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Elastodynamic metasurfaces composed of surface-mounted resonators show great promise for guided wave control in diverse 

applications, e.g., seismic and vibration isolation, nondestructive evaluation, or surface acoustic wave devices. In this work, 

we revisit the well-studied problem of “rod-shaped” resonators coupled to a plate to reveal the relationship between the 

resonator’s resonances and antiresonances obtained under unidirectional harmonic excitation and the resultant frequency 

bandgap for 𝑆0 Lamb mode propagation once a metasurface is arranged. This relationship is shown to hold true even for non-

prismatic resonators, such as those presented in our recent studies, in which we established a systematic resonator design 

methodology using topology optimization by matching a single resonator's antiresonance with a predefined target frequency. 

Our present study suggests that considering the waveguide (plate) during the resonator design is not essential and encourages 

a feasible resonator-design approach to achieve wide bandgaps just by customizing a single resonator’s resonances and 

antiresonances. We present a topology optimization design methodology for resonators that drive resonances away from 

antiresonances, i.e., a resonance gap enhancement, yielding a broadband 𝑆0 mode bandgap while ensuring the desired bandgap 

formation by matching antiresonances with a target frequency. The transmission loss of metasurfaces composed with topology-

optimized resonators is numerically verified, confirming the generation of wider bandgaps compared to resonators designed 

without resonance gap enhancement and broadening the applicability of locally resonant metasurfaces. 

 

I. INTRODUCTION  1 

 While metamaterials are defined broadly across disciplines from optics to acoustics, elastodynamic metamaterials are 2 
an emergent subcategory of engineered, dynamic structures to control elastic waves [1]. These metamaterials typically utilize 3 
one of two mechanisms for wave control: Bragg scattering and local resonance. The former is the basis for phononic crystals, 4 
which are composites with periodic structures that scatter and attenuate waves with wavelengths comparable to their lattice 5 
constant [2], [3]. Alternatively, locally resonant metamaterials generate bandgaps by achieving unusual properties of negative 6 
effective mass density and elastic modulus due to the local resonance phenomenon that arises from the hybridization of a 7 
propagating wave with the embedded resonant inclusions [4], [5]. The local resonance approach is often preferred for elastic 8 
wave control as it facilitates employing subwavelength-spaced resonant structures, and it does not require lattice periodicity. 9 
While there has been a lot of research employing local resonance to generate bandgaps for elastic wave control, there has been 10 
an increased attention in recent years to widening bandgaps such that they span across broad frequency ranges. 11 

Graded metasurfaces are used to achieve wider bandgaps through the "rainbow effect" by systematically tuning the 12 
resonance frequencies of resonators comprising the metasurface [6]–[10]. Alternatively, the Topology Optimization (TO) 13 
method, widely used in solving problems across structural mechanics, acoustics, optics, and electromagnetics, has drawn 14 
attention in tailoring bandgaps for phononic crystals and metasurfaces [11]–[15]. Most of these studies share a common design 15 
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objective, i.e., maximize bandgaps from dispersion analyses considering the unit cell consisting of a resonator mounted on a 16 
portion of the waveguide [16], [17] or by modifying the waveguide’s topology to induce frequency bandgaps [13], [18]. 17 
Although only a few publications have directly addressed the topological design of individual resonators, they have employed 18 
2D simplifications and low-refinement meshes to enable the use of genetic algorithms [17], [19]–[21]. The TO design of a 19 
metasurface relying on computationally expensive dispersion analyses, also requires the identification of an opening bandgap 20 
at a desired or random frequency range and the selection of lower and upper bandgap bounds at the appropriate wavenumber 21 
values where the wave speed approaches zero. For gradient-based TO, a complex derivation of analytical sensitivity function 22 
considering Bloch-Floquet periodic conditions would be necessary. For non-gradient based TO, the optimization problem must 23 
be simplified so that the computational solution is feasible. An efficient and rational design methodology for three-dimensional 24 
local resonators capable of generating wide frequency bandgaps is lacking.  25 

In this paper, instead of dealing with this complex design problem, we propose the systematic design of local resonators 26 
by isolating them from the waveguide and replacing the resonator-waveguide interaction with unidirectional harmonic loads 27 
that mimic the propagating wave mode forcing. The resonator’s dynamic response to these unidirectional harmonic loads, i.e., 28 
resonances and antiresonances, is then manipulated so that frequency bandgaps open around an antiresonance frequency while 29 
the surrounding resonances are pushed apart to maximize the bandgap width. Such topology-optimized resonators whose design 30 
process does not rely on considering the waveguide-resonator interactions but instead on the underlying wave physics, offer 31 
significant advantages in reducing computational complexity. This approach is particularly useful for lower frequency and 32 
surface wave control applications, where the waveguide is a half-space that requires a fine finite element mesh during the 33 
computation. 34 

Designing local resonators by tailoring their dynamic response requires a comprehensive understanding of how their 35 
resonances and antiresonances shape the resultant frequency bandgap for a desired guided mode, e.g., 𝑆0 or 𝐴0 Lamb wave 36 
modes; understanding the local resonance mechanism is the key to generating bandgaps for metasurfaces. The role of 37 
longitudinal resonances and antiresonances of rod resonators in generating bandgaps for the 𝐴0 Lamb wave in a plate was 38 
demonstrated experimentally and analytically for the first time in the pioneering works of Rupin et al. [22] and Williams et al. 39 
[23]. Longitudinal resonances and antiresonances are the frequencies at which the maximum and minimum out-of-plane 40 
displacement response is attained at the application point of harmonic excitations during longitudinal vibrations. Similarly, 41 
flexural resonances and antiresonances correspond to the frequencies of maximum and minimum in-plane displacement 42 
response due to flexural vibration modes. Ignoring the 𝑆0 mode and the rod’s flexural resonances, Williams et al. demonstrated 43 
that the start and end of an 𝐴0 mode bandgap coincide, respectively, with the rod resonator’s longitudinal antiresonance and 44 
resonances [23]. This is in contrast to that observed for surface waves, where resonance frequencies determine the bandgap 45 
start while antiresonance frequencies are positioned at the bandgap end [24]–[26]. Colquitt et al. [27] extended the analytical 46 
model of Williams by studying the interaction of both longitudinal and flexural vibrations with the 𝐴0 and 𝑆0 modes. Similar 47 
to surface waves, the 𝐴0 mode was demonstrated to hybridize with both longitudinal and flexural resonances, whereas the 𝑆0 48 
mode only hybridizes with flexural resonances, resulting in the corresponding bandgaps for both modes. Constraining the out-49 
of-plane displacement component on the plate’s surface - representing the longitudinal antiresonance of the resonator - was the 50 
key to suppressing the 𝐴0 mode [23], as it was later confirmed by Lissenden et al. [28] who imposed a set of BCs to inhibit 𝐴0 51 
mode propagation, i.e., Mindlin BCs. In contrast to the 𝐴0 mode, clamping the in-plane displacement on the plate’s surface - 52 
representing the flexural antiresonance of the resonator - i.e., applying Auld BCs, is the necessary condition to achieve 𝑆0 mode 53 
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suppression [28], [29]. Building on this observation, Guzman et al. [30] proposed a density-based topology optimization 54 
approach for designing metasurfaces to obtain 𝑆0 mode suppression by matching their resonators’ flexural antiresonances with 55 
a target bandgap frequency, however, the resulting bandgaps are narrow mainly due to the high Q-factor of flexural resonances. 56 
This highlights the need for new strategies to obtain wide bandgaps.  57 

