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Abstract
Modern predictive modeling tools, such as random forests (and related ensemble meth-
ods), have become almost ubiquitous in research applications involving innovative 
combinations of survey methodology and data science. However, an important poten-
tial flaw in the widespread application of these methods has not received sufficient re-
search attention to date. Researchers at the junction of computer and survey science 
frequently leverage linked data sets to study relationships between variables, where the 
techniques used to link two (or more) data sets may be probabilistic and non-determin-
istic in nature. If frequent mismatch errors occur when linking two (or more) data sets, 
the commonly desired outputs of predictive modeling tools describing relationships be-
tween variables in the linked data sets (e.g., variable importance, confusion matrices, 
RMSE, etc.) may be negatively affected, and the true predictive performance of these 
tools may not be realized. We demonstrate a new methodology based on mixture model-
ing that is designed to adjust modern predictive modeling tools for the presence of mis-
match errors in a linked data set. We evaluate the performance of this new methodology 
in an application involving the use of observed Twitter/X activity measures and predict-
ed socio-demographic features of Twitter/X users to accurately predict linked measures 
of political ideology that were collected in a designed survey, where respondents were 
asked for consent to link any Twitter/X activity data to their survey responses (exactly, 
based on Twitter/X handles). We find that the new methodology, which we have imple-
mented in R, is able to largely recover results that would have been seen prior to the 
introduction of mismatch errors in the linked data set.
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In recent years, social media platforms such as Instagram and Twitter/X have 
provided social scientists with a wealth of user-content data (Agarwal et al., 
2011; Bello-Orgaz et al., 2016; Ghani et al., 2019; McCormick et al., 2017). These 
data are often collected from multiple sources and then combined by probabi-
listic record linkage; for example, a research team might link two social media 
data sets, or link one social media data set to survey data (Al Baghal et al., 2021; 
Conrad et al., 2021; Eady et al., 2019; Karlsen & Enjolras, 2016). Researchers ana-
lyzing these linked data sets often apply advanced machine learning techniques, 
such as random forests, boosting (and related ensemble methods), neural net-
works, etc., whether the objective of the research project is accurate prediction 
of categorical survey outcomes (e.g., indicators of survey cooperation) or regres-
sion-based prediction of continuous outcomes (e.g., Gautam & Yadav, 2014; Liu & 
Singh, 2021; Wan & Gao, 2015).

There is, however, a potential pitfall in the widespread application of these 
modern predictive modeling techniques to linked data sets that needs more 
research attention. Although linking these types of new data sources provides 
the required information for novel studies of the relationships between vari-
ables, errors in the record linkage process may distort the true relationships 
between variables that are brought together from different data sources due to 
mismatch errors and missed-match errors. Missed-match errors refer to the inabil-
ity to link a record in one data source to a matching record in a second data 
source, ultimately preventing that record from being included in an analysis 
of the relationships between variables from the two data sources. This type of 
error can lead to a form of selection bias in estimates of relationships, in a set-
ting where the records with missed matches are unique in terms of the relation-
ship of interest (Little & Rubin, 2019). In the setting of linking social media data 
with survey data, this type of error can arise when survey respondents do not 
consent to researchers linking their survey data with the information extracted 
from a Twitter handle or other identifiers (e.g., full names) used for social media 
accounts (e.g., Al Baghal et al., 2020). In this paper, we do not consider the prob-
lem of missed-match errors, but we suggest future directions for research in this 
area in the Discussion. 

Mismatch errors, which are the primary focus of the current study, arise 
when records from different data sources are incorrectly matched (see Fig-
ure 1). Several prior studies have demonstrated the attenuating effects of mis-
match errors on estimates of relationships in classical parametric regression 
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 modeling settings, and proposed approaches for correcting this attenuation 
(Dalzell & Reiter, 2019; Han & Lahiri, 2019; Lahiri & Larsen, 2005; Neter et al., 
1965; Scheuren & Winkler, 1997, 1993; Slawski et al., 2021; Steorts et al., 2018; 
Tancredi & Liseo 2015). In the setting of linking social media data with survey 
data, obtaining consent from respondents to link their survey responses with 
the social media content that they generate is required (Stier et al., 2020). In this 
setting, mismatch errors may arise when the names provided by the consenting 
survey respondents do not match with the names used for social media accounts, 
the full names provided do not uniquely identify individuals, when social media 
platform handles corresponding to user accounts are provided with typos that 
prevent exact matching, or when consenting respondents change their platform 
handles over time (Beuthner et al., 2021; Stier et al., 2020). 

