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Abstract

Modern predictive modeling tools, such as random forests (and related ensemble meth-
ods), have become almost ubiquitous in research applications involving innovative
combinations of survey methodology and data science. However, an important poten-
tial flaw in the widespread application of these methods has not received sufficient re-
search attention to date. Researchers at the junction of computer and survey science
frequently leverage linked data sets to study relationships between variables, where the
techniques used to link two (or more) data sets may be probabilistic and non-determin-
istic in nature. If frequent mismatch errors occur when linking two (or more) data sets,
the commonly desired outputs of predictive modeling tools describing relationships be-
tween variables in the linked data sets (e.g., variable importance, confusion matrices,
RMSE, etc.) may be negatively affected, and the true predictive performance of these
tools may not be realized. We demonstrate a new methodology based on mixture model-
ing that is designed to adjust modern predictive modeling tools for the presence of mis-
match errorsin alinked data set. We evaluate the performance of this new methodology
in an application involving the use of observed Twitter/X activity measures and predict-
ed socio-demographic features of Twitter/X users to accurately predict linked measures
of political ideology that were collected in a designed survey, where respondents were
asked for consent to link any Twitter/X activity data to their survey responses (exactly,
based on Twitter/X handles). We find that the new methodology, which we have imple-
mented in R, is able to largely recover results that would have been seen prior to the
introduction of mismatch errors in the linked data set.

Keywords: modern predictive modeling, ensemble methods, record linkage, mismatch error,
mixture modeling, linked survey and social media data
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In recent years, social media platforms such as Instagram and Twitter/X have
provided social scientists with a wealth of user-content data (Agarwal et al.,
2011; Bello-Orgaz et al., 2016; Ghani et al., 2019; McCormick et al., 2017). These
data are often collected from multiple sources and then combined by probabi-
listic record linkage; for example, a research team might link two social media
data sets, or link one social media data set to survey data (Al Baghal et al., 2021;
Conrad et al., 2021; Eady et al., 2019; Karlsen & Enjolras, 2016). Researchers ana-
lyzing these linked data sets often apply advanced machine learning techniques,
such as random forests, boosting (and related ensemble methods), neural net-
works, etc., whether the objective of the research project is accurate prediction
of categorical survey outcomes (e.g., indicators of survey cooperation) or regres-
sion-based prediction of continuous outcomes (e.g., Gautam & Yadav, 2014; Liu &
Singh, 2021; Wan & Gao, 2015).

There is, however, a potential pitfall in the widespread application of these
modern predictive modeling techniques to linked data sets that needs more
research attention. Although linking these types of new data sources provides
the required information for novel studies of the relationships between vari-
ables, errors in the record linkage process may distort the true relationships
between variables that are brought together from different data sources due to
mismatch errors and missed-match errors. Missed-match errors refer to the inabil-
ity to link a record in one data source to a matching record in a second data
source, ultimately preventing that record from being included in an analysis
of the relationships between variables from the two data sources. This type of
error can lead to a form of selection bias in estimates of relationships, in a set-
ting where the records with missed matches are unique in terms of the relation-
ship of interest (Little & Rubin, 2019). In the setting of linking social media data
with survey data, this type of error can arise when survey respondents do not
consent to researchers linking their survey data with the information extracted
from a Twitter handle or other identifiers (e.g., full names) used for social media
accounts (e.g., Al Baghal et al., 2020). In this paper, we do not consider the prob-
lem of missed-match errors, but we suggest future directions for research in this
area in the Discussion.

