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Parallelizing analog in-sensor visual
processingwitharraysofgate-tunable silicon
photodetectors

ZheshunXiong1,3,WenLiang1,3,MeiyueZhang1,3, DachengMao1,QiangfeiXia 1&
Guangyu Xu 1,2

In-sensor processingof dynamic and static informationof visual objects avoids
exchanging redundant data between physically separated sensing and com-
puting units, holding promise for computer vision hardware. To this end, gate-
tunable photodetectors, if built in a highly scalable array form, would lend
themselves to large-scale in-sensor visual processing because of their potential
in volume production and hence, parallel operation. Here we present two
scalable in-sensor visual processing arrays based on dual-gate silicon photo-
diodes, enabling parallelized event sensing and edge detection, respectively.
Both arrays are built in CMOS compatible processes and operated with zero
static power. Furthermore, their bipolar analog output captures the amplitude
of event-driven light changes and the spatial convolution of optical power
densities at the device level, a feature that helps boost their performance in
classifying dynamic motions and static images. Capable of processing both
temporal and spatial visual information, these retinomorphic arrays suggest a
path towards large-scale in-sensor visual processing systems for high-
throughput computer vision.

Computer vision has become an increasingly significant technology in
autonomous navigation1, object recognition2, bioimaging3,4, and human-
machine interfacing5. Yet, the ubiquity of time-sensitive and data-
intensive computer vision tasks brings a growing challenge for existing
vision systems, which often involve exchanging redundant data between
physically separated sensing and computing units. To this end, in-sensor
processing of dynamic and static visual information has risen to be a
viable hardware approach to lessen the latency and energy consumption
spent over the data exchange by integrating sensing and pre-processing
units at the device level6,7. Such in-sensor processing hardware emulates
the way the human retina8–11 acts to trace temporal changes1,12–16(e.g.,
motion) and extract spatial features17–21 (e.g., edges), drawing broad
interest in associated circuit designs22–25, analytical algorithms26,27, and
intelligent systems2,13,18–20,27,28.

Among emerging in-sensor visual processors, gate-tunable photo-
detectors based on silicon29, ferroelectrics30, and nanomaterials1,14,18,20,21,31

pose a solution to form scalable processor arrays for high parallelism.
These devices take their gate-tunable photoresponsivity (Rph) as the
weight for in situ multiply-accumulate operation27,29, cutting the com-
putational overhead in circuits12,15–17, graphics processing units (GPU)32,
or field-programmable gate arrays (FPGA)22 that are commonly adopted
in visual processing systems. Moreover, their optical responses in the
analog domain hold promise to capture temporal and spatial visual
information needed for visual processing. Nonetheless, most of these
device prototypes have yet to be tested for both static and dynamic
visual processing; their performance in recognizing sophisticated
objects at an array level needs to be further examined33. For these rea-
sons, it is imperative to develop ideally scalable, compact, and low-
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power arrays to detect dynamic events and extract static features with a
high degree of parallelism. This is a non-trivial task as it requires a hol-
istic modular-array co-design that takes key figure-of-merits (e.g., uni-
formity, crosstalk, power) into a well-balanced account.

Here, we present two scalable in-sensor visual processing arrays
tailor-designed for parallelized event sensing and edge detection,
respectively, based on dual-gate amorphous-silicon photodiodes (α-Si
PDs) placed in ca. 200μm pitches. Both arrays consume zero static
power by short-circuit operations; their bipolar analog output directly
quantifies event-driven light changes (i.e., temporal visual processing)
and light intensities on the edge of light spots (i.e., spatial visual pro-
cessing) at the device level, respectively. Such analog in-sensor com-
puting capability empowers these arrays to process sophisticated
visual objects with parallelism andwell perform the classification tasks
among dynamic motions and static images. Specifically, the first array
parallelizes computing units (CU) that comprise integrated PDs,
resistors (R), and capacitors (C), whose bipolar analog responses act to
detect site-selective light pulses at sub-ms precision. We numerically
show that these CUs can form ten 120-by-160 arrays to classify
sophisticated humanmotions (with 90% accuracy) via an offline spike
neural network (SNN). On the other hand, the second array parallelizes
image kernels that comprise 3-by-3 PDs, whose bipolar analog
responses act to simultaneously identify the edges of multiple objects
by convolutional filtering. We numerically show that an array of 8-by-8
kernels can be reconfigured (via gating) to 10 filters to classify hand-
written digits (with 94.8% accuracy) via an artificial neural network
(ANN). Capable of processing both temporal and spatial visual infor-
mation in the analog domain, our PD-based retinomorphic arrays
suggest a path towards low-power, large-scale in-sensor visual pro-
cessing systems for high-throughput computer vision.

Results
Modular design of gated Si photodiodes
Leveraging crystalline Si-based dual-gate PDs reported by Jang, H.
et al29., our engineering efforts start from re-designing these gate-
tunable p-i-n PDs as the analog visual processing unit with the fol-
lowing improvements (Supplementary Fig. 1).

First, thematerials of the PDs are different. Insteadof building PDs
from an intrinsic crystalline silicon substrate, here we deposit intrinsic
α-Si films on top of a SiO2/Si wafer (sandwiched by oxide and metal-
lization layers, see Methods) to form photo-sensitive regions of the
diode. This change is made for the high absorption coefficient of α-Si
(vs. crystalline Si) and its compatibility with monolithic integration
onto complementary metal–oxide–semiconductor (CMOS) chips (vs.
intrinsic Si substrate).

Second, the filling factor (FF) of PDs is increased. Different from
prior PD structure29, here we leave no metal contacts on top of the
photo-sensitiveα-Si regions. As a result, each PD is fully exposed to the
incident light, yielding an increased FF.

Third, the device layout is more error-tolerant. Here we place an
even number of α-Si channels between each pair of the source and
drain contacts (S/D). This layout minimizes the dependence of the
photoresponse on the possible asymmetric electrostatic doping effect
caused by alignment error of gate contacts (G1/G2, see Supplementary
Fig. 2), keeping a similar range of the absolute photoresponse values
when the two gate biases flip their polarities at the same time.

Lastly, the PD dimension is scaled down to build compact visual
processing arrays. We reduce the size of the active region in each PD
down to ca. 70–80μm, and the channel width/length ratio down to ca.
400–470/5μm (vs. 300μm and 5576/5μm in ref. 29).

