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Abstract

X-ray observing facilities, such as the Chandra X-ray Observatory and the eROSITA, have detected over a million
astronomical sources associated with high-energy phenomena. The arrival of photons as a function of time
follows a Poisson process and can vary by orders-of-magnitude, presenting obstacles for common tasks such as
source classification, physical property derivation, and anomaly detection. Previous work has either failed to
directly capture the Poisson nature of the data or only focuses on Poisson rate function reconstruction. In this
work, we present the Poisson Process AutoDecoder (PPAD), which is a neural field decoder that maps fixed-
length latent features to continuous Poisson rate functions across energy band and time via unsupervised learning.
PPAD reconstructs the rate function and yields a representation at the same time. We demonstrate the efficacy of
PPAD via reconstruction, regression, classification, and anomaly detection experiments using the Chandra Source
Catalog.

Unified Astronomy Thesaurus concepts: Multivariate analysis (1913); Astrostatistics techniques (1886); Time
series analysis (1916); X-ray astronomy (1810)

1. Introduction

X-ray astronomy, like many subfields of observational
astrophysics, has entered a new era of “Big Data.” Massive
volumes of X-ray data are being produced at unprecedented
rates thanks to ongoing X-ray surveys and missions, such as
the Chandra X-ray Observatory (I. N. Evans et al. 2024), the
XMM-Newton (N. A. Webb et al. 2020) telescope, and the
eROSITA survey (A. Merloni et al. 2024), which together
contain approximately 2 million individual X-ray sources in
the sky (and several million individual detections). Automatic
data processing, analysis, and learning have become increas-
ingly demanded because they enable various downstream
applications at massive scale, such as classification of
unlabeled sources, rapid identification of high-energy transi-
ents and spectral anomalies, as well as scientific evaluation of
serendipitous detections (S. Dillmann et al. 2024). However,
X-ray sources vary by orders-of-magnitude in terms of X-ray
photons detected, as well as in the distribution of photon
energies and relevant timescales. Many sources are well within
the Poisson limit—with telescopes receiving just a few
photons per exposure per source—thereby posing additional
challenges. Machine learning methods have gained popularity
in recent years as powerful approaches for automated X-ray
analysis. Although supervised learning methods have
found success in classification tasks (K. K. Lo et al. 2014;
S. A. Farrell et al. 2015; H. Yang et al. 2022), they require real
labels for training, which many X-ray sources lack. Here, we
instead focus on unsupervised learning methods due to their
label-free property and flexibility for downstream analysis. To
give a complete picture, we also include unsupervised methods

for sources with available multiwavelength data because many
ideas are potentially transferable for X-ray sources.
A general unsupervised learning framework consists of (1)

collecting a set of features, (2) performing optional dimen-
sionality reduction, and finally (3) conducting “downstream
tasks” such as clustering, anomaly detection, and classification
of the low-dimensional feature embeddings. Previous studies
can be broadly categorized by how they handle feature
extraction. One group of studies utilizes descriptive variables
—often high-level summary statistics—that are extracted from
analysts from individual data observations. Examples of these
in X-ray astronomical analysis are spectral hardness ratios and
variability summaries. These features are then passed to
different unsupervised learning algorithms for dimension
reduction and/or clustering, such as self-organizing maps
(M. Kovačević et al. 2022), Gaussian Mixture Models
(GMMs; V. S. Pérez-Díaz et al. 2024), Density-based Spatial
Clustering of Applications with Noise (DBSCAN; D. Giles &
L. Walkowicz 2019), Hierarchical DBSCAN ∫ t-distributed
Stochastic Neighbor Embedding (t-SNE; S. Webb et al. 2020),
GMM ∫ t-SNE (S. Bhardwaj et al. 2023), among others.
However, manual feature engineering requires specialized
knowledge and may lead to biased feature selection.
Another group of studies instead uses the less preprocessed

form of data and attempts automated (i.e., data driven) feature
extraction and low-dimensional embedding. Although tradi-
tional machine learning methods have been used in such
settings (D. J. Armstrong et al. 2015; C. Mackenzie et al. 2016;
L. Valenzuela & K. Pichara 2018), neural networks often find
success in this more challenging task of extracting patterns
without manual features. For example, B. Naul et al. (2018)
and H.-S. Chan et al. (2022) use a recurrent neural network
(RNN) and convolutional neural network (CNN), respectively,
to extract features of folded light curves of variable sources,
whereas J. K. Orwat-Kapola et al. (2022) and B. J. Ricketts
et al. (2023) use Long Short-term Memory to extract features
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of segments of a large light curve on GRS 1915∫105.
Moreover, due to their superior representation learning ability,
neural networks trained on supervised tasks often learn
informative embeddings in their hidden layers. In this regard,
end-to-end architectures for supervised tasks also serve
unsupervised learning purposes, and previous works have
explored different neural network architectures on this line,
such as RNN (I. Becker et al. 2020; V. A. Villar et al. 2020),
bidirectional RNN (T. Charnock & A. Moss 2017), CNN
(C. J. Shallue & A. Vanderburg 2018), and Cyclic-Permutation
Invariant Network (Y. Zhang et al. 2021), among others.
However, all of these methods focus on optical light curves,
for which the abundance of photons are well within the large-
number Gaussian limit and the stochastic arrivals with Poisson
nature can be ignored.

