
Discovering and Balancing Fundamental Cycles in Large Signed
Graphs

Ghadeer Alabandi
Texas State University
San Marcos, TX, U.S.A
gaa54@txstate.edu

Jelena Tešić
Texas State University
San Marcos, TX, U.S.A
jtesic@txstate.edu

Lucas Rusnak
Texas State University
San Marcos, TX, U.S.A

lucas.rusnak@txstate.edu

Martin Burtscher
Texas State University
San Marcos, TX, U.S.A
burtscher@txstate.edu

ABSTRACT

Computing consensus states via global sign balancing is a key step

in social network analysis. This paper presents graphB+, a fast

algorithm for balancing signed graphs based on a new vertex and

edge labeling technique, and a parallel implementation thereof for

rapidly detecting and balancing all fundamental cycles. The main

bene�ts of graphB+ are that the labels can be computed with linear

time complexity, only require a linear amount of memory, and that

the running time for balancing a cycle is linear in the length of

the cycle times the vertex degrees but independent of the size of

the graph. We parallelized graphB+ using OpenMP and CUDA. It

takes 0.85 seconds on a Titan V GPU to balance the signs on the

edges of an Amazon graph with 10 million vertices and 22 million

edges, amounting to over 14 million fundamental cycles identi�ed,

traversed, and balanced per second.

CCS CONCEPTS

• Computing methodologies → Massively parallel algo-

rithms.

KEYWORDS

Fundamental cycles, Signed-graph balancing, Parallelization, GPU

computing

ACM Reference Format:

Ghadeer Alabandi, Jelena Tešić, Lucas Rusnak, and Martin Burtscher. 2021.

Discovering and Balancing Fundamental Cycles in Large Signed Graphs. In

The International Conference for High Performance Computing, Networking,

Storage and Analysis (SC ’21), November 14–19, 2021, St. Louis, MO, USA.ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3458817.3476153

1 INTRODUCTION

On-line social networks have become an important mode of human

interaction. For instance, people receive news, participate in sur-

veys, and express opinions via on-line social networks. Thus far, the

�eld of Social Network Analysis has largely focused on community

discovery [21], topic trending [32], quantifying the in�uence of a

person [2], and recommender systems [24]. If a decision must be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

SC ’21, November 14–19, 2021, St. Louis, MO, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476153

made in these tasks, majority voting is typically used [35]. How-

ever, this approach ignores any underlying network structure and

is prone to bias due to super-in�uencers, people trying to game the

system, etc. Statistical parity has been employed to mitigate bias on

large data [15, 45], but it does not consider the more important and

informative network-wide consensus states. Yet, consensus across

social networks has already been well-researched in the �eld of

psychology [1, 9, 17, 18], albeit at a small scale. This paper describes

the parallelizable graphB+ algorithm that makes it possible to com-

pute nearest consensus states of large real-world social networks

based on this proven balance model from psychology.

Signed social networks are graphs where the edges store the

attitude of a vertex (person) towards another. Two vertices (people)

connected by an edge can be agreeable or antagonistic. A signed

graph is balanced, i.e., in a global consensus state, if every cycle

comprises an even number of antagonistic edges. This is the case

because two antagonistic edges cancel each other out.

Social balance theory [20] and the mathematical foundation of

attitudinal graphs [17] were the �rst to de�ne and model consensus

in social networks.Wasserman et al. introduced social network anal-

ysis in the form of algebraic graph representations and proposed

a series of statistical tests [42]. Subsequent work mostly focused

on predicting the existence of edges and sentiments in the graph,

recommending products, or identifying unusual trends while rely-

ing on consensus-based models [15, 21]. However, these kinds of

algorithms are rarely scrutinized for equity because consensus and

majority voting are suchwell-established social constructs [25]. The

few works that do scrutinize them have only examined how contro-

versial the outcome is relative to the system-wide consensus [26]

or have measured how subgroups mobilize against other groups

[23]. To improve upon this, Rusnak and Tesic recently proposed the

concept of frustration cloud analysis [33]. Their work considers all

nearest consensus-driven balanced states. However, their approach

does not scale to graphs with more than a few thousand vertices.

Our work focuses on making the needed graph operations e�-

cient, in particular the discovery and balancing of the fundamental

cycles (cf. Section 2). Our graphB+ implementation can handle real-

world inputs [11, 19] with billions of edges on a single CPU or GPU.

This paper makes the following contributions.

• A vertex and edge labeling technique for �nding the funda-

mental cycles in large graphs that requires a linear amount

of memory and can be computed in linear time.