 The primary goal of this study is to design metasurfaces to inhibit 𝑆0 Lamb wave mode propagation over a wide frequency 58 
range by considering the guided mode propagation characteristics, the local resonators’ properties, and the target bandgap 59 
frequency without relying on parametric tuning of dispersion curves. To assess the feasibility of excluding waveguide 60 
considerations in resonator design,  we present an analysis of (i) how the resonator's resonances and antiresonances under in-61 
plane harmonic excitation, mimicking the 𝑆0 mode wave structure, relate to the resonator response observed under 𝑆0 mode 62 
propagation, and (ii) what is their relation to the bandgap bounds after a metasurface has been constituted. While the influence 63 
of resonances and antiresonances in forming bandgaps for rod-shaped resonators has been examined for the 𝐴0 Lamb wave 64 
mode [23] and surface waves [24]–[26], this study focuses on the 𝑆0 mode, which has not been explored in similar context. We 65 
therefore revisit the problem of rod-shaped resonators mounted on a plate, demonstrating a strong connection among their 66 
resonances, antiresonances, and the obtained frequency bandgap. This connection motivates a topology optimization-based 67 
resonator design approach to enhance bandgaps by tailoring these critical frequencies. We further demonstrate numerically and 68 
experimentally that these relations are preserved even for non-prismatic topology-optimized resonators designed for 𝑆0 mode 69 
suppression by tailoring a single antiresonance frequency [30]. Our study demonstrates the feasibility of a resonator design that 70 
yields wide 𝑆0 bandgaps by forcing the resonator's resonances away from the antiresonances under in-plane harmonic 71 
excitation. We validate the efficacy of topology-optimized resonators using frequency-domain finite element simulations, 72 
revealing wider bandgaps compared to those for the metasurfaces without bandgap enhancement. 73 

 The remainder of the paper is arranged as follows. Section II reviews the relations among resonances, antiresonances, and 74 
transmission spectra for a metasurface comprising rod-shaped resonators to suppress the 𝑆0 mode – a study required to 75 
understand the widening of bandgaps. An equivalent study on topology-optimized resonators is presented to reiterate the 76 
connection between the resonator's resonances and antiresonances and the transmission spectrum, even for non-prismatic 77 
geometries, and to highlight the need for bandgap enhancement strategies. Section IIIA presents a topology optimization design 78 
methodology to conceive resonators that leads to wide bandgaps for the 𝑆0 mode. Section IIIB presents the numerical validation 79 
and discusses its limitations for the resultant topology-optimized resonators when arranged as a metasurface. Finally, we present 80 
our conclusions in Section IV. 81 

II. ROLE OF RESONANCES AND ANTIRESONANCES IN FORMING 𝑺𝟎 MODE BANDGAPS 82 

 In this section, we investigate the resonator-wave interactions using finite element analyses, which are useful to study not 83 
only simple prismatic shapes, but also non-prismatic, complex-shaped resonator topologies, as presented in the subsequent 84 
sections. To inform the optimization design of resonators to induce wide bandgaps - by tailoring resonances and antiresonances 85 
without considering the waveguide - we should address the following key questions. First, are resonances and antiresonances 86 
exhibited by the resonators preserved between the following two scenarios: (i) uncoupled resonator under in-plane 87 
unidirectional harmonic excitation at the resonator’s base, mimicking the 𝑆0 Lamb mode wave structure and (ii) resonator 88 
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coupled to a plate excited with a propagating 𝑆0 mode? Second, how well do these resonances and antiresonances map to the 89 
resultant bandgap width? Finally, do the relations between these resonances and antiresonances with the bandgap hold true for 90 
complex resonator geometries, such as the ones that commonly result from topology optimization? To answer these questions, 91 
two studies are presented below. The first study involves a prismatic rod-shaped resonator, and the second focuses on a non-92 
prismatic topology-optimized resonator. 93 

A. Prismatic rod-shaped resonators 94 

 Consider a metasurface to suppress the 𝑆0 mode comprised of prismatic rod-shaped resonators, made of aluminum (Young’s 95 
modulus = 69 GPa, density = 2800 kg/m3 and Poisson’s ratio = 0.3), with dimensions 7.9 mm × 7.9 mm × 23.4 mm, as shown 96 
in Fig. 1(a). To investigate the correspondence between the 𝑆0 mode bandgap and the rod-shaped resonators' resonances and 97 
antiresonances, we simulate the response of the corresponding metasurface using frequency-domain analysis in COMSOL 98 
Multiphysics (v6.1) followed by laboratory experiments on a 1 mm-thick aluminum plate. Following our previous work  [30], 99 
[31], the finite element model is divided into several regions: an excitation region of length 𝜆, an incident region of length 𝜆, a 100 
metasurface region of length 7 cm having three rows of resonators with 10 resonators in each row and a lattice length of 11 101 
mm, and a transmission region of length 4𝜆, as shown in Fig. 1(a), where 𝜆 is the 𝑆0 mode wavelength at each excitation 102 
frequency (20-140 kHz). Perfect contact between the resonators and the plate is assumed, disregarding any bonding effects. 103 
The surrounding 𝜆/4 wide perfectly matched absorbing layers are used to prevent reflections from the model boundaries. To 104 
selectively excite a pure 𝑆0 mode, a body load applies the 𝑆0  mode wave structure over the excitation region for each excitation 105 
frequency sweeping from 20 kHz to 140 kHz in steps of ~1.4 kHz. Further details on the body-load excitation used in this study 106 
can be found in the Appendix A. To ensure mesh convergence, 3D brick and tetrahedral elements with a maximum mesh size 107 
of ~𝜆𝑚𝑖𝑛/8 are used, where 𝜆𝑚𝑖𝑛 refers to the smallest possible wavelength of a guided mode propagating in a 1 mm-thick 108 
aluminum plate at each excitation frequency; in this case, an 𝐴0 mode. In this study, 𝜆𝑚𝑖𝑛 ranges from 22.3 mm at 20 kHz to 109 
7.9 mm at 140 kHz.  110 