Mismatch errors, which are the primary focus of the current study, arise
when records from different data sources are incorrectly matched (see Fig-
ure 1). Several prior studies have demonstrated the attenuating effects of mis-
match errors on estimates of relationships in classical parametric regression
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modeling settings, and proposed approaches for correcting this attenuation
(Dalzell & Reiter, 2019; Han & Lahiri, 2019; Lahiri & Larsen, 2005; Neter et al.,
1965; Scheuren & Winkler, 1997, 1993; Slawski et al., 2021; Steorts et al., 2018;
Tancredi & Liseo 2015). In the setting of linking social media data with survey
data, obtaining consent from respondents to link their survey responses with
the social media content that they generate is required (Stier et al., 2020). In this
setting, mismatch errors may arise when the names provided by the consenting
survey respondents do not match with the names used for social media accounts,
the full names provided do not uniquely identify individuals, when social media
platform handles corresponding to user accounts are provided with typos that
prevent exact matching, or when consenting respondents change their platform
handles over time (Beuthner et al., 2021, Stier et al., 2020).
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Figure 1 A visual overview of the mismatch error problem. Record linkage
produces a linked file from two data sources containing predictor
variables (Source 1) and the target (or dependent) variable (Source 2),
respectively, based on a set of matching variables common to both
data sources. The resulting linked file consists of correct matches
(checkmarks) and mismatches (crosses).
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This type of “fuzzy matching” can produce record linkages where the probability
of a correct match is lower than 1 for certain records in the linked data set. This
type of error in record linkage can produce outliers in terms of relationships of
interest and may adversely alter the performance and outputs of applied pre-
dictive modeling techniques, such as variable importance, confusion matrices,
RMSE, etc. Mismatch errors may ultimately prevent the realization of the actual
predictive performance of these machine learning techniques, introducing a
need for adjustments to the predictions that correct for this problem. Addressing
the general absence of such adjustment approaches in the literature, Ben-David
et al. (2023) derived and described novel adjustment techniques for the machine
learning context based on a general mixture modeling framework (Hof & Zwin-
derman, 2015; Slawski et al., 2024). Via theoretical development and empirical
simulation studies, these authors demonstrated that the proposed adjustment
approaches can effectively improve predictions based on selected machine
learning algorithms in the presence of various levels of mismatch error.

In this paper, our goal is to apply the methodology presented by Ben-David
et al. (2023) to the specific context where 1) survey researchers are interested
in linking survey and social media data, 2) fuzzy matching in the record link-
age process is likely to introduce mismatch errors, and 3) the researchers wish
to apply machine learning techniques to study relationships of interest in the
linked data set. We evaluate the performance of this new adjustment methodol-
ogy in an application involving the use of observed Twitter activity measures
and predicted socio-demographic features of Twitter users to accurately predict
linked measures of political ideology that were collected in a designed survey,
where respondents were asked for consent to link any Twitter activity data to
their survey responses (exactly, based on Twitter handles). We aim to demon-
strate the use and importance of this new adjustment methodology to survey
researchers interested in linking new sources of social media to survey data and
ultimately applying machine learning techniques to the resulting linked data
sets. We also summarize the limitations of the current adjustment approaches
and make recommendations for future work in this area.

Methodology
An Overview of Adjustment Approaches Based on Mixture Modeling

We begin with an overview of our general approaches to adjusting modern pre-
dictive modeling algorithms for the presence of mismatch error. This paper
focuses on possible adjustment techniques for ensemble methods, including bag-
ging (or bootstrap aggregating) and random forests (distinguished from bagging
by the selection of a random subset of predictors at each step of decision tree
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construction). For brevity, we focus on a heuristic explanation of the approaches
and do not provide explicit mathematical or technical details here; interested
readers can find these details in Ben-David et al. (2023).

In general, we are interested in using an ensemble method to estimate some
general regression function p,, = E[y|x], where y corresponds to a dependent
variable of interest and x represents a vector of values on predictor variables
of interest. The new adjustment methods introduced in this paper assume that
the x variables are measured without error; we revisit this issue in the Discus-
sion section. After a record linkage process, we have values on these variables of
interest available for each subject in a study denoted by i, with i = 1, ..., n. In the
permuted linked data file that arises due to a record linkage procedure subject
to mismatch error (Figure 1), we (unfortunately) observe ¥; instead of y;, where
some fraction of the cases in the linked data file have a mismatched value on the
dependent variable y. These mismatches are the source of the attenuation in the
estimated relationships of interest defined by the regression function.