To transfer these ideas to X-ray data, one needs to
reconstruct the light curves for X-ray sources. There exists a
robust and Bayesian approach for X-ray light-curve
reconstruction, known as the Gregory–Loredo algorithm
(P. Gregory & T. J. Loredo 1992). Specifically, it proposes a
uniform prior on light-curve hypotheses (usually stepwise
ones), combines the prior with Poisson Process likelihoods,
and obtains the posterior probabilities for different light
curves. It then superimposes the hypotheses weighted by
posterior probabilities to obtain the reconstructed light curve.
However, the GL algorithm only considers stepwise hypoth-
eses (often with less than 20 steps) due to its intense
computational complexity, thereby limiting the resolution of
the reconstruction. More importantly, the reconstructed light
curves from the GL algorithm need further analysis for feature
extraction. Instead, an ideal unsupervised learning framework
would be capable of extracting features in an end-to-end
fashion, directly from the event files themselves (i.e., the
arrival times and energies of these events). S. Dillmann et al.
(2024) was one of the first works along this line, proposing to
use a sparse autoencoder on energy-time binned histograms of
event files for automatic feature extraction, for which resulting
features can be directly used by t-SNE and DBSCAN for
further dimension reduction and clustering. Binning the event
files, however, ignores the intrinsic stochastic nature of photon
arrivals, thereby potentially creating artifacts which are
especially severe for low-count sources.

In this work, we propose the Poisson Process AutoDecoder
(PPAD), a pipeline that embeds raw event files to latent
representations in an unsupervised manner. PPAD addresses
the aforementioned challenges by making three significant
contributions. First, it employs a neural field for light-curve
reconstruction, offering continuous resolution and bypassing
the binning in previous approaches. Second, it uses a Poisson
likelihood-based approach that respects the intrinsic stochas-
ticity of X-ray sources. Third, via an autodecoder, it learns
fixed-length latent representations of variable-length event
files, offering great flexibility for downstream tasks.

Our light-curve reconstruction method employs a one-
dimensional neural field, which has gained tremendous
popularity in the machine learning community, especially in
two-dimensional and three-dimensional computer vision
(J. J. Park et al. 2019; B. Mildenhall et al. 2021). A neural
field implicitly represents a signal via a neural network, and
enjoys distinct advantages such as continuity and memory
efficiency. In the context of light-curve representation, instead
of using a fixed-length vector to explicitly represent a light

curve via its intensity at a series of time-steps, we choose to
represent a light curve using a neural network, which
represents an implicit function that maps any time value to
the light-curve intensity, thereby making it resolution-free. The
output light curve is then compared to the raw event file data
and a Poisson likelihood-based loss function is used to
optimize the neural field representation. We also employ
techniques such as positional encoding and total variation (TV)
penalty to improve the reconstruction quality.
To enable joint learning from a collection of event files, we

utilize an autodecoder approach. Specifically, a shared neural
network is used to reconstruct all light curves, except that one
unique fixed-length latent vector is added as an extra condition
to each event file. These latent vectors are optimized together
with the neural network. When training is completed, not only
do we get reconstructed light curves for respective sources, but
we also obtain these latent vectors as low-dimensional
representations of these light curves that are useful for
downstream tasks.
The rest of this paper is structured as follows. Section 2

describes our data processing pipeline, which retains raw event
files of the Chandra Source Catalog. Section 3 describes
techniques and motivations of our main method in detail.
Section 4 presents experimental results that showcase the
functionality of our method in light-curve reconstruction,
source classification, and anomaly detection. Finally, Section 5
summarizes our results, discusses limitations, and articulates
directions of future research.

2. Data and Preprocessing

We utilize data from the Chandra Source Catalog (CSC;
I. N. Evans et al. 2024) to train and test our PPAD algorithm.
The data is in the form of event files, which are data structures
containing individual X-ray photon recordings associated with
a single astrophysical X-ray source in the sky. Event files can
be understood as multivariate time series of the photon’s
energies, their coordinates on the detector, and other relevant
quantities. The energies of the recorded photons cover a range
between approximately 0.5 keV up to about 8 keV. X-ray
properties of astrophysical sources, such as their spectral
hardness and variability probability, are computed as summary
statistics from these event files and compiled in the CSC,
together with many other quantities. Of relevance for this
paper are the following X-ray properties:

1. Hardness ratios. A quantification of the distribution of
photon energies between three energy bands: soft
(0.5–1.2 keV), medium (1.2–2 keV), and hard
(2–7 keV). They are broadly defined as the difference
in X-ray flux between two bands, divided by their sum.
This information is relevant for assessing the physical
mechanism (e.g., thermal versus nonthermal) producing
the X-ray emission. In the CSC, hardness ratios are
represented by the properties hard_hs, hard_ms, and
hard_ms.

2. Variability probability. The probability that the photon
arrival times, understood as a Poisson process, are
consistent with a change in the Poisson rate as a function
of time. It is computed using the Gregory–Loredo
algorithm (P. Gregory & T. J. Loredo 1992). This
quantity is of relevance to severe changes in the physical
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conditions, such as explosive events or variations in the
accretion flows toward compact objects. In the CSC,
the probability that an X-ray detection is variable in
the integrated (broad) energy band is represented by the
property var_prob_b.

3. Variability index. A measure of the confidence at which
variability (the previous quantity) is determined. It is
computed from the odds that the photon arrival times can
result in the observed binned values in the absence of
true variability. In the CSC, the variability index for the
integrated (broad) energy band is represented by the
property var_index_b.

We use the event files data set from S. Dillmann et al.
(2024), which contains ∼100,000 event files from the CSC.
We employ the following preprocessing:

1. Energies are binned in soft (E ∈ [0.5, 1.2] keV), medium
(E ∈ [1.2, 2] keV), and high (E ∈ [2, 7] keV) light-curve
bins in order to minimize the computational cost of the
loss function. However, we note that this step is not
necessary and (as we will show in Section 3.4) our
method in principle supports finer binning.

2. Event files are truncated to have the same lifetime of
8 hr. Event files shorter than 8 hr are omitted and those
longer than 16 hr are truncated into multiple separate
event files.

