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Elastodynamic metasurfaces composed of surface-mounted resonators show great promise for guided wave control in diverse
applications, e.g., seismic and vibration isolation, nondestructive evaluation, or surface acoustic wave devices. In this work,
we revisit the well-studied problem of “rod-shaped” resonators coupled to a plate to reveal the relationship between the
resonator’s resonances and antiresonances obtained under unidirectional harmonic excitation and the resultant frequency
bandgap for S, Lamb mode propagation once a metasurface is arranged. This relationship is shown to hold true even for non-
prismatic resonators, such as those presented in our recent studies, in which we established a systematic resonator design
methodology using topology optimization by matching a single resonator's antiresonance with a predefined target frequency.
Our present study suggests that considering the waveguide (plate) during the resonator design is not essential and encourages
a feasible resonator-design approach to achieve wide bandgaps just by customizing a single resonator’s resonances and
antiresonances. We present a topology optimization design methodology for resonators that drive resonances away from
antiresonances, i.e., a resonance gap enhancement, yielding a broadband S, mode bandgap while ensuring the desired bandgap
formation by matching antiresonances with a target frequency. The transmission loss of metasurfaces composed with topology-
optimized resonators is numerically verified, confirming the generation of wider bandgaps compared to resonators designed

without resonance gap enhancement and broadening the applicability of locally resonant metasurfaces.

I. INTRODUCTION

While metamaterials are defined broadly across disciplines from optics to acoustics, elastodynamic metamaterials are
an emergent subcategory of engineered, dynamic structures to control elastic waves [1]. These metamaterials typically utilize
one of two mechanisms for wave control: Bragg scattering and local resonance. The former is the basis for phononic crystals,
which are composites with periodic structures that scatter and attenuate waves with wavelengths comparable to their lattice
constant [2], [3]. Alternatively, locally resonant metamaterials generate bandgaps by achieving unusual properties of negative
effective mass density and elastic modulus due to the local resonance phenomenon that arises from the hybridization of a
propagating wave with the embedded resonant inclusions [4], [5]. The local resonance approach is often preferred for elastic
wave control as it facilitates employing subwavelength-spaced resonant structures, and it does not require lattice periodicity.
While there has been a lot of research employing local resonance to generate bandgaps for elastic wave control, there has been

an increased attention in recent years to widening bandgaps such that they span across broad frequency ranges.

Graded metasurfaces are used to achieve wider bandgaps through the "rainbow effect" by systematically tuning the
resonance frequencies of resonators comprising the metasurface [6]-[10]. Alternatively, the Topology Optimization (TO)
method, widely used in solving problems across structural mechanics, acoustics, optics, and electromagnetics, has drawn

attention in tailoring bandgaps for phononic crystals and metasurfaces [11]-[15]. Most of these studies share a common design
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objective, i.e., maximize bandgaps from dispersion analyses considering the unit cell consisting of a resonator mounted on a
portion of the waveguide [16], [17] or by modifying the waveguide’s topology to induce frequency bandgaps [13], [18].
Although only a few publications have directly addressed the topological design of individual resonators, they have employed
2D simplifications and low-refinement meshes to enable the use of genetic algorithms [17], [19]-[21]. The TO design of a
metasurface relying on computationally expensive dispersion analyses, also requires the identification of an opening bandgap
at a desired or random frequency range and the selection of lower and upper bandgap bounds at the appropriate wavenumber
values where the wave speed approaches zero. For gradient-based TO, a complex derivation of analytical sensitivity function
considering Bloch-Floquet periodic conditions would be necessary. For non-gradient based TO, the optimization problem must
be simplified so that the computational solution is feasible. An efficient and rational design methodology for three-dimensional

local resonators capable of generating wide frequency bandgaps is lacking.

In this paper, instead of dealing with this complex design problem, we propose the systematic design of local resonators
by isolating them from the waveguide and replacing the resonator-waveguide interaction with unidirectional harmonic loads
that mimic the propagating wave mode forcing. The resonator’s dynamic response to these unidirectional harmonic loads, i.e.,
resonances and antiresonances, is then manipulated so that frequency bandgaps open around an antiresonance frequency while
the surrounding resonances are pushed apart to maximize the bandgap width. Such topology-optimized resonators whose design
process does not rely on considering the waveguide-resonator interactions but instead on the underlying wave physics, offer
significant advantages in reducing computational complexity. This approach is particularly useful for lower frequency and
surface wave control applications, where the waveguide is a half-space that requires a fine finite element mesh during the

computation.

Designing local resonators by tailoring their dynamic response requires a comprehensive understanding of how their
resonances and antiresonances shape the resultant frequency bandgap for a desired guided mode, e.g., S, or A, Lamb wave
modes; understanding the local resonance mechanism is the key to generating bandgaps for metasurfaces. The role of
longitudinal resonances and antiresonances of rod resonators in generating bandgaps for the A, Lamb wave in a plate was
demonstrated experimentally and analytically for the first time in the pioneering works of Rupin et al. [22] and Williams e? al.
[23]. Longitudinal resonances and antiresonances are the frequencies at which the maximum and minimum out-of-plane
displacement response is attained at the application point of harmonic excitations during longitudinal vibrations. Similarly,
flexural resonances and antiresonances correspond to the frequencies of maximum and minimum in-plane displacement
response due to flexural vibration modes. Ignoring the S, mode and the rod’s flexural resonances, Williams et al. demonstrated
that the start and end of an A, mode bandgap coincide, respectively, with the rod resonator’s longitudinal antiresonance and
resonances [23]. This is in contrast to that observed for surface waves, where resonance frequencies determine the bandgap
start while antiresonance frequencies are positioned at the bandgap end [24]-[26]. Colquitt et al. [27] extended the analytical
model of Williams by studying the interaction of both longitudinal and flexural vibrations with the 4, and S, modes. Similar
to surface waves, the A, mode was demonstrated to hybridize with both longitudinal and flexural resonances, whereas the S,
mode only hybridizes with flexural resonances, resulting in the corresponding bandgaps for both modes. Constraining the out-
of-plane displacement component on the plate’s surface - representing the longitudinal antiresonance of the resonator - was the
key to suppressing the A, mode [23], as it was later confirmed by Lissenden et al. [28] who imposed a set of BCs to inhibit A,
mode propagation, i.e., Mindlin BCs. In contrast to the Ay, mode, clamping the in-plane displacement on the plate’s surface -

representing the flexural antiresonance of the resonator - i.e., applying Auld BCs, is the necessary condition to achieve S, mode
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suppression [28], [29]. Building on this observation, Guzman et al. [30] proposed a density-based topology optimization
approach for designing metasurfaces to obtain S, mode suppression by matching their resonators’ flexural antiresonances with
a target bandgap frequency, however, the resulting bandgaps are narrow mainly due to the high Q-factor of flexural resonances.

