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Sensitivity of Novel Micro-AlN/GaN/AlN
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Abstract—We have grown AlN/gallium nitride (GaN)/AlN
heterostructures by molecular beam epitaxy (MBE) and fabri-
cated Hall sensors. In a comparison with fabricated AlGaN/
AlN/GaN Hall sensors, we find that the AlN/GaN/AlN quan-
tum well (QW) Hall sensors have higher sensitivity under
constant current bias. In addition, the application of a gate
voltage shows a further increase in the Hall sensitivity
from 3.6 to 6.1 VW−1T−1, without a significant change in
the operating parameters. This is because the gate voltage
restricted the current flow resulting in an increase carrier
velocity and electric field at precisely the Hall measurement
site while keeping the device applied power approximately
the same.

Index Terms— Gallium nitride (GaN), heterostructure, high electron mobility transistor (HEMT), micro-Hall sensor,
molecular beam epitaxy (MBE), offset voltage, quantum well (QW).

I. INTRODUCTION

HALL effect sensors have been widely used for many
years for magnetic pole position detection and con-

tactless switching applications [1]. Such magnetic sensors,
when integrated into CMOS technology, have also been very
effective for monitoring currents in low-power electronic
circuits [2], [3], [4], [5], [6]. However, increasing power
demands, coupled with the need for smaller size and weight for
high power units, have created a market for GaN and silicon
carbide (SiC) high electron mobility transistors (HEMTs) [7],
which allow for modern power systems to be designed at
much higher power densities and operating temperatures [8],
[9], [10], [11]. As a result, there is a corresponding need
for Hall sensors for higher power current sensing that can
also tolerate the same higher operating temperatures. The
GaAs material system has for many years [12], [13], [14]
been an effective material system for the fabrication of the
Hall sensor conductive channel, followed by processing and
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adding metal contacts to enable the measurement of the Hall
voltage sensor signal. However, the GaAs material system Hall
sensors prove to have a limited upper temperature range on
the order of 200 ◦C [15]. The wide bandgap semiconductors
gallium nitride (GaN), gallium oxide (Ga2O3), and SiC are
considered potential material systems for high-temperature
device application [16], [17]. Significant progress has been
made in recent years on the development of GaN quantum
well (QW)-based radio frequency (RF), high-voltage, and
high-temperature power electronic devices [17], [18], [19].
These advancements are expected to have a tremendous
impact on various areas, including all-electric vehicles, high-
voltage/high-power electronics, and devices that operate at
high speeds and frequencies. However, it is crucial to monitor
the high operating currents and temperatures that can poten-
tially result in catastrophic failure.

One approach to fabricate Hall sensors to be used in
high-power devices and high-temperature environments is to
use the same GaN material system for the sensor that is used
for fabricating high-power HEMTs [1], [20]. This approach
has the additional advantage of monolithic integration of
transistor and sensor on the same chip. In a previous article,
we demonstrated a high-sensitivity, robust, high-temperature
micro-Hall sensor using the GaN material system grown by
molecular beam epitaxy (MBE) [20], [21], [22], [23]. The sen-
sor was based on the formation of a 2-D electron gas (2DEG)
at the AlGaN/GaN heterostructure interface [24], [25] and on
the wider bandgap feature of the AlGaN and GaN materials
over GaAs materials, allowing it to tolerate higher oper-
ating temperature environments. The novelty of the sensor
was that it could simultaneously determine both current and
temperature as well as utilize a new method to separate out
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the troubling offset voltage from the produced sensor Hall
voltage [20].