3. All event files are normalized so that first arrival happens
at time 0.

After preprocessing, our data set contains 109,656 event
files, each 8 hr long.

3. Architecture and Training

3.1. Modeling Photon Arrivals as Poisson Processes

Here, we describe the statistical framework in which we
consider each source in our training set. For simplicity, in the
following description we ignore the X-ray photon energies, but
as we will demonstrate later, the following principles hold
equally for energy-time series in the event file. It is common
practice (W. Cash 1979) to model stochastic photon arrivals in
an event file as a Poisson process. In order to capture the
underlying physical change of X-ray sources (nonconstant
light curve), we will use the more general inhomogeneous
Poisson processes. It is well known that, for an inhomoge-
neous Poisson process with rate r (effectively the light-curve
intensity), the likelihood of a list of photon arrivals { }=ti i

n
1

during an observation interval [0, T) is:

( ) ( ) ( ) ( )… =
=

t t r r t r t dtlikelihood , , ; exp . 1n
i

n

i

T

1
1 0

Here, the integral is approximated via N uniformly
discretized points in [0, T):

( )=
i

N
T

1

1
. 2i

Given a list of events { }=ti i
n

1 on [0, T), we would like to find
the light curve r that maximizes the likelihood—or equiva-
lently minimizes the negative log-likelihood—of this event
file. However, this is an ill-posed problem. A straightforward
check reveals that a light curve with large values at arrival
times { }=ti i

n
1 and zero values elsewhere yields unbounded log-

likelihood. Therefore, we need additional constraints to
regularize the problem.
We want the regularization term to have the following

desired properties: (1) it penalizes the change rate of the light
curve instead of the raw value itself, since different sources
might naturally have variations in base rates; and (2) instead of
imposing smoothness, it encourages sparsity and piecewise
constancy, since a source might undergo abrupt change of rates
during transient behaviors but retains a relatively constant rate
otherwise. Our regularization term does not require analytical
derivatives, since we will fit these rate functions via neural
networks (see Section 3.2). Based on these criteria, we choose
the discretized TV—hereafter, simply referred as the TV—as
the additional penalty term. Specifically, for the set of
discretization points 0 = τ1 � … � τN = T, the TV of the
rate function r(t) on these points is defined as:

( ) ( ) ( ) ( )… =
=

+r
N

r rTV ; , ,
1

1
. 3N

i

N

i i1
1

1

1

Applying the TV penalty only on the set of discretization
points, however, does not provide sufficient regularization on
the rate function at arrival times { }=ti i

n
1. Therefore, we apply an

additional TV loss on the arrival times to make sure that the
penalty is also adequately sampled at high-count regions.
Summing up the negative log-likelihood and the TV

penalties, the loss for a given light curve r is given by:

( )

( ) ( )

( ) ( )

( ) ( ) ( )

+

= +

+

+

=

=
+

=
+

L r l l

r t r t dt

N
r r

n
r t r t

log

1

1

1

1
, 4

i

n

i

T

i

N

i i

i

n

i i

likelihood TV

1 0

TV
1

1

1

1

1

1

where we have dropped the dependence on { }=ti i
n

1 and { }=i i
N

1
for conciseness. Here, λTV is a hyperparameter that adjusts the
TV penalty level.

3.2. Neural Representation of Light Curves

In order to find the light curve that minimizes the loss ( )L r ,
we choose to parameterize r via a neural network—hereafter
referred to as the neural representation. Neural networks are a
key component in modern deep learning practice and have
proved powerful in approximating complex signals (Z. Lu
et al. 2017). We can then use standard gradient descent
algorithms (e.g., Adam D. P. Kingma & J. Ba 2015) to
minimize the loss defined in Equation (1) by tuning ♦. Upon
convergence, r♦ yields the reconstructed light curve of the
given event file.
Besides using a neural network as parameterization, one

also needs to decide how to represent the continuous light
curve r. The canonical approach is to let the neural network
output a discretization of the signal (e.g., a CNN outputs a
fixed-resolution image), partly because most signals are
already discrete when collected. In our setting, such a neural
network would output a dout dimensional vector, representing
the value of r at dout discretized points. The main drawback of
this approach is that the light-curve resolution is thereby fixed.
To obtain higher resolution, one needs to either use naive
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interpolation, or retrain another network with a larger dout, both
of which are unsatisfactory. To overcome this limitation, we
instead choose to use a neural network to directly model the
function r itself. In other words, the neural network (with weights
♦) would take time t as an input and output r♦(t) such that
r♦(t) ≈ r(t). This is known as the neural field representation and is
now common practice in recent machine learning literature to
represent spatial signals (e.g., B. Mildenhall et al. 2021). The
advantage of this representation lies in its ability to continuously
represent a signal, therefore allowing efficient computation and
flexible adaptation.

3.2.1. Positional Encoding

Although neural networks are known to be universal
function approximators (Z. Lu et al. 2017), there are tricks
that can enhance training efficiency in practice. Specific to our
setting, we would like the neural networks to learn patterns of
different frequency, from constant rates to low-frequency
variations and high-frequency transients. To this end, we apply
positional encoding (PE) to the input t before passing it to the
neural network. PE is a set of deterministic sinusoidal
encodings that first appeared in transformer-based architec-
tures (A. Vaswani et al. 2017), but later proved crucial for
continuous neural representations (B. Mildenhall et al. 2021).
Formally, the encoding function we use is

( ) [¯ ( ¯) ( ¯)
( ¯) ( ¯)] ( )

= …t t t t

t t

, sin 2 , cos 2 , ,

sin 2 , cos 2 5L L

0 0

1 1

for ¯ /=t t T . γ(t) maps t to a (2L ∫ 1)-dimensional vector γ(t)
with features of different frequencies, which is then fed into
the neural network to produce the output r♦(γ(t)). Besides
creating features of different frequency, the PE also standar-
dizes t into values in [0, 1], both of which greatly help increase
the expressive power of neural networks. See Appendix B for
an illustrative ablation study.