 The laboratory experiments are conducted on machined Aluminum rod-shaped resonators, which are glued to the plate using 111 
superglue in the same resonator arrangement as considered in the numerical study, as shown in Fig. 1(b). A 100 kHz Olympus 112 
shear transducer preferentially excites the 𝑆0 mode, and a long-range Polytech laser doppler vibrometer (OFV-500) is used for 113 
reception, mounted to a micro-precision Newport scanning stage (ILS250PP, 250 mm scan length). The laser head is tilted 34 114 
degrees with respect to the vertical plane to capture the contribution of both in-plane and out-of-plane particle velocities, using 115 
a retroreflective tape to enhance laser reflectivity. To cover the desired frequency range of 20-140 kHz, we use a broadband 116 
Ricker excitation pulse with central frequency at 50 kHz, and scan over 25 cm in the transmission region (marked in Fig. 1(b)) 117 
in steps of 0.25 cm. At each scanning step, 100 ultrasonic signals are recorded for 1000 us with a pulse-repetition frequency of 118 
100 Hz and a sampling rate of 50 MHz and are subsequently averaged. Other parts of the data acquisition hardware include a 119 
National Instruments data acquisition system with a PXIe-5433 waveform generator and a PXIe-5172 oscilloscope cards, a 120 
TEGAM amplifier, and an Olympus pre-amplifier. Duct seal is applied around the plate edges to minimize side-wall reflections.  121 
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Figure 1: Numerical and experimental investigations of a metasurface comprising prismatic rod-shaped resonators. (a) Schematic of the 
finite element model used for frequency-domain analysis, and (b) the experimental setup for validation. (c) Frequency Response Function 
(FRF) at the resonator’s base under unidirectional harmonic excitation for an uncoupled resonator (maroon line, dot markers) with 
subfigures (d) and (g) at 41.5 kHz and 57 kHz, respectively, FRF at the resonator’s base under 𝑺𝟎 mode wave propagation for a single 
resonator coupled to the plate (dashed blue line) with subfigures (e) and (h) at 41.5 kHz and 71.6 kHz, respectively, transmission spectra 
for numerical (black line, circular markers) with subfigures (f) and (i) at 41.5 kHz and 70.2 kHz, respectively, and transmission spectra 
obtained from experiments (green dashed line, cross markers). The shaded blue regions indicate the flexural-resonance bandgaps identified  
from dispersion analysis of the metasurface unit cell (see supplementary material). Subfigures or Mode shapes (d) to (i) show the in-plane 
displacement fields (|𝐮𝐱|) at their corresponding frequencies, highlighting the resonator and metasurface responses at the start and end of 
the first flexural-resonance bandgap. 

 Fig. 1(c) compares numerical and experimental response of a metasurface comprised of rod-shaped resonators. Three sets of 122 
results are presented: (i) the displacement response of the resonator to in-plane harmonic forces, (ii) the displacement response 123 
of a single resonator mounted on the plate under incident 𝑆0 mode, and (iii) metasurface transmission spectra, both numerical 124 
and experimental. For the resonator’s displacement responses, the in-plane displacement responses (|𝐮𝐱|) at the resonator’s 125 
base in both configurations are overlaid in Fig. 1(c), including subfigures Figs. 1(d), 1(e), 1(g) and 1(h). The displacement 126 
responses for the resonator mounted on the plate are normalized by those extracted at the same point in a baseline simulation 127 
(plate without the resonator). The transmission spectra in Fig. 1(c) are calculated by normalizing the spectral amplitude peak 128 
of the transmitted 𝑆0 mode by the same quantity obtained for a baseline case without the metasurface in place. All spectral 129 
amplitudes are obtained by applying the spatial Fast Fourier Transform (FFT) to the complex displacement data (𝐮x + 𝐮y +130 
𝐮z), extracted over the transmission region (refer to Fig. 1(a)) on the surface, at the center of the plate for each excitation 131 
frequency. In the case of experiments, it is common for shear transducers to excite both 𝑆0 and 𝐴0 modes, which may influence 132 
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the transmission ratio. Consequently, we first filter the raw A-scans to remove contributions from the incident 𝐴0 mode on the 133 
metasurface before performing a 2D space-time FFT over the received data in the transmission region (refer to Fig. 1(b)) to 134 
decompose the transmitted wave modes into 𝑆0 and mode-converted 𝐴0 modes. The transmission spectrum is produced by 135 
extracting the spectral amplitude peak of the transmitted 𝑆0 mode from the 2D-FFT wavenumber-frequency dispersion spectra 136 
and normalizing it by that obtained from the baseline measurements. Additional details on the data processing steps to obtain 137 
the transmission spectra from the experiment is provided in the supplementary material.  138 

 The two transmission spectra obtained numerically and experimentally align well, demonstrating the efficacy of the 139 
numerical models and the experimental setup used. Moreover, these plots reveal the frequency regions where transmission 140 
drops coincide with the flexural-resonance bandgaps, as identified through the dispersion analyses (shaded in blue), provided 141 
in the supplementary material. For instance, the first and second frequency bandgaps identified from the dispersion analysis 142 
from 38.6 - 54.4 kHz and 92.2 - 110 kHz, respectively, corresponds closely to the 50% numerical transmission ratio drop in 143 
Fig. 1(c) from 36.3 - 55.2 kHz and 91.4 - 112.8 kHz, respectively. Additionally, the resonator's flexural antiresonance 144 
frequencies under in-plane harmonic excitation or incident 𝑆0 mode, identified at 41.5 kHz and 101.5 kHz for both the excitation 145 
scenarios in Fig. 1(c) are close to the start of the bandgaps observed in the transmission analysis (36.3 kHz and 91.4 kHz at the 146 
50% threshold). Also, note that the mode shapes observed at the antiresonance frequency (Fig. 1(d) for in-plane harmonic 147 
excitation and Fig. 1(e) for the incident 𝑆0  mode) match to mode shapes (Fig. 1(f)) at a point observed within the transmission 148 
drop shown in Fig. 1(c), demonstrating a strong connection between harmonic responses and transmission plots, similar to 149 
previous findings in the context of 𝐴0 mode [23]. Although the antiresonance frequencies do not perfectly match the bandgap’s 150 
start, we argue that the bandgap starts when the displacement response (|𝐮𝐱|) at the waveguide’s surface resembles a clamping-151 
like condition occurring before the antiresonance fully develops. Nonetheless, the resonator’s antiresonances clearly indicate 152 
that a bandgap has started even if the exact starting frequency is not known from the FRFs. Dispersion analyses or transmission 153 
spectra could yield a precise bandgap starting frequency at the expense of computation time. Note that the antiresonances of a 154 
resonator under a harmonic excitation are equivalent to the resonator’s eigenfrequencies upon constraining the degrees of 155 
freedom along the direction in which the harmonic load would be applied; these displacement-constrained eigenfrequencies 156 
are referred to as antiresonance eigenfrequencies. Consequently, the antiresonance frequencies obtained under either in-plane 157 
harmonic excitation or incident 𝑆0 mode, can also be viewed as the antiresonance eigenfrequencies of the resonator when the 158 
in-plane particle motion at its base is clamped, and therefore are independent of the waveguide. 159 

 On the other hand, the resonator’s flexural resonances at 57 kHz and 115.5 kHz under in-plane harmonic excitation 160 
correspond to the eigenfrequencies of the resonator when no degrees of freedom are constrained (resonance eigenfrequencies) 161 
and are also independent of the waveguide. These resonances are identified in Fig. 1(c) and align close to the end of the first 162 
and second bandgaps observed in the transmission spectra in Fig. 1(c) at 55.2 kHz and 112.8 kHz (50% threshold). Note that 163 
despite the close resemblance of the mode shapes (Figs. 1(g) and 1(h)), the resonance frequencies identified under an incident 164 
𝑆0 mode do not perfectly align with those identified under in-plane harmonic excitation but instead appear at slightly higher 165 
frequencies. These frequencies, also referred to as coupling resonance frequencies, are an indirect consequence of the 166 
waveguide-resonator coupling and require solving a complex boundary value problem for analytical estimation. These 167 
resonance frequencies provide a more accurate estimate of the upper bound of the 𝑆0 mode bandgap compared to the resonance 168 
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frequencies under in-plane harmonic excitation, as they align well with the maxima in the transmission spectra at the bandgap 169 
ends, similar to that observed for 𝐴0 mode [23].  170 