In this article, we build on past results and investigate gated
AlN/GaN/AlN QWs fabricated as Hall sensors. The QWs
were grown by MBE on an AlN template, which consists
of a sapphire substrate with a metal–organic chemical vapor
deposition grown, 1-µm-thick AlN semi-insulating layer. The
AlN/GaN/AlN QWs have been investigated before and shown
the tunable 2DEG density by changing the GaN QW thickness
and high-frequency filed-effect transistor performance with
cutoff frequency <100 GHz [26], [27] and therefore which
are good reason to believe they are good candidates to explore
Hall sensors application. The use of AlN/GaN interface has
the advantages of a high breakdown voltage and larger band
offset compared to Al0.20Ga0.80N/GaN as well as a larger
difference of spontaneous and piezoelectric polarization [28],
[29], [30] across the heterojunction. Hence, the AlN/GaN/AlN-
QW-based Hall sensors can have potential advantages in
achieving high carrier confinement and low sheet resistance,
associated with the 2DEG that forms at the AlN/GaN inter-
face. It also has the potential advantage of integration with
high-power transistors on a single-chip AlN platform, which
is preferred over GaN due to higher thermal conductivity.
Our study also demonstrates a sensitivity enhancement that
is observed by applying a gate voltage at the spatial location
of the Hall signal measurement, restricting the 2DEG cross-
sectional area, resulting in an increase carrier velocity and
electric field at only the Hall measurement site, while keeping
the device applied voltage and bias current approximately the
same.

For the investigation, we have grown several AlN/GaN/AlN
heterostructures by MBE and fabricated Hall sensors while
varying QW thickness and measuring the Hall signal, carrier
concentration, and carrier mobility. In a comparison with
fabricated AlGaN/1.3-nm AlN/GaN Hall sensors, we find that
the AlN/GaN/AlN QW Hall sensors have higher sensitivity for
fixed current bias while the added use of a gate voltage shows
a dramatic increase in the Hall sensitivity without a significant
change in the operating parameters.

In Section II, we give the experimental details of both the
equipment and approach utilized, while Section III describes
and discusses the corresponding observations. Section IV
brings the observations to a conclusion that the use of a gate
can improve the performance of all Hall sensors.

II. EXPERIMENTAL DETAILS

AlN/GaN/AlN QW Fig. 1 grown by MBE on top of an
AlN template was used to fabricate and study Hall devices.
The QWs were grown on the template using a Veeco Gen II
RF nitrogen plasma cell. The active device structure consists
of a 50-nm AlN buffer, followed by a GaN and AlN, forming
a QW. Eight QW device structures were studied, each with
a different QW thicknesses t including, 2, 4, 8, 10, 15,
20, 30, and 40 nm. The structure is depicted in Fig. 1(a).
The AlN buffer layer, 4-nm top AlN barrier, and cap 1.5-nm
GaN thicknesses, remained the same for all Hall structures.
Prior to the growth process, the template was prepared fol-
lowing the detailed preparation described elsewhere [31], [32],
[33], [34]. For all samples, the substrate temperature was

Fig. 1. (a) Cross-sectional growth diagram of AlN/GaN/AlN QW Hall
sensor. (b) Plan view of Greek-cross Hall sensor device. (c) Micro-Hall
sensor located in chip carrier. (d) Typical Hall sensor, which produces a
Hall voltage VH as a function of magnetic field B.

maintained at 794 ◦C and nitrogen was supplied from the
nitrogen plasma cell with power maintained at 350 W and
nitrogen flow rate at 0.5 standard cubic centimeter per minute
(sccm), which corresponded to a 4-nm/min deposition rate.
The chamber pressure remained stable at 3.25 × 10−6 torr
throughout the growth process, and the growth mode and
growth rate were monitored by in situ reflection high-energy
electron diffraction (RHEED). Prior to processing for device
fabrication, the sample was dipped in HCl solution for 20 min
to remove any possible excess Ga metal droplets from the
surface. A Cl-based inductively coupled plasma (ICP) dry etch
technique was employed to form “Greek-cross” Hall devices,
with a corresponding mesa etch depth of ∼200 nm. Prior to
adding ohmic contacts by deposition, a selective premetal-
lization plasma etching procedure was conducted producing
an etch depth of about 2 nm only in the contact region of
mesa structure. The ohmic contacts were formed with a Ti
(30 nm)/Al (200 nm)/Ni (50 nm)/Au (100 nm) metal stack
deposited by e-beam evaporation, followed by rapid thermal
annealing (RTA) at 750 ◦C for 30 s to enhance diffusion. The
ohmic contact pad dimension is 500 × 500 µm at the wire
bond site, and at the 2DEG contact site, it is about ∼20 µm
wide. Each chip, containing two Greek-cross Hall sensors,
was mounted on a nonmagnetic chip carrier for electrical
characterization [Fig. 1(b) and (c)].