3.3. Learning the Latent Space of Features

Up to now, we have managed to reconstruct the light curve
of a single event file using a Poisson likelihood-based loss
function and a neural representation. However, effective
unsupervised learning necessitates a common feature space
where we can compare different sources/event files. There-
fore, instead of training a specific neural network for each
event file, we want a model that is capable of representing a
wide variety of rate functions, discover their similarities/
differences, and yield embeddings which are useful for
downstream tasks. To this end, we propose to represent each
event file via a latent vector z, and learn these latent values
(“latents”) together with the aforementioned rate functions
using a common neural network.

3.3.1. Encoderless Learning

When it comes to learning neural latent variable representa-
tions, autoencoders (and their variants) are one of the most
commonly employed architectures. Canonical autoencoders
learn to reconstruct the data via an encoder and a decoder that
are connected by a lower dimensional bottleneck layer. This
forces the neural network to learn lower dimensional abstract
representations of the data that are useful for downstream
tasks. Despite their popularity and effectiveness, autoencoders

are not appropriate for event files learning in our context.
Compared to the canonical autoencoder training where one
aims to reconstruct the input data, we aim to reconstruct the
light curve from raw event files, resulting in a mismatch
between inputs and outputs. Furthermore, compared to time
series data and text data where RNN often finds success,
Poisson arrival times in event files have much lower signal-to-
noise ratio and much higher variance in information
throughput. Therefore, we instead adopt an autodecoder
architecture, which has also become popular in the machine
learning literature where encoders are hard to train (J. J. Park
et al. 2019; V. Sitzmann et al. 2019).
In an autodecoder, latent variables are directly prepared

instead of being obtained from an encoder. Specifically, to
represent a rate function via a neural network, we randomly
initialize a latent variable z, which is fed together with the PE γ
(t) through the neural network r♦ to produce the reconstructed
light curve. The latent z can be viewed as an extra condition
that indicates the identity of the neural light curve. For a set of
event files {tji}, 1� j�m, 1� i� nj coming from m sources,
we reconstruct m light curves r( j)(t) ≈ r♦(t; z( j)) with the same
neural network ♦ and different latent variables z( j), 1� j�m.
The set of latents are optimized together with the neural
network weights during training. Once trained, the latents
{ }( )

=z j
j
m

1 become learned representations of the light curves
reconstructed from event files, which can be used for
downstream tasks. During training, the autodecoder learns
information about the full distribution of reconstructed light
curves, allowing for generalization to unseen data. At test time,
given a previously unseen event file, the weights ♦ are frozen
and a latent z is optimized for the file. Figure 1 provides an
illustrative comparison between an autoencoder and an
autodecoder.
To encourage concentration of latents, we impose a penalty

on the norm of the latents ( )z j
2
2. This ensures a compact

manifold in latent space and helps with the convergence of
results. Equivalently, this can also be viewed as imposing an
zero-mean isotropic Gaussian prior distribution on the latent
variables.

3.4. Putting it Together: Poisson Process AutoDecoder

We now present our final full pipeline, the PPAD.
Combining previous displays, the loss function of PPAD
contains three parts: likelihood, TV penalty, as well as a latent
norm penalty. Moreover, recall that we have ignored energy

(a) Autoencoder (b) Autodecoder

Figure 1. Compared to an autoencoder where the latent vectors are produced
by the encoder, an autodecoder directly accepts latent vectors as inputs. A
randomly initialized latent vector is assigned to each data point (event file) in
the beginning of training, and latent vectors are optimized together with the
decoder weights through gradient descent. At inference time on a new data
point, decoder weights are frozen, and a new latent vector is optimized via
gradient descent.
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marking. Fortunately, the formulation allows direct extension
to discrete energy binning, since we can effectively reconstruct
a different rate function for each energy bin. Summarizing all
these components, our final loss function is as follows:

( { } ) ( )

( ( ) )

( ( ) )

| ( ( ) )

( ( ) )|

| ( ( ) )

( ( ) )|]

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

= + +

=

+

=

+

=

=
= =

=

=

+

=

L L L L

L

L

L

z

z

z

z

z

z

z

z

r t

r t dt

r

r

r t

r t

; ,

log ;

; ,

;

;

;

; ,

,

6

j j
M

j

M

k

K
j k j k j

j k

i

n
k

i k
j

T
k j

j k
N

i

N
k

i
j

k
i

j

n
i

n
k

i
j

k
i

j

j k j

total 1
1 1

likelihood
,

TV
,

latent

likelihood
,

1
,

0

TV
,

TV
1

1
1

1

1

1

1
1

1

latent
,

latent 2
2

j k,

where j = 1, …, M refers to event files, k = 1, …, K refers to
energy bins, ti, i = 1, …, nj refers to photon arrivals,
τi, i = 1, …, N refers to evenly discretized points, and γ is the
positional encoding defined in Equation (5).

During training, ♦ and { } =zj j
M

1 are optimized together:

ˆ {ˆ } ( { } ) ( )( )

{ }

( )
= =

=

Lz z, arg min ; . 7
z

j
j
M j

j
M

1
;

total 1
j j

M
1

At test/inference time for a new event file, ♦ is frozen and
only a new latent z is optimized:

( ) ( )= L^ ^z z: arg min ; . 8
z

total

The neural network ♦ is a ResNet (K. He et al. 2016), a
common architecture. Specifically, it consists of:

1. A dense input linear layer that maps the
(dlatent ∫ 2L ∫ 1)-dimensional input (concatenation of
the latent vector and the positional time encoding) to a
dhidden-dimensional hidden space. We pick L = 12,
dlatent = 8, and dhidden = 512.