This highlights the need for new strategies to obtain wide bandgaps.

The primary goal of this study is to design metasurfaces to inhibit S, Lamb wave mode propagation over a wide frequency
range by considering the guided mode propagation characteristics, the local resonators’ properties, and the target bandgap
frequency without relying on parametric tuning of dispersion curves. To assess the feasibility of excluding waveguide
considerations in resonator design, we present an analysis of (i) how the resonator's resonances and antiresonances under in-
plane harmonic excitation, mimicking the S, mode wave structure, relate to the resonator response observed under S, mode
propagation, and (ii) what is their relation to the bandgap bounds after a metasurface has been constituted. While the influence
of resonances and antiresonances in forming bandgaps for rod-shaped resonators has been examined for the A, Lamb wave
mode [23] and surface waves [24]-[26], this study focuses on the S, mode, which has not been explored in similar context. We
therefore revisit the problem of rod-shaped resonators mounted on a plate, demonstrating a strong connection among their
resonances, antiresonances, and the obtained frequency bandgap. This connection motivates a topology optimization-based
resonator design approach to enhance bandgaps by tailoring these critical frequencies. We further demonstrate numerically and
experimentally that these relations are preserved even for non-prismatic topology-optimized resonators designed for S, mode
suppression by tailoring a single antiresonance frequency [30]. Our study demonstrates the feasibility of a resonator design that
yields wide S, bandgaps by forcing the resonator's resonances away from the antiresonances under in-plane harmonic
excitation. We validate the efficacy of topology-optimized resonators using frequency-domain finite element simulations,

revealing wider bandgaps compared to those for the metasurfaces without bandgap enhancement.

The remainder of the paper is arranged as follows. Section II reviews the relations among resonances, antiresonances, and
transmission spectra for a metasurface comprising rod-shaped resonators to suppress the S; mode — a study required to
understand the widening of bandgaps. An equivalent study on topology-optimized resonators is presented to reiterate the
connection between the resonator's resonances and antiresonances and the transmission spectrum, even for non-prismatic
geometries, and to highlight the need for bandgap enhancement strategies. Section IIIA presents a topology optimization design
methodology to conceive resonators that leads to wide bandgaps for the S, mode. Section IIIB presents the numerical validation
and discusses its limitations for the resultant topology-optimized resonators when arranged as a metasurface. Finally, we present

our conclusions in Section IV.

II. ROLE OF RESONANCES AND ANTIRESONANCES IN FORMING S, MODE BANDGAPS

In this section, we investigate the resonator-wave interactions using finite element analyses, which are useful to study not
only simple prismatic shapes, but also non-prismatic, complex-shaped resonator topologies, as presented in the subsequent
sections. To inform the optimization design of resonators to induce wide bandgaps - by tailoring resonances and antiresonances
without considering the waveguide - we should address the following key questions. First, are resonances and antiresonances
exhibited by the resonators preserved between the following two scenarios: (i) uncoupled resonator under in-plane

unidirectional harmonic excitation at the resonator’s base, mimicking the S, Lamb mode wave structure and (ii) resonator
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coupled to a plate excited with a propagating S, mode? Second, how well do these resonances and antiresonances map to the
resultant bandgap width? Finally, do the relations between these resonances and antiresonances with the bandgap hold true for
complex resonator geometries, such as the ones that commonly result from topology optimization? To answer these questions,
two studies are presented below. The first study involves a prismatic rod-shaped resonator, and the second focuses on a non-

prismatic topology-optimized resonator.

A. Prismatic rod-shaped resonators

Consider a metasurface to suppress the S, mode comprised of prismatic rod-shaped resonators, made of aluminum (Young’s
modulus = 69 GPa, density = 2800 kg/m? and Poisson’s ratio = 0.3), with dimensions 7.9 mm X 7.9 mm X 23.4 mm, as shown
in Fig. 1(a). To investigate the correspondence between the S, mode bandgap and the rod-shaped resonators' resonances and
antiresonances, we simulate the response of the corresponding metasurface using frequency-domain analysis in COMSOL
Multiphysics (v6.1) followed by laboratory experiments on a 1 mm-thick aluminum plate. Following our previous work [30],
[31], the finite element model is divided into several regions: an excitation region of length A, an incident region of length 1, a
metasurface region of length 7 cm having three rows of resonators with 10 resonators in each row and a lattice length of 11
mm, and a transmission region of length 44, as shown in Fig. 1(a), where A is the S, mode wavelength at each excitation
frequency (20-140 kHz). Perfect contact between the resonators and the plate is assumed, disregarding any bonding effects.
The surrounding 4/4 wide perfectly matched absorbing layers are used to prevent reflections from the model boundaries. To
selectively excite a pure S, mode, a body load applies the S, mode wave structure over the excitation region for each excitation
frequency sweeping from 20 kHz to 140 kHz in steps of ~1.4 kHz. Further details on the body-load excitation used in this study
can be found in the Appendix A. To ensure mesh convergence, 3D brick and tetrahedral elements with a maximum mesh size
of ~A,,in/8 are used, where A,,;, refers to the smallest possible wavelength of a guided mode propagating in a 1 mm-thick
aluminum plate at each excitation frequency; in this case, an Ay mode. In this study, 1,,;, ranges from 22.3 mm at 20 kHz to

7.9 mm at 140 kHz.