• The graphB+ algorithm to traverse and balance each fun-

damental cycle in an amount of time that is linear in the

product of the cycle length and the average vertex degree

but independent of the size of the graph.

SC ’21, November 14ś19, 2021, St. Louis, MO, USA Ghadeer Alabandi, Jelena Tešić, Lucas Rusnak, and Martin Burtscher

code too slow and memory intensive to process the large graphs we

are interested in. Its work complexity is $ (= ×<) per tree, where

= is the number of vertices and< the number of graph edges. The

space complexity is$ (=×=) since the code is based on an adjacency

matrix. Computing 1000 nearest balanced states on the small wiki-

Elec graph takes about 1.5 hours on a 16-node HPC cluster with two

14-core 2.4 GHz Xeon processors per node. Processing the some-

what larger but still relatively small social networks Slashdot and

Epinions with about 500k edges [25] on the same system exceeded

the 60 GB maximum memory utilization per node when using BFS

spanning trees. Switching to random spanning trees with Spark

parallelization made it work but required 40 minutes to compute

just 20 balanced states. Hence, this implementation cannot be used

on social networks with millions of users and edges [28].

3 THE GRAPHB+ ALGORITHM

We designed a new graph-balancing algorithm from scratch, which

we named “graphB+”. It incorporates a novel approach for e�ciently

identifying, traversing, and balancing all fundamental cycles of a

graph. Alg. 3 outlines how graphB+ works on the signed graph

Σ = (�, f) using a provided spanning tree) of Σ. The tree can

be generated with any spanning tree algorithm. graphB+ requires

one word of storage per vertex to record the new ID as well as two

words of storage per (tree) edge to record the beginning and end of

the reachable vertex range, i.e., a linear amount of memory.

Algorithm 3 graphB+ Algorithm

Input: Σ = (�, f)

Input: Spanning tree) ∈ Σ

for all vertices E , E ∈) do ⊲ Vertex relabeling

relabel �� of vertex E based on a pre-order traversal of)

end for

for all edges 4 , 4 ∈) do ⊲ Edge labeling

record [��<8=, ��<0G]-range of vertices that are reachable

in) when traversing 4 based on a pre-order and a post-order

traversal of)
end for

for all edges 4 , 4 ∈ Σ \) , 4 = (EBA2 , E3BC) do ⊲ Cycle traversal

set count 2 = 0

set vertex E = EBA2
while E ≠ E3BC do

�nd edge 6 = (E, E=GC) whose range includes E3BC
increment 2 if 6 is negative

traverse edge 6: set E = E=GC
end while

if 2 is odd then

switch edge sign: 4− → 4+; 4+ → 4−

end if

end for

Output: Balanced graph Σ)

We illustrate the operation of the graphB+ algorithm, including

the preceding and following steps to provide context, on the signed

graph shown in Fig. 6(a). The red pluses and minuses indicate

the signs of the edges and are part of the input. Assume vertex

' is selected to be the root of the spanning tree as illustrated in

Fig. 6(b). The resulting BFS tree is outlined in Fig. 6(c), where the

tree edges are arrows pointing from the parent to the child and the

non-tree edges are dashed. This constitutes the input of the graphB+

algorithm, which performs the following three computation steps.

1) graphB+ relabels the vertices as outlined in the vertex relabel-

ing step of Alg. 3. It does this by performing a pre-order traversal

of the spanning tree. During this traversal, each reached vertex is

assigned a new ID that is equal to the number of previously visited

vertices. The result of this relabeling is depicted in Fig. 6(d).

2) graphB+ records a range (a pair of values) on each tree edge as

outlined in the edge labeling step of Alg. 3. This range denotes which

vertices, identi�ed by their new IDs, are reachable when traversing

the edge in the parent-to-child direction. The result is illustrated

in Fig. 6(e). Traversing an edge in the opposite (child-to-parent)

direction leads to the inverse of the recorded range, i.e., all vertex

IDs excluding those in the range. The beginning of each range is

determined using a pre-order traversal of the tree and the end using

a post-order traversal. Note that the ranges can always be expressed

by just two values because of the prior vertex relabelling step, which

guarantees each range to be a contiguous set of vertex IDs. This

feature of graphB+ is essential to keep the memory consumption low

and to make the following cycle traversals fast.

