkage); in the latter case, two records have declared a 
match as long as the Jaro–Winkler match scores for each name variable exceeds the threshold 
0.85 (chosen ad-hoc via visual inspection of the histograms of the scores). The resulting restrict-
ively linked and generously linked files consist of about 61k and 78k records, respectively, after 
removing obvious mismatches whose waiting periods between permits were negative.

Ranges for the underlying mismatch rates in these two files were determined as follows: the first 
estimate assumes that the number of mismatches is about the same as the number of obvious mis-
matches associated with negative durations; the second estimate is based on excessively large du-
rations (≥1.5 years). This yields the range [3.7%, 8.1%] for the generously linked file and 
[0.4%, 1.0%] for the restrictively linked file. The still noticeable fraction in the latter file despite 
exact name matching can be attributed mostly to multiple instances of the license issue process 
for the same nurse. Given the available information, it is unclear how to determine the true match 
status with certainty even with a clerical review: in case of multiple issuances, only the earliest and 
latest dates of issuance are recorded, i.e. any intermediate dates are not given.

The goal of the analysis is to identify trends/variations over time in the average duration of the 
aforementioned transitional period from the time a temporary permit is issued until it gets substi-
tuted by a regular nurse license. We let {xi}n

i=1 denote the temporary permit issue dates (scaled to 
[0, 1] such that 1 January 2009 and 31 December 2021 correspond to 0 and 1, respectively) and 

Table 3. Results of the Health and Retirement Study–Medicare claims contingency table analysis

MRAE KLD GOF Association Kappa

Naive 0.1685 0.0020 1.4780 125.12 0.6130

Adjusted 0.1334 0.0017 1.0995 147.06 0.6625

Exact 0.0000 0.0000 0.0000 146.80 0.6569

Note. ‘Exact’ refers to the analysis based on the correct matches only and is used as a benchmark.
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consider the duration until the regular license issue date as the dependent variables {yi}n
i=1. The lat-

ter is obtained from the linked files and hence in part incorrect as a consequence of mismatch error. 
Since observations with negative durations are dropped, the impact of mismatches producing 
smaller durations is significantly reduced (as a result of a truncation at zero) in comparison to mis-
matches producing inflated durations. In order to flexibly capture trends in average duration over 
time, the corresponding mean function for correctly matched observations is modelled via a cubic 
spline, i.e.

E[yi | xi, mi = 0; β] = sβ(xi), 1 ≤ i ≤ n, sβ(x) =
Xd

j=1

βjBj(x), 

where the {Bj}d
j=1 represent the associated B-spline basis functions given 1,000 knots placed evenly 

in [0, 1]. Conditional on {mi = 1}, we assume an intercept-only model for the dependent variable 
yi, 1 ≤ i ≤ n. For simplicity, we assume Gaussian models (with different variances) for each of 
these specifications in order to apply the proposed approach, but alternative models (e.g. 
Poisson) could be used as well.

The Bayesian inference approach outlined in Section 5.2 is applied to both the generously and 
the restrictively linked data set. Unlike the case study in Section 7.1 neither of these linked files con-
tains any information indicative of the match status of the individual records. The number of 
MCMC iterations is set to 10,000 after a burn-in period of length 100, out of which every tenth 
MCMC sample is retained for posterior inference. In addition to an ‘out-of-the-box’ application, 
we also run the approach with the residual standard deviation σ of the spline regression model 
fixed to a range of fractions {0.1, 0.15, . . . , 0.95, 1} of the residual standard deviation bσ0 from a 
‘naive’ spline fit without accounting for mismatches. While the resulting mean functions do not 
change substantially, the additional (varying) constraint on σ allows us to explore a range of plaus-
ible solutions and associated estimates of the mismatch rate in the absence of specific information 
about the underlying record linkage. The ratio σ/bσ0 can be interpreted as the relative reduction in 
root mean squared error after accounting for mismatch error.

Figure 4 shows that without adjustment for mismatches, the estimated mean functions fluctuate 
strongly at the beginning of the time line; even when the restrictively linked file is used, the average 
duration exhibits fluctuations of ∼50 days. The impact of mismatch error is indeed expected to be 
more pronounced at the beginning of the time period than towards the end since excess durations 
resulting from incorrect linkage can be more drastic. Interestingly, a second window of rapid fluc-
tuations is observed between 0.75 and 0.85 (scaled time scale); however, these fluctuations are pre-
sent before and after adjustment for mismatch error and are hence more likely to be genuine. 
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Figure 4. Estimated mean functions for the duration of regular nurse license issuance with and without adjustment 
for mismatch error based on the generously and restrictively linked files. As explained in the text, for the results after 
adjustment we report results for which the mismatch rate hits a plateau among the range of solutions under 
consideration as given in Table 4.
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Moreover, after adjustment, the estimated mean functions are significantly closer to the estimated 
mean functions (unadjusted) based on the restrictively linked file, and the estimated mean func-
tions after adjustment are essentially identical regardless of whether the adjustment was based 
on the generously or the restrictively linked file.

Table 4 shows that for the generously linked file, the estimated mismatch rate plateaus for 
bσ/bσ0 = 0.4 yielding an estimate of 7.2% of mismatches, which is well within the anticipated range 
between 3.7% and 8.1%. For the restrictively linked file, the estimated mismatch rate plateaus for 
bσ/bσ0 = 0.65 at the value 4.7%, which is still within the realm of the anticipated range and signifi-
cantly lower than the estimate based on the generously linked file.

8 Conclusion
In this paper, we have developed a general framework to enable valid postlinkage inference in the 
presence of mismatch error in the challenging secondary analysis setting. The proposed frame-
work is flexible in the sense that limited information about the linkage process can be incorpo-
rated, and that the same machinery can be applied to handle various models for the mismatch 
indicator and the linked substantive variables. The approach is scalable with a run time that is lin-
ear in terms of the size of the sample and convenient from the perspective of implementation. A 
corresponding R package pldamixture is available on CRAN. Results from simulations and 
case studies with real data consolidate the usefulness for postlinkage analysis.

At the same time, the work presented here prompts various avenues of future research. First, the 
contingency table example presented in Section 4.3 prompts the question of model identifiability, 
which is not studied in depth in this paper. Significant additional research is needed to characterize 
the class of identifiable models. Second, it is of interest to further investigate the sensitivity of our 
approach vis-à-vis violations of the main assumptions even though the simulations shown here in-
dicate at least a moderate degree of robustness. Third, it is worthwhile to consider extensions cov-
ering the linkage of more than two files. Fourth, while mismatch error has undoubtedly received 
much more attention, false nonmatches (missed matches) are similarly important; handling both 
types of error in an integrated fashion is a desirable goal. Finally, our approach for contingency 
table analysis highlights a connection to synthetic data methods such as postrandomization 
(Gouweleeuw et al., 1998) for disclosure control, and it would appear to be worth elaborating 
on that connection in more detail.
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