Figure 1  A visual overview of the mismatch error problem. Record linkage 
produces a linked file from two data sources containing predictor 
variables (Source 1) and the target (or dependent) variable (Source 2), 
respectively, based on a set of matching variables common to both 
data sources. The resulting linked file consists of correct matches 
(checkmarks) and mismatches (crosses). 
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This type of “fuzzy matching” can produce record linkages where the probability 
of a correct match is lower than 1 for certain records in the linked data set. This 
type of error in record linkage can produce outliers in terms of relationships of 
interest and may adversely alter the performance and outputs of applied pre-
dictive modeling techniques, such as variable importance, confusion matrices, 
RMSE, etc. Mismatch errors may ultimately prevent the realization of the actual 
predictive performance of these machine learning techniques, introducing a 
need for adjustments to the predictions that correct for this problem. Addressing 
the general absence of such adjustment approaches in the literature, Ben-David 
et al. (2023) derived and described novel adjustment techniques for the machine 
learning context based on a general mixture modeling framework (Hof & Zwin-
derman, 2015; Slawski et al., 2024). Via theoretical development and empirical 
simulation studies, these authors demonstrated that the proposed adjustment 
approaches can effectively improve predictions based on selected machine 
learning algorithms in the presence of various levels of mismatch error. 

In this paper, our goal is to apply the methodology presented by Ben-David 
et al. (2023) to the specific context where 1) survey researchers are interested 
in linking survey and social media data, 2) fuzzy matching in the record link-
age process is likely to introduce mismatch errors, and 3) the researchers wish 
to apply machine learning techniques to study relationships of interest in the 
linked data set. We evaluate the performance of this new adjustment methodol-
ogy in an application involving the use of observed Twitter activity measures 
and predicted socio-demographic features of Twitter users to accurately predict 
linked measures of political ideology that were collected in a designed survey, 
where respondents were asked for consent to link any Twitter activity data to 
their survey responses (exactly, based on Twitter handles). We aim to demon-
strate the use and importance of this new adjustment methodology to survey 
researchers interested in linking new sources of social media to survey data and 
ultimately applying machine learning techniques to the resulting linked data 
sets. We also summarize the limitations of the current adjustment approaches 
and make recommendations for future work in this area.

Methodology
An Overview of Adjustment Approaches Based on Mixture Modeling

We begin with an overview of our general approaches to adjusting modern pre-
dictive modeling algorithms for the presence of mismatch error. This paper 
focuses on possible adjustment techniques for ensemble methods, including bag-
ging (or bootstrap aggregating) and random forests (distinguished from bagging 
by the selection of a random subset of predictors at each step of decision tree 
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construction). For brevity, we focus on a heuristic explanation of the approaches 
and do not provide explicit mathematical or technical details here; interested 
readers can find these details in Ben-David et al. (2023).

In general, we are interested in using an ensemble method to estimate some 
general regression function µ y | x = E [y | x], where y corresponds to a dependent 
variable of interest and x represents a vector of values on predictor variables 
of interest. The new adjustment methods introduced in this paper assume that 
the x variables are measured without error; we revisit this issue in the Discus-
sion section. After a record linkage process, we have values on these variables of 
interest available for each subject in a study denoted by i, with i = 1, …, n. In the 
permuted linked data file that arises due to a record linkage procedure subject 
to mismatch error (Figure 1), we (unfortunately) observe ỹi instead of yi, where 
some fraction of the cases in the linked data file have a mismatched value on the 
dependent variable y. These mismatches are the source of the attenuation in the 
estimated relationships of interest defined by the regression function. 