3) graphB+ identi�es and traverses all cycles that are created

when inserting one non-tree edge at a time as outlined in the cycle

traversal step of Alg. 3. We illustrate how this works on the example

of edge 6 → 7, which requires us to start with vertex 7 and search

for the path in the tree that leads back to vertex 6 to complete the

cycle. With the help of the recorded ranges, this path can be found

e�ciently. First, we search the edges in vertex 7’s adjacency list

to �nd the one that eventually leads to vertex 6. Speci�cally, we

search the range of each outgoing edge as well as the inverse of the

range of the incoming parent edge. In this case, we �nd that edge

0 → 7 traversed in the opposite direction lies on the path to vertex

6 as it leads to all vertex IDs other than 7 through 9. We select this

edge and traverse it to reach vertex 0. Second, we search vertex 0’s

edge ranges and �nd that 6 is in the range of edge 0 → 3. Hence, we

move on to vertex 3. Third, we search vertex 3’s tree-edge ranges

and �nd that 6 is in the range of edge 3 → 6. Travsersing this edge

to vertex 6 completes the cycle as illustrated in Fig. 6(f). Note that

we never visited a vertex that is not on the cycle. As we process the

cycle, we count the number of traversed edges with a negative sign

(one in the example) and set the sign of the non-tree edge 6 → 7

such that the cycle has an even number of negative signs (negative

in the example). The remaining non-tree edges undergo the same

procedure, ultimately yielding the balanced graph Σ) with the same

vertices and edges as Σ but possibly di�erent signs on the non-tree

edges. The resulting balanced graph is presented in Fig. 6(g), which

includes two changed signs, one on edge � → � and the other on

edge � → � . This concludes the graphB+ computation.

Balancing only the fundamental cycles (e.g., cycles � → ' →

� → � → � and ' → � → � → � → ' in Fig. 6(g)) guarantees

that all other cycles are also balanced (e.g., cycle � → ' → � →

� → � → � → �). This is the case because, based on algebraic

graph theory, all cycles of a graph can be constructed via binary

sums of the 0,1-choice vectors of the fundamental cycles [13, 16].

Once each fundamental cycle is balanced, all paths between two ver-

tices in a cycle have the same sign [17]. Any new cycles formed by

SC ’21, November 14ś19, 2021, St. Louis, MO, USA Ghadeer Alabandi, Jelena Tešić, Lucas Rusnak, and Martin Burtscher

To speed up the cycle traversal, which is the most performance

critical code section, the edge data is encoded in two words as

follows. The beginning of the range is stored together with a 1-bit

value that indicates whether the range is inverted. The end of the

range is stored together with a 1-bit value that indicates the sign of

the edge. This encoding minimizes the memory footprint, which

boosts in-cache presence and, therefore, performance.

3.2.2 Adjacency Lists. To accelerate the graph traversals and cycle

processing, our implementation partitions the adjacency list of

each vertex such that the tree edges precede the non-tree edges and

moves the parent edge (if present) to the front of the list. Moreover,

it uses a 1-bit �ag to mark whether an edge is in the tree or not.

The partitioning is fast and only takes linear time. Its execution

time is easily amortized as it enables the following optimizations.

• All loops that process non-tree edges traverse the adjacency

list from the back to the front and terminate as soon as they

encounter the �rst tree edge.

• All loops that process tree edges traverse the adjacency list

from the front to the back and stop when they encounter the

�rst non-tree edge (or reach the end of the list).

• All loops that process tree edges process the parent edge

�rst, which boosts performance since this is the most likely

edge to be needed when traversing the cycles because, on

average, it leads to the largest number of vertices.

3.3 Parallelization

Parallelizing Alg. 2 is straightforward for distributed-memory sys-

tems. Each compute node gets a copy of the graph and a subset of

the tree roots. The compute nodes then independently generate a

spanning tree, run graphB+, and count how often each vertex ends

up in the larger Harary bipartition. A single MPI_Reduce call at

the end su�ces to obtain the status of each vertex. However, most

compute nodes (as well as workstations and laptops) contain multi-

ple CPUs and many include GPUs. Hence, the graphB+ algorithm

should also be parallelized within a compute node for maximum

performance. This is the focus of the rest of the paper.

Within a compute node, the simplest way to parallelize Alg. 2 is

also to process a di�erent given tree on each thread because the :

trees can be balanced independently. However, this approach does

not scale. On high-end CPUs, which need dozens of threads to keep

their cores busy, it would result in dozens of trees being stored in

memory and accessed at the same time, which limits the maximum

graph size and hurts performance due to poor locality of reference.

On high-end GPUs, which require on the order of 100,000 threads

to unleash their full performance, this parallelization technique

would only work for tiny graphs and would result in far more trees

being processed than needed, thus eliminating any speedup.