These two Hall devices on a single chip gave equal per-
formance. Practically, the second sensor acted as a backup
sensor. The Hall sensor response as a function of tempera-
ture and magnetic field, operating in the constant current or
constant voltage bias mode, was characterized using an MMR
Technologies H-50 Hall Effect system.

III. RESULTS AND DISCUSSION

The schematic representation of the Hall Effect is shown in
Fig. 1(d). In this figure, Vb is the applied bias voltage applied
across contacts C1 and C3 that create a bias current Ib or
charge carriers that move through the semiconductor at a drift
velocity vd . A magnetic field B was applied perpendicular to
the sample. As a result, charge carriers transporting across
the semiconductor experience a force to the side which is
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compensated by developing E field in the plane of the sample
and perpendicular to the conducting path. At equilibrium, the
electric field produces a force on the charge carriers that
balance the force due to the magnetic field. The develop-
ing electric field is responsible for a sensor signal or Hall
voltage VH that develops across metal contacts, C2 and C4,
in the presence of the magnetic field. The Hall voltage of
a Hall sensor is primarily dependent on the carrier charge
(electrons in this case), drift velocity vd, and component of
the magnetic field perpendicular to the plane of the device B,
described by (1) and (2), and consequently is dependent on the
material carrier mobility, shown in (3). Here, q is the carrier
elemental charge, w is the width of the etched conductive
channel, and EH is the Hall electric field formed due to charge
accumulation at contacts C2 and C4 at equilibrium [Fig. 1(d)]

qvd B = q EH (1)

therefore

VH = wvd B. (2)

These equations are basically determined at equilibrium from
the balance of the electrical and magnetic forces on every
charge carrier forming the bias current. Likewise, the drift
velocity can be written by defining the carrier mobility µ as

vd = µEb (3)

where Eb is the applied bias electric field, which for a given
bias current can be used in (3) as

Ib = Aq(ns/t)µEb (4)

where A is the cross-sectional area for the bias current.
Therefore

VH = wvd B = w Ib B/(Aqn) = Ib B/(qns) (5)

where n is the 3-D carrier density and ns is the carrier sheet
density or the 3-D carrier density divided by the effective
thickness t of the current carrying region. Based on (4) and (5),
the Hall effect is typically employed to determine the mobility,
carrier sign, and sheet carrier density, using the bias current
and measured Hall voltage. For example, the carrier sheet
density and mobility for AlN/GaN/AlN QW Hall sensors of
thicknesses 40, 30, and 20 nm are shown in Fig. 2(a) and (b).
The results for both the carrier mobility and sheet carrier
density are consistent with results from previous investiga-
tions [26]. For example, Fig. 2(a) indicates a reduction of sheet
carrier density as the thickness of the GaN QW is reduced
from 40 to 20 nm, but little change between 40 and 30 nm.
This behavior is expected based on the 2DEG that forms at
the AlN/GaN interface [26]. For the 40- and 30-nm QW, the
2DEG at the AlN/GaN interface is on the order of 10–20 nm
and its confinement is not significantly affected by the change
in QW width from 40 to 30 nm. However, we can expect an
impact on carrier confinement and corresponding sheet density
for QWs with a thickness below 20 nm.

Likewise, we also found that the residual strain in the
GaN QW of AlN/GaN/AlN heterostructure was only slightly
affected for QW thicknesses above 20 nm but significantly
affected for QWs at or below 20 nm as determined from
Raman measurements, shown in Fig. 3(a)–(c). The E2 (high)

Fig. 2. Measured (a) carrier sheet density and (b) carrier mobility as
a function of temperature for three GaN QWs (20, 30, and 40 nm),
respectively.