Following a mixture modeling approach, the overall distribution of the per-
muted version of y is a mix of two distributions: the conditional distribution of y
defined by the regression function for those correctly matched cases (which gets
a weight of 1 - a, where « is the probability of a mismatch error, meaning that
the weight is the probability of a correct match), and the marginal distribution of
y for the mismatched cases (without conditioning on the covariates), which gets
a weight of «. The mixture model is flexible enough to allow a unique value of a
for each case, denoted by «;.

This mixture model implies that we can write the regression function as fol-
lows (where y, is the marginal mean of the variable y):

_ _1 - o .
Hyilxi = T2, Poilxi — Toa; Py, i=1, .., 1 (1)

When analyzing real data in practice, we would first apply the analyst’s favor-
ite predictive modeling algorithm to the linked data including mismatch errors.
Given the resulting estimates of ﬂgl PRERED ﬂgn | x,> along with the sample mean
of the observed j;, we can then substitute these quantities in (1). As a result, we
can write the overall distribution of the permuted y as a function of «; alone.
Then, we can use maximum likelihood methods (or other optimization meth-
ods) to find an optimal &;” t (see Algorithm 1 in Ben-David et al., 2023). This &;” g
can then be used in (1) to obtain an improved estimate of fy, | x,. We can also sim-
ply work with the mean of the &%, 6= Yy 6% In, in (1). We refer to this as a
“mean optimal alpha” approach, which has the potential to save computational
time. This is because we can efficiently estimate &Opt, the population mean of
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the &;” ! using the mean of a small random sample of the &;” *, with size much
smaller than n.

The improvement in estimates of {4y, |x; based on this approach thus depends
on (1) 4" being a good estimate of «, (2) £, | x, being a good estimate of kg, |x,
(i.e., the regression function is specified correctly), and (3) the mixture model
being a good fit for the overall distribution of the permuted y values. We note
that this “optimal alpha” adjustment method would generally be applied after
any other predictive modeling algorithm has been used to generate initial pre-
dictions i, |x,1- - -» B, |x, for all cases in the linked data file.

Extending this idea to the more general context of the ensemble methods that
are the focus of the current study, the « values described above can play the
role of weights in the algorithms used to build the decision trees. We distinguish
between two different approaches to using weights in the construction of deci-
sion trees: adj-trees, where differential case weights are used at each step of the
tree construction process to determine optimal splits, and adj-rf, where differ-
ential case weights are used when the bootstrap samples are selected for the
ensemble method (and cases with a higher weight would have a higher probabil-
ity of selection).

Given no prior information about the mismatch probabilities, we would assign
a weight of 1 to each case and set «; = 0.5 for all cases. We can then take, say,
100 bootstrap samples from the data (this number could be modified). For each

sample, we first obtain g, |x,s- - -+ i, | x, from a decision tree, or random for-
ests, with our initial weights. We can then use methods described in Ben-David
et al. (2023) to compute the posterior probability of a mismatch given the predicted
values according to the regression function, and then update the weight of each
observation i as 1 - «;. We then re-run the decision tree, or random forests, with
these updated weights (which again either affect how the bootstrap samples are
selected or how the tree is split at each node) to compute a new set of predictions
ﬂgl EEEE ’l“l’yn‘xn We repeat this procedure, updating the weights and then
updating g, x> - -+ Ky, | x,, until there is no numerical evidence of a signifi-
cant improvement in the predictions obtained with the new weights. In the end,
we average over the &, |x,»- - » Ky, |x, obtained from the final set of bootstrap
samples and report this as the adjusted predictions ﬂgl EEERRE /lgn E

Ben-David et al. (2023) refer to this general approach as a weighting-reweight-
ing adjustment method (Algorithm 2). Figure 2 visualizes this general approach.
In theory, this adjustment procedure that assigns greater weight to cases with
higher estimated probabilities of being a correct match will yield ensemble pre-
dictions with improved accuracy; simulations reported by Ben-David et al. (2023)
provide empirical support for this concept.
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Figure 2 A visual overview of the weighting-reweighting adjustment method
in the context of ensemble methods such as bagging and random
forests.