We use a di�erent strategy where the threads collaborate to make

the processing of a single tree faster. This requires more complex

techniques but still accelerates the computation while making it

possible to handle large graphs with hundreds of millions of edges

or more on a single CPU or GPU. Whereas both our OpenMP and

CUDA codes fully parallelize the entire graphB+ algorithm, the

following paragraphs describe only the key parallelization aspects

of our implementation.

3.3.1 Vertex and Edge Labeling. Re-labeling the vertex IDs (Step 1)

is based on a pre-order traversal of the tree and labeling the edges

with the ranges (Step 2) is based on a pre- and a post-order traversal.

These traversals are di�cult to parallelize. However, the same result

can be obtained with a bottom-up followed by a top-down pass

over the tree levels as outlined in Alg. 4. With this approach, all

vertices at a given level (i.e., tree depth) can be processed in parallel,

meaning the three for-all loops in Alg. 4 are parallel.

First, the code computes the size of the subtree rooted in each

tree node. It starts with a count in each vertex that is initialized to

one. The bottom-up pass atomically adds the count of each vertex

to the count of its parent. The level-by-level order guarantees that

we only use a vertex’s �nal count (subtree size) to update its parent.

Second, the top-down pass assigns the edge ranges and the new

vertex IDs based on these counts. For each parent ? , the code tra-

verses the children and assigns them their new ID. The ID of child

2 is the ID of ? plus 1 plus the counts of all earlier children of ? .

This value also serves as the beginning of the range stored in the

edge ? → 2 . The end of the range is the beginning value plus the

count of 2 minus 1, i.e., one less than the new ID of the next child.

Algorithm 4 Parallel Vertex and Tree-edge Labeling

Input: Σ = (�, f)

Input: Spanning tree) ∈ Σ

for all vertices E , E ∈ Σ do ⊲ Initialization

E2=C = 1

end for

for level ; of) from bottom to top do ⊲ Bottom-up pass

for all vertices E , E ∈ ;4E4; [;] do

? = E?0A4=C
atomic add: ?2=C = ?2=C + E2=C

end for

end for

A>>C83 = 0

for level ; of) from top to bottom do ⊲ Top-down pass

for all vertices E , E ∈ ;4E4; [;] do

= = E83 + 1

for vertices 2 , 2 ∈ 2ℎ8;3 [E] do

4 = 4364 E → 2

4<8= = =

4<0G = = + 22=C − 1

283 = =

= = = + 22=C
end for

end for

end for

Output: Re-labeled vertex IDs (E83)

Output: Ranges on edges of) (4<8=, 4<0G)

Since we target signed social networks, which tend to be scale-

free graphs, we expect the graph diameter to be low. Consequently,

there should only be relatively few tree levels. The results in Section

6.7 con�rm this assumption. Hence, level-by-level parallelization

should be e�cient and provides ample of parallelism in most levels.

3.3.2 Cycle processing. Processing the cycles (Step 3) is the core

of graphB+. Due to the vertex relabeling and the range information

Discovering and Balancing Fundamental Cycles in Large Signed Graphs SC ’21, November 14ś19, 2021, St. Louis, MO, USA

stored in each tree edge, this step requires just 16 statements in

our OpenMP implementation. To maximize the performance, the

code only processes the non-tree edges in one direction. Based

on the range information, it follows the appropriate edge from

vertex to vertex until the cycle is complete. Along the way, it counts

the number of negative edges and, ultimately, sets the sign of the

non-tree edge such that the total number is even.

The cycle processing is parallelized over the vertices. The non-

tree edges of each vertex are processed consecutively in the

OpenMP code. As the number of non-tree edges per vertex and the

cycle lengths vary, we use a dynamic schedule for load balancing.

GPUs require much higher degrees of parallelism than CPUs,

so our CUDA implementation is parallelized not only across the

vertices but also across the edges. In particular, we employ a hier-

archical parallelization scheme where the many warps process the

vertices in parallel and the 32 threads within each warp process the

non-tree edges of the given vertex in parallel.

No synchronization is needed when processing cycles in parallel

since the tree vertices and edges (i.e., the shared data) are only read.

The non-tree edges are read and written but only by one thread

each (i.e., they constitute thread-private data). Processing multiple

non-tree edges of the same vertex in parallel, as is done by the warp

threads in our GPU code, is also safe for the same reason.

4 RELATED WORK

No prior publications exist on parallelizing the balancing of funda-

mental cycles. Hence, this section discusses other related work not

already covered in Sections 1 and 2.