Fabrication of individual Si photodiodes
With the foregoing design considerations, we first form gate-routing
lines by sputtering Ti/Pt layers on top of a SiO2/Si substrate (Methods)
and passivate them with a 300 nm SiO2 layer deposited by plasma-

enhanced chemical vapor deposition (PECVD). Next, we form Cr/Au-
based vias (10/300 nm) through this passivation layer (by via opening
andmetallization steps) and connect themwith two interdigitatedgate
contacts in the shape of multi-fingers (G1 and G2, the finger pitch
[fingerwidth] is 15μm[ca. 70–80μm]) based on sputtered Ti/Pt layers.
We then use an atomic layer deposition (ALD) step to form an Al2O3-
based gate oxide layer (ca. 30 nm), followed by making S- and
D-contacts on top with Ti/Pt layers. These S- and D-contacts are cen-
tered to G1- and G2-contacts, respectively, but chosen to be 2-μm
narrower; this device geometry assures that G1 [G2] can create elec-
trostatically doped regions surrounding S[D]-contacts (Fig. 1a). We
then deposit a PECVD-based intrinsic α-Si film (ca. 250nm) on top of
the S- and D-contacts, and pattern it into the active region of the PD.
The entire device is finally passivated by a PECVD-SiO2 layer (ca.
300 nm), and routed to wire-bonding pads with Ti/Pt layers.

Optoelectronic characteristics of Si photodiodes
Our dual-gate PD structure serves to alter both the direction and the
amplitude of diode current by two independent gate biases (VG1 and
VG2 on G1- and G2-contacts) via gate-induced electrostatic doping
effect in the α-Si film. To assess such electrostatic doping effects29,34–36

in our PDs, we set the two gate biases as VG1 = −VG2 = 3 or – 3 V, and
measured the source current IS in the dark when VS = –VD was swept
from -3 to 3 V at a step of 50mV (Fig. 1b, c). In this configuration, the
field effect from the positively [negatively] biased gate will create
n-type [p-type] electrostatic doping profiles in the α-Si regions above
them. The measured IS – VS curves are rectified with a turn-on voltage
at ca. 0.7 or –0.7V, suggesting the existenceof electrostatically doped
p-i-n/n-i-p regions between S- and D-contacts (see simulation results in
Supplementary Fig. 3). Next, under constant optical power density
(Plight = 530mWcm−2 at 550/15 nm, an illumination centered at 550nm
with a 15 nm bandwidth), IS – VS curves measured at VG1 = VG2 = 3 or
– 3 V feature higher IS values than those measured with floated G1 and
G2 (Supplementary Fig. 4), possibly because the gate-induced p-i-p/n-i-
n doping profile reduces the channel resistance37; these linear IS – VS

curves also suggest insignificant Schottky barriers near S- and
D-contacts35,36.

We next investigate gate-dependence of the Iph in our PDs (i.e.,
the IS under light illumination subtracted by that in the dark), an
essential figure of merit for in-sensor visual processing6,7,18. To this
end, wemap short-circuited Iph values (i.e., measured at VS = VD = 0 V,
Plight = 35mWcm–2 at 595 nm to exemplify the PD response in the
visible spectrum) with VG1 and VG2 being swept from – 3 to +3 V at a
step of 200mV, and identify four distinct operation regions on the
map (Fig. 1d):

First, we observe n-i-n and p-i-p regions when VG1 and VG2 are
nearly equal. These two regions show low Iph values because the built-
in potentials across n-i [p-i] and i-n [i-p] junctions cancel each other.
These regions are noted to deviate from the diagonal line, VG1 =VG2,
which can result from charge-trapping defects within α-Si films or near
the surface of the gate-oxide layer29 (requiring extra gate biases to
dope the channel). The Iph values in the p-i-p region are lower than
those in the n-i-n region, likely because the work function of S/D-
contacts (Ti/Pt) is closer to the conduction band edge of α-Si35,36.

Second, we observe n-i-p and p-i-n regions when VG1 and VG2 are
nearly opposite to each other. In these two regions, Iph monotonically
increases from a negativemaximum to zero, and further increases to a
positive maximum along the negative diagonal line, VG1 = −VG2 =Vp

from − 3 to 3 V. This trend follows the sum of the built-in potential
across n-i [p-i] and i-p [i-n] junctions, which decreases its amplitude to
zero when Vp changes from – 3 to 0 V, then flip its sign and increase its
amplitude when VG1 changes from 0 to 3 V. Such gate-tunability of Iph
(Fig. 1e) – in terms of its direction and amplitude – is the key feature of
our PDs for analog visual processing; for the rest of this work, we
always gate them as VG1 = –VG2 =Vp.
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Finally, we examine the linearity of our PDs biased at various Vp

values (Plight = 0 – 35mWcm–2 centered at 595 nm, Fig. 1f; see addi-
tional experiments in Supplementary Fig. 5). Our results show that Iph
linearly increases with Plight (R2 > 0.91) for Plight up to 25mWcm–2 and
starts to saturate at higher Plight due to the limited carrier lifetime of α-
Si thatmayoccur at a highdensity of photoinduced carriers38.WhenVp
changes from – 3 to 3 V, the slope of Iph-Plight curves increases from a
negative maximum to a positive maximum, confirming the gate-
tunability of Iph in terms of their polarities and amplitudes.

Pairing photodiodes for event detection
Event-based vision sensors emulate the human retina to capture the
temporal changes of Plight (ΔPlight, i.e., events) in the field of view (FOV),
circumventing data-intensive inter-frame differentiation steps in stan-
dard CMOS imagers16,39. Among them, dynamic vision sensors and
asynchronous time-based image sensors12,16,40,41 are industry standards
for event sensing, but often at the expense of hardware/design overhead
on in-pixel/peripheral circuits. On the other hand, emerging optoelec-
tronic synaptic devices19,31,42,43 and 2D-material-based photodetectors44,45

are viable alternatives for their structural simplicity and promise for in-
sensor SNN, respectively; they, however, would benefit from further
studies on their temporal precision, reliability, and feasibility for mass
production of large-scale arrays. To this end, we leverage our compact,
gate-tunable, and low-power α-Si PDs to build an integrated event-based
vision processor, showcasing the capability of these PDs for analog
processing of temporal visual information. To achieve this, we pair up
two PDs and connect them with two Rs and one C in a monolithic
manner to form a compact in-sensor CU (i.e., 2PD-2R-1C circuit com-
puting unit, Fig. 2a); R and C are formed by a PECVD-based n-doped α-Si

layer (100nm) and an ALD-based HfO2 layer (15 nm) sandwiched
between metal layers, respectively, and routed to PDs or testing pads
(Methods and Supplementary Fig. 6).