Fig. 3. (a) Raman spectra acquired for AlN/t-GaN/AlN QW [QW
thicknesses (t) = 4, 6, 10, 15, 20, 30, and 40 nm] structures grown on
AlN/sapphire substrates, the reference sample Raman spectra acquired
for 1-µm AlN/sapphire (navy color), and bulk GaN (blue color), respec-
tively. (b) Zoomed-in view showing the E2 (high) phonon mode of
GaN QW. (c) Plot of the shift in E2 (high) Raman peak position as a
function of GaN QW thickness.

phonon mode is particularly sensitive to residual in-plane
strain [27], [35]. The data show that an increasing Raman
frequency shift is observed as the thickness of the GaN
QW is reduced, indicating that the corresponding compressive
strain is increased with decreasing thickness. Since the GaN
cap layer is very thin (1.5 nm), the Raman signal primarily
originates from the GaN quantum well (QW) structure.

The observed change in the compressive strain field with
GaN QW thickness has a direct correlation with the sheet
carrier density. The direction of the piezoelectric polarization
in the GaN QW adds to the spontaneous polarization with
tensile strain and is opposite to the spontaneous polarization
under compressive strain. Therefore, we can expect an increase
in piezoelectric polarization and a decrease in net polarization
as the compressive strain increases with lower QW thickness.
The compressive strain transitions from high to low at around
20–30 nm as observed by Raman results and other reports [26].
The significance is that a lower net polarization results in a
lower 2DEG sheet density. By using Raman analysis, we were
able to correlate the observed change in sheet density with
respect to QW thickness and corresponding influence of
compressive strain field. Note that below 15-nm GaN QW
thickness, there is a significant reduction of sheet density
leading to a nonconducting behavior of Hall device, therefore
limiting Hall measurements on those devices. Our analysis is
therefore focused on QW thickness for 20 nm and above.
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Fig. 4. AlN/GaN/AlN QW micro-Hall sensors have a linear response
to magnetic field, in the range from −0.25 to 0.25 T magnetic field,
over a wide range of constant bias current (top color code), for the
40-, 30-, and 20-nm QWs at room temperature.

For a practical Hall sensor, the Hall voltage versus magnetic
field relationship must remain linear over a wide temperature
range of magnetic field strength. As shown in Figs. 4 and 5,
the AlN/GaN/AlN QW Hall sensors of thicknesses 40, 30, and
20 nm have a linear response to a changing magnetic field in
the range from −0.25 to 0.25 T, when biased using either a
constant current bias or a constant voltage bias, respectively.

In addition, the measured Hall voltage versus bias current
for fixed 0.1 T magnetic field at room temperature is shown
in Fig. 6 for the 40-, 30-, and 20-nm QWs, respectively. The
Hall voltage signal is seen to get progressively higher with
decreased thickness as expected due to the decreased sheet
density and conduction area for the fixed bias current.

To quantify the performance of these micro-Hall sensors,
we plotted absolute Hall sensitivity with respect to bias cur-
rent, as shown in Fig. 7. As seen in Fig. 7, there is about 11%
increase in absolute sensitivity from AlGaN/1.3-nm AlN/GaN
to 20-nm QW micro-Hall device at room temperature.

A major point is that the 20-nm QW outperforms the
AlGaN/1.3-nm AlN/GaN 2DEG Hall sensor using the same
fabrication method. These techniques rely on decreasing the
current carrying cross-sectional area and sheet density by
reducing thickness to increase the drift velocity to enhance the
Hall sensor signal for the same bias current and magnetic field.

Likewise, Fig. 8 shows the AlN/GaN/AlN QW Hall voltage
versus temperature relationship in the range from −100 ◦C to
350 ◦C operating in the constant current mode. The removal

Fig. 5. AlN/GaN/AlN QW micro-Hall sensors have a linear response
to magnetic field, in the range from −0.25 to 0.25 T magnetic field,
over a wide range of constant bias voltage (top color code), for the
40-, 30-, and 20-nm QWs at room temperature.

Fig. 6. Hall sensor signal for the 40-, 30-, and 20-nm QWs versus bias
current in comparison with a reference AlGaN/1.3-nm AlN/GaN 2DEG
Hall device for fixed 0.1-T magnetic field at room temperature.

of the offset voltage and measurement of the local temperature
are accomplished using the same techniques described in our
previous publication [20].