There are, therefore, several possible combinations of approaches that one
could use when applying these ensemble methods to a linked data set. We dis-
tinguish between four methods that do not include the computation of optimal
alpha values (referred to as basic bagging, basic random forests, adj-trees, and
adj-rf) and four methods that do include the subsequent computation of opti-
mal alpha values (optimal-alpha-bagging, optimal-alpha-rf, optimal-alpha-adj-
trees, and optimal-alpha-adj-rf). In our analyses, we evaluate the performance
of these eight alternative methods, summarized below in Table 1.

Data Source

We conduct secondary analyses of a linked data set (n = 448) that includes data
from web survey respondents and aggregated measures of social media activ-
ity based on their linked Twitter profiles (we refer to Twitter, rather than X, as
this data collection occurred prior to the change in the name of that platform).
The web survey data, capturing measures of social media use, political attitudes
and knowledge, and other related topics, were collected from a random sample
of the Ipsos KnowledgePanel in January and February of 2020 (response rate =
76%); see Mneimneh (2022) for the original study design details. The record link-
age was based on actual Twitter handles for those respondents who consented to
this linkage, meaning that the record linkage was largely deterministic, exact,
and error-free.
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Given the objectives of our study, we randomly permuted the linked social
media data to simulate mismatch errors (as the actual record linkage process
used was unlikely to result in mismatch errors). As we noted in the Introduction,
these types of mismatch errors may arise for several reasons when linking sur-
vey and social media data, but this mismatch error scenario may be even more
common in other applications that involve linking survey data and administra-
tive data (e.g., Patki & Shapiro, 2023).

Table1 Alternative adjustment methods under consideration (none = no
adjustment).

Adjustment method Description

Bagging (none) This is a standard application of bootstrap aggregating
(bagging) using the original linked data and no random se-
lection of predictors at each step of the tree construction.

Random forests (none) This is a standard application of random forests similar to
bagging but including the random selection of possible
predictors at each step of the tree construction.

Adj-trees The weighting-reweighting adjustment method, starting
with default values of alpha (0.5) for all cases (and equal
weights of 1), and then proceeding iteratively with applying
weights to cases when splits are determined to construct
individual trees. Improved estimates of the regression
function are based on the mixture model.

Adj-rf Like adj-trees, but applying the weights in the selection
of the bootstrap samples (rather than in the formation of
splits).

Optimal-alpha-bagging A modification of bagging including a subsequent applica-
tion of the optimal alpha algorithm to improve adjusted
estimates based on the mixture model. Given our results
and the additional computational burden introduced by us-
ing a unique optimal alpha for each case (without apparent
benefits of this approach), we focus on the mean optimal
alpha value for all “optimal alpha” approaches.

Optimal-alpha-rf This is a modification of random forests, including the
application of the optimal alpha algorithm to improve
adjustment estimates based on the mixture model.

Optimal-alpha-adj-trees This is a modification of adj-trees to include the optimal
alpha algorithm.

Optimal-alpha-adj-rf This is a modification of adj-rf to include the optimal alpha
algorithm.
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Measures

In our analysis, we focus on applying predictive modeling where we wish to pre-
dict a dependent variable representing an ordered measure of political ideology
collected in the web survey. This question asked, “In general, do you think of
yourself as...” and provided the following response options: 1 = extremely lib-
eral; 2 =liberal; 3 = slightly liberal; 4 = moderate, middle of the road; 5 = slightly
conservative; 6 = conservative; and 7 = extremely conservative. Given the
roughly symmetric distribution of this variable among the survey respondents,
we treated the variable as a continuous outcome in our analyses. Candidate pre-
dictors of this survey measure were all derived from the linked Twitter data.
These included predictions of the person’s gender (male vs. female) and age (>45
or <=45) based on a neural network model (Liu & Singh, 2021), along with predic-
tions of gun ownership (yes or no) and political party (Democrat or Republican)
based on a random forest classifier using features of tweets and Twitter biogra-
phies. We also included as a predictor the overall number of tweets generated
by the survey respondent (based on actual Twitter activity for the linked Twitter
handle). We assume that all of these measures derived from the Twitter data are
error-free; we return to this issue in the Discussion section.