From the circuit perspective, the two α-Si PDs placed in two parallel
branches are gated as n-i-p and p-i-n diodes, respectively, leading to the
same amount of Iph that flows to opposite directions (i.e., opposite signs
of the photoresponse in Supplementary Fig. 7, see Vp values in Supple-
mentary Tab. 1); the photoresponse from the 1R1C branch is expected to
respond to ΔPlight slower than that in the 1R branch due to the extra RC
time delay. Moreover, our in-sensor CU consumes zero static power for
visual processing11, since both branches are short-circuited by grounding
S-contacts of PDs and the input of a trans-impedance amplifier (TIA,
Fig. 2b). The net current flows into a TIA – the difference of Iph in two
branches (if any) – converting to a readout voltage Vout. Under this con-
figuration, our CU outputs zero Vout when Plight is kept as a constant (i.e.,
no events); when Plight changes, the 1R1C branch responds toΔPlight with a
latency compared to the 1R branch (exemplified by R1 =R2 = 100MΩ,
C1 = 100pF, Fig. 2c), resulting a positive [negative] spike (i.e., ON/OFF
spike) when Plight increases [decreases]. Such ON/OFF spikes consistently
occur near the rising/falling edges of every light pulse we apply
(ΔPlight = 530mWcm−2 at 550/15nm, ton/toff = 90/130ms, three indepen-
dent 20-pulse periods), showing reliable in-sensor event detection.

We next characterize the shape of these ON/OFF spikes by varying
gate-tunable photoresponse and ΔPlight, respectively (Fig. 2d–i, see Vp
values in Supplementary Tab. 1). With a constant ΔPlight (530mWcm-2 at
550/15 nm, ton/toff = 90/130ms), spike amplitudes, Aon and Aoff (defined
as positive/ negative maximum subtracted by 10-point average in the
baseline), are found to increase with Vp ranging from 1.0 to 2.5 V
(Fig. 2d, e); with a constant Vp, |Aon| and |Aoff| are found to increase with

a b

I S (
nA

)

VS = -VD (V)
0-1-2-3 1 2 3

0-1-2-3 1 2 3

0

-0.5

0.5

I S (
nA

)

VS = -VD (V)
0-1-2-3 1 2 3

0

-0.5

0.5

Vp (V)

I ph
 (n

A)

0

-2

2

e

Vp = 3 V
Vp = 0 V
Vp = -3 V

Plight (mW cm-2)
0 10 20 30

I ph
 (n

A)

f

V
G

2 (
V)

VG1 (V)
0 1 2-3 -2 -1 3

Iph (nA)

-3

-2

-1

0

1

2

3

- 2

- 1

0

1

2

d

0

-2

2

p

n
i

VG1 = 3 V

S
D

VG2 = -3 V

p

n
i

 VG2 = 3 V

S
D

 VG1 = -3 V

Incident light

G1

S
Gate oxide

G2

D�-Si

S-contacts

G2-contact

G1-contact

D-contacts

p-i-n

p-i-p

n-i-n

n-i-p

c

Fig. 1 | Miniaturized dual-gate silicon photodetectors with gate-tunable pho-
toresponse. a A dual-gate α-Si PD with its zoom-in view and cross-sectional
structure. Scale bar, 100μm. b IS – VS curvesmeasured in darkwith VG1 = −VG2 = 3 V.
c IS –VS curvesmeasured in darkwithVG1 = −VG2 = −3 V. In (b and c), the insets show
their associated band diagrams at VS =VD = 0V. d Contour plots of short-circuited

Iph values measured with VG1 and VG2 ranging from – 3 to + 3 V, Plight = 35mWcm–2

centered at 595 nm. e The Iph - Vp curve measured at VS =VD = 0V,
Plight = 35mWcm–2 centered at 595 nm. f Iph - Plight curvesmeasured at VS =VD = 0V,
with Vp ranging from – 3 to 3 V at a 1 V step, Plight = 0–35mWcm−2 centered
at 595 nm.

Article https://doi.org/10.1038/s41467-025-60006-x

Nature Communications | (2025)16:4728 3

www.nature.com/naturecommunications


ΔPlight ranging from 53 to 530mWcm-2 (Fig. 2g, h). Such Vp- and ΔPlight-
dependent spike amplitudes demonstrate the capability of our CUs for
analog in-sensor visual processing; the gate-tunable synapse-like beha-
viors can be used to formSNN28,43–45 and further developAI chips46,47. The
mismatch between |Aon| and |Aoff | , while not affecting event sensing, can
be effectively reduced by optimizing the experimental setting (Supple-
mentary Fig. 8). On the other hand, the average of the rising and falling
times of these spikes (trise [tfall] from 10 to 90% [90 to 10%] |Aon/off|
change) is mostly <3ms across all Vp and ΔPlight values (Fig. 2f, i, TIA
configured to a high-bandwidthmode). Thisms-level temporal precision
is on par with the response speed of human retina11 and suffices the
requirement of latency-sensitive applications1,4. If we further reduce RC
values (<100MΩ/100pF) and increase the bandwidth of TIA ( > 1MHz),
our CUs can ultimately respond to light pulses with < 2μs trise and < 11μs
tfall due to the small RC delays in our p-i-n/n-i-p PDs (see Supplementary
Fig. 9). The variability among time constants suffices the demonstration
purpose here, but can be reduced by optimizing the testing conditions
(e.g., higher ΔPlight, see Supplementary Fig. 10).

Parallelizing event detection with arrays of computing units
Leveraging the capability of single CUs, we take one step further to
parallelize such in-sensor event detection at the array level.

Specifically, we built a 2-by-2 cross-barred CU array composed of four
CUs (Fig. 3a); these CUs (U11, U12, U21, and U22 labeled in Fig. 3b) are
routed to 2 column- and 2 row-connecting lines, leaving a total of 8 G1-
and 8G2-contacts that are independently addressable (Supplementary
Figs. 11 and 12).

To test the array performance, we ground the Si substrate to
mitigate capacitive coupling from one CU to the other. Four CUs are
gated to output the same amplitudes of Vout under the same light
condition to calibrate out the fabrication variation (see Vp values in
Supplementary Tab. 1). Next, we apply site-selective light illumination
to the array by two independent LEDs (Fig. 3c): a 530 nm LED illumi-
nating U11 only (ton/toff = 200/100ms, three 20-pulse periods, i.e., local
events) and a 595 nm LED illuminating all four CUs (ton/toff = 100/
200ms, three 20-pulse periods, i.e., global events). We then test the
array operation with 3 illumination conditions (Fig. 3d–f): condition I
[II] aligns the falling [rising] edges of both events; condition III applies
constant global illumination.