Following a mixture modeling approach, the overall distribution of the per-
muted version of y is a mix of two distributions: the conditional distribution of y 
defined by the regression function for those correctly matched cases (which gets 
a weight of 1 – α, where α is the probability of a mismatch error, meaning that 
the weight is the probability of a correct match), and the marginal distribution of 
y for the mismatched cases (without conditioning on the covariates), which gets 
a weight of α. The mixture model is flexible enough to allow a unique value of α 
for each case, denoted by αi.

This mixture model implies that we can write the regression function as fol-
lows (where µ y is the marginal mean of the variable y):

, i = 1, …, n (1)

When analyzing real data in practice, we would first apply the analyst’s favor-
ite predictive modeling algorithm to the linked data including mismatch errors. 
Given the resulting estimates of , along with the sample mean 
of the observed ỹi, we can then substitute these quantities in (1). As a result, we 
can write the overall distribution of the permuted y as a function of αi alone. 
Then, we can use maximum likelihood methods (or other optimization meth-
ods) to find an optimal  (see Algorithm 1 in Ben-David et al., 2023). This 
can then be used in (1) to obtain an improved estimate of . We can also sim-
ply work with the mean of the , /n, in (1). We refer to this as a 
“mean optimal alpha” approach, which has the potential to save computational 
time. This is because we can efficiently estimate , the population mean of 
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the , using the mean of a small random sample of the , with size much 
smaller than n.  

The improvement in estimates of  based on this approach thus depends 
on (1)  being a good estimate of α, (2)  being a good estimate of  
(i.e., the regression function is specified correctly), and (3) the mixture model 
being a good fit for the overall distribution of the permuted y values. We note 
that this “optimal alpha” adjustment method would generally be applied after 
any other predictive modeling algorithm has been used to generate initial pre-
dictions  for all cases in the linked data file.

Extending this idea to the more general context of the ensemble methods that 
are the focus of the current study, the α values described above can play the 
role of weights in the algorithms used to build the decision trees. We distinguish 
between two different approaches to using weights in the construction of deci-
sion trees: adj-trees, where differential case weights are used at each step of the 
tree construction process to determine optimal splits, and adj-rf, where differ-
ential case weights are used when the bootstrap samples are selected for the 
ensemble method (and cases with a higher weight would have a higher probabil-
ity of selection). 

Given no prior information about the mismatch probabilities, we would assign 
a weight of 1 to each case and set αi = 0.5 for all cases. We can then take, say,  
100 bootstrap samples from the data (this number could be modified). For each 
sample, we first obtain  from a decision tree, or random for-
ests, with our initial weights. We can then use methods described in Ben-David 
et al. (2023) to compute the posterior probability of a mismatch given the predicted 
values according to the regression function, and then update the weight of each 
observation i as 1 – αi . We then re-run the decision tree, or random forests, with 
these updated weights (which again either affect how the bootstrap samples are 
selected or how the tree is split at each node) to compute a new set of predictions 

. We repeat this procedure, updating the weights and then 
updating , until there is no numerical evidence of a signifi-
cant improvement in the predictions obtained with the new weights. In the end, 
we average over the  obtained from the final set of bootstrap 
samples and report this as the adjusted predictions .

Ben-David et al. (2023) refer to this general approach as a weighting-reweight-
ing adjustment method (Algorithm 2). Figure 2 visualizes this general approach. 
In theory, this adjustment procedure that assigns greater weight to cases with 
higher estimated probabilities of being a correct match will yield ensemble pre-
dictions with improved accuracy; simulations reported by Ben-David et al. (2023) 
provide empirical support for this concept.
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Figure 2 A visual overview of the weighting-reweighting adjustment method 
in the context of ensemble methods such as bagging and random 
forests.

There are, therefore, several possible combinations of approaches that one 
could use when applying these ensemble methods to a linked data set. We dis-
tinguish between four methods that do not include the computation of optimal 
alpha values (referred to as basic bagging, basic random forests, adj-trees, and 
adj-rf) and four methods that do include the subsequent computation of opti-
mal alpha values (optimal-alpha-bagging, optimal-alpha-rf, optimal-alpha-adj-
trees, and optimal-alpha-adj-rf). In our analyses, we evaluate the performance 
of these eight alternative methods, summarized below in Table 1.