Analytic Approach

In our evaluation of the eight alternative adjustment approaches described in
Table 1, we first applied each of the eight approaches to the exactly matched
Twitter and survey data (i.e., a 0% mismatch rate), evaluating the mean squared
error (MSE) of the predictions for political ideology based on the correctly linked
data. Thisinitial analysis provided a benchmark for evaluating the success of the
adjustment methodology after varying levels of mismatch error were introduced
via random permutations (10%, 15%, ..., 35%, 40%). We then evaluated the ability
of the eight different approaches to recover this “ideal” MSE of the predictions
based on the correctly-linked data. We constructed 100 trees based on bootstrap
replicate samples for each ensemble method. We repeated these analyses 100
times and averaged the estimated MSE values across these 100 iterations.
Because ensemble methods may also be computationally expensive depend-
ing on the size of the data set and the number of predictors under consideration,
we also compared the computational times associated with executing each
adjustment procedure (based on a single run of each procedure). We provide
separate computational times for each of the two algorithms described ear-
lier, given that the use of optimal values of alpha for the weighting-reweighting
adjustment approach also requires execution of the first algorithm to identify
optimal values of alpha (possibly for each individual case). We weigh the com-
parisons of the procedures in terms of MSE based on the computational run
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times to identify an optimal adjustment procedure that is also computationally
efficient.

Results

Table 2 compares the alternative adjustment methods in terms of the average
estimated MSEs of the predictions of political ideology, averaged across the 100
iterations of each analysis and separately for different simulated mismatch rates.

Table 2  Relative performance of each adjustment procedure in terms of
average estimated MSE (across 100 iterations) of the predictions for
political ideology (best performance indicated in boldface).

Mismatch rate

Adjustment method 0% 10% 15% 20% 25% 30% 35% 40%
Bagging 1.63 1.68 1.74 1.76 1.80 1.82 1.87 1.93
Random forests 2.02 2.05 210 213 213 214 219 223
Adj-rf 1.99 2.00 2.01 2.02 2.03 2.04 2.06 2.09
Adj-trees 1.63 1.68 1.73 1.76 1.80 1.82 1.87 1.93
Optimal-alpha-bagging 164 164 168 170 174 176 1.80 1.86
Optimal-alpha-rf 2.09 2.07 2.10 2.12 2.12 2.12 2.16 2.20
Optimal-alpha-adj-rf 215 2,09 209 209 210 211 211 213

Optimal-alpha-adj-trees 164 164 168 170 174 176 1.80 1.86

The performance of each procedure when all matches are correct (i.e., when
analyzing the original linked Twitter data) can be found in the Mismatch rate
column of Table 2 labeled “0%.” In this setting, basic bagging and adj-trees have
the best predictive performance (MSE = 1.63), and we use this as a benchmark
to evaluate the performance of the alternative adjustment procedures when
mismatches are introduced in the linked data. Examining the other columns of
Table 2 corresponding to increasing mismatch rates (introduced by randomly
permuting the values of the dependent variable for the indicated percentage
of cases in the linked data set), we observe that the optimal-alpha-bagging and
optimal-alpha-adj-trees approaches yield predictions that are consistently clos-
est to the benchmark performance, with larger deviations from the benchmark
as mismatch rates increase (as would be expected).

Given the results in Table 2, we next consider the computational run times
associated with each procedure. Table 3 presents run times in seconds for the
various components of the adjustment procedures.
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Table 3 Run times in seconds for the various components of the adjustment

procedures.
Optimal Mean Random Adj-trees Adj-rf
alpha optimal alpha Bagging forests
6.349 0.864 0.502 0.016 36.208 0.001

We note that a particular adjustment procedure may introduce the run times
associated with each of the two algorithms. For example, the optimal-alpha-adj-
trees approach requires subsequent execution of the optimal-alpha algorithm
(6.349 seconds) following the adj-trees algorithm (36.208 seconds). Table 2 shows
that the adj-trees approach tends to be computationally expensive. Combining
these results with those in Table 2, it therefore seems that the optimal-alpha-
bagging approach has the best overall performance in the setting considered
here.

We have included the R code needed to carry out these analyses in the GitHub
repository https://github.com/ehb2126/Data-Analysis-after-Record-Linkage.