The laboratory experiments are conducted on machined Aluminum rod-shaped resonators, which are glued to the plate using
superglue in the same resonator arrangement as considered in the numerical study, as shown in Fig. 1(b). A 100 kHz Olympus
shear transducer preferentially excites the Sy mode, and a long-range Polytech laser doppler vibrometer (OFV-500) is used for
reception, mounted to a micro-precision Newport scanning stage (ILS250PP, 250 mm scan length). The laser head is tilted 34
degrees with respect to the vertical plane to capture the contribution of both in-plane and out-of-plane particle velocities, using
a retroreflective tape to enhance laser reflectivity. To cover the desired frequency range of 20-140 kHz, we use a broadband
Ricker excitation pulse with central frequency at 50 kHz, and scan over 25 cm in the transmission region (marked in Fig. 1(b))
in steps of 0.25 cm. At each scanning step, 100 ultrasonic signals are recorded for 1000 us with a pulse-repetition frequency of
100 Hz and a sampling rate of 50 MHz and are subsequently averaged. Other parts of the data acquisition hardware include a
National Instruments data acquisition system with a PXIe-5433 waveform generator and a PXIe-5172 oscilloscope cards, a

TEGAM amplifier, and an Olympus pre-amplifier. Duct seal is applied around the plate edges to minimize side-wall reflections.
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Figure 1: Numerical and experimental investigations of a metasurface comprising prismatic rod-shaped resonators. (a) Schematic of the
finite element model used for frequency-domain analysis, and (b) the experimental setup for validation. (c¢) Frequency Response Function
(FRF) at the resonator’s base under unidirectional harmonic excitation for an uncoupled resonator (maroon line, dot markers) with
subfigures (d) and (g) at 41.5 kHz and 57 kHz, respectively, FRF at the resonator’s base under § mode wave propagation for a single
resonator coupled to the plate (dashed blue line) with subfigures (e) and (h) at 41.5 kHz and 71.6 kHz, respectively, transmission spectra
for numerical (black line, circular markers) with subfigures (f) and (i) at 41.5 kHz and 70.2 kHz, respectively, and transmission spectra
obtained from experiments (green dashed line, cross markers). The shaded blue regions indicate the flexural-resonance bandgaps identified
from dispersion analysis of the metasurface unit cell (see supplementary material). Subfigures or Mode shapes (d) to (i) show the in-plane
displacement fields (|uy|) at their corresponding frequencies, highlighting the resonator and metasurface responses at the start and end of
the first flexural-resonance bandgap.

Fig. 1(c) compares numerical and experimental response of a metasurface comprised of rod-shaped resonators. Three sets of
results are presented: (i) the displacement response of the resonator to in-plane harmonic forces, (ii) the displacement response
of a single resonator mounted on the plate under incident S, mode, and (iii) metasurface transmission spectra, both numerical
and experimental. For the resonator’s displacement responses, the in-plane displacement responses (|uy|) at the resonator’s
base in both configurations are overlaid in Fig. 1(c), including subfigures Figs. 1(d), 1(e), 1(g) and 1(h). The displacement
responses for the resonator mounted on the plate are normalized by those extracted at the same point in a baseline simulation
(plate without the resonator). The transmission spectra in Fig. 1(c) are calculated by normalizing the spectral amplitude peak
of the transmitted S, mode by the same quantity obtained for a baseline case without the metasurface in place. All spectral
amplitudes are obtained by applying the spatial Fast Fourier Transform (FFT) to the complex displacement data (uy + u, +
u,), extracted over the transmission region (refer to Fig. 1(a)) on the surface, at the center of the plate for each excitation

frequency. In the case of experiments, it is common for shear transducers to excite both S, and A, modes, which may influence
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the transmission ratio. Consequently, we first filter the raw A-scans to remove contributions from the incident A, mode on the
metasurface before performing a 2D space-time FFT over the received data in the transmission region (refer to Fig. 1(b)) to
decompose the transmitted wave modes into S, and mode-converted A, modes. The transmission spectrum is produced by
extracting the spectral amplitude peak of the transmitted S, mode from the 2D-FFT wavenumber-frequency dispersion spectra
and normalizing it by that obtained from the baseline measurements. Additional details on the data processing steps to obtain

the transmission spectra from the experiment is provided in the supplementary material.

The two transmission spectra obtained numerically and experimentally align well, demonstrating the efficacy of the
numerical models and the experimental setup used. Moreover, these plots reveal the frequency regions where transmission
drops coincide with the flexural-resonance bandgaps, as identified through the dispersion analyses (shaded in blue), provided
in the supplementary material. For instance, the first and second frequency bandgaps identified from the dispersion analysis
from 38.6 - 54.4 kHz and 92.2 - 110 kHz, respectively, corresponds closely to the 50% numerical transmission ratio drop in
Fig. 1(c) from 36.3 - 55.2 kHz and 91.4 - 112.8 kHz, respectively. Additionally, the resonator's flexural antiresonance
frequencies under in-plane harmonic excitation or incident S, mode, identified at 41.5 kHz and 101.5 kHz for both the excitation
scenarios in Fig. 1(c) are close to the start of the bandgaps observed in the transmission analysis (36.3 kHz and 91.4 kHz at the
50% threshold). Also, note that the mode shapes observed at the antiresonance frequency (Fig. 1(d) for in-plane harmonic
excitation and Fig. 1(e) for the incident S, mode) match to mode shapes (Fig. 1(f)) at a point observed within the transmission
drop shown in Fig. 1(c), demonstrating a strong connection between harmonic responses and transmission plots, similar to
previous findings in the context of Ay mode [23]. Although the antiresonance frequencies do not perfectly match the bandgap’s
start, we argue that the bandgap starts when the displacement response (|uy|) at the waveguide’s surface resembles a clamping-
like condition occurring before the antiresonance fully develops. Nonetheless, the resonator’s antiresonances clearly indicate
that a bandgap has started even if the exact starting frequency is not known from the FRFs. Dispersion analyses or transmission
spectra could yield a precise bandgap starting frequency at the expense of computation time. Note that the antiresonances of a
resonator under a harmonic excitation are equivalent to the resonator’s eigenfrequencies upon constraining the degrees of
freedom along the direction in which the harmonic load would be applied; these displacement-constrained eigenfrequencies
are referred to as antiresonance eigenfrequencies. Consequently, the antiresonance frequencies obtained under either in-plane
harmonic excitation or incident S, mode, can also be viewed as the antiresonance eigenfrequencies of the resonator when the

in-plane particle motion at its base is clamped, and therefore are independent of the waveguide.

On the other hand, the resonator’s flexural resonances at 57 kHz and 115.5 kHz under in-plane harmonic excitation
correspond to the eigenfrequencies of the resonator when no degrees of freedom are constrained (resonance eigenfrequencies)
and are also independent of the waveguide. These resonances are identified in Fig. 1(c) and align close to the end of the first
and second bandgaps observed in the transmission spectra in Fig. 1(c) at 55.2 kHz and 112.8 kHz (50% threshold). Note that
despite the close resemblance of the mode shapes (Figs. 1(g) and 1(h)), the resonance frequencies identified under an incident
S, mode do not perfectly align with those identified under in-plane harmonic excitation but instead appear at slightly higher
frequencies. These frequencies, also referred to as coupling resonance frequencies, are an indirect consequence of the
waveguide-resonator coupling and require solving a complex boundary value problem for analytical estimation. These

resonance frequencies provide a more accurate estimate of the upper bound of the S; mode bandgap compared to the resonance
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frequencies under in-plane harmonic excitation, as they align well with the maxima in the transmission spectra at the bandgap

ends, similar to that observed for Ay mode [23].