Data Source

We conduct secondary analyses of a linked data set (n = 448) that includes data 
from web survey respondents and aggregated measures of social media activ-
ity based on their linked Twitter profiles (we refer to Twitter, rather than X, as 
this data collection occurred prior to the change in the name of that platform). 
The web survey data, capturing measures of social media use, political attitudes 
and knowledge, and other related topics, were collected from a random sample 
of the Ipsos KnowledgePanel in January and February of 2020 (response rate = 
76%); see Mneimneh (2022) for the original study design details. The record link-
age was based on actual Twitter handles for those respondents who consented to 
this linkage, meaning that the record linkage was largely deterministic, exact, 
and error-free. 
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Given the objectives of our study, we randomly permuted the linked social 
media data to simulate mismatch errors (as the actual record linkage process 
used was unlikely to result in mismatch errors). As we noted in the Introduction, 
these types of mismatch errors may arise for several reasons when linking sur-
vey and social media data, but this mismatch error scenario may be even more 
common in other applications that involve linking survey data and administra-
tive data (e.g., Patki & Shapiro, 2023).

Table 1 Alternative adjustment methods under consideration (none = no 
adjustment).

Adjustment method Description

Bagging (none) This is a standard application of bootstrap aggregating 
(bagging) using the original linked data and no random se-
lection of predictors at each step of the tree construction.

Random forests (none) This is a standard application of random forests similar to 
bagging but including the random selection of possible 
predictors at each step of the tree construction.

Adj-trees The weighting-reweighting adjustment method, starting 
with default values of alpha (0.5) for all cases (and equal 
weights of 1), and then proceeding iteratively with applying 
weights to cases when splits are determined to construct 
individual trees. Improved estimates of the regression 
function are based on the mixture model.

Adj-rf Like adj-trees, but applying the weights in the selection 
of the bootstrap samples (rather than in the formation of 
splits).

Optimal-alpha-bagging A modification of bagging including a subsequent applica-
tion of the optimal alpha algorithm to improve adjusted 
estimates based on the mixture model. Given our results 
and the additional computational burden introduced by us-
ing a unique optimal alpha for each case (without apparent 
benefits of this approach), we focus on the mean optimal 
alpha value for all “optimal alpha” approaches.

Optimal-alpha-rf This is a modification of random forests, including the 
 application of the optimal alpha algorithm to improve 
adjustment estimates based on the mixture model.

Optimal-alpha-adj-trees This is a modification of adj-trees to include the optimal 
alpha algorithm.

Optimal-alpha-adj-rf This is a modification of adj-rf to include the optimal alpha 
algorithm.
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Measures

In our analysis, we focus on applying predictive modeling where we wish to pre-
dict a dependent variable representing an ordered measure of political ideology 
collected in the web survey. This question asked, “In general, do you think of 
yourself as…” and provided the following response options: 1 = extremely lib-
eral; 2 = liberal; 3 = slightly liberal; 4 = moderate, middle of the road; 5 = slightly 
conservative; 6 = conservative; and 7 = extremely conservative. Given the 
roughly symmetric distribution of this variable among the survey respondents, 
we treated the variable as a continuous outcome in our analyses. Candidate pre-
dictors of this survey measure were all derived from the linked Twitter data. 
These included predictions of the person’s gender (male vs. female) and age (>45 
or <= 45) based on a neural network model (Liu & Singh, 2021), along with predic-
tions of gun ownership (yes or no) and political party (Democrat or Republican) 
based on a random forest classifier using features of tweets and Twitter biogra-
phies. We also included as a predictor the overall number of tweets generated 
by the survey respondent (based on actual Twitter activity for the linked Twitter 
handle). We assume that all of these measures derived from the Twitter data are 
error-free; we return to this issue in the Discussion section.

Analytic Approach

In our evaluation of the eight alternative adjustment approaches described in 
Table 1, we first applied each of the eight approaches to the exactly matched 
Twitter and survey data (i.e., a 0% mismatch rate), evaluating the mean squared 
error (MSE) of the predictions for political ideology based on the correctly linked 
data. This initial analysis provided a benchmark for evaluating the success of the 
adjustment methodology after varying levels of mismatch error were introduced 
via random permutations (10%, 15%, …, 35%, 40%). We then evaluated the ability 
of the eight different approaches to recover this “ideal” MSE of the predictions 
based on the correctly-linked data. We constructed 100 trees based on bootstrap 
replicate samples for each ensemble method. We repeated these analyses 100 
times and averaged the estimated MSE values across these 100 iterations. 