 A key finding of the above analysis is that ensuring bandgap formation at a target frequency necessitates aligning the 171 
waveguide-independent antiresonance frequencies of the resonators to the desired target frequency. However, accurately 172 
estimating the true extent of the bandgap requires identifying the resonance frequency of the resonator subject to incident 𝑆0 173 
mode, which requires accounting for the waveguide. Notably, the displacement responses under both excitation scenarios - 174 
unidirectional harmonic and incident 𝑆0 mode – exhibit similar trends. In fact, the resonator’s resonance displacement fields 175 
under both excitation scenarios (Figs 1(g) and 1(h)) match the mode shape at the maximum in the transmission spectra (Fig 176 
1(i)). This observation suggests that controlling the waveguide-independent resonance frequency under unidirectional harmonic 177 
excitation could indirectly influence the resonance frequency under an incident 𝑆0 mode, suggesting that a design methodology 178 
of resonators for locally resonant metasurfaces does not need to necessarily consider the resonator-waveguide interactions; the 179 
waveguide can be disregarded, thus, simplifying the design process and minimizing the computational complexity. Based on 180 
these observations, it is feasible to design a resonator that induces a wide bandgap solely by forcing its resonances to move 181 
away from the antiresonances considering only the in-plane harmonic excitation. It is important to note, however, that while 182 
excluding the waveguide simplifies the design process, it does not allow for an accurate estimation of the bandgap width, which 183 
is influenced by the relative inertia between the waveguide and resonator [26]. Thus, soft or stiff waveguides influence the 184 
width of the bandgap by shifting the upper bound of the bandgap to higher or lower frequencies, as illustrated in the 185 
supplementary material (See Fig SM2 and related discussions). Nevertheless, for a given waveguide, such a resonator design 186 
strategy could enable designs for wider bandgaps. However, it remains crucial to establish whether the connections observed 187 
above apply to complex resonator topologies such as non-prismatic shapes or those typically obtained from topology 188 
optimization [30], which exhibit modes beyond simple longitudinal and flexural modes. 189 

B. Non-prismatic elephant-shaped resonators 190 

 In earlier topology optimization studies, we exploited the single antiresonance matching approach [30] to design an elephant-191 
shaped resonator that yielded an 𝑆0 bandgap at the specified target frequency of 50 kHz, and the double  antiresonance matching 192 
approach [31] to design a turkey-shaped resonator, which yielded a surface-mode bandgap at the target frequency of 30 kHz. 193 
As an example of non-prismatic resonators, we revisit and investigate the response of aluminum-made elephant-shaped 194 
resonator, as illustrated in Fig 2(a). We follow similar analyses as previously discussed for rod-shaped resonators to study the 195 
relation among resonances, antiresonances, and bandgaps from transmission spectra. In a square lattice, the required lattice 196 
length would exceed 25 mm, preventing a closely spaced arrangement of the resonators that is crucial for achieving significant 197 
bandgap width [24]. Instead, we employ four rows of staggered, closely packed elephant-shaped resonators, with a distance of 198 
14.5 mm between each row and a spacing of 34 mm between resonators within each row, mounted on a 1 mm-thick aluminum 199 
plate for both numerical and experimental tests, as shown in Figs 2(b) and 2(c), respectively. 200 

We consider the same numerical model presented in Fig. 1(a), experimental setup as in Fig. 1(b), and procedure for data 201 
processing as described in Section II-A for the rod-shaped resonators. The elephant-shaped resonators were 3D-printed with 202 
Aluminum alloy (AlSi10Mg) using Selective Laser Melting with the following process parameters: 30 𝜇m layer thickness, 25-203 
70 𝜇m particle size, and 300W laser power. The resonators’ material properties were estimated from air-coupled resonance 204 
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ultrasound spectroscopy tests (Young's modulus= 70 GPa, density = 2700 kg/m3, and Poisson’s ratio = 0.33) by minimizing 205 
the error between the measured and simulated free-free resonances, employing a genetic algorithm-based optimization routine 206 
[32]. Due to the rough surfaces of the 3D-printed resonators, their bases were first carefully smoothed using sandpaper to ensure 207 
a better contact surface for bonding. The resonators were then individually glued to the plate by applying pressure. The 208 
numerical and experimental transmission spectra agree well up to 100 kHz, above which there is insufficient excitation 209 
amplitude. However, we note that the bandgaps from numerical analysis are sharper compared to those from experimental 210 
analysis, and the two closely spaced bandgaps around 80-100 kHz merge into a single bandgap in the experiments. These subtle 211 
discrepancies are likely due to imperfections in resonator bonding and surface roughness of the 3D-printed resonators, as well 212 
as inaccuracies during the additive manufacturing process. Additionally, material or geometrical damping, which is not 213 
accounted for in the numerical analysis, may contribute to the broader bandgaps observed in the experiments. Despite these 214 
issues, the transmission spectra effectively demonstrate the effectiveness of the locally resonant metasurface in preventing the 215 
propagation of 𝑆0 waves using topology-optimized resonators. 216 