A key finding of the above analysis is that ensuring bandgap formation at a target frequency necessitates aligning the
waveguide-independent antiresonance frequencies of the resonators to the desired target frequency. However, accurately
estimating the true extent of the bandgap requires identifying the resonance frequency of the resonator subject to incident S,
mode, which requires accounting for the waveguide. Notably, the displacement responses under both excitation scenarios -
unidirectional harmonic and incident S; mode — exhibit similar trends. In fact, the resonator’s resonance displacement fields
under both excitation scenarios (Figs 1(g) and 1(h)) match the mode shape at the maximum in the transmission spectra (Fig
1(i)). This observation suggests that controlling the waveguide-independent resonance frequency under unidirectional harmonic
excitation could indirectly influence the resonance frequency under an incident S, mode, suggesting that a design methodology
of resonators for locally resonant metasurfaces does not need to necessarily consider the resonator-waveguide interactions; the
waveguide can be disregarded, thus, simplifying the design process and minimizing the computational complexity. Based on
these observations, it is feasible to design a resonator that induces a wide bandgap solely by forcing its resonances to move
away from the antiresonances considering only the in-plane harmonic excitation. It is important to note, however, that while
excluding the waveguide simplifies the design process, it does not allow for an accurate estimation of the bandgap width, which
is influenced by the relative inertia between the waveguide and resonator [26]. Thus, soft or stiff waveguides influence the
width of the bandgap by shifting the upper bound of the bandgap to higher or lower frequencies, as illustrated in the
supplementary material (See Fig SM2 and related discussions). Nevertheless, for a given waveguide, such a resonator design
strategy could enable designs for wider bandgaps. However, it remains crucial to establish whether the connections observed
above apply to complex resonator topologies such as non-prismatic shapes or those typically obtained from topology

optimization [30], which exhibit modes beyond simple longitudinal and flexural modes.

B. Non-prismatic elephant-shaped resonators

In earlier topology optimization studies, we exploited the single antiresonance matching approach [30] to design an elephant-
shaped resonator that yielded an S, bandgap at the specified target frequency of 50 kHz, and the double antiresonance matching
approach [31] to design a turkey-shaped resonator, which yielded a surface-mode bandgap at the target frequency of 30 kHz.
As an example of non-prismatic resonators, we revisit and investigate the response of aluminum-made elephant-shaped
resonator, as illustrated in Fig 2(a). We follow similar analyses as previously discussed for rod-shaped resonators to study the
relation among resonances, antiresonances, and bandgaps from transmission spectra. In a square lattice, the required lattice
length would exceed 25 mm, preventing a closely spaced arrangement of the resonators that is crucial for achieving significant
bandgap width [24]. Instead, we employ four rows of staggered, closely packed elephant-shaped resonators, with a distance of
14.5 mm between each row and a spacing of 34 mm between resonators within each row, mounted on a 1 mm-thick aluminum

plate for both numerical and experimental tests, as shown in Figs 2(b) and 2(c), respectively.

We consider the same numerical model presented in Fig. 1(a), experimental setup as in Fig. 1(b), and procedure for data
processing as described in Section II-A for the rod-shaped resonators. The elephant-shaped resonators were 3D-printed with
Aluminum alloy (AlSi10Mg) using Selective Laser Melting with the following process parameters: 30 um layer thickness, 25-

70 um particle size, and 300W laser power. The resonators’ material properties were estimated from air-coupled resonance
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ultrasound spectroscopy tests (Young's modulus= 70 GPa, density = 2700 kg/m?, and Poisson’s ratio = 0.33) by minimizing
the error between the measured and simulated free-free resonances, employing a genetic algorithm-based optimization routine
[32]. Due to the rough surfaces of the 3D-printed resonators, their bases were first carefully smoothed using sandpaper to ensure
a better contact surface for bonding. The resonators were then individually glued to the plate by applying pressure. The
numerical and experimental transmission spectra agree well up to 100 kHz, above which there is insufficient excitation
amplitude. However, we note that the bandgaps from numerical analysis are sharper compared to those from experimental
analysis, and the two closely spaced bandgaps around 80-100 kHz merge into a single bandgap in the experiments. These subtle
discrepancies are likely due to imperfections in resonator bonding and surface roughness of the 3D-printed resonators, as well
as inaccuracies during the additive manufacturing process. Additionally, material or geometrical damping, which is not
accounted for in the numerical analysis, may contribute to the broader bandgaps observed in the experiments. Despite these
issues, the transmission spectra effectively demonstrate the effectiveness of the locally resonant metasurface in preventing the

propagation of S, waves using topology-optimized resonators.

For a single elephant-shaped resonator, the in-plane displacement responses (|uy|) extracted at the resonator’s base subject
to unidirectional harmonic excitation and incident S, mode are superimposed over the transmission spectra in Fig. 2(d) for
comparison. One of the sharp dips in the in-plane displacement response at the resonator’s base (i.e., the antiresonances), shown
in Fig. 2(d), corresponds to the optimized antiresonance frequency at 50 kHz. Although antiresonances (incident S, mode — 25
kHz, 52.4 kHz, 73 kHz, and 88 kHz; and in-plane harmonic excitation — 24.5 kHz, 51.5 kHz, 71.5 kHz, 87.5 kHz) and
resonances (incident S, mode — 49.7 kHz, 70.2 kHz, 83.9 kHz, and 93.5 kHz; and harmonic excitation — 44.5 kHz, 66.5 kHz,
76.5 kHz, and 91 kHz) for both excitation types do not perfectly align, the displacement responses exhibit a consistent trend.
Notably, the antiresonance-resonance pairs closely bound the resulting bandgaps observed in the transmission analysis, which
is similar to the observations for rod-shaped resonators. For example, the first two bandgaps reveal that the antiresonance
frequencies for both excitation types (incident S, mode — 25 kHz and 52.4 kHz; and harmonic excitation — 24.5 kHz and 51.5
kHz) closely match the starting of the numerical transmission dips seen in simulations (20.8 kHz and 50.5 kHz at 50%
threshold). Additionally, the resonance frequencies for both excitations (incident S, mode — 49.7 kHz and 70.2 kHz; and
harmonic excitation — 44.5 kHz and 66.5 kHz) align closely with the maxima in the numerical transmission spectra (48.3 kHz
and 64.8 kHz). Moreover, the mode shapes at the target antiresonance frequency, which exhibit displacement clamping at the
resonator base for both excitation types (in-plane harmonic — Fig. 2(e); incident S, mode — Fig. 2(f)), match the clamping
condition observed at the base of resonators in the metasurface at frequencies within the transmission dip (51.1 kHz, Fig. 2(g)).
Similarly, the mode shapes at the resonance frequencies, show significant displacement at the resonator base for both excitation
types (in-plane harmonic — Fig. 2(h); incident S, mode — Fig. 2(i)) like the resonator response near the transmission maxima
(64.8 kHz, Fig. 2(j)). This correspondence demonstrates that a constrained-like in-plane displacement (i.e., an antiresonance)
at the plate’s surface leads to S, mode suppression even for complex non-prismatic resonators and that analyzing an individual
resonator without considering the waveguide interaction is a feasible design approach to tailor frequency bandgaps for locally