Our experimental data under condition I [II] (taking U11 and U12 as
two representative CUs. Figure 3g, h) show three specific features. First,
U11 outputs 3 spikes per pulsing period corresponding to both local and
global events, whereas U12 only outputs 2nd and 3rd [1st and 2nd] spikes
corresponding to global events (see labels in Supplementary Fig. 13).
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Second, the amplitude of 3rd [1st] spike from U12 is less than that from
U11, in which both local and global events are switched off [on]; in
contrast, their 2nd spikes have identical amplitudes since the same global
events are applied to U11 andU12. Third, under condition III, U12 detects
no spikes (as expected) since noΔPlight is applied here (Fig. 3i). Together,
these results showcase the capability of our array for parallelized in-
sensor processing of site-selective events; the output amplitudes of four
CUs are reliable across all pulsing periods and can be tuned by different
Vp values (Supplementary Fig. 14).

As the key figure-of-merit in array operation, we next examine the
crosstalk among these four CUs by quantifying their spike amplitudes
in the following (Fig. 3j–l):

For U12 and U22, we observe an insignificant level of crosstalk
from U11 (likely from the light leakage from local events). Specifically,
their 1st [3rd] spikes under condition I [II] (when local events are on
[off]), as well as their two spikes under condition III, are all insignificant
compared to the noise level from the baseline (Methods); their 3rd [1st]
spikes under condition I [II] are smaller than those fromU11 since only
global events are applied.

For U21, we observe nontrivial crosstalk from U11 in all 3 condi-
tions, where U21 and U11 have nearly identical amplitudes of all spikes.
This crosstalk is found to be related to the way U11 and U21 are con-
nected in the crossbar structure, which is reaffirmed by further
experiments (Supplementary Fig. 15) and likely attributed to the signal
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extracted from (i). Shaded areas in (g–i), and error bars in (j–l) both represent ± 1
S.D. from a total of 60 pulses. Dash lines in (j–l) represent the noise level (3 S.D.)
calculated from the baseline data of four CUs.
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coupling through the parasitic gate-to-source and gate-to-drain capa-
citors in PDs (Supplementary Fig. 16). Nonetheless, this crosstalk can
be mitigated by adjusting the gating conditions and/or array struc-
tures. In the former, we find that reversing the polarity of Vp in U21
while keeping Vp values in U11 will reduce the crosstalk by ca. 90%
(Supplementary Fig. 17) at the expense of lower temporal resolution in
arrayoperation. In the latter, we can place 1-by-m arrays in parallel with
m being the number of columns, where CUs from different rows are
physically separated from each other to eliminate the crosstalk (Sup-
plementary Fig. 18).

Importantly, our data suggest that the in-sensor CU array can
indeed parallelize analog event detection. Such capability is achieved
with zero static power becausewe short-circuit the branches in all CUs,
and with a > 30% filling factor (FF) due to our compact modular design
(Fig. 1). For these reasons, our CU array may represent a compact, low-
power event detection technology.

Motion classification with arrays of computing units
Leveraging array-level performance and optimization steps discussed
above, we now numerically examine if these CUs can form large-scale
arrays to recognize human motions in sophisticated environments
(Fig. 4a). First, we format a total of 100 grayscale, 2-s video clips from
the KTH Action dataset (120 × 160 pixels, 50 frames) based on 25
human subjects making 4motions (walking, boxing, hand waving, and

hand clapping with W, B, HW, and HC as the abbreviations, respec-
tively) in a variety of scales and lightning conditions. Next, we ran-
domly select 80 of these videos to form a training set (the rest forms a
validation set), each of which is fed into 10 parallel 120-by-160 CU
arrays for analog visual processing (Methods). The output of these
arrays is emulated by frame differencing, leading ten 120 × 160 matri-
ces that contain both positive and negative values (i.e., the event
detected by each CU). We separately sum positive and negative values
in each matrix to form a 20-node input layer of a SNN, whose 4-node
output is fed into four leaky integrate-and-fire (LIF) neurons to analyze
the motion in each frame and finally decide the classification result of
the video. The supervised training process of our SNN offers the
weight of each CU in 10 arrays, which can be achieved by setting the
Rph values of each PD pair via gating (reverse to each other and both
are proportional to the weight, Supplementary Fig. 19).

Notably, our SNN trained by bipolar analog output of CUs is able
to classify motions in all 20 validation videos with 90% accuracy
(Fig. 4b), outperforming those trained by digital processing methods
that map frame differences into binary values through thresholding
(77.5–85% in Fig. 4c, d). This result highlights the advantage of CU-
based parallelized analog in-sensor computing in preserving the sub-
threshold details that can be lost in digital processing approaches,
thereby holding promise to recognize temporal visual information in
real-world settings.
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Fig. 4 | Promise of bipolar analog readout of a CU array in classifications of
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Edge detection with single kernels
In parallel to efforts made on CU arrays for event sensing, we also
examine if PD-based arrays could offer parallelized in-sensor proces-
singof spatial visual information, showcasedhere for edgedetection in
static images. This image processing step canbe achieved in electrical/
optical domains17,22,32,48,49, but are often challenged by data-intensive
computing, excess power/area overhead, or low fabrication tolerance.
To this end, in-sensor convolutional filtering via PD-based kernels
holds promise to circumvent these limitations, whose multiply-
accumulate computations (i.e., MAC) mimic the way the human
retina uses to extract edge information9,11,18,27,29. Yet, this strategy has
been mainly tested by serial scanning of a single kernel across the
image, lacking parallelism needed for large-scale edge detection33. To
address this unmet need, we first parallelize 3-by-3 PD arrays as one in-
sensor kernel and examine its performance on edge detection (Fig. 5a
and Supplementary Fig. 20). Specifically, we common S- [D-] contacts
of 9 PDs to a testing pad; 9 G1- and 9 G2-contacts across the array are
routed to 18 independent testing pads. By gating 9 PDs with different
Vp values (i.e., programming their Rph), we measure the sum of their
Rph-programmed Iph as the kernel readout (ΣIph), which is then fed to
the TIA for a voltage output Vout (Fig. 5b).