The frustration index is one of several measures of balance that

have been proposed to analyze real-world signed graphs containing

con�icting observations. Computing it is a key operation in many

�elds of research, including physics [4, 7], economics [44], negative

feedback loops in Boolean networks [38], and statistical mechanics

[36], making graphB+ valuable beyond social network analysis.

Computing the frustration index of a signed graph is equivalent

to �nding a nearest ground (balanced) state in disordered systems.

This is an NP-hard problem in general, but there exist scenarios

that are solvable in polynomial time and for which exact large-

scale solutions are possible. A survey [4] illustrates and reviews

their applications to physics problems, especially Ising models and

two-dimensional spin glasses. The frustration cloud approach [33]

obviates the need for determining a balanced state with a mini-

mum number of sentiment changes. Instead, it determines a set of

nearest states with possibly varying numbers of sentiment changes.

This redirects the focus from a single balanced state to a family of

ground states. The computational complexity of these algorithms

is bounded by a polynomial function of the size of the underlying

graph. However, the upper bound is still prohibitive for a system

of the size of the social networks we are targeting.

Wu and Chen proposed a branch-and-bound algorithm to bal-

ance signed graphs by editing edges and deleting vertices and

demonstrated its e�ciency over trivial and heuristic algorithms

on inputs with up to = = 40 vertices [43]. In control multi-agent

systems, Alta�ni analyzed the convergence to a balanced state in

the decision-making process and presented an e�ective way to com-

pute the average consensus for a network with up to 100 vertices

[5]. Aref et al. developed three binary linear programming models

to compute the frustration index quickly and exactly as the solution

to a global optimization problem. They demonstrated the e�ciency

of their techniques for inputs with up to 15,000 edges [6]. Our work

has the same goal, but our solution scales to more than three orders

of magnitude larger signed graphs.

Our graphB+ algorithm requires a spanning tree as input. Com-

puting spanning trees e�ciently, especially in parallel, is an active

research area. Early work targeted the theoretical PRAMmodel [10].

More recent work describes parallel multi-core CPU [29, 30, 41],

distributed-memory CPU [22], and GPU [12, 31, 40] algorithms.

5 EXPERIMENTAL METHODOLOGY

The performance comparisons in this paper are based on the

graphB+ runtime, excluding earlier and later computations such

as the tree building and the Harary bipartitioning. We ran each

experiment 5 times and report the best measured runtime. We only

ran the Python code [39] once for each input because it is slow.

On the graphs that can be processed with the Python code, we

compared the results with our results to ensure that they agree.

The system we used is based on a 16-core 3.5 GHz AMD Ryzen

Threadripper 2950X CPU. Hyperthreading is enabled, i.e., the 16

cores can simultaneously run 32 threads. Each core has a 32 kB L1

data cache, a 512 kB L2 cache, and all cores share an 8 MB L3 cache.

The 48 GB main memory has a peak bandwidth of 87.4 GB/s. The

operating system is Fedora 30. The system contains an NVIDIA

Titan V GPU with 5120 processing elements distributed over 80

multiprocessors (SMs). Each SM has 96 kB of L1 data cache. The 80

SMs share a 4.5 MB L2 cache as well as 12 GB of global memory

with a peak bandwidth of 652 GB/s.

The serial C++ CPU code was compiled with g++ 9.3.1 using

the “-O3 -march=native” optimization �ags and the OpenMP code

additionally with the “-fopenmp” �ag. We compiled the GPU code

with nvcc 11.0 using the “-O3 -arch=sm_70” �ags.

We used the 20 graphs from Table 1 as inputs. They are listed by

size within each category. They were obtained from the Stanford

Network Analysis Platform (SNAP) [25] and from Amazon [19, 27].

The table shows the name of each input, the number of vertices,

edges, and fundamental cycles in the largest connected component,

and the maximum and average degree as well as the original size in

terms of ratings or reviews included across all vertices. Note that

we only process the largest connected component with graphB+,

which encompasses nearly the entire input as the small di�erence

between the number of ratings and the number of edges shows. All

tables and �gures in the following sections use A* to refer to the

Amazon datasets and S* to refer to the SNAP datasets.

6 RESULTS

In this section, we �rst compare the performance of our graphB+

implementation to that of the original Python code. Next, we study

the throughput of our serial, OpenMP, and CUDA codes. Then, we

analyze the dynamic memory usage. We also evaluate the OpenMP

scaling and the CUDA runtime of individual algorithmic steps.

Finally, we investigate some relevant graph properties.