resonant metasurfaces.
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Figure 2: Numerical and experimental investigations of a metasurface comprising non-prismatic elephant-shaped resonators obtained
through TO [30]. Close-up view of the (a) elephant-shaped resonator and the metasurface configuration in the (b) frequency-domain finite
element model and (c) experimental setup. (d) Frequency Response Function (FRF) at the base of the resonator under unidirectional
harmonic excitation for an uncoupled resonator (maroon line, dot markers) with mode shapes shown in subfigures (e) and (h) at 51.5 kHz
and 66.5 kHz, respectively, FRF at the resonator’s base under S mode wave propagation for a single resonator coupled to the plate
(dashed blue line) with mode shapes shown in subfigures (f) and (i) at 52.4 kHz and 70.2 kHz, respectively, transmission spectra for
numerical (black line, circular markers) with mode shapes shown in subfigures (g) and (j) at 51.1 kHz and 64.8 kHz, respectively, and
transmission spectra obtained from experiments (green dashed line, cross markers). The snapshots in (e) to (j) show the in-plane
displacement fields (|uy|) at their corresponding frequencies, highlighting the resonator and metasurface responses at the start and end of
the second flexural-resonance bandgap.

(8)

One discrepancy is the observed formation of a very narrow second dip in the numerical transmission spectra (50.5 — 53.4
kHz at 50% threshold), despite the presence of an antiresonance at 51.5 kHz and a resonance at 66.5 kHz identified from the
in-plane unidirectional loading. We believe this narrow dip is due to additional internal interactions among the staggered
resonators, which exhibit other resonator modes when subjected to excitations in different directions. This may have occurred
because the response to unidirectional harmonic loads only considers one excitation direction and does not account for
resonances or antiresonances associated with other harmonic excitations. To address this issue, we propose to push all
eigenfrequencies away from the desired frequency range, thereby mitigating the occurrence of spurious resonances, as will be
demonstrated in the following sections. Although tailoring a resonator’s antiresonances under harmonic excitation enables

bandgap customization, as established through the elephant-shaped resonator analysis, the obtained bandgap around the
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optimized antiresonance frequency, 50 kHz, is very narrow compared to the metasurface comprising prismatic resonators.
Thus, even for complex resonator topologies, the correspondence between the resonator's antiresonance and resonances with
the start and end of bandgaps holds, suggesting a potential resonator design strategy to obtain wider bandgaps by pushing apart
all resonance modes from the targeted antiresonance. This motivates a systematic design methodology based on topology

optimization presented in subsequent sections.

III. TOPOLOGY OPTIMIZATION FOR BANDGAP ENHANCEMENT

The optimization problem is to systematically match an antiresonance frequency with a target frequency (the frequency
around which the bandgap is desired) while simultaneously pushing all surrounding resonances away from that antiresonance
frequency to generate a wide bandgap. This optimization problem is an extension of our earlier proposed methodology, i.e.,
generating bandgaps through single antiresonance matching as described in [30]. In this approach, the objective function
minimizes the normalized difference between an antiresonance eigenfrequency f, and a prescribed target frequency fr, while
maximizing the normalized difference between all resonance eigenfrequencies f and the antiresonance eigenfrequency f.

The optimization problem is then defined as:

. fa— fT)Z fa ]
min |w. +w , €9
P [ 1< fr 2 fr—fa
subject to:
Ne
Vmin < Z peVe < Vmax (23)
e=1
0< Pmin < Pe < 1: (Zb)

where p, are the design variables, i.e., the pseudo-densities associated to the finite elements in the design space, and the
weighting coefficients w; and w, control the contribution of the antiresonance matching and resonance gap terms in Eq. (1),
respectively. Vi, and Vi, .4 are the minimum and maximum volume constraints, considering that the factor p.V, is the element-
wise volume. The design variables p, range from 0 to 1, however, a minimum limit p,,;, is imposed to prevent numerical
errors. While minimizing the first term in the objective function aims to align the antiresonance eigenfrequency f, with the
target frequency fr , the second term increases sharply as f,, approaches the resonance eigenfrequency fz. This term attains its

minimum value only when f, and f; are sufficiently spaced apart, thereby driving the resonance gap wider.

Two generalized eigenvalue problems (K® = AM®) are solved independently to obtain either resonance or antiresonance
eigenfrequencies, using the appropriate displacement constraints for each case. Extensive details on how these eigenfrequencies
are computed and selected during the optimization are presented in [33]. A Sequential Linear Programming (SLP) scheme is
implemented to solve the optimization problem presented in Eq. (1) and Eq. (2), which requires the linearization of these
equations. Since Eq. (2) already contains linear functions, only Eq. (1) is linearized using first-order Taylor series. The details

of the derivation are presented in the Appendix B. Eq. (1) simplifies to:
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a_? (6_pk lap,)‘p

ap, "M

%)

A. Case study

Here, we present an optimized resonator to constitute a locally resonant metasurface that controls the propagation of S,
Lamb waves using the design methodology presented in the previous subsection. Ensuring feasible solutions throughout
the optimization process is essential for convergence and numerical stability. This has been achieved by selecting the
design domain dimensions and material properties shown in Table 1 such that the topology under harmonic excitation at

each iteration has resonances and antiresonances in the frequency range from 10 kHz to 150 kHz.