2. The main ResNet with five consecutive residual connec-
tion blocks with the form Φ(x) = W2  σ(W1  σ(x)) ∫
Wskip  x, where x lies in the dhidden-dimensional hidden
space, ×RW W W, , d d

1 2 skip hidden hidden, and σ is the entry-
wise ReLU activation function.

3. Another ReLU activation, followed by a dense output
layer that maps the hidden vectors back to the K = 3
output space, representing log light-curve values in three
energy bands, respectively. A final exponential function
maps the log values back to the real values.

Among the hyperparameters affecting the network structure,
we spent the majority of effort tuning the latent dimension
dlatent. More specifically, we observed that dlatent = 4 yields a
significant decrease in reconstruction quality (see Section 4.1)
and dlatent = 16 yields a lower representational power (see
Section 4.2). Thus, we finally chose dlatent = 8. See a more

thorough discussion of this trade-off in Section 5.3. Other
hyperparameters affect the network capability in similar ways,
thus we refrain from conducting a extensive hyperparameter
search due to limited computational resources.
For penalty parameters on the loss function (6), we picked

λTV = 10 after experimenting the trade-off between recon-
struction smoothness and faithfulness (see Section 4.1); and
we picked λlatent = 1 because its value mainly controls the
latent space radius, which does not affect performance in
direct ways.
More details on the architecture and training procedure can

be found in Appendix A.
A diagram of the whole PPAD pipeline is given in Figure 2.

4. Experiments

4.1. Rate Function Reconstruction

PPAD is able to naturally reconstruct X-ray light curves
from the event files at any desired resolution. To visualize the
quality of light-curve reconstruction, Figure 3 shows the
reconstructed light curves (plotted by sampling on a dense grid
of time points) on top of histograms of the raw 28.8 live
kilosecond (ks) event files (binned with a resolution of 0.3 ks)
for a selection of representative sources. We observe that
PPAD is able to reconstruct a wide range of light-curve shapes,
including flares, dips, periodic sources, and sources of constant
X-ray flux. The reconstruction quality remains high for the
energy-integrated X-ray light curve as well as for specific
energy bands, such as the standard soft (0.5–1.2 keV), medium
(1.2–2 keV), and hard (2–7 keV) bands in Chandra observa-
tions. The reconstructed light curves are also able to capture
transient behaviors, such as the set of astrophysical flares and
dips presented in S. Dillmann et al. (2024), representing
phenomena such as type-I X-ray bursts from low-mass X-ray
binaries, coronal mass ejections in young stars, and eclipses of
occultation binaries, while smoothing out noisy patterns
caused by stochastic photon arrivals.
Reconstructed light curves for the three energy bands belong

to the same event file and therefore share the same latent
representation. As a result, information can be shared across
energy bands to pick up specific patterns. This is demon-
strated, for example, by the soft band of the periodic source

Figure 2. Illustration of PPAD. Latent vectors are concatenated to positionally
encoded time t and fed to the shared ResNet together. The network outputs the
value r(t) of the rate function at time t, which, together with values at other
times, yield the reconstructed rate function r. The rate function r is then used
to compute the loss function in (6) against the event files. When trained with
multiple event files, all event files share the same ResNet weights but each has
a different corresponding latent vector. Gradients are back-propagated to both
the ResNet and the latents.
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shown in Figure 3. The binned event files resemble those from
the low-count source, indicating a possibly constant, nonvari-
able light curve. However, the reconstructed light curve shows
periodicity, which is a result of the shared information from
other bands where such periodicity is more apparent.
Periodicity in certain energy bands can therefore act as a
prior that informs the variability in other bands, but the prior is
still updated based on the observed photon arrivals.

We note that the exercise we have attempted here does not
account for background X-ray photons within the selected
aperture of each source. We are not trying to replicate all
aspects of light-curve reconstruction, but rather to understand
if a latent representation exists that captures meaningful
scientific patterns in X-ray light curves for events of arbitrary
duration and number of photon events. However, we will
mention that the PPAD method can also be used to recover the
background Poisson rate if a background region were selected.
Also, in the particular case of Chandra, the low background
noise and high spatial resolution imply that for the vast
majority of sources, the signal, rather than the background
noise, will dominate in the event files.

We acknowledge that more statistically rigorous light curve
reconstruction methods, such as the Gregory–Loredo algo-
rithm (P. Gregory & T. J. Loredo 1992), are likely to yield
results with comparable quality. However, PPAD is the first
framework that also simultaneously yields latent representa-
tions of these light curves, as we will demonstrate in the next
section.

4.2. Using the Latent Space: Regression, Classification, and
Anomaly Detection

In addition to light-curve reconstruction, PPAD creates a
fixed-length vector representation for each event file. In this
section, we demonstrate the performance of these learned
representations as inputs for downstream tasks, such as source
classification and regression, on meaningful summary statis-
tics, such as spectral hardness and variability. In order to best
showcase the rich abstract information contained in these
latent vectors, we take a minimalist approach and process them
for these tasks using relatively simple machine learning
methods.

4.2.1. Inferring Source Hardness/Variability

Hardness ratios and variability, as summarized in the CSC
by properties hard_hs, hard_ms, hard_hm, var_-
prob_b, and var_index_b, are important diagnostics of
the physical characterization of X-ray sources. For example,
hard sources tend to be associated with nonthermal emission
related to the acceleration of electrons in the vicinity of an
accreting black hole, such as synchrotron emission. In contrast,
soft sources are more likely related to thermal blackbody
emission from very hot sources, such as the accretion disk
itself. X-ray flux variability, on the other hand, can inform
about the timescales of physical processes, such as coronal
mass ejections due to magnetic reconnection events in the
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magnetosphere of young stars or type 1 bursts in X-ray
binaries involving neutron stars.