SC ’21, November 14ś19, 2021, St. Louis, MO, USA Ghadeer Alabandi, Jelena Tešić, Lucas Rusnak, and Martin Burtscher

Graph Min depth Max depth Avg depth

A*_Android 10 13 12.2

A*_Automotive 15 19 17.3

A*_Baby 11 15 12.9

A*_Book 15 19 17.1

A*_Electronics 11 12 11.7

A*_Games 15 18 16.8

A*_Garden 12 15 13.6

A*_Instruments 14 21 17.2

A*_Instruments_core5 5 6 5.7

A*_Jewelry 14 16 15.7

A*_Music 14 18 15.8

A*_Music_core5 5 7 6.0

A*_Outdoors 14 17 15.2

A*_TV 12 15 13.9

A*_Video 11 15 12.9

A*_Video_core5 5 7 5.8

A*_Vinyl 13 15 13.7

S*_eopinion 8 11 9.5

S*_slashdot 7 9 7.9

S*_wiki 4 5 4.9

AVERAGE 10.8 13.7 12.3

Table 6: Minimum, maximum, and average tree depth of 1000 trees

Despite the high performance of graphB+, graph balancing still

accounts for 84% of the overall runtime in a social network analysis

application that computes the status of all vertices. This illustrates

the need for fast signed graph balancing algorithms.

We found the fundamental cycles to be surprisingly short, under

11 vertices on average, and the average vertex degree on the cycles

to be surprisingly large, about 150 on average. This information

may prove useful to further enhance the performance of graphB+.

As expected for power-law graphs like signed social networks,

the employed level-by-level parallelization strategy is e�ective be-

cause the BFS spanning trees used by graphB+ tend to only have a

few levels, under 18 on average for our twenty inputs.

In future work, we are planning to apply graphB+ in the �eld

for actual studies of attitudinal social networks. We also intend to

analyze the choice of spanning trees and the sampling frequency.

Finally, we want to quantify how various graph characteristics,

such as sparsity and the percentage of negative signs, a�ect the

algorithm’s performance.

ACKNOWLEDGMENTS

This work has been supported in part by the National Science

Foundation under Award Number 1955367, by the Department of

Energy, National Nuclear Security Administration under Award

Number DE-NA0003969, and by a hardware donation from NVIDIA

Corporation.

REFERENCES
[1] Robert P. Abelson and Milton J. Rosenberg. 1958. Symbolic psycho-logic: A model

of attitudinal cognition. Behavioral Science 3, 1 (1958), 1–13.
[2] S. Al-Yazidi, J. Berri, M. Al-Qurishi, and M. Al-Alrubaian. 2020. Measuring

Reputation and In�uence in Online Social Networks: A Systematic Literature
Review. IEEE Access 8 (2020), 105824–105851. https://doi.org/10.1109/ACCESS.
2020.2999033

[3] Ghadeer Alabandi and Martin Burtscher. 2021. graphB+ code. https://cs.txstate.
edu/~burtscher/research/graphBplus/.

[4] M.J. Alava, P.M. Duxbury, C.F. Moukarzel, and H. Rieger. 2001. Exact combina-
torial algorithms: Ground states of disordered systems. In In: C. Domb and J.L.
Lebowitz, eds., Phase Transitions and Critical Phenomena, Vol. 18. Academic Press,
San Diego.

[5] C. Alta�ni. 2019. A dynamical approach to privacy preserving average consensus.
In 2019 IEEE 58th Conference on Decision and Control (CDC). 4501–4506. https:
//doi.org/10.1109/CDC40024.2019.9029712

[6] Samin Aref, Andrew J. Mason, and Mark C. Wilson. 2016. An exact method for
computing the frustration index in signed networks using binary programming.
CoRR abs/1611.09030 (2016). arXiv:1611.09030 http://arxiv.org/abs/1611.09030

[7] F. Barahona. 1982. On the computational complexity of Ising spin glass models.
J. Phys. A: Math. Gen. 15 (1982), 3241–3253.

[8] Aydın Buluç, John Gilbert, and Viral B Shah. 2011. Implementing sparse matrices
for graph algorithms. In Graph Algorithms in the Language of Linear Algebra.
SIAM, 287–313.

[9] D. Cartwright and F. Harary. 1956. Structural balance: a generalization of Heider’s
theory. Psychological Rev. 63 (1956), 277–293.

[10] Ka Wong Chong, Yijie Han, Yoshihide Igarashi, and Tak Wah Lam. 2003. Improv-
ing the e�ciency of parallel minimum spanning tree algorithms. Discrete Applied
Mathematics 126, 1 (2003), 33–54. https://doi.org/10.1016/S0166-218X(02)00560-7
5th Annual International Computing and combinatorics Conference.