TABLE I. Optimization initialization parameters

Target frequency fr 50 kHz
Design domain 24 X 24 X 24 mm
Finite element size 1 mm
Young’s modulus 69 GPa
Mass density 2730 kg/m?
Poisson’s ratio 0.33
Maximum volume — &no
constraint Vmax =30 %
Minimum volume —1no
constraint Vimin =10 %
Starting design _
variables pe =05

To reduce computational complexity at each iteration, the design domain is assumed to be symmetric about the plane
perpendicular to the harmonic excitation direction. The optimization runs until it reaches convergence; the evolution of the
resonator’s topology during the optimization process is shown in Fig. 4 at iterations 1, 10, 20, 30, 40, and 50 after recovering
the symmetry condition. At the start of the optimization process (iteration 1), the distribution of material is homogeneous with
a pseudo-density of 50% (p, = 0.5) for all elements in the design domain, except those in the lowest row, which have been
defined as void non-design elements with a fully-solid non-design region that constitutes the resonator’s base that will be in
contact with the plate. After minimizing the objective function and obtaining a local solution, the resultant optimized resonator

is a “Lemon-shaped” topology that uses 18.8% of the volume fraction.

A frequency response subject to unidirectional harmonic forces must be computed at each iteration to properly identify
resonances and antiresonances. Fig. 4 compares the topology’s frequency response at the first, intermediate, and final iterations

of the optimization as shown in Fig 3., indicative of the effectiveness of the proposed optimization strategy in matching an
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antiresonance with a target frequency (fr) while pushing away all the surrounding resonances. At the first iteration, multiple
resonances and antiresonances appear within the target frequency range; specifically, antiresonances occur at 19 kHz, 84 kHz,
and 116 kHz, while resonances occur at 80 kHz, 106 kHz, 127 kHz. After reaching convergence at iteration 50, the
antiresonance from 19 kHz has been shifted up to 49 kHz, with all resonances pushed out beyond the plotted frequency range.
This ultra-wide frequency separation between the antiresonance and nearby resonances has a potential to generate wide
frequency bandgaps once they are arranged as a locally resonant metasurface, as will be numerically validated in the subsequent

section.

The proposed design methodology, which manipulates eigenfrequencies for both resonances and antiresonances, offers a
substantial reduction in computational expense compared to traditional frequency response-based design methods. The
computational cost of design optimization can be evaluated based on the time required for a single iteration during the
optimization process. For example, in the case of the lemon-shaped resonator, each iteration takes approximately 960 seconds
(~16 minutes) with a mesh consisting of 6,912 elements, 31,225 nodes, and 93,675 degrees of freedom. These computations
were run in distributed mode across five nodes of a cluster, each powered by 2 x Intel(R) Xeon(R) Gold 6248R CPUs at 3.00
GHz. Although this cost is higher than that of typical eigenfrequency-based optimization methods, it remains significantly

lower than any frequency domain-based approach, highlighting the computational efficiency of our methodology.

(°d) Aisuap opnasd

-1- -10- -20- -30- -40- -50-
Figure 3: Optimization evolution, from left to right, showing the resultant topologies at iterations 1, 10, 20, 30, 40 and 50.

10 "E : H 3
«@ FRF at iteration=1 i .

FRF at iterat H
——FRF at iteration=>50] R

10 " Target
Frequency i
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10 11 [

s 1 1
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Figure 4: Frequency response functions for topologies at iterations 1, 30, and 50 from Fig. 3.
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B. Numerical validation of topology-optimized resonator for ultra-wide bandgaps

The lemon-shaped optimized topology at iteration 50 in Fig. 3 is further post-processed to transform the pseudo-density
values into a well-defined shape using the TOPslicer program [36], as shown in Fig 5(a). This post-processed topology's in-
plane displacement response to unidirectional harmonic loading is shown in Fig. 5(b), which is comparable to the unprocessed
topology’s response shown in Fig. 3, illustrating that post-processing has minimal impact on the optimized resonator's response.
To aid the comparison, the elephant-shaped topology’s response to unidirectional in-plane harmonic loads from Fig. 2(d), is
also included in Fig. 5(b). The differences between these two optimized topologies’ frequency responses are evident. The
lemon-shaped topology has a single antiresonance at 53.5 kHz, which is near the target frequency of 50 kHz, with significant
separation between the antiresonance and the following resonance, at 137.5 kHz. On the other hand, the elephant-shaped
topology, although having an antiresonance near the same target frequency, exhibits nearby resonances that are significantly
closer to that antiresonance, resulting in narrower frequency bandgaps, as demonstrated in Section II.B. Following the same
frequency-domain analysis presented in Section II for the rod-shaped and elephant-shaped resonators, the in-plane frequency
response at the resonator’s base for a single lemon-shaped resonator mounted on the plate subject to incident S, mode is also
presented in Fig. 5(b). As expected, the observed antiresonance and resonance frequencies for both excitation cases match, so
do their corresponding displacement fields in Figs. 5(c) to 5(f), confirming again the connection between resonances and
antiresonances with and without coupling the resonator to the waveguide, i.e., the close correspondence between responses to
unidirectional harmonic loads and the S, wave propagation. The wide frequency separation between the lemon-shaped
resonator's antiresonance and resonances is expected to generate an ultra-wide S, mode bandgap, which is verified, as follows,

with the frequency-domain transmission spectra plots.

----- FRF under in-plane, harmonic excitation (Elephant-shaped resonator)
——FRF under in-plane, harmonic excitation (Lemon-shaped resonator) qul (a. u.)

T
0

s FRF under incident SO mode (Lemon-shaped resonator)
T T T T T

o
3

T

max(|uyl)

g g
2010 0.6 &
Q Q
~ ~
= 05 =
g 04 %
[ <o
£1072 $03 &
A A
2 H022
- - r
=} =]
Z 10 0 = V
20 40 60 80 100 120 140
Frequency (kHz) 7
(a) (b) (e) )

Figure 5: (a) The lemon-shaped optimized resonator after post-processing, and (b) the comparison of in-plane frequency response functions
for the elephant-shaped and lemon-shaped resonators subject to unidirectional harmonic loading and to Sy wave mode. Displacement field
|uy| responses for the lemon-shaped resonator at the target antiresonances (shown in (c) and (d)), and at the resonances (shown in (e) and

).