To demonstrate in-sensor edge detection, we configure the kernel
as a horizontal Prewitt filter by programming the Rph of 3 columns of
PDs–C1 (blue),C2 (white), andC3 (red) in Fig. 5c– to benegative, zero,
and positive, respectively (Supplementary Tab. 2). This configuration
will result in a non-zero kernel output when there is a gradient of Plight
applied to these three columns, thereby detecting the edges of an
object. Next, we move a light spot through the aperture of a micro-
scope (dimension ~ 250μm, Plight = 530mWcm−2 at 550/15 nm)
sequentially across the C1-C3. Along this trajectory, the kernel
experiences a change in the gradient of Plight; its readout Vout is col-
lected at a step of ca. one-third of one column width (~ 23μm). Con-
sequently, we observe the following trends in the data (Fig. 5d). First,
Vout starts to decrease (Vout = 0 when the kernel is in the dark) as the
light spot enters C1, since the right edge of the light spot induces
negative Iph. Second, Vout stays at the negativemaximumuntil the light
spot enters C3, since the light illumination on C2 generates zero Iph.
Third, Vout increases back to zero as the light spot enters C3, since the
light illuminationonC3generates positive Iph. Fourth,Vout stays at zero
until the light spot leaves C3, since ΣIph from all 3 columns is canceled
out to be zero (absence of edges). Thereafter, due to similar reasons,
Vout increases from zero when the light spot leaves C1, stays at a
positivemaximumuntil the light spot leaves C2, and decreases back to
zero when the light spot leaves C3. In sum, these results clearly
demonstrate the edge detection of a horizontally-moving light spot,
and we can similarly detect the edges of a vertically-moving light spot
by reprogramming the kernel into a vertical Prewitt filter as well
(Supplementary Fig. 21).

Parallelized edge detection with a kernel array
After demonstrating edge detection at single-kernel levels, we extend
our studies to parallelized edge detection with a kernel array, which
may prove beneficial for time/data-intensive applications (e.g.,
autonomous driving, medical imaging). Specifically, we take the
aforementioned 18-gate kernel as the functional unit to build an 8-by-8
cross-barred kernel array (composed of 576 PDs). In this array struc-
ture (Fig. 5e and f), 64 kernels are routed to 8 column- and 8 row-
connecting lines; all kernels share the same 18 gate control (e.g.,
common a total of 64 G1-contacts from the PDs placed in the 1st row
and 1st column of each kernel) by gate routing layers underneath the
PDs. The resulting 100% yield array shows uniform photoresponse
across 64 kernels (Supplementary Fig. 22) and is connected to off-chip
multiplexers for parallel readout.

Todemonstrate parallel in-sensor edgedetection,we configureall
64 kernels in the array first as a horizontal Prewitt filter and then as a

vertical Prewitt filter. The heat maps (i.e., contour plots) of the array
readout under these two filters (VH/V) are sequentially squared, sum-
med, and square-rooted to generate a combined map (VC) that high-
lights the edges detected along both directions (Fig. 5g, h).
Accordingly, we test the array performance by a light spot in the shape
of the aperture in a microscope (diameter ~ 300μm), which fully illu-
minates 1 kernel in the center and partially illuminates 8 adjacent
kernels. The resulting VC map (subtracted by values measured in the
dark, Fig. 5g) shows non-zero VC values from these 8 adjacent kernels,
and a zero VC from the centered kernel, correctly marking our
expected edge positions of the light spot. It is again noted that bothVH

and VV values increase with Plight (Supplementary Fig. 23), reaffirming
the linearity of our PD-based arrays for analog in-sensor edge detec-
tion. Taking one step further, our array is also able to simultaneously
detect the edges of multiple objects, provided here by two cell-like
light spots defined by a shadow mask (Fig. 5h).

In sum, these results suggest that our kernel array is able to
achieve parallel detection of the edges in both single and multiple
objects. Notably, our array consumes zero electrical power due to the
short-circuited operation, and features a > 90% FF due to the compact
modular design. Therefore, these arrays could be viewed as a viable
low-power edge-detection technology that can be built into an inte-
grated chip form.

Classification of handwritten digits with kernel arrays
Encouraged by the success of parallelized edge detection at array
levels, we take a step further to numerically examine if array-based
convolutional filtering can extract details needed to classify objects in
the image (Fig. 6). First, we reshape 70,000 grayscale images of
handwritten digits (0-9) from the MNIST database into 24 × 24 matri-
ces (Methods), and randomly select 60,000 [10,0000] of them to form
a training [validation] set. Next,we sequentially configure all 64 kernels
in the 8-by-8 kernel array into 10 convolutional filters (i.e., CF) via
gating, whose Rph values can be decided by the weights of filters
learned from the training process (see discussions below and data
listed in Supplementary Fig. 19). The array at each configuration filters
a training image into an 8-by-8 processed image with bipolar analog
values. The resulting 10 processed images are then flattened into the
640-node input layer of an ANN, whose 10-node output is used to
decide the classification results of the training image (Fig. 6a). Our
kernel array in this case offers the high-dimensional input of the ANN
thanks to its reconfigurability via gating.

Notably, our ANN trained by bipolar analog output of the kernel
array can classify digits across 10,000 validation images with 94.8%
accuracy (Fig. 6b), on par with a convolutional NN (CNN) based on
scanning single kernels across the images (97.4%, 4840-node input)
and outperforming a NN trained by original images (89.6%, 576-node
input, Fig. 6c, d). This result suggests the advantage of kernel-based
parallelized analog in-sensor computing in cutting the compute
overhead (vs. CNN) and increasing the weights of key spatial details in
the image (vs. original images), thereby holding promise to recognize
spatial visual information with low hardware and power budget.

Discussion
We have presented two scalable in-sensor visual processor arrays
based on a compact modular design (Supplementary Tabs. 3 and 4) of
α-Si based dual-gate PDs for parallelized analog processing of tem-
poral and spatial visual information (e.g., events and edges), respec-
tively. The uniformity of PDs in our array is on par with prior wafer-
level statistics29 (Supplementary Fig. 22), and can further be controlled
via gate tuning (Supplementary Tables 1 and 2). Both arrays consume
zero static power at device levels and share the CMOS compatibility
that lends themselves for large-scale visual processing tasks with high
parallelism. By programming the photoresponse of independent PDs
in these arrays,we are capable of parallelized analog processing of site-
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specific events at sub-ms precision and edge profiles of multiple
objects, leveraging their scalability, uniformity, and strategies to
mitigate the crosstalk. Furthermore, we numerically demonstrate that
our CUs can be scaled up to multiple large-scale arrays that can work
together to classify human motions with 90% accuracy, whereas our
kernel array can be reconfigured tomultiple CFs that can provide high-

dimensional input to a SNN to classify handwritten digits with 94.8%
accuracy. Such an array-level of analog in-sensor visual processingmay
shed light on smart sensing systems aimed at large-scale, data-inten-
sive, and latency-sensitive computer vision tasks.