For a single elephant-shaped resonator, the in-plane displacement responses (|𝐮𝐱|) extracted at the resonator’s base subject 217 
to unidirectional harmonic excitation and incident 𝑆0 mode are superimposed over the transmission spectra in Fig. 2(d) for 218 
comparison. One of the sharp dips in the in-plane displacement response at the resonator’s base (i.e., the antiresonances), shown 219 
in Fig. 2(d), corresponds to the optimized antiresonance frequency at 50 kHz. Although antiresonances (incident 𝑆0 mode – 25 220 
kHz, 52.4 kHz, 73 kHz, and 88 kHz; and in-plane harmonic excitation – 24.5 kHz, 51.5 kHz, 71.5 kHz, 87.5 kHz) and 221 
resonances (incident 𝑆0 mode – 49.7 kHz, 70.2 kHz, 83.9 kHz, and 93.5 kHz; and harmonic excitation – 44.5 kHz, 66.5 kHz, 222 
76.5 kHz, and 91 kHz) for both excitation types do not perfectly align, the displacement responses exhibit a consistent trend. 223 
Notably, the antiresonance-resonance pairs closely bound the resulting bandgaps observed in the transmission analysis, which 224 
is similar to the observations for rod-shaped resonators. For example, the first two bandgaps reveal that the antiresonance 225 
frequencies for both excitation types (incident 𝑆0 mode – 25 kHz and 52.4 kHz; and harmonic excitation – 24.5 kHz and 51.5 226 
kHz) closely match the starting of the numerical transmission dips seen in simulations (20.8 kHz and 50.5 kHz at 50% 227 
threshold). Additionally, the resonance frequencies for both excitations (incident 𝑆0 mode – 49.7 kHz and 70.2 kHz; and 228 
harmonic excitation – 44.5 kHz and 66.5 kHz) align closely with the maxima in the numerical transmission spectra (48.3 kHz 229 
and 64.8 kHz). Moreover, the mode shapes at the target antiresonance frequency, which exhibit displacement clamping at the 230 
resonator base for both excitation types (in-plane harmonic – Fig. 2(e); incident 𝑆0 mode – Fig. 2(f)), match the clamping 231 
condition observed at the base of resonators in the metasurface at frequencies within the transmission dip (51.1 kHz, Fig. 2(g)). 232 
Similarly, the mode shapes at the resonance frequencies, show significant displacement at the resonator base for both excitation 233 
types (in-plane harmonic – Fig. 2(h); incident 𝑆0 mode – Fig. 2(i)) like the resonator response near the transmission maxima 234 
(64.8 kHz, Fig. 2(j)). This correspondence demonstrates that a constrained-like in-plane displacement (i.e., an antiresonance) 235 
at the plate’s surface leads to 𝑆0 mode suppression even for complex non-prismatic resonators and that analyzing an individual 236 
resonator without considering the waveguide interaction is a feasible design approach to tailor frequency bandgaps for locally 237 
resonant metasurfaces. 238 
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Figure 2: Numerical and experimental investigations of a metasurface comprising non-prismatic elephant-shaped resonators obtained 
through TO [30]. Close-up view of the (a) elephant-shaped resonator and the metasurface configuration in the (b) frequency-domain finite 
element model and (c) experimental setup. (d) Frequency Response Function (FRF) at the base of the resonator under unidirectional 
harmonic excitation for an uncoupled resonator (maroon line, dot markers) with mode shapes shown in subfigures (e) and (h) at 51.5 kHz 
and 66.5 kHz, respectively, FRF at the resonator’s base under 𝑺𝟎 mode wave propagation for a single resonator coupled to the plate 
(dashed blue line) with mode shapes shown in subfigures (f) and (i) at 52.4 kHz and 70.2 kHz, respectively, transmission spectra for 
numerical (black line, circular markers) with mode shapes shown in subfigures (g) and (j) at 51.1 kHz and 64.8 kHz, respectively, and 
transmission spectra obtained from experiments (green dashed line, cross markers). The snapshots in (e) to (j) show the in-plane 
displacement fields (|𝐮𝐱|) at their corresponding frequencies, highlighting the resonator and metasurface responses at the start and end of 
the second flexural-resonance bandgap. 

 239 

One discrepancy is the observed formation of a very narrow second dip in the numerical transmission spectra (50.5 – 53.4 240 
kHz at 50% threshold), despite the presence of an antiresonance at 51.5 kHz and a resonance at 66.5 kHz identified from the 241 
in-plane unidirectional loading. We believe this narrow dip is due to additional internal interactions among the staggered 242 
resonators, which exhibit other resonator modes when subjected to excitations in different directions. This may have occurred 243 
because the response to unidirectional harmonic loads only considers one excitation direction and does not account for 244 
resonances or antiresonances associated with other harmonic excitations. To address this issue, we propose to push all 245 
eigenfrequencies away from the desired frequency range, thereby mitigating the occurrence of spurious resonances, as will be 246 
demonstrated in the following sections. Although tailoring a resonator’s antiresonances under harmonic excitation enables 247 
bandgap customization, as established through the elephant-shaped resonator analysis, the obtained bandgap around the 248 
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optimized antiresonance frequency, 50 kHz, is very narrow compared to the metasurface comprising prismatic resonators. 249 
Thus, even for complex resonator topologies, the correspondence between the resonator's antiresonance and resonances with 250 
the start and end of bandgaps holds, suggesting a potential resonator design strategy to obtain wider bandgaps by pushing apart 251 
all resonance modes from the targeted antiresonance. This motivates a systematic design methodology based on topology 252 
optimization presented in subsequent sections. 253 

III. TOPOLOGY OPTIMIZATION FOR BANDGAP ENHANCEMENT  254 

 The optimization problem is to systematically match an antiresonance frequency with a target frequency (the frequency 255 
around which the bandgap is desired) while simultaneously pushing all surrounding resonances away from that antiresonance 256 
frequency to generate a wide bandgap. This optimization problem is an extension of our earlier proposed methodology, i.e., 257 
generating bandgaps through single antiresonance matching as described in [30]. In this approach, the objective function 258 
minimizes the normalized difference between an antiresonance eigenfrequency 𝑓𝐴 and a prescribed target frequency 𝑓𝑇, while 259 
maximizing the normalized difference between all resonance eigenfrequencies 𝑓𝑅 and the antiresonance eigenfrequency 𝑓𝐴. 260 
The optimization problem is then defined as: 261 

  𝑚𝑖𝑛
𝝆

[𝑤1 (
𝑓𝐴 − 𝑓𝑇

𝑓𝑇
)

2

+ 𝑤2 |
𝑓𝐴

𝑓𝑅 − 𝑓𝐴
| ], (1) 

subject to: 262 

 
Vmin ≤ ∑ ρeVe 

Ne

e=1

≤ Vmax 

0 < ρmin ≤ ρe ≤ 1,  

(2a) 

 

(2b) 

where ρe are the design variables, i.e., the pseudo-densities associated to the finite elements in the design space, and the 263 
weighting coefficients 𝑤1 and 𝑤2 control the contribution of the antiresonance matching and resonance gap terms in Eq. (1), 264 
respectively. Vmin and Vmax are the minimum and maximum volume constraints, considering that the factor ρeVe is the element-265 
wise volume. The design variables ρe range from 0 to 1, however, a minimum limit 𝜌𝑚𝑖𝑛 is imposed to prevent numerical 266 
errors. While minimizing the first term in the objective function aims to align the antiresonance eigenfrequency 𝑓𝐴 with the 267 
target frequency 𝑓𝑇 , the second term increases sharply as 𝑓𝐴 approaches the resonance eigenfrequency 𝑓𝑅. This term attains its 268 
minimum value only when 𝑓𝐴 and 𝑓𝑅 are sufficiently spaced apart, thereby driving the resonance gap wider. 269 

Two generalized eigenvalue problems (𝐊𝚽 = 𝛌𝐌𝚽) are solved independently to obtain either resonance or antiresonance 270 
eigenfrequencies, using the appropriate displacement constraints for each case. Extensive details on how these eigenfrequencies 271 
are computed and selected during the optimization are presented in [33]. A Sequential Linear Programming (SLP) scheme is 272 
implemented to solve the optimization problem presented in Eq. (1) and Eq. (2), which requires the linearization of these 273 
equations. Since Eq. (2) already contains linear functions, only Eq. (1) is linearized using first-order Taylor series. The details 274 
of the derivation are presented in the Appendix B. Eq. (1) simplifies to: 275 
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  𝑚𝑖𝑛
𝝆

[(
𝑤1(𝑓𝐴 − 𝑓𝑇)

4𝜋2𝑓𝐴𝑓𝑇
2

𝜕𝜆𝐴

𝜕𝜌𝑘
+

𝑤2𝑓𝐴

8𝜋2(𝑓𝑅 − 𝑓𝐴)2
|
𝑓𝑅 − 𝑓𝐴

𝑓𝐴
| [

1

𝑓𝐴

𝜕𝜆𝐴

𝜕𝜌𝑘
−

𝑓𝐴
𝜕𝜆𝑅

𝜕𝜌𝑘

𝑓𝑅(𝑓𝑅 − 𝑓𝐴)
+

𝜕𝜆𝐴

𝜕𝜌𝑘

(𝑓𝑅 − 𝑓𝐴)
]) 𝜌𝑘], (3) 

where: 276 

 
 
𝜕𝜆

𝜕𝜌𝑘

=
𝛷𝑇

(
𝜕𝑲
𝜕𝜌𝑘

− 𝜆 𝜕𝑴
𝜕𝜌𝑘

) 𝛷

𝛷𝑇𝑴𝛷
 . 