The frequency-domain transmission analysis is performed over a metasurface comprised of a closely spaced, staggered
arrangement of 16 lemon-shaped resonators with spacing similar to that employed earlier for the elephant-shaped resonators,
as illustrated in Fig. 6(a). The lemon-shaped topology’s numerical transmission spectrum in Fig. 6(b) indicates an S, mode
bandgap spanning from 28.2 kHz to 72 kHz, corresponding to the frequency range when the transmission drops below the 50%

threshold. The transmission analysis confirms initiation of the bandgap (28.2 kHz) before the resonator's antiresonance under
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harmonic excitation (marked as f, in Fig 6(b)). This bandgap formation starting before the antiresonances is a result of
preceding resonances being pushed away from that antiresonance during the optimization process, although the exact frequency
at which the bandgap starts is not predictable from the resonator’s frequency responses. On the other hand, the bandgap ends
(72 kHz) before the resonance frequency (marked as fy in Fig. 6(b)) that is expected to be the bandgap’s upper bound. This
discrepancy is attributed to the resonator arrangement, which introduces additional complexities. Despite forcing resonances
away from the antiresonance, the observed premature rise in the transmission around 80 kHz is due to the resonator arrangement
that gives rise to other propagating modes that limit the extent of bandgap up to the resonance frequency, like what was observed
in the transmission bandgaps for elephant-shaped resonators (Fig 2(d)). The narrowing of bandgap, caused by wave scattering
due to interactions between resonators within the designed frequency range (as shown in the supplementary material), is an
indirect consequence of not considering the waveguide during the optimization process, as a compromise to enable the design

of 3D topologies with feasible computational complexity.

Remarkably, despite the compromise in bandgap width, the lemon-shaped resonators (at 50% threshold) exhibit a bandgap
approximately 15 times wider than that of the elephant-shaped resonators, as shown in Fig. 6(b). The filling fraction,

. . D? . .
representing the effective area covered by the metasurface, can be calculated as ;7 for the centered rectangular Bravais lattice

in the staggered resonator arrangement considered for this study. Here, a = 34 mm and b = 29 mm are the lengths of the lattice
vectors (see Fig. 2(b)), while D is the diameter of the resonator base, approximated as a circle with dimensions D = 5 mm for
the elephant-shaped resonator and D = 7.3 mm for the lemon-shaped resonator (see Figs. 2(a) and 5(a)). The higher filling
fraction of the lemon-shaped metasurface (0.085) compared to that for elephant-shaped metasurface (0.04), along with its
greater mass (9.8 g) relative to that of elephant-shaped resonators (6.2 g), are potential contributing factors to the observed
enhanced bandgap, as suggested by previous studies [24], [26]. These results validate that the topology optimization approach
based on antiresonances matching plus resonance gap enhancement results in metasurfaces exhibiting wider bandgaps
compared to the optimization that focuses solely on antiresonance matching. We assert that a more densely packed arrangement
of resonators could result in an even wider bandgap as predicted by the dispersion analysis over lemon-shaped resonators (see
supplementary material) in which the antiresonance-to-resonance spacing resulted in a theoretical ultra-wide bandgap. While
such a closely packed arrangement is impractical for the physical size of the lemon-shaped resonators, this analysis offers
valuable insights into potential future directions for topology optimization, suggesting that imposing stricter volume constraints

during resonator design could enable tighter configurations, potentially leading to significantly wider bandgaps.
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Figure 6: (a) Close-up view of the lemon-shaped metasurface configuration in the frequency-domain finite element model and (b)
comparison of transmission spectra plots obtained from numerical simulations for elephant-shaped and lemon-shaped resonators.
Bandgaps computed with 50% transmission drop threshold are highlighted in gray for elephant-shaped resonator arrangement and in
orange for lemon-shaped resonator arrangement, and the antiresonance (f 4) and resonance (fg) frequencies from the FRF for in-plane,
harmonic excitation of lemon-shaped resonators are denoted by vertical lines for reference.

VI. Conclusions

Understanding the role of individual resonators’ resonances and antiresonances in generating frequency bandgaps is crucial
to proposing rational metasurface design approaches. In the context of suppressing an S, mode using a locally resonant
metasurface, we demonstrated a strong connection between antiresonances and resonances of resonators coupled to a plate’s
surface subject to S, mode propagation, and antiresonances and resonances obtained by simple unidirectional in-plane harmonic
excitations (mimicking S, mode wave structure) of an uncoupled resonator. These antiresonance and resonance frequencies
match well, respectively, the start and end of frequency bandgaps, even for complex-shaped resonator topologies,
demonstrating that the resonator-waveguide interactions can be disregarded during the resonator design process and motivating
a new resonator design methodology that induces wider bandgaps by manipulating those resonances. To that end, we proposed
a density-based topology optimization enforcing both the antiresonance matching and a new bandgap enhancement criterion
based on resonance manipulation to force all nearby resonance eigenfrequencies away from the target antiresonance. This
optimization technique converged to a lemon-shaped resonator topology for one set of selected initial conditions, which
generated an S, mode bandgap around the target frequency that is significantly wider (15 times) than that of the elephant-
shaped resonators.

This outcome validates our research objective of achieving a wider bandgap by incorporating the resonance gap
enhancement term in the objective function, compared to the scenario that considers only antiresonance matching. This novel

proposed optimization approach to obtain wide bandgaps at desired frequency ranges does not require consideration of the
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waveguide, eliminating the need for the parametric tuning of bandgaps through extensive dispersion analysis. This proposed
waveguide-independent design methodology could be particularly useful to conceive metasurfaces for Rayleigh wave
propagation control, where the waveguide (half-space) would require several finite element mesh elements, and is usually a
complex and extensive computational task, especially when dispersion-based analysis is employed. However, the obtained
bandgap for the optimized lemon-shaped resonators was narrower than predicted, primarily due to the size limitations of these
resonators, which prevent the closely packed arrangement needed to achieve a complete bandgap spanning from antiresonance
to resonance. This compromise arises from excluding the waveguide in the analysis to enhance computational efficiency while
enabling metasurface designs with complex-shaped resonators in a 3D design space. Future work should focus on better
understanding the scattering effects resulting from the arrangement of resonators that compromise the bandgap width, as well
as strategies through topology optimization that could potentially induce an ultra-wide bandgap through volume constraints

and close-packed configurations, with potential applications in surface-wave control.