Moving forward, our analog in-sensor visual processor arrays can
add to the advancement of multifunctional computer vision hardware
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that can process visual information with ultralow power consumption
and high spatiotemporal resolutions. Future studies combining zero-
biased PDs/CUs and low-power readout circuits may prove beneficial
to build low-power edge systems (e.g., mobile platforms) for intelli-
gent computing. Moreover, the CMOS compatibility of our arrays may
allow them to be monolithically integrated with analog in-memory
computing devices6,23,24,27,30,46,47 (other CMOS-compatible or low-
dimensional materials may also be chosen to build application-
specific arrays in the future), which can form a fully-integrated on-
chip analog deep-learning neural network to offer near-real-time sen-
sing, processing, and recognition of the visual targets50,51. This inte-
gration approach could pave new ways in a broad range of machine
vision applications, especially in scenarios that demand simultaneous
processing of spatiotemporal information (e.g., biomedical imaging3,4

and autonomous driving1). For instance, our fully integrated system

may enable efficient extraction of the spatial attributes of cells, tissues,
and organs (e.g., size, shape, location), and fast tracking of their
dynamic activities with biological52 or medical53 significance (e.g., Ca2+

fluxes, blood oxygenation). On the other hand, our technology may
empower human-computer interaction applications (e.g., augmented
reality, virtual reality)54 and automated navigation systems1,50,55 that
heavily rely on timely extracting both spatial information (e.g., target
recognition) and temporal dynamics (e.g., the motion of fast-moving
objects).

Finally, we remark a few steps to further optimize the perfor-
manceof our in-sensor processor arrays. First, tomitigate the electrical
crosstalk across the array, our event-detecting CUs could be built into
multiple rows of 1D arrays (instead of a cross-barred array). Second,
both CUs and convolutional kernels could be connected to selectors
(e.g., switching transistors) in series to mitigate the sneaky current

Fig. 5 | Gate-tunable analog in-sensor edge detection at single-kernel and
kernel-array levels. aOptical image of a single kernel. b The equivalent circuit of a
single kernel. cAkernel configured as a horizontal Prewittfilter is used todetect the
edges of a horizontallymoving light spot (Plight = 530mWcm−2 at 550/15 nm).d Vout
valuesmeasured with the light spot in (c) horizontallymoving at a ca. 23μm step. e
The schematics of an 8-by-8 kernel array. f The circuit employed to configure the
kernel array for parallelized edge detection (SMU: source-measurement unit).

g,h Parallel in-sensor edge detectionof one aperture-defined light spot (g) and two
shadow-mask-defined light spots (h) using the kernel array (Plight = 530mWcm−2 at
550/15 nm). The combinedmapof VC across the array are calculated from themaps
of VH and VV measured when all 64 kernels are configured as a horizontal and a
vertical Prewitt filter, respectively (g, h). To measure the map of VH [VV], the red,
gray, and blue column [row] of each kernel is gated to have positive, near-zero, and
negative Rph values, respectively. Scale bars in (a, c, g, and h), 100μm.
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Fig. 6 | Promise of bipolar analog readout of a kernel array in classifications of
handwritten digits. a Sequentially configuring 64 kernels in a kernel array into 10
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8-by-8 processed images, whose bipolar analog values are fed into an ANN with a
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non-filtered image (blue).dClassification accuracies across images in the validation
set for methods in (c).
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paths and avoid in-sensor computation errors; such selectors could be
integrated underneath PDs with no area penalty. Third, the temporal
resolution of our CU array (trise/fall) can be further improved by opti-
mizing RC values and the upper limit of our TIA bandwidth. A sub-μs
resolution of event detection can be achieved by CU arrays integrated
with smaller Rs andCs, and thosewired tohigh-bandwidthTIA circuits;
such smaller RC values can also benefit the reduction of heat dissipa-
tion of the circuit. Fourth, the compactness of our CU array can be
further improved by stacking PDs on top of the RC elements, choosing
smaller Rs and Cs40, integrating on-chip TIAs for each row of CUs, or
using multilayer metallization to reduce the areas occupied by
gate lines.

Methods
Device fabrication
In thiswork, sputteredTi/Pt layers (10/50 [100] nm) are chosen to form
G1-, G2-, S- and D-contacts, gate-routing lines, top electrodes of the C,
and connection lines [wire-bonding pads]; evaporated Cr/Au layers
with a thickness of 10/300nm [10/50nm] are chosen for vias [the
bottomelectrodeof theC]; a 300nmPECVD-SiO2 layer is chosen to act
as the passivate layer; a 30 nm ALD-Al2O3 [15 nm ALD-HfO2] layer is
chosen as the gate oxide layer [dielectric layer for the capacitor],
respectively; and a 250nm [100nm] PECVD-based intrinsic [n-doped]
α-Si layer is chosen to act as the light-absorbing region [integrated Rs].

For single PDs (Supplementary Fig. 1), we first pattern gate-
routing lines on top of a SiO2/Si substrate

56 (with a ca. 300 nm SiO2

layer thermally grown on top of a p-doped Si substrate) and cover
them with a passivation layer. Next, we form vias through the passi-
vation layer by reactive ion etching (RIE) and metallization steps; G1-
and G2-contacts and their testing pads are then deposited on top of
the vias to make connections. On top of them, we next sequentially
form a gate-oxide layer29, S/D-contacts together with their testing
pads, and intrinsic α-Si regions for light absorption (patterned via RIE).
Finally, we passivate the device and use RIE steps to open four testing
pads that connect to G1-, G2, S-, and D-contacts.

For single CUs (Supplementary Fig. 6), we first form an integrated
C by sandwiching a HfO2-based dielectric layer between a top elec-
trode and a bottom electrode on top of a SiO2/Si substrate. The top
electrode is formed together with four gate-routing lines, from which
we later build two identical PDs using the aforementioned steps. Dif-
ferent from single-PDs, though, here we form vias not only on gate
routing lines (serve to later connect to gate contacts and their testing
pads), but also on the top electrode of C (serve to later connect to two
integrated Rs). Also, the S- and D-contacts of PDs are formed together
with connection lines, which serve to wire the C, Rs, and PDs later as a
2PD-2R-1C circuit. Last but not least, after patterning the intrinsic α-Si
regions of PDs,we pattern twoRs fromann-dopedα-Sifilm (by RIE) on
top of their pre-formed connection lines to complete the CU. After-
wards, we passivate the CU and use RIE steps to open the bottom
electrodeofC, the S-contacts of twoPDs, and the four testingpads that
are connected to their gate contacts. We then conduct a final metal-
lization step to form connecting wires and testing pad (serve to con-
nect to the bottom electrode of C and S-contacts), and metal features
right above the two Rs (i.e., light blockers) to avoid light-induced
resistance change.