Therefore, a learned latent representation that codifies
hardness and variability is desirable. An important line of
previous work in unsupervised X-ray learning uses those
properties directly as computed from the CSC for unsupervised
and supervised classification. Here, we explore if self-
supervised learning from the event files themselves can
provide an alternative representation that codifies these
properties simultaneously. To illustrate that our learned
features contain useful information, we explore their relation
with the CSC properties.

In Figure 4, we visualize the geometry of our learned latent
space, using PCA for dimensionality reduction. We color-code
this representation by the hardness ratio, as computed from the
event files following the prescription of the CSC, and observe
a clear continuous trend that hints at the ability of the PPAD to
not only reconstruct the light curve but also codify the overall
spectral shape of the X-ray sources. To confirm this, we use
the learned latents to predict the hardness ratio and variability
of each source. We do an 80%−20% train-test split of the data
and then use simple random forests with 100 trees each, which
we can use to perform both regression and classification. We
use the default hyperparameters in sklearn without tuning and
performed no cross validation. For classification tasks, we
applied the Synthetic Minority Over-sampling Technique
(SMOTE) algorithm (N. V. Chawla et al. 2002) on the
training data to address class imbalance. More specifically, for
each of the minority classes in the training data set, new data
points are randomly sampled on the linear path between
existing data points and their five nearest neighbors. This up-
sampling process is continued until all classes have the same
size and classification is then performed on the resulting
balanced classes. We summarize the results in Table 1. In
short, we obtain ∼0.9 R2 values on hardness ratio prediction
and 92% accuracy on predicting whether a source is variable
(i.e., if its variability index is greater than 5, indicating
variability at a confidence level larger than 90%). These
representations, learned directly from the event files using the
PPAD, are valid features for physical characterization of the
source and can be readily obtained for newly observed X-ray
sources.

4.2.2. Classifying Source Types

In order to investigate if learned the PPAD latent features
also codify information on the astrophysical type of the source,
we feed them to a supervised classifier and compare its
performance with state-of-the art automatic classification
methods. We cross match our data set with the labeled set
from H. Yang et al. (2022), which has been curated to provide
reliable classes for a large number of CSC sources. This
resulted in 5818 matching X-ray detections.5 We train the
classifier in two tasks: (i) an 8-label classification between the
following types: YSO, AGN, CV, HM-STAR, HMXB, LM-
STAR, LMXB, and NS; and (ii) a binary classification
between young stellar objects (YSOs) and active galactic
nuclei (AGNs). We again make an 80%−20% train-test split
of the data, perform SMOTE to resolve class imbalance, and
use random forest classifiers with 100 trees each. As shown in
Table 1, the 8-label classification task yields a test accuracy of
60% and a F1 score of 0.24, and the simpler binary
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Figure 4. Top two principal components of latent features and corresponding hardness ratios. This figure shows strong relations between the learned representations
and meaningful physical features.

Table 1
Quantitative Regression/Classification Performance of Simple Models on

Latent Features

Regression Target MSE R2

hard_ms 0.02 0.87
hard_hm 0.01 0.88
hard_hs 0.01 0.94

Classification Target Accuracy F1 Score
var_index_b > 5? 0.92 0.63
source type 0.60 0.24
YSO versus AGN 0.75 0.69

Note. All models use 100 trees with default hyperparameters, which are
trained on 80% of the data and tested on the remaining set, without cross
validation. All numbers are recorded on the test split. The fact that a simple
predictive model achieves comparable performance as state-of-the-art results
(details in Section 4.2.2) demonstrates that latent features are informative
representations.

5 Note that two or more detections, and therefore two or more even files,
might correspond to the same astrophysical source; this is because we have
split long event files into multiple examples and also because the same source
might have been targeted by Chandra more than once.
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classification (YSO versus AGN) yields a 75% accuracy and
an F1 score of 0.69.

This compares fairly with classification approaches that
use the CSC properties directly as inputs. For example,
V. S. Pérez-Díaz et al. (2024) use unsupervised clustering-
based classification on features selected from prescription
approaches, and obtain an average of 61% accuracy on a
4-label classification task, a number comparable to ours. On
the other hand, H. Yang et al. (2022) obtain a higher 89%
accuracy and a 0.68 F1 score on the 8-label classification task.
However, they use a much richer set of features that augment
the CSC properties with additional multiwavelength features
such as optical and infrared spectroscopy and photometry, and
perform supervised classification that requires the careful
curation of a large labeled training set. While a more direct
comparison is unfeasible due to different data preprocessing
methods and models used, the fact that the PPAD embeddings
provide accuracies comparable to methods that use precom-
puted CSC properties and even multiwavelength features

implies that the PPAD latents serve as powerful summaries of
the astrophysical properties, and that automatic classification
and regression are possible directly from the event files
delivered by the observatory.

4.2.3. Anomaly Detection

We perform a simple anomaly search using the learned
latents. Among the most interesting detections in the CSC are
time-domain anomalies, such as flares and dips in the light
curves with particular spectral signatures. For example, a
number of relatively soft, fast X-ray transients (FXTs) have
been identified in archival searches, which could hint at
neutron star mergers or other explosive phenomena (J. Quiro-
la-Vásquez et al. 2022). Other flares can be harder, such as
those related to magnetic reconnection events in the photo-
sphere of young stars. These can be faint, resulting in low-
count event files.