Because ensemble methods may also be computationally expensive depend-
ing on the size of the data set and the number of predictors under consideration, 
we also compared the computational times associated with executing each 
adjustment procedure (based on a single run of each procedure). We provide 
separate computational times for each of the two algorithms described ear-
lier, given that the use of optimal values of alpha for the weighting-reweighting 
adjustment approach also requires execution of the first algorithm to identify 
optimal values of alpha (possibly for each individual case). We weigh the com-
parisons of the procedures in terms of MSE based on the computational run 
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times to identify an optimal adjustment procedure that is also computationally 
efficient.

Results
Table 2 compares the alternative adjustment methods in terms of the average 
estimated MSEs of the predictions of political ideology, averaged across the 100 
iterations of each analysis and separately for different simulated mismatch rates.

Table 2 Relative performance of each adjustment procedure in terms of 
average estimated MSE (across 100 iterations) of the predictions for 
political ideology (best performance indicated in boldface).

Mismatch rate

Adjustment method 0% 10% 15% 20% 25% 30% 35% 40%

Bagging 1.63 1.68 1.74 1.76 1.80 1.82 1.87 1.93
Random forests 2.02 2.05 2.10 2.13 2.13 2.14 2.19 2.23
Adj-rf        1.99 2.00 2.01 2.02 2.03 2.04 2.06 2.09
Adj-trees 1.63 1.68 1.73 1.76 1.80 1.82 1.87 1.93
Optimal-alpha-bagging 1.64 1.64 1.68 1.70 1.74 1.76 1.80 1.86
Optimal-alpha-rf 2.09 2.07 2.10 2.12 2.12 2.12 2.16 2.20
Optimal-alpha-adj-rf 2.15 2.09 2.09 2.09 2.10 2.11 2.11 2.13
Optimal-alpha-adj-trees 1.64 1.64 1.68 1.70 1.74 1.76 1.80 1.86

The performance of each procedure when all matches are correct (i.e., when 
analyzing the original linked Twitter data) can be found in the Mismatch rate 
column of Table 2 labeled “0%.” In this setting, basic bagging and adj-trees have 
the best predictive performance (MSE = 1.63), and we use this as a benchmark 
to evaluate the performance of the alternative adjustment procedures when 
mismatches are introduced in the linked data. Examining the other columns of 
Table 2 corresponding to increasing mismatch rates (introduced by randomly 
permuting the values of the dependent variable for the indicated percentage 
of cases in the linked data set), we observe that the optimal-alpha-bagging and 
optimal-alpha-adj-trees approaches yield predictions that are consistently clos-
est to the benchmark performance, with larger deviations from the benchmark 
as mismatch rates increase (as would be expected).

Given the results in Table 2, we next consider the computational run times 
associated with each procedure. Table 3 presents run times in seconds for the 
various components of the adjustment procedures.
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Table 3 Run times in seconds for the various components of the adjustment 
procedures.

Optimal  
alpha

Mean  
optimal alpha

 
Bagging

Random  
forests

Adj-trees Adj-rf

6.349 0.864 0.502 0.016 36.208 0.001

We note that a particular adjustment procedure may introduce the run times 
associated with each of the two algorithms. For example, the optimal-alpha-adj-
trees approach requires subsequent execution of the optimal-alpha algorithm 
(6.349 seconds) following the adj-trees algorithm (36.208 seconds). Table 2 shows 
that the adj-trees approach tends to be computationally expensive. Combining 
these results with those in Table 2, it therefore seems that the optimal-alpha-
bagging approach has the best overall performance in the setting considered 
here. 

We have included the R code needed to carry out these analyses in the GitHub 
repository https://github.com/ehb2126/Data-Analysis-after-Record-Linkage.