For the CU array (Supplementary Fig. 11), we form four identical
CUswith the aforementioned steps. Different fromsingle-CUs, though,
here we make a common connection between the bottom electrodes
of Cs in two CUs on the same column (U11 +U21, U12 +U22). We then
passivate the device and use RIE steps to open S-contacts of CUs and
bottom electrodes of Cs. Thereafter, we conduct a final metallization
step to form light blockers, and wire S-contacts [bottom electrodes of
Cs] to the row-[column-] connecting lines.

For single kernels (Supplementary Fig. 20), we form 9 PDs placed
in a 3-by-3 array (a total of 18 independent gate contacts) using the

same steps as single PDs. Next, we passivate the device and use RIE
steps to open the testing pads that are connected to 18 gate contacts,
as well as the S- and D-contacts of all 9 PDs. We then conduct a final
metallization step to common 9 S- and 9 D-contacts via connecting
wires and two testing pads, respectively.

For the kernel array (Fig. 5e, f),we form64 identical kernelsplaced
in an8-by-8arraywith the aforementioned steps.Different fromsingle-
kernels, though, here we first common 18 independent gate-routing
lines from 8 kernels in each column, and further wire the resulting 144
gate-routing lines to 18 global gate contacts (using vias, connecting
wires, and the corresponding testingpads) that simultaneously control
Vp values of all 64 kernels. Moreover, we common the S-contacts of 8
kernels in the same row, leading to a total of 8 independent row-
connecting lines; in contrast, the D-contacts of all 64 kernels are still
separated. Afterwards, we passivate the device and use RIE steps to
open the testing pads that connect to 18 global gate contacts, the 8
row-connecting lines, and the 64 D-contacts. We then conduct a final
metallization step to common 8 D-contacts in each column and wire
them via 8 column-connecting lines and their testing pads, as well as
connecting 8 row-connecting lines (wired to S-contacts) to 8 testing
pads, respectively.

Device characterization
Single PDs are fully characterized by a semiconductor device para-
meter analyzer (Keysight B1500A), which serves to offer the biases of
their G1-, G2-, S- and D-contacts via four independent manipulators.

Single CUs or the CU arrays are first wire-bonded onto a loading
printed circuit board (PCB, see Supplementary Fig. 24), which is then
wired to a gating PCB and amultiplexing PCB (both PCBs are powered
by a power supply, Keysight E3631A). The gating PCB offers 18 inde-
pendent gate biases via microprocessor-controlled (ardATmega328)
digital-to-analog convertors (MCP4822) and 18 operational amplifiers
(LF356, offset and amplify the output range); themicroprocessor is set
to gradually ramp Vp values at 0.15 V s-1 to avoid a large transient cur-
rent that may cause oxide breakdown. The multiplexing PCB, on the
other hand, serves to select the CU (either single CUs or one CU from
the CU array) by two multiplexers (TI ADG419) that are controlled by
another external microprocessor. For each selected CU, we bias the
S-contacts of 2 PDs at 0 V with a source-measurement unit (SMU,
Keysight 2902A), and connect the bottom electrode of C to the
positive input of a TIA (Stanford Research System SR570, high band-
width mode, gain = 2 × 108V A−1), whose negative input is biased at 0 V
to convert the short-circuited branch current to Vout values. The TIA
output is then fed into a Hum bug noise eliminator (A-M Systems) to
remove the 50/60Hz noise, followed by a digital oscilloscope
(Pico4824) to sample the filtered Vout traces at 10 kHz.

Single kernels or the kernel arrays are first wire-bonded onto
another loading PCB, which is then wired to the gating PCB (the same
one used for CUs) and another multiplexing PCB that are powered by
the same power supply. The gating PCB is operated the same way as
the CU testing to offer 18 independent gate biases. On the other hand,
we use onemultiplexer (TI ADG405) on the multiplexing PCB to select
the column-connecting line of the select kernel (note: single kernels
are viewed as a 1-by-1 array here) via the external microprocessor and
bias it at 0 V via the SMU; the row-connecting line of the select kernel is
connected to the TIA (lownoisemode, gain = 2 × 109V A−1), followed by
the digital oscilloscope to sample the Vout traces at 1 kHz.

Optical setup
During our experiments, we use an upright microscope (Nikon FN1)
equipped with a Zyla4.2 plus sCMOS (scientific complementary metal-
oxide semiconductor) camera (Andor, USB 3.0) and a SPECTRA X light
engine (Lumencor) to take device images, align the light spot to the
device, and provide 550/15 nm illumination patterns through a CFI6O
Plan Achromat 10 × objective lens (NA = 0.25, Nikon). We also use two
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fiber-coupled LED (Thorlabs, M539F2 and M595F2) to provide 530 nm
and 595 nm illumination, respectively.

We test individual PDs in a CUby spatially confining the 550/15 nm
illumination patterns (see Supplementary Figs. 7 and 15). For the
testing of CU arrays, we apply the 530 nm LED illumination to U11 only
as local events, and the 595 nm LED illumination to all CUs as global
events (Fig. 3). For single-kernel experiments (Fig. 5c, d) and the kernel-
array experiments in Fig. 5g, we shape the light spot by the aperture of
themicroscope. For the kernel-array experiments in Fig. 5h, we place a
shadow mask – made of Pt/SU8 layers (300 nm/2μm) patterned on a
coverslip – face down onto the kernel array; this way, we are able to
illuminate two separate regions on the array. Among these experi-
ments, we decide the value ofVp needed to output targeted Vout values
at the steady state of the select CU/PD (Supplementary Fig. 25).

Circuit simulation
We conduct circuit simulation under the LTspice environment. Spe-
cifically, we model the simplified equivalent circuit of PDs with a cur-
rent source, an ideal diode, a junction resistor (Rp), a junctioncapacitor
(Cj), a series resistor (Rs), a parasitic capacitor existing betweenG1- and
S-contacts (CG1-S), and a parasitic capacitor existing between G2- and
D-contacts (CG2-D)

57. In this work, we set these resistance values in two
different approaches. In the first approach, Rp is estimated from the
slope of the IS - VS curve at VS = 0 (measured in dark, Fig. 1b)58, while Rs
is neglected by assuming Rs≪ Rp. In the second approach, both Rp and
Rs are estimated from the IS - VS curve in Fig. 1b using the Shockley
model reported before35. On the other hand, the value of Cj is esti-
mated from a quasi-static capacitance-voltage curve (QSCV, by
B1500A) measured between S- and D-contacts of the PD with Vp being
biased at 2.5 V (by gating PCB). Finally, the value of CG1-S [CG2-D] is
estimated from the QSCV curve measured between G1- and S-contacts
[G2- and D-contacts] of the PD, with the G2- and D-contacts [G1- and S-
contacts] being floated.