[11] Tim Davis, Yifan Hu, and Scott Kolodziej. 2020. SuiteSparse Matrix Collection.
Website: https://sparse.tamu.edu/.

[12] Jucele França de Alencar Vasconcellos, Edson Norberto Cáceres, Henrique
Mongelli, and Siang Wun Song. 2017. A Parallel Algorithm for Minimum
Spanning Tree on GPU. In 2017 International Symposium on Computer Ar-
chitecture and High Performance Computing Workshops (SBAC-PADW). 67–72.
https://doi.org/10.1109/SBAC-PADW.2017.20

[13] Reinhard Diestel. 2010. Graph theory. Graduate Texts in Mathematics, Vol. 173.
Springer, Heidelberg.

[14] Frontera. 2021. https://frontera-portal.tacc.utexas.edu/user-guide/system/.
[15] Kiran Garimella, Gianmarco De Francisci Morales, Aristides Gionis, and Michael

Mathioudakis. 2017. Reducing Controversy by Connecting Opposing Views. In
Proceedings of the Tenth ACM International Conference on Web Search and Data
Mining (Cambridge, United Kingdom) (WSDM ’17). 81–90.

[16] Chris Godsil and Gordon Royle. 2001. Algebraic graph theory. Graduate Texts in
Mathematics, Vol. 207. Springer-Verlag, New York. xx+439 pages.

[17] F. Harary. 1953. On the notion of balance of a signed graph. Michigan Math. J.
2(2) (1953), 143–146.

[18] F. Harary. 1959. On the measurement of structural balance. Behavioral Sci. 4
(1959), 316–323.

[19] Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Visual Evo-
lution of Fashion Trends with One-Class Collaborative Filtering. In Proceedings
of the 25th International Conference on WWW. 507–517.

[20] F. Heider. 1946. Attitudes and cognitive organization. J. Psychology 21 (1946),
107–112.

[21] M.A. Javed, M.S. Younis, S. Latif, J. Qadir, and A. Baig. 2018. Community detection
in networks: A multidisciplinary review. Journal of Network and Computer
Applications 108 (2018).

[22] Yuede Ji, Hang Liu, and H. Howie Huang. 2018. Parallel Identi�cation of Strongly
Connected Components with Spanning Trees. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis
(Dallas, Texas) (SC ’18). IEEE Press, Article 58, 12 pages. https://doi.org/10.1109/
SC.2018.00061

[23] Srijan Kumar, William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2018. Com-
munity Interaction and Con�ict on the Web. In Proceedings of the WWW (Lyon,
France). 933–943.

[24] Jure Leskovec. 2015. New Directions in Recommender Systems. In Proceedings
of the Eighth ACM International Conference on Web Search and Data Mining
(Shanghai, China) (WSDM ’15). ACM, 3–4.

[25] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[26] K W Li, D M Kilgour, and K W Hipel. 2005. Status quo analysis in the
graph model for con�ict resolution. Journal of the Operational Research
Society 56, 6 (2005), 699–707. https://doi.org/10.1057/palgrave.jors.2601870
arXiv:https://doi.org/10.1057/palgrave.jors.2601870

[27] Julian McAuley. 2015. Amazon product data. https://jmcauley.ucsd.edu/data/
amazon/.

[28] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
2015. Image-Based Recommendations on Styles and Substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval (Santiago, Chile) (SIGIR ’15). Association for Computing
Machinery, New York, NY, USA, 43–52. https://doi.org/10.1145/2766462.2767755

[29] Badri Munier, Muhammad Aleem, Muhammad Arshad Islam, Muhammad Azhar
Iqbal, and Waqar Mehmood. 2017. A Fast Implementation of Minimum Spanning
Tree Method and Applying it to Kruskal’s and Prim’s Algorithms. Sukkur IBA
Journal of Computing and Mathematical Sciences 1, 1 (2017), 58–66. https://doi.
org/10.30537/sjcms.v1i1.8

Discovering and Balancing Fundamental Cycles in Large Signed Graphs SC ’21, November 14ś19, 2021, St. Louis, MO, USA

[30] Suryanarayana Murthy Durbhakula. 2020. Parallel Minimum Spanning Tree
Algorithms and Evaluation. arXiv e-prints, Article arXiv:2005.06913 (May 2020),
arXiv:2005.06913 pages. arXiv:2005.06913 [cs.DC]

[31] Wen-Bao Qiao and Jean-Charles Créput. 2019. GPU implementation of Borůvka’s
algorithm to Euclidean minimum spanning tree based on Elias method. Applied
Soft Computing 76 (2019), 105–120. https://doi.org/10.1016/j.asoc.2018.10.046

[32] Michael Röder, Andreas Both, and Alexander Hinneburg. 2015. Exploring the
space of topic coherence measures. In Proceedings of the eighth ACM international
conference on Web search and data mining. 399–408.