Discussion
Summary of Contributions

Mismatch errors are common in probabilistic record linkage procedures. In the 
specific setting of linking survey data with social media data, these errors can 
arise for several reasons, including names provided by the consenting survey 
respondents that do not match with the names used for social media accounts, 
full names provided by consenting survey respondents that do not uniquely 
identify individuals, social media platform handles corresponding to user 
accounts containing typos that prevent exact matching, or consenting respon-
dents changing their platform handles over time (Stier et al., 2020; Beuthner et 
al., 2021). At the same time, machine learning methods are becoming increas-
ingly popular for studying complex relationships in the analyses of linked data 
sets from different sources (e.g., social media and survey data, or survey data 
and administrative data). 

Much of the record linkage literature has focused on adjustment procedures 
for mismatch errors in classical parametric regression modeling. Recently, Ben-
David et al. (2023) addressed an important gap in this area, focusing on opti-
mal methods for adjusting for mismatch errors when applying modern predic-
tion tools (specifically bagging and random forests) and describing alternative 
adjustment procedures for ensemble prediction methods within a mixture mod-
eling framework. This paper applies these new adjustment methods to a case 

https://github.com/ehb2126/Data-Analysis-after-Record-Linkage
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study linking survey data with social media (specifically Twitter/X) data, and 
demonstrates that these methods improve the performance of modern predic-
tive modeling methods that were applied to this linked data set under various 
simulated rates of mismatch error. 

We find that in the presence of these various rates of mismatch error, an 
adjustment methodology that combines bagging with optimal estimation of the 
probability of correct linkage for each case tends to have the best predictive per-
formance, from the perspectives of both MSE of predictions and computational 
runtime. This procedure is straightforward to implement using available soft-
ware, and we have implemented it using the R software (see the GitHub reposi-
tory https://github.com/ehb2126/Data-Analysis-after-Record-Linkage).

Limitations and Directions for Future Research

We note that studies linking social media data with survey data generally use 
exact platform handles or other types of unique identifying information in the 
record linkage, and do not attempt the linkage at all if respondents do not con-
sent to provide these handles or other user account information, such as full 
names (e.g., Al Baghal et al., 2021). This introduces the possibility of missed-
match errors, a type of selection bias that could affect the performance of pre-
dictive modeling methods. Selection bias due to missed-match errors could 
affect machine learning algorithms that are focused on prediction in three ways 
(Quiñonero-Candela et al., 2022): 

1) covariate shift, where the distribution of the predictors x would differ 
across successfully linked cases and missed matches; 

2) label shift, where the distribution of the dependent variable y would dif-
fer across successfully linked cases and missed matches; or 

3) concept drift, where the distribution of y conditional on x would differ 
across successfully linked cases and missed matches, and the classifica-
tion rule would depend on the successfully linked cases. 

If we assume that an indicator of successful linkage is independent of y when 
conditioning on x, then concept drift does not hold, but this is a strong assumption 
that needs to be evaluated in future simulation studies. Adjustment approaches 
accounting for these types of missed match errors and allowing for violations 
of this assumption are still needed in the machine learning context; we only 
focused on mismatch errors in the current application. 
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The new methodologies illustrated in this paper also assume that the mis-
match errors occur completely at random, using the terminology of Little and 
Rubin (2019) in the missing data context. This strong assumption may not hold in 
real applications, since the probability of a mismatch error may at least depend 
on the values of observed covariates. We designed an additional simulation 
study to evaluate the performance of the methodology in a setting where the 
probability of a mismatch depends on the value of the covariate that had the 
strongest relationship with political ideology in a linear regression model fitted 
to the political ideology outcome in the original data: the binary prediction of 
preferring the Republican party (1 = yes, 0 = no). The supplemental materials 
describe the design of this additional simulation study and the corresponding 
results. 

Summarizing those results here, we find that the methods identified as hav-
ing the best performance in the “mismatch completely at random” scenario 
have equally strong performance in this informative mismatch error scenario. 
Despite these positive results, additional theoretical development is still needed 
to understand why the current methodologies also seem to work well in this 
informative mismatch error setting; they are presently designed for mismatches 
occurring completely at random. Future research on this methodology should 
also aim to accommodate more complicated types of informative mismatch 
error scenarios. 

We also did not quantify variable importance in our application of the adjust-
ment methods. We have not yet developed a procedure for identifying the most 
important predictors that emerge from one of these adjustment approaches, and 
work on the development of adjusted variable importance measures is ongoing. 
This is another worthwhile direction for future research.