(4) 

 277 

A. Case study 278 

Here, we present an optimized resonator to constitute a locally resonant metasurface that controls the propagation of 𝑆0 279 
Lamb waves using the design methodology presented in the previous subsection. Ensuring feasible solutions throughout 280 
the optimization process is essential for convergence and numerical stability. This has been achieved by selecting the 281 
design domain dimensions and material properties shown in Table 1 such that the topology under harmonic excitation at 282 
each iteration has resonances and antiresonances in the frequency range from 10 kHz to 150 kHz. 283 

TABLE I. Optimization initialization parameters 284 
Target frequency 𝑓𝑇 50 kHz 

Design domain 24 × 24 × 24 mm 
Finite element size 1 mm 
Young’s modulus 69 GPa 
Mass density 2730 kg/m3 
Poisson’s ratio 0.33 
Maximum volume 
constraint 𝑉𝑚𝑎𝑥 = 50 % 

Minimum volume 
constraint 𝑉𝑚𝑖𝑛 = 10 % 

Starting design 
variables 𝜌𝑒 = 0.5 

 285 

To reduce computational complexity at each iteration, the design domain is assumed to be symmetric about the plane 286 
perpendicular to the harmonic excitation direction. The optimization runs until it reaches convergence; the evolution of the 287 
resonator’s topology during the optimization process is shown in Fig. 4 at iterations 1, 10, 20, 30, 40, and 50 after recovering 288 
the symmetry condition. At the start of the optimization process (iteration 1), the distribution of material is homogeneous with 289 
a pseudo-density of 50% (𝜌𝑒 = 0.5) for all elements in the design domain, except those in the lowest row, which have been 290 
defined as void non-design elements with a fully-solid non-design region that constitutes the resonator’s base that will be in 291 
contact with the plate. After minimizing the objective function and obtaining a local solution, the resultant optimized resonator 292 
is a “Lemon-shaped” topology that uses 18.8% of the volume fraction. 293 

A frequency response subject to unidirectional harmonic forces must be computed at each iteration to properly identify 294 
resonances and antiresonances. Fig. 4 compares the topology’s frequency response at the first, intermediate, and final iterations 295 
of the optimization as shown in Fig 3., indicative of the effectiveness of the proposed optimization strategy in matching an 296 
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antiresonance with a target frequency (𝑓𝑇) while pushing away all the surrounding resonances. At the first iteration, multiple 297 
resonances and antiresonances appear within the target frequency range; specifically, antiresonances occur at 19 kHz, 84 kHz, 298 
and 116 kHz, while resonances occur at 80 kHz, 106 kHz, 127 kHz. After reaching convergence at iteration 50, the 299 
antiresonance from 19 kHz has been shifted up to 49 kHz, with all resonances pushed out beyond the plotted frequency range. 300 
This ultra-wide frequency separation between the antiresonance and nearby resonances has a potential to generate wide 301 
frequency bandgaps once they are arranged as a locally resonant metasurface, as will be numerically validated in the subsequent 302 
section. 303 

The proposed design methodology, which manipulates eigenfrequencies for both resonances and antiresonances, offers a 304 
substantial reduction in computational expense compared to traditional frequency response-based design methods. The 305 
computational cost of design optimization can be evaluated based on the time required for a single iteration during the 306 
optimization process. For example, in the case of the lemon-shaped resonator, each iteration takes approximately 960 seconds 307 
(~16 minutes) with a mesh consisting of 6,912 elements, 31,225 nodes, and 93,675 degrees of freedom. These computations 308 
were run in distributed mode across five nodes of a cluster, each powered by 2 × Intel(R) Xeon(R) Gold 6248R CPUs at 3.00 309 
GHz. Although this cost is higher than that of typical eigenfrequency-based optimization methods, it remains significantly 310 
lower than any frequency domain-based approach, highlighting the computational efficiency of our methodology. 311 

 

Figure 3: Optimization evolution, from left to right, showing the resultant topologies at iterations 1, 10, 20, 30, 40 and 50. 

 312 

  

Figure 4: Frequency response functions for topologies at iterations 1, 30, and 50 from Fig. 3. 
 313 
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B. Numerical validation of topology-optimized resonator for ultra-wide bandgaps 314 

The lemon-shaped optimized topology at iteration 50 in Fig. 3 is further post-processed to transform the pseudo-density 315 
values into a well-defined shape using the TOPslicer program [36], as shown in Fig 5(a). This post-processed topology's in-316 
plane displacement response to unidirectional harmonic loading is shown in Fig. 5(b), which is comparable to the unprocessed 317 
topology’s response shown in Fig. 3, illustrating that post-processing has minimal impact on the optimized resonator's response. 318 
To aid the comparison, the elephant-shaped topology’s response to unidirectional in-plane harmonic loads from Fig. 2(d), is 319 
also included in Fig. 5(b). The differences between these two optimized topologies’ frequency responses are evident. The 320 
lemon-shaped topology has a single antiresonance at 53.5 kHz, which is near the target frequency of 50 kHz, with significant 321 
separation between the antiresonance and the following resonance, at 137.5 kHz. On the other hand, the elephant-shaped 322 
topology, although having an antiresonance near the same target frequency, exhibits nearby resonances that are significantly 323 
closer to that antiresonance, resulting in narrower frequency bandgaps, as demonstrated in Section II.B. Following the same 324 
frequency-domain analysis presented in Section II for the rod-shaped and elephant-shaped resonators, the in-plane frequency 325 
response at the resonator’s base for a single lemon-shaped resonator mounted on the plate subject to incident 𝑆0 mode is also 326 
presented in Fig. 5(b). As expected, the observed antiresonance and resonance frequencies for both excitation cases match, so 327 
do their corresponding displacement fields in Figs. 5(c) to 5(f), confirming again the connection between resonances and 328 
antiresonances with and without coupling the resonator to the waveguide, i.e., the close correspondence between responses to 329 
unidirectional harmonic loads and the 𝑆0 wave propagation. The wide frequency separation between the lemon-shaped 330 
resonator's antiresonance and resonances is expected to generate an ultra-wide 𝑆0 mode bandgap, which is verified, as follows, 331 
with the frequency-domain transmission spectra plots. 332 

  

Figure 5: (a) The lemon-shaped optimized resonator after post-processing, and (b) the comparison of in-plane frequency response functions 
for the elephant-shaped and lemon-shaped resonators subject to unidirectional harmonic loading and to 𝑺𝟎 wave mode. Displacement field 
|𝐮𝐱| responses for the lemon-shaped resonator at the target antiresonances (shown in (c) and (d)), and at the resonances (shown in (e) and 
(f)). 