Data analysis
The values of Aon/off are obtained by subtracting the positive/negative
maximum of the Vout traces by the 10-point average of the baseline
data from the 1ms window right before each light pulse. The noise
level in Fig. 3j–l [Supplementary Fig. 14c, d] is defined as 3 times the
S.D. in the baseline (measured from 1-s data right before the first light
pulse and averaged by four CUs [averaged when each CU is biased at
two different Vp values] in the array).

Simulations on the CU array for classifying dynamic motions
We first select a subset of the 13-s video clips in the KTHAction dataset
(25 framesper second, 120× 160pixels) to include four types of human
motions (walking, boxing, hand waving, hand clapping). A total of 100
videos (4 motions by 25 human subjects) were recorded in a variety of
scenarios: outdoors, outdoors with scale variation throughout the
video, outdoors with different clothes, and indoors, which are ideal to
examine the performance of motion detection in a complex environ-
ment. To examine if our arrays can classify these motions in a timely
manner, we next tailor these videos into 2-s video clips (50 frames) for
our analysis, detailed as follows. For videos in the category of walking,
we delete low-content frames when the human subject is out of the
scope, and select the first 50 remaining high-content frames. For other
non-walking videos, we select the first 50 frames of data (as the human
subject is always in the scope). Afterwards, we randomly select 20 out
of 25 formatted videos (50 frames each) in each category of motions
(80 in total) as the training set to build the spiking neural network
(SNN) model2,28; the remaining 20 formatted videos form the
validation set.

On the device end,we employ ten 120 × 160CU arrays (in the form
of 120 parallel 1-by-160 arrays as discussed in Fig. 3) to process each 2-s
video in parallel to maximize the classification performance (see

below). The photoresponsivity of the PD pair in each CU (a total of
120 × 160 × 10CUs in tenCUarrays) is determinedby the SNNmodeled
by MATLAB Deep Learning Toolbox (see Supplementary Fig. 19) and
canbe experimentally achieved by gating. The output of each CU array
is emulated by subtracting the grayscale values in each frame by those
in the previous frame (i.e., framedifference), yielding a 9-bits 120 × 160
matrix that contains both positive and negative values (i.e., the pho-
tocurrent detected at each CU) to represent the analog visual pro-
cessing capabilities of CUs. Afterwards, the 20 summed positive and
negative values in the 10 matrices (ΣI+and ΣI- that can be achieved by
off-chip electronics) will form a 20-node input layer of the SNN. The
output layer of the SNN is composed of 4 nodes, whose numerical
values represent the probability of each frame being classified into 4
classes of motions (via the SoftMax function in MATLAB). These out-
put values are followed by LIF neurons to output the real-time spiking
waveforms (a leaky constant is set to be the default value 10, a firing
threshold is set to be 1.8 when the output value equals to 1 for two
consecutive frames). The output node that shows the greatest number
of above-threshold spikes will be taken as the predicted label of the
input video. Finally, the prediction accuracy is defined as the fraction
of correct predictions of 20 videos in the validation set using our
trained SNN model, whereas the confusion matrix is defined as the
percentage of each predicted label versus each numerical label out of
20 validation videos.

For comparison purposes, we also conduct the same motion
classification task using digital visual processing strategies, in which
case the frame difference is digitized into + 1, 0, and− 1 with different
thresholds before conducting the ΣI+and ΣI- operation. Specifically, our
2-s videos have grayscale values ranging from 0 to 180, thereby, the
pixels in the 120 × 160matrix of the framedifference ranges from − 180
to 180. For this reason, we choose half of 180 (90), one third of 180
(60), and a small number (10) as three thresholds for comparative
studies. The pixel values larger [less] than the positive [negative]
threshold will be digitized as 1 [− 1], those between positive and
negative thresholds will be digitized as 0.

Simulations on the kernel array for classifying static images
We first trim grayscale images of handwritten digits 0-9 in the MNIST
database from 28 × 28 into 24× 24 matrices by removing two rows or
two columns of data in the upper, lower, left, and right sides of the
original image (i.e., near-zero values). A total of 60,000 trimmed
images are randomly selected as the training set to build the neural
network (NN) model with the array being reconfigured into different
states (i.e., acting as convolutional filters); the remaining 10,000
trimmed images form the validation set. On the device side, our kernel
array in Fig. 5 has the dimension 8 × 8 with each kernel being com-
posed of 3 × 3 PDs. We thus sequentially reconfigure one such array
into 10different states, eachofwhichconvolutionallyfilters the 24 × 24
trimmed image into an 8 × 8 processed image; the 3-by-3 weight
matrices of these states (determined by the NN modeled by MATLAB
Deep Learning Toolbox, see Supplementary Fig. 19) represent the
photoresponsivity we need to assign to the 9 PDs in each kernel.
Afterwards, we use a ReLU function to zero the negative values in a
total of 10 processed images, and flatten them into a 640-node input
layer of the NN. The output layer of the NN is composed of 10 nodes,
whose numerical values represent the probability of the trimmed
image being classified into 10 classes from 0 to 9 (via the SoftMax
function in MATLAB); their maximum is then used to decide the pre-
dicted label. Finally, the prediction accuracy is defined as the fraction
of correct predictions of 10,000 trimmed images in the validation set
using our trained NN model, whereas the confusion matrix is defined
as the percentage of each predicted label versus each numerical label
out of 10,000 validation images.

For comparison purposes, we also conduct the same image clas-
sification task using a pure NNmodel with the 24 × 24 trimmed images
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directly flattened into 576 nodes in the input layer (i.e., no convolu-
tional filtering steps), and a convolutional NN (CNN) model also built
with 10 different 3 × 3 convolutional filters, which however are used to
scan across the 24 × 24 trimmed images pixel by pixel to yield 22 × 22
processed images (i.e., a CNN with 4840 [10] nodes in the input [out-
put] layer).

Data availability
All data supporting the findings of this study are available within the
article and its Supplementary Information. Any additional requests for
information can be directed to and will be fulfilled by the corre-
sponding author.
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