We also note that we assumed that all of the social media measures were of 
sufficiently high quality. These variables computed from the Twitter/X data 
were either predictions of user characteristics or counts of tweets that may 
themselves be subject to prediction error and sampling error. Future applica-
tions involving predictive modeling of linked survey and social media data need 
to carefully consider potential sources of error in derived variables from social 
media activity and ensure that these errors are either corrected, adjusted for, 
or transparently described in written summaries of the modeling applications. 

Finally, while the adjustment approaches in this paper were evaluated in the 
context of mismatch error in linked social media and survey data, we antici-
pate that they will also have widespread application in other substantive set-
tings where probabilistic record linkage is used (e.g., Patki & Shapiro, 2023) and 
researchers are interested in predictions based on machine learning procedures. 
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Appendix
Improved Ensemble Predictive Modeling Techniques for Linked Social Media 
and Survey Data Sets Subject to Mismatch Error

Simulation Study of Informative Mismatch Error

To compare the MSE of methods where mismatches correlate with a given pre-
dictor x (in this case, the binary prediction of preferring the Republican party) 
versus ones where the mismatches occur completely at random, we need to con-
sider the average percentage of cases where x = 1 is swapped with x = 0 when mis-
matches are introduced completely at random. Table A1 below shows this aver-
age for various mismatch rates using the same simulation approach described 
in the paper, with each average computed numerically based on 100,000 replica-
tions.

Table A1 x = 1 permutation rates introduced by mismatches occurring 
completely at random.

Percentage of mismatches 
(completely at random)

Average percentage of x = 1  
swapped with x = 0

10% 10%
15% 17%
20% 21%
25% 23%
35% 31%
40% 35%

For this supplemental simulation study, we selected probabilities of changing 
values from x = 1 to x = 0 that were consistent with the table above, to ensure that 
overall mismatch rates were similar to those already evaluated in the paper. 

Table A2 below shows the MSEs of bagging, random forests, and the new 
adjustment methods for these informative mismatch error scenarios. We used 
the same simulation approach described in the paper, but allowed the probabil-
ity of a mismatch error to change for cases with x = 1. Each column of Table A2 
below shows the MSEs of these methods in a different mismatch scenario, where 
P(x’ = 0 | x = 1) varies according to percentages comparable with the “completely 
at random” mismatch rates given in Table A1 above. In addition, the probability 
of a mismatch error was set to be larger for cases with x = 1: P(x’ = 1 | x = 0) = 
(71/377) × P(x’ = 0 | x = 1), which shows how the covariate was related to the proba-
bility of mismatch error. The MSEs in the table are averaged over 250 iterations.
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Table A2 Informative mismatch error simulation results (MSEs).

P(x’ = 0 | x = 1) 0 0.1 0.17 0.21 0.23 0.25 0.31 0.35

P(x’ = 1 | x = 0) 0   0.019 0.032 0.040 0.043 0.047 0.058 0.066

Bagging 1.63 1.64 1.66 1.67 1.69 1.69 1.74 1.76
Random forests 2.02 2.05 2.08 2.10 2.11 2.12 2.17 2.20
Adj-rf 1.99 1.99 2.00 2.00 2.01 2.01 2.03 2.05
Adj-trees 1.63 1.64 1.66 1.67 1.69 1.69 1.74 1.76
Optimal-bagging 1.64 1.60 1.59 1.59 1.60 1.60 1.63 1.65
Optimal-rf 2.09 2.08 2.09 2.10 2.10 2.11 2.15 2.17
Optimal-adj-rf 2.15 2.12 2.10 2.09 2.09 2.08 2.08 2.09
Optimal-adj-trees 1.64 1.60 1.59 1.59 1.60 1.60 1.63 1.65

Overall, we see performance quite similar to that in the mismatch completely 
at random scenario that was analyzed in the paper. The adj-trees, optimal-bag-
ging, and optimal-adj-trees approaches all tend to have the best performance, 
and while the MSEs increase somewhat as the “conditional” mismatch proba-
bilities increase, these methods consistently have the best performance in this 
scenario.
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