[33] Lucas Rusnak and Jelena Tešić. 2020. Characterizing Attitudinal Net-
work Graphs through Frustration Cloud. https://arxiv.org/abs/2009.07776.
arXiv:2009.07776 [cs.SI]

[34] Stuart Russell and Peter Norvig. 2009. Arti�cial Intelligence: A Modern Approach
(3rd ed.). Prentice Hall Press, USA.

[35] Farah Saab, Imad H. Elhajj, Ayman Kayssi, and Ali Chehab. 2019. Modelling
Cognitive Bias in Crowdsourcing Systems. Cognitive Systems Research 58 (2019),
1 – 18. https://doi.org/10.1016/j.cogsys.2019.04.004

[36] James P. Sethna. 2006. Statistical Mechanics: Entropy, Order Parameters, and
Complexity. Master Ser. in Physics, Vol. 14. Oxford Univ. Press, Oxford.

[37] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo Liu, and
Qiang-Sheng Hua. 2018. Graph processing on GPUs: A survey. ACM Computing
Surveys (CSUR) 50, 6 (2018), 1–35.

[38] Eduardo Sontag, Alan Veliz-Cuba, Reinhard Laubenbacher, and Abdul Salam
Jarrah. 2008. The E�ect of Negative Feedback Loops on the Dynamics of Boolean
Networks. Biophysical Journal 95, 2 (2008), 518 – 526. https://doi.org/10.1529/

biophysj.107.125021
[39] Jelena Tešić, Joshua Mitchell, Eric Hull, and Lucas Rusnak. 2020. graphB: Python

software package for graph analysis. https://github.com/DataLab12/graphB.
[40] Vibhav Vineet, Pawan Harish, Suryakant Patidar, and P. J. Narayanan. 2009.

Fast Minimum Spanning Tree for Large Graphs on the GPU. In Proceedings of
the Conference on High Performance Graphics 2009 (New Orleans, Louisiana)
(HPG ’09). Association for Computing Machinery, New York, NY, USA, 167–171.
https://doi.org/10.1145/1572769.1572796

[41] Yiqiu Wang, Shangdi Yu, Yan Gu, and Julian Shun. 2021. Fast Parallel Algorithms
for Euclidean Minimum Spanning Tree and Hierarchical Spatial Clustering. In
Proceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD/PODS ’21). Association for Computing Machinery, New
York, NY, USA, 1982–1995. https://doi.org/10.1145/3448016.3457296

[42] Stanley Wasserman and Katherine Faust. 1994. Social network analysis: Methods
and applications. Vol. 8. Cambridge university press.

[43] Bang Ye Wu and Jia-Fen Chen. 2013. Balancing a Complete Signed Graph by
Editing Edges and Deleting Nodes. In Advances in Intelligent Systems and Appli-
cations - Volume 1, Ruay-Shiung Chang, Lakhmi C. Jain, and Sheng-Lung Peng
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 79–88.

[44] Takeo Yoshikawa, Takashi Iino, and Hiroshi Iyetomi. 2011. Market Structure as a
Network with Positively and Negatively Weighted Links. In Intelligent Decision
Technologies, Junzo Watada, Gloria Phillips-Wren, Lakhmi C. Jain, and Robert J.
Howlett (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 511–518.

[45] J. Zhou, L. Li, A. Zeng, Y. Fan, and Z. Di. 2018. Random walk on signed networks.
Physica A: Statistical Mechanics and its Applications 508 (2018), 558–566.

	Abstract
	1 Introduction
	2 Background
	2.1 Tree-based Signed Graph Balancing
	2.2 Tree-sampling-based Harary Bipartitioning
	2.3 Balancing-based Graph Attributes
	2.4 Benefits of Graph Balancing Attributes
	2.5 Complexity Analysis of Prior Work

	3 The graphB+ Algorithm
	3.1 Complexity Analysis
	3.2 Implementation
	3.3 Parallelization

	4 Related Work
	5 Experimental Methodology
	6 Results
	6.1 Comparison to Original Python Code
	6.2 Performance on Larger Graphs
	6.3 OpenMP Scalability
	6.4 Dynamic Memory Usage
	6.5 Kernel Breakdown
	6.6 Fundamental Cycle Properties
	6.7 Spanning Tree Properties

	7 Summary and Future Work
	References