Discussion
Summary of Contributions

Mismatch errors are common in probabilistic record linkage procedures. In the
specific setting of linking survey data with social media data, these errors can
arise for several reasons, including names provided by the consenting survey
respondents that do not match with the names used for social media accounts,
full names provided by consenting survey respondents that do not uniquely
identify individuals, social media platform handles corresponding to user
accounts containing typos that prevent exact matching, or consenting respon-
dents changing their platform handles over time (Stier et al., 2020; Beuthner et
al., 2021). At the same time, machine learning methods are becoming increas-
ingly popular for studying complex relationships in the analyses of linked data
sets from different sources (e.g., social media and survey data, or survey data
and administrative data).

Much of the record linkage literature has focused on adjustment procedures
for mismatch errors in classical parametric regression modeling. Recently, Ben-
David et al. (2023) addressed an important gap in this area, focusing on opti-
mal methods for adjusting for mismatch errors when applying modern predic-
tion tools (specifically bagging and random forests) and describing alternative
adjustment procedures for ensemble prediction methods within a mixture mod-
eling framework. This paper applies these new adjustment methods to a case
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study linking survey data with social media (specifically Twitter/X) data, and
demonstrates that these methods improve the performance of modern predic-
tive modeling methods that were applied to this linked data set under various
simulated rates of mismatch error.

We find that in the presence of these various rates of mismatch error, an
adjustment methodology that combines bagging with optimal estimation of the
probability of correct linkage for each case tends to have the best predictive per-
formance, from the perspectives of both MSE of predictions and computational
runtime. This procedure is straightforward to implement using available soft-
ware, and we have implemented it using the R software (see the GitHub reposi-
tory https://github.com/ehb2126/Data-Analysis-after-Record-Linkage).

Limitations and Directions for Future Research

We note that studies linking social media data with survey data generally use
exact platform handles or other types of unique identifying information in the
record linkage, and do not attempt the linkage at all if respondents do not con-
sent to provide these handles or other user account information, such as full
names (e.g., Al Baghal et al., 2021). This introduces the possibility of missed-
match errors, a type of selection bias that could affect the performance of pre-
dictive modeling methods. Selection bias due to missed-match errors could
affect machine learning algorithms that are focused on prediction in three ways
(Quifionero-Candela et al., 2022):

1) covariate shift, where the distribution of the predictors x would differ
across successfully linked cases and missed matches;

2) label shift, where the distribution of the dependent variable y would dif-
fer across successfully linked cases and missed matches; or

3) concept drift, where the distribution of y conditional on x would differ
across successfully linked cases and missed matches, and the classifica-
tion rule would depend on the successfully linked cases.

If we assume that an indicator of successful linkage is independent of y when
conditioning on x, then concept drift does not hold, but this is a strong assumption
that needs to be evaluated in future simulation studies. Adjustment approaches
accounting for these types of missed match errors and allowing for violations
of this assumption are still needed in the machine learning context; we only
focused on mismatch errors in the current application.
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The new methodologies illustrated in this paper also assume that the mis-
match errors occur completely at random, using the terminology of Little and
Rubin (2019) in the missing data context. This strong assumption may not hold in
real applications, since the probability of a mismatch error may at least depend
on the values of observed covariates. We designed an additional simulation
study to evaluate the performance of the methodology in a setting where the
probability of a mismatch depends on the value of the covariate that had the
strongest relationship with political ideology in a linear regression model fitted
to the political ideology outcome in the original data: the binary prediction of
preferring the Republican party (1 = yes, 0 = no). The supplemental materials
describe the design of this additional simulation study and the corresponding
results.

Summarizing those results here, we find that the methods identified as hav-
ing the best performance in the “mismatch completely at random” scenario
have equally strong performance in this informative mismatch error scenario.
Despite these positive results, additional theoretical development is still needed
to understand why the current methodologies also seem to work well in this
informative mismatch error setting; they are presently designed for mismatches
occurring completely at random. Future research on this methodology should
also aim to accommodate more complicated types of informative mismatch
error scenarios.