0

2

4

Ra
te

2CXO J054138.7-015602

0

1

2

3
2CXO J053510.4-052149

0

2

4

2CXO J053513.2-052052

0

1

2

3
2CXO J053515.1-052254

0

1

2

3

Ra
te

2CXO J053517.5-051928
soft
medium
hard

0

2

4 2CXO J053517.9-051644

0

2

4

2CXO J053521.7-051946

0

1

2

2CXO J053536.8-051821

0

1

2

3

Ra
te

2CXO J053833.4-691158

0

1

2

2CXO J085853.9-473051

0

1

2

2CXO J162607.0-242724

0

1

2

2CXO J172303.9-341147

0 4 8
Time (hour)

0

1

2

3

Ra
te

2CXO J182029.1-161054

0 4 8
Time (hour)

0

1

2

2CXO J190140.3-365142

0 4 8
Time (hour)

0

1

2

2CXO J225602.8+620257

0 4 8
Time (hour)

0

1

2

3
2CXO J235910.3-602922

Figure 5. Targeted anomaly source (upper left) and 15 neighboring sources which are closest in the latent space. Almost all found sources are low-count hard-band
flares, just like the targeted anomaly source.

8

The Astrophysical Journal 988:143 (12pp), 2025 July 20 Song et al.



To investigate the suitability of the PPAD latents for the
identification of anomalies, we select a dim, hard flaring
source (2CXO J054138.7-015602) and search for the nearest
neighbors of this target in the embedding latent space. Figure 5
shows PPAD-reconstructed light curves of the target source
(upper left) and the 15 closest neighbors, in the three different
three energy bands. We observe that almost all neighboring
sources feature low-count, hard-band flares.

We investigated this further by selecting astrophysical
anomalies from the literature and examining their nearest
neighbors in the PPAD embedding space. Among the
anomalies investigated are eclipsing X-ray binary V〉 UY
Vol, a set of FXTs from D. Lin et al. (2022), and ultraluminous
X-ray sources. In general, we find that the PPAD embeddings
are best at encoding the spectral hardness of the sources (i.e.,
the neighbors of hard sources are also hard sources), the
variability in timescales comparable to the full duration of the
observation (i.e., the neighbors of slowly varying light curves
are also slowly varying light curves), and the signal-to-noise
ratio (i.e., the neighbors of low-count detections are also low-
count detections). Transient phenomena such as flares and
eclipsing dips can also be successfully encoded. This
demonstrates the potential of PPAD in discovering analogs
to interesting time-domain and spectral anomalies, as illu-
strated by S. Dillmann et al. (2024), who successfully discover
anomalous FXTs using a different representation learning
approach.

Furthermore, our representation learning approach firmly
places X-ray astrophysics in the context of foundational
models and multimodal machine learning. For example, the
PPAD learned representations can be used in contrastive
learning approaches to align X-ray data with representations
coming from other wavelengths/modalities (e.g., optical light
curves, infrared light curves, text, etc.), allowing for cross-
modal retrieval and/or inference. See a demonstration in
J. R. Martínez-Galarza et al. (2025), where the authors align
the PPAD representations with LLM-generated representations
of text coming from descriptions of the sources in the
astronomy literature.

5. Discussion and Conclusion

5.1. Summary of Contributions

In previous works, a learned representation of X-ray sources
that (i) results in physically meaningful embeddings, (ii) can
take as input event files of varying length, and (iii) accounts
for the Poisson nature of the photon-counting process has been
elusive, preventing us from designing effective methods of
automatic classification and anomaly detection. Here, we
summarize the contributions of our novel framework,
elaborating how it improves upon previous works in these
regards.

1. By adopting the power of a neural network to learn
features automatically, our framework circumvents the
requirement of domain knowledge as well as the
potential bias from prescription-based features
(D. Giles & L. Walkowicz 2019; S. Webb et al. 2020;
M. Kovačević et al. 2022; S. Bhardwaj et al. 2023;
V. S. Pérez-Díaz et al. 2024).

2. By using a neural field representation with positional
encoding techniques, our framework enables infinitely
smooth reconstruction of light curves, resolving the

limited resolution issue from previous reconstructions
(P. Gregory & T. J. Loredo 1992; S. Dillmann
et al. 2024).

3. By combining the Poisson likelihood function with a TV
penalty, our framework respects both the stochastic
Poisson nature of photon arrivals as well as the
smoothness prior of light curves. This improves upon
binning-based light curve reconstruction methods that
introduce artifacts (S. Dillmann et al. 2024).

4. By introducing a shared decoder network with different
latent inputs, our framework also simultaneously learns
fixed-dimensional representations of event files. This
end-to-end pipeline improves upon all previous
approaches that either focus solely on light-curve
representation (P. Gregory & T. J. Loredo 1992) or need
a reconstructed light curve to learn representations
(B. Naul et al. 2018; H.-S. Chan et al. 2022; J. K. Orwa-
t-Kapola et al. 2022; B. J. Ricketts et al. 2023). In this
regard, by adopting an encoderless framework, our
framework allows flexible handling of inputs with
varying length, enabling direct learning from raw
event files.

Combining these points, PPAD simultaneously reconstructs
light curves and learns latent representations in an end-to-end
and unsupervised manner. We verify the efficacy of PPAD in a
series of proof-of-concept experiments, including light-curve
reconstruction, source property prediction, source type classi-
fication and anomaly detection. PPAD offers a novel way to
analyze large quantities of X-ray data and its methodology can
be readily extended to more general stochastic process data.