The frequency-domain transmission analysis is performed over a metasurface comprised of a closely spaced, staggered 333 
arrangement of 16 lemon-shaped resonators with spacing similar to that employed earlier for the elephant-shaped resonators, 334 
as illustrated in Fig. 6(a). The lemon-shaped topology’s numerical transmission spectrum in Fig. 6(b) indicates an 𝑆0 mode 335 
bandgap spanning from 28.2 kHz to 72 kHz, corresponding to the frequency range when the transmission drops below the 50% 336 
threshold. The transmission analysis confirms initiation of the bandgap (28.2 kHz) before the resonator's antiresonance under 337 
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harmonic excitation (marked as fA in Fig 6(b)). This bandgap formation starting before the antiresonances is a result of 338 
preceding resonances being pushed away from that antiresonance during the optimization process, although the exact frequency 339 
at which the bandgap starts is not predictable from the resonator’s frequency responses. On the other hand, the bandgap ends 340 
(72 kHz) before the resonance frequency (marked as fR in Fig. 6(b)) that is expected to be the bandgap’s upper bound. This 341 
discrepancy is attributed to the resonator arrangement, which introduces additional complexities. Despite forcing resonances 342 
away from the antiresonance, the observed premature rise in the transmission around 80 kHz is due to the resonator arrangement 343 
that gives rise to other propagating modes that limit the extent of bandgap up to the resonance frequency, like what was observed 344 
in the transmission bandgaps for elephant-shaped resonators (Fig 2(d)). The narrowing of bandgap, caused by wave scattering 345 
due to interactions between resonators within the designed frequency range (as shown in the supplementary material), is an 346 
indirect consequence of not considering the waveguide during the optimization process, as a compromise to enable the design 347 
of 3D topologies with feasible computational complexity.  348 

Remarkably, despite the compromise in bandgap width, the lemon-shaped resonators (at 50% threshold) exhibit a bandgap 349 
approximately 15 times wider than that of the elephant-shaped resonators, as shown in Fig. 6(b). The filling fraction, 350 

representing the effective area covered by the metasurface, can be calculated as  𝜋𝐷2

2𝑎𝑏
 for the centered rectangular Bravais lattice 351 

in the staggered resonator arrangement considered for this study. Here, a = 34 mm and b = 29 mm are the lengths of the lattice 352 
vectors (see Fig. 2(b)), while D is the diameter of the resonator base, approximated as a circle with dimensions D = 5 mm for 353 
the elephant-shaped resonator and D = 7.3 mm for the lemon-shaped resonator (see Figs. 2(a) and 5(a)). The higher filling 354 
fraction of the lemon-shaped metasurface (0.085) compared to that for elephant-shaped metasurface (0.04), along with its 355 
greater mass (9.8 g) relative to that of elephant-shaped resonators (6.2 g), are potential contributing factors to the observed 356 
enhanced bandgap, as suggested by previous studies [24], [26]. These results validate that the topology optimization approach 357 
based on antiresonances matching plus resonance gap enhancement results in metasurfaces exhibiting wider bandgaps 358 
compared to the optimization that focuses solely on antiresonance matching. We assert that a more densely packed arrangement 359 
of resonators could result in an even wider bandgap as predicted by the dispersion analysis over lemon-shaped resonators (see 360 
supplementary material) in which the antiresonance-to-resonance spacing resulted in a theoretical ultra-wide bandgap. While 361 
such a closely packed arrangement is impractical for the physical size of the lemon-shaped resonators, this analysis offers 362 
valuable insights into potential future directions for topology optimization, suggesting that imposing stricter volume constraints 363 
during resonator design could enable tighter configurations, potentially leading to significantly wider bandgaps. 364 

 365 
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Figure 6: (a) Close-up view of the lemon-shaped metasurface configuration in the frequency-domain finite element model and (b) 
comparison of transmission spectra plots obtained from numerical simulations for elephant-shaped and lemon-shaped resonators. 
Bandgaps computed with 50% transmission drop threshold are highlighted in gray for elephant-shaped resonator arrangement and in 
orange for lemon-shaped resonator arrangement, and the antiresonance (𝒇𝑨) and resonance (𝒇𝑹) frequencies from the FRF for in-plane, 
harmonic excitation of lemon-shaped resonators are denoted by vertical lines for reference. 

 366 

VI. Conclusions 367 

Understanding the role of individual resonators’ resonances and antiresonances in generating frequency bandgaps is crucial 368 
to proposing rational metasurface design approaches. In the context of suppressing an 𝑆0 mode using a locally resonant 369 
metasurface, we demonstrated a strong connection between antiresonances and resonances of resonators coupled to a plate’s 370 
surface subject to 𝑆0 mode propagation, and antiresonances and resonances obtained by simple unidirectional in-plane harmonic 371 
excitations (mimicking 𝑆0 mode wave structure) of an uncoupled resonator. These antiresonance and resonance frequencies 372 
match well, respectively, the start and end of frequency bandgaps, even for complex-shaped resonator topologies, 373 
demonstrating that the resonator-waveguide interactions can be disregarded during the resonator design process and motivating 374 
a new resonator design methodology that induces wider bandgaps by manipulating those resonances. To that end, we proposed 375 
a density-based topology optimization enforcing both the antiresonance matching and a new bandgap enhancement criterion 376 
based on resonance manipulation to force all nearby resonance eigenfrequencies away from the target antiresonance. This 377 
optimization technique converged to a lemon-shaped resonator topology for one set of selected initial conditions, which 378 
generated an 𝑆0 mode bandgap around the target frequency that is significantly wider (15 times) than that of the elephant-379 
shaped resonators.  380 

This outcome validates our research objective of achieving a wider bandgap by incorporating the resonance gap 381 
enhancement term in the objective function, compared to the scenario that considers only antiresonance matching. This novel 382 
proposed optimization approach to obtain wide bandgaps at desired frequency ranges does not require consideration of the 383 
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waveguide, eliminating the need for the parametric tuning of bandgaps through extensive dispersion analysis. This proposed 384 
waveguide-independent design methodology could be particularly useful to conceive metasurfaces for Rayleigh wave 385 
propagation control, where the waveguide (half-space) would require several finite element mesh elements, and is usually a 386 
complex and extensive computational task, especially when dispersion-based analysis is employed. However, the obtained 387 
bandgap for the optimized lemon-shaped resonators was narrower than predicted, primarily due to the size limitations of these 388 
resonators, which prevent the closely packed arrangement needed to achieve a complete bandgap spanning from antiresonance 389 
to resonance. This compromise arises from excluding the waveguide in the analysis to enhance computational efficiency while 390 
enabling metasurface designs with complex-shaped resonators in a 3D design space. Future work should focus on better 391 
understanding the scattering effects resulting from the arrangement of resonators that compromise the bandgap width, as well 392 
as strategies through topology optimization that could potentially induce an ultra-wide bandgap through volume constraints 393 
and close-packed configurations, with potential applications in surface-wave control. 394 