We also did not quantify variable importance in our application of the adjust-
ment methods. We have not yet developed a procedure for identifying the most
important predictors that emerge from one of these adjustment approaches, and
work on the development of adjusted variable importance measures is ongoing.
This is another worthwhile direction for future research.

We also note that we assumed that all of the social media measures were of
sufficiently high quality. These variables computed from the Twitter/X data
were either predictions of user characteristics or counts of tweets that may
themselves be subject to prediction error and sampling error. Future applica-
tions involving predictive modeling of linked survey and social media data need
to carefully consider potential sources of error in derived variables from social
media activity and ensure that these errors are either corrected, adjusted for,
or transparently described in written summaries of the modeling applications.

Finally, while the adjustment approaches in this paper were evaluated in the
context of mismatch error in linked social media and survey data, we antici-
pate that they will also have widespread application in other substantive set-
tings where probabilistic record linkage is used (e.g., Patki & Shapiro, 2023) and
researchers are interested in predictions based on machine learning procedures.
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Appendix

Improved Ensemble Predictive Modeling Techniques for Linked Social Media
and Survey Data Sets Subject to Mismatch Error

Simulation Study of Informative Mismatch Error

To compare the MSE of methods where mismatches correlate with a given pre-
dictor x (in this case, the binary prediction of preferring the Republican party)
versus ones where the mismatches occur completely at random, we need to con-
sider the average percentage of cases where x =1 is swapped with x =0 when mis-
matches are introduced completely at random. Table Al below shows this aver-
age for various mismatch rates using the same simulation approach described
in the paper, with each average computed numerically based on 100,000 replica-

tions.

Table A1 x=1 permutation rates introduced by mismatches occurring
completely at random.

Percentage of mismatches Average percentage of x =1
(completely at random) swapped with x=0
10% 10%
15% 17%
20% 21%
25% 23%
35% 31%
40% 35%

For this supplemental simulation study, we selected probabilities of changing
values from x = 1 to x = 0 that were consistent with the table above, to ensure that
overall mismatch rates were similar to those already evaluated in the paper.
Table A2 below shows the MSEs of bagging, random forests, and the new
adjustment methods for these informative mismatch error scenarios. We used
the same simulation approach described in the paper, but allowed the probabil-
ity of a mismatch error to change for cases with x = 1. Each column of Table A2
below shows the MSEs of these methods in a different mismatch scenario, where
P(x’=0|x =1) varies according to percentages comparable with the “completely
at random” mismatch rates given in Table Al above. In addition, the probability
of a mismatch error was set to be larger for cases with x = 1: P(x’ =1 |x =0) =
(71/377) x P(x’ =0 | x = 1), which shows how the covariate was related to the proba-

bility of mismatch error. The MSEs in the table are averaged over 250 iterations.
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Table A2 Informative mismatch error simulation results (MSEs).

P(x’=0 | x=1) 0 0.1 0.17 0.21 0.23 0.25 0.31 0.35
P(x’=1 | x=0) 0 0.019 0.032 0.040 0.043 0.047 0.058 0.066
Bagging 1.63 1.64 1.66 1.67 1.69 1.69 1.74 1.76
Random forests 2.02 2.05 2.08 2.10 2.11 2.12 2.17 2.20
Adj-rf 1.99 1.99 2.00 2.00 2.01 2.01 2.03 2.05
Adj-trees 1.63 1.64 1.66 1.67 1.69 1.69 1.74 1.76
Optimal-bagging 1.64 1.60 1.59 1.59 1.60 1.60 1.63 1.65
Optimal-rf 2.09 2.08 2.09 2.10 2.10 2.11 2.15 2.17
Optimal-adj-rf 2.15 2.12 2.10 2.09 2.09 2.08 2.08 2.09

Optimal-adj-trees 1.64 1.60 1.59 1.59 1.60 1.60 1.63 1.65

Overall, we see performance quite similar to that in the mismatch completely
at random scenario that was analyzed in the paper. The adj-trees, optimal-bag-
ging, and optimal-adj-trees approaches all tend to have the best performance,
and while the MSEs increase somewhat as the “conditional” mismatch proba-
bilities increase, these methods consistently have the best performance in this
scenario.
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