5.2. Scientific Applications

The experiments in Section 4 can be readily extended to
scientific applications. For example, the learned representa-
tions can be used to automatically label previous unlabeled
sources using a small subset of curated labels. These
representations can also be applied to anomaly detection and
searches for specific variability patterns, such as flaring and
dipping behavior in the X-ray light curves, which can be
indicative of FXTs, self-lensing events, and eclipses. In
addition, there is nothing fundamentally different between
the nature of Chandra data and data from other existing and
upcoming X-ray missions. The method presented here can be
used to learn representations that enable classification and
regression in sources detected by the larger scale eROSITA
all-sky survey and by upcoming X-ray sources such as AXIS.

5.3. Limitations and Future Directions

Finally, we note some current limitations of the PPAD
model and suggest corresponding future directions. The first
relates to the autodecoder architecture and how it operates at
training and test times. Since one needs to prepare a latent
vector for every event file, each latent only receives effective
gradient updates once per epoch, making autodecoders less
efficient than autoencoders during training. More importantly,
new latents for unseen data need to be optimized during test
time. Although the optimization only takes several seconds, it
is still order-of-magnitudes slower than the amortized
inference from autoencoders. Introducing an autoencoder that
is capable of dealing with variable-length and highly stochastic
Poisson arrival times data is a challenging and promising
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future direction. Relatedly, our current autodecoder architec-
ture is deterministic. An extension to a variational autodecoder
may grant a finer control over the distribution of latents.

Another limitation, common in many unsupervised learning
pipelines, is the natural trade-off between reconstruction
quality and representation quality. In PPAD, this trade-off is
controlled by the latent space dimension, the decoder's size,
and a regularization term. A larger model dictates more focus
on reconstruction details, which results in a higher light-curve
reconstruction quality but less meaningful representations; a
smaller model forces learning more abstract and high-level
features, therefore resulting in better representations but worse
light-curve reconstruction. In our experiments, we only ablated
the latent dimension. We set the dimension to 8 after observing
that a dimension of 4 has obviously worse reconstruction
quality and a dimension of 16 leads to worse downstream task
performances. A broader exploration of hyperparameters (both
in our autodecoder and in the simple random forests used for
downstream tasks) can likely strike a balance between these
paradigms. Another special parameter that we roughly tuned is
the smoothness penalty. An ideal penalty level should strike a
good balance between learning physically meaningful varia-
tions and filtering out stochasticity of photon arrivals.

Finally, event files in our training data are recorded at
different starting times, and hereafter truncated to 8 hr
segments. This results in variations in the phase of recon-
structed light curves, and therefore variations in the learned
latents. For example, early-, mid-, and late-flares have different
learned representations, but this difference is likely an artifact
of event file recording/truncation and they may in fact come
from very similar sources. Designing a phase-shift invariant
extension of PPAD to resolve this problem is an exciting
future direction. Similarly, to put an even greater focus on
variability behaviors such as transients, one could design total-
count and lifetime invariant extension of PPAD that
normalizes event files based on total-counts and lifetimes. As
an example, S. Dillmann et al. (2024) normalizes the lifetimes
of all event files before computing histograms, which likely

encourages the model to focus on variability behaviors and
results in clustering of transient sources in the latent space.
Incorporating similar invariance in PPAD would greatly
increase the flexibility of the framework by bypassing the
truncation and would include event files of different lifetimes.
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Appendix A
Implementation Details

In this section we provide further details and explanations of
the architecture and training procedure of PPAD.

A.1. Network Architecture

Figure 6 illustrates the detailed architecture of ResNet in
Figure 2. This is a minimal ResNet structure with five ResNet
blocks, each block consisting of two fully connected layers
with a residual connection layer. Compared to fully connected
networks, ResNet facilitates easier gradient propagation and
provides a drop-in framework to enhance network capability.
To ensure compatible dimensions, corresponding upsample
and downsample layers are added to the start and the end of the
network, respectively. ReLU activations are inserted between
each consecutive layer.

Figure 6. Illustration of the ResNet backbone of PPAD.
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A.2. Loss Function

When computing the integral from -Lneg loglikelihood and a part
of LTV , we divide the time interval [0, T) with T = 8 hr into a
grid of resolution 2048. This choice is arbitrary, and higher
resolution can be achieved with minimal additional
computation.

A.3. Training

The training is divided into the following three stages.
For stage 1, we create a smaller data set with higher signal-

to-noise ratios. This is done by filtering out many low-count
and possibly homogeneous event files, which is the majority of
all event files. We remove an event file with probability

( ( · ))/ + n1 1 exp 900 9000.99 0.01 , where n is the length
(number of photon arrivals) of the event file. The filtering
effectively removes mostly low-count event files and results in
a higher quality data set of size 14,891. We then train both the
network and corresponding 14,891 latents using the filtered
high quality data set for 1200 epochs.

For stage 2, we switch to the full data set of size 109,656,
but freeze the network and only train the newly added latents
for 200 epochs in order to provide a good initialization.

For stage 3, we again train both the latents and the network
together for 600 epochs.
We use the Adam optimizer (D. P. Kingma & J. Ba 2015)

with default hyperparameters for all stages. The learning rate
for the latents is 1e-3 for Stages 1 and 2 and 1e-4 for Stage 3.
The learning rate for network weights is always 1/10 of that
for the latents. We use a batch size of 64. The whole training
takes approximately 5 days on a single Nvidia V100 GPU.

Appendix B
Ablation Studies

In Section 3.2.1, we mentioned that the PE enhances the
power of neural networks in learning high-frequency signals.
Here, we provide an illustrative ablation study to show the
effectiveness of PE.
We use the same implementation details in Appendix A,

except that we are only running 50 epochs on a single event
file. As Figure 7 shows, PPAD with PE (the original one)
achieves faster and more stable convergence, and also
exhibits higher reconstruction quality than PPAD with-
out PE.
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