 395 

SUPPLEMENTARY MATERIAL 396 

See supplementary material for the dispersion analysis of rod-shaped resonators, influence of waveguide on bandgap 397 
characteristics, data analysis to obtain transmission spectra from experiments, dispersion analysis of topology-optimized 398 
lemon-shaped resonators, and evidence of the wave scattering interactions between resonators that compromise the desired 399 
frequency bandgap range. 400 
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APPENDIX A. NUMERICAL PROCEDURE TO PREFERNETIALLY EXCITE 𝑺𝟎 MODE IN A PLATE 415 

Since the optimized topology designs discussed in the paper are specifically tailored to suppress the 𝑆0 mode, it is crucial to 416 
study the interactions of the 𝑆0 mode with the resonator topologies in isolation, without the interference of other guided modes 417 
that may be excited in the plate. To preferentially excite the 𝑆0 mode, as briefly mentioned in [28], we employ body load 418 
excitation. Assuming wave propagation in the x-direction and plate thickness in the z-direction, as illustrated in Fig. 1(a), this 419 
method involves applying the stress distribution components (𝜎𝑥𝑥(𝑧), 𝜎𝑥𝑦(𝑧), 𝜎𝑥𝑧(𝑧), 𝜎𝑦𝑦(𝑧), 𝜎𝑦𝑧(𝑧), and 𝜎𝑧𝑧(𝑧)) along the 420 
plate thickness (z) of the 𝑆0 mode, identified for each excitation frequency (20 kHz – 140 kHz in steps of ~1.4 kHz), as body 421 
loads (𝐹𝑥, 𝐹𝑦, and 𝐹𝑧) to an excitation region spanning one wavelength of the wave propagating at the corresponding frequencies, 422 
as given by: 423 

 

𝐹𝑥 =  (𝜎𝑥𝑥(𝑧) + 𝜎𝑥𝑧(𝑧) + 𝜎𝑥𝑦(𝑧))𝑒−𝑖(𝑘𝑥𝑥−𝜔𝑡), 

𝐹𝑦 =  (𝜎𝑦𝑦(𝑧) + 𝜎𝑦𝑥(𝑧) + 𝜎𝑦𝑧(𝑧)) 𝑒−𝑖(𝑘𝑥𝑥−𝜔𝑡), 

𝐹𝑧 =  (𝜎𝑧𝑥(𝑧) + 𝜎𝑧𝑦(𝑧) + 𝜎𝑧𝑧(𝑧))𝑒−𝑖(𝑘𝑥𝑥−𝜔𝑡), 

(A1) 

where 𝑘𝑥 is the wavenumber in the direction of wave propagation and 𝜔 is the angular frequency.  424 
 425 

The stress distributions of the 𝑆0 mode at each excitation frequency can be identified using various techniques: solving the 426 
Navier governing equations analytically with traction-free boundary conditions on the surface [37], employing semi-analytical 427 
finite element analysis [38], or extracting them from dispersion analysis performed on a unit cell comprising a small portion of 428 
the plate with Bloch-Floquet periodic boundary conditions applied to the faces in the direction of wave propagation [39]. In 429 
this work, we used the latter approach to extract the dispersion curves of the Lamb modes (plotted as gray dotted lines in Fig. 430 
7 and the corresponding stress distribution of the 𝑆0 mode along the plate thickness. These stress distributions are then used as 431 
excitation loads, as detailed in the procedure above, for the frequency domain analysis presented in Figs. 1, 2, 5, and 6. For 432 
reference, the wavenumber spectrum was extracted by applying a spatial FFT over the complex displacement data (𝑢𝑥 + 𝑢𝑦 + 433 
𝑢𝑧) in the transmission region for the baseline case (i.e., without any surface-mounted resonators) and overlaid on the dispersion 434 
curves of the fundamental 𝑆0, 𝐴0 and 𝑆𝐻0 modes for all excitation frequencies, as illustrated in Fig 7. This figure illustrates the 435 
capability of the body load excitation to preferentially excite the 𝑆0 mode, as evidenced by the fact that all wavenumber peaks 436 
coincide with the 𝑆0 mode dispersion curve, with no visible peaks along the 𝐴0 mode and low amplitude peaks observed along 437 
the 𝑆𝐻0 mode. 438 

 439 
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Figure 7: Wavenumber spectrum extracted from the transmission region without surface-mounted resonators for 𝑆0 mode body-load 
excitation, overlaid on the dispersion curves of the 𝐴0, 𝑆0, and 𝑆𝐻0 modes across the 20 kHz to 140 kHz frequency range. 

APPENDIX B. SENSITIVITY DERIVATION FOR THE OPTIMIZATION PROBLEM 440 

A gradient-based optimization problem requires the derivation of its objective function with respect to the design variables. 441 
The present study employs the Sequential Linear Programming (SLP) method, which only requires the first derivative with 442 
respect to the design variables. To achieve such a purpose, first-order Taylor series are used, disregarding constant terms. For 443 
any objective function: 444 

 min
ρ

[f(ρ)], (B1) 

its first-order Taylor series decomposition is: 445 

 min
ρ

[f(ρ0) + ∇f(ρ0)T(ρ − ρ0)]. (B2) 

Disregarding constant terms, the objective function simplifies to: 446 

 min
ρ

[∇f(ρ0)T(ρ)], (B3) 

where: 447 

 ∇f(ρ0) =
∂f(ρ)

∂ρk
|

ρo

. (B4) 

Here ρ0 is the linearization point, i.e., the current vector of pseudo-sensitivities at each iteration during the optimization 448 
process. The objective function from Eq. (1) is written as: 449 

 min
ρ

[w1 (
fA − fT

fT
)

2

+ w2 |
fA

fR − fA
|] . (B5) 

The objective function linearized at ρ0 can be written as: 450 

 min
ρ

∇f(ρ0)Tρ = min
ρ

∂f(ρ)

∂ρk
|

ρo

ρk, (B6) 

where: 451 
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(B7) 

The last term in the derivative can be written as: 452 

 
                   

∂
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Plugging in back to the derivation (Eq. (B7)), we get: 453 
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]
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∂ρk
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w2fA
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√(

fR − fA

fA
)

2

[
∂fA

∂ρk
−

fA
∂fR

∂ρk

(fR − fA)
+

fA
∂fA

∂ρk

(fR − fA)
]. 

(B9) 

Now, knowing that eigenvalues and eigenfrequencies are related by: 454 

               
∂fn

∂ρk
=

1

2π

∂√λn

∂ρk
=

1

4π√λn

∂λn

∂ρk
=

1

8π2fn

∂λn

∂ρk
, (B10) 

the objective function derivative simplifies to: 455 
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(B11) 

Finally, rewriting the optimization problem as presented in Eq. (3): 456 

 
             min

𝛒
[(

w1(fA − fT)

4π2fAfT
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∂λR

∂ρk

fR(fR − fA)
+

∂λA
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