Based on parameters, such as temperature range, current
scaled sensitivity (SI ), and temperature coefficient (SI TC),
Table I presents a comparison between GaN QW sensors and
the state-of-the-art sensor technologies [12], [15], [36], [37],
[38], [39], [40], [41].

Realizing that decreasing the bias current channel
cross-sectional area increased the carrier velocity and Hall
signal, we explored a new idea that relied on adding a gate
to the Hall sensor at the precise spatial point of the Hall
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Fig. 7. Absolute sensitivity of the Hall sensor as a function of current
bias.

Fig. 8. AlN/GaN/AlN QW micro-Hall sensors show stable Hall voltage
response for fixed 0.1-T magnetic field as a function of temperature
under constant 0.2-mA bias current.

TABLE I
COMPARISON OF GaN QW HALL SENSOR WITH

THE STATE-OF-THE-ART HIGH-TEMPERATURE

HALL SENSOR

signal measurement, as shown in Fig. 9(a). By applying a
gate voltage, we distribute the same applied voltage to be
heavily weighted at the precise spatial point of the Hall sig-
nal measurement. Consequently, the electric field and carrier
velocity are increased producing a higher Hall signal. This
technique worked perfectly as seen by the enhancement in Hall
voltage shown in Fig. 9(b) when a gate voltage is applied as
indicated in Fig. 9(a). The measured Hall sensitivity for the
gated Hall sensor shown in Fig. 9(b) yields a device sensitivity
is 6.1 VW−1T−1, which is nearly twice the sensitivity of
3.6 VW−1T−1 observed without the gate voltage. We empha-
size that this is with the constant Hall bias current or applied
power.

Furthermore, the Schottky gate QW Hall sensor output Hall
voltage versus applied magnetic field behavior for different
bias currents ranging from 0.1 to 0.4 mA was measured,

Fig. 9. (a) Hall sensor device (GaN QW thickness is 30 nm) with added
Schottky gate to control the bias current flow cross-sectional area. (b)
Comparison of Hall voltage for fixed 0.1-T magnetic field concerning
without and with gate voltage in reference to applied power.

Fig. 10. (a) and (b) Hall sensor device (GaN QW thickness is 30 nm)
with added Schottky gate have a linear response to magnetic field for
without and with fixed gate voltage at room temperature.

as shown in Fig. 10. Fig. 10(a) presents the Hall voltage,
which varies linearly with the applied magnetic field from
−0.25 to 0.25 T without applying gate voltage. Fig. 10(b)
depicts that the added gate voltage to the Schottky gate QW
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Hall sensors shows higher Hall voltage and signal linearity
for applied magnetic field from −0.25 to 0.25 T. This is
consistent with the added restriction to the bias current by
decreasing the effective thickness again only at the Hall
voltage measurement point.

This is not an effect that depends simply on increasing
the applied bias voltage, current, or power. Rather, the gate
redistributes approximately the same applied voltage to take
advantage of a higher electric field only at the site of the Hall
measurement, while keeping the applied power to the device
approximately the same [Fig. 9(b)]. Moreover, a much higher
improvement in the Hall sensor sensitivity is possible by using
a smaller lateral size for the gate electrode.

IV. CONCLUSION

In summary, we have grown several AlN/GaN/AlN het-
erostructures by MBE and fabricated Hall sensors. In com-
parison with standard AlGaN/AlN/GaN Hall sensors, we find
that the AlN/GaN/AlN QW Hall sensors, for the same sensor
geometry, have a higher sensitivity. In addition, we have
demonstrated for the first time that the use of a gate can
significantly increase the Hall sensitivity of any Hall device
without a significant change in input power or applied voltage.
This is because the gate voltage redistributes the bias voltage
to produce a higher applied electric field only at precisely
the Hall measurement site while keeping the device applied
voltage and current approximately the same. The future direc-
tion of this research involves integrating a Hall sensor with
a high-power transistor on the same chip to enable real-time
monitoring of both current and temperature.
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