SUPPLEMENTARY MATERIAL

See supplementary material for the dispersion analysis of rod-shaped resonators, influence of waveguide on bandgap
characteristics, data analysis to obtain transmission spectra from experiments, dispersion analysis of topology-optimized
lemon-shaped resonators, and evidence of the wave scattering interactions between resonators that compromise the desired

frequency bandgap range.
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APPENDIX A. NUMERICAL PROCEDURE TO PREFERNETIALLY EXCITE S, MODE IN A PLATE

Since the optimized topology designs discussed in the paper are specifically tailored to suppress the S, mode, it is crucial to
study the interactions of the S, mode with the resonator topologies in isolation, without the interference of other guided modes
that may be excited in the plate. To preferentially excite the S, mode, as briefly mentioned in [28], we employ body load
excitation. Assuming wave propagation in the x-direction and plate thickness in the z-direction, as illustrated in Fig. 1(a), this
method involves applying the stress distribution components (0y(2), 0xy(2), 0x;(2), 0, (2), 0,,(2), and 0,,(2)) along the
plate thickness (z) of the S, mode, identified for each excitation frequency (20 kHz — 140 kHz in steps of ~1.4 kHz), as body
loads (F, F,, and F,) to an excitation region spanning one wavelength of the wave propagating at the corresponding frequencies,

as given by:

e

= (0xx(2) + 041 (2) + 0y (2))e " 10xx=00),
Fy = (Uyy(Z) + O'yx(Z) + Uyz(z)) e—i(kxx—(ut)' A1)

E, = (sz(z) + Uzy(Z) + o'zz(z))e—i(kxx—wt)’

where k, is the wavenumber in the direction of wave propagation and w is the angular frequency.

The stress distributions of the Sy mode at each excitation frequency can be identified using various techniques: solving the
Navier governing equations analytically with traction-free boundary conditions on the surface [37], employing semi-analytical
finite element analysis [38], or extracting them from dispersion analysis performed on a unit cell comprising a small portion of
the plate with Bloch-Floquet periodic boundary conditions applied to the faces in the direction of wave propagation [39]. In
this work, we used the latter approach to extract the dispersion curves of the Lamb modes (plotted as gray dotted lines in Fig.
7 and the corresponding stress distribution of the S, mode along the plate thickness. These stress distributions are then used as
excitation loads, as detailed in the procedure above, for the frequency domain analysis presented in Figs. 1, 2, 5, and 6. For
reference, the wavenumber spectrum was extracted by applying a spatial FFT over the complex displacement data (i, +u,, +
u,) in the transmission region for the baseline case (i.e., without any surface-mounted resonators) and overlaid on the dispersion
curves of the fundamental S,,, A, and SH, modes for all excitation frequencies, as illustrated in Fig 7. This figure illustrates the
capability of the body load excitation to preferentially excite the S, mode, as evidenced by the fact that all wavenumber peaks
coincide with the S, mode dispersion curve, with no visible peaks along the A, mode and low amplitude peaks observed along

the SH, mode.
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Figure 7. Wavenumber spectrum extracted from the transmission region without surface-mounted resonators for S, mode body-load
excitation, overlaid on the dispersion curves of the A, Sy, and SH, modes across the 20 kHz to 140 kHz frequency range.

440 APPENDIX B. SENSITIVITY DERIVATION FOR THE OPTIMIZATION PROBLEM

441 A gradient-based optimization problem requires the derivation of its objective function with respect to the design variables.
442 The present study employs the Sequential Linear Programming (SLP) method, which only requires the first derivative with
443 respect to the design variables. To achieve such a purpose, first-order Taylor series are used, disregarding constant terms. For

444  any objective function:

mgn[f(p)], (B1)
445  its first-order Taylor series decomposition is:
min[f(p,) + VE(po) " (p = po)l- (B2)
446  Disregarding constant terms, the objective function simplifies to:
- T
min[VE(po)™ (p)], (B3)
447  where:
af(p)
Vi(po) = . (B4
Po

448 Here p, is the linearization point, i.e., the current vector of pseudo-sensitivities at each iteration during the optimization

449  process. The objective function from Eq. (1) is written as:

fa — fr\ f
min i (#25) w2 ] (B5)
p fr —f,
450  The objective function linearized at p, can be written as:
of(p)
in Vf(py)Tp = mi
min Vi(po)'p =min 5 P (B6)
451  where:
of) _ 9 (fA — fT) 9 ( £y )2
+wy,—
dpx apk fr P fr—fy
-1
) (fA_fT) ad (fA—fT> N 1 [( £, >2]z P ( A >z
=W\~ |3~ W -
\fr Jop\ fr 2 2 |\fr —fa 9py \fg — fs
_ 2W1(fA - fT) a(fA — fT) + Wo (fR — fA) 0 ( fA )2 (37)
= 2 dpy 2 fa dpy \fr — fa
_ 2W1(fA - fT) a(fA) — fA fA ( fA )
fr Ok fA - fA Ap \fg — o

452  The last term in the derivative can be written as:

VR A E A R T N
K ( fa ) ROAA Opk _ _ Opx " 0p A0p (B8)
Opi \fr — f5 (fr — fa)? (fr —fa) (fr—fa)?  (fr —f4)?
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453  Plugging in back to the derivation (Eq. (B7)), we get:

0f(p) _ 2wy (fy —fr) Ofp

Ipk ff 6_Pk
2 LI/
LW (fR_fA> 2( fa ) dp " 9px A 0py.
2 fa fr—fa/ | (R —fa) (R —fa)?  (fr —fa)?
ofg Ofp
_ 2wy (fy —fr) Ofp Wofa (f - fA)Z afA fa dpx Adpy
£f dpk (fr — fa)? ap (fr—fa)  (Fr—f)|
454 Now, knowing that eigenvalues and eigenfrequencies are related by:
of, 1oJX, 1 oa, 1 A,
Opk 2T Opy 41‘[\/_ 0P 8m2f, dpy.
455  the objective function derivative simplifies to:
fa 02 fo 0Ay
af(p) 2wy (fa — fr) a7\A szA - fA 1 oA nsz dapx N 8m2f, dpy
ok 8m2f, ff (')pk —fa)? fA 82y apk —fa) (fr — fa)
: (O O
_ wi(fa —f) 0y Wafa - fA 10A, fa dpx dpy
 AmPufE Opx  8m2(fr — fa)? fadp  frfr —fa) (R —fa) |
456  Finally, rewriting the optimization problem as presented in Eq. (3):
Che Oh
. wy(fa — fr) 02y wofa fr —fa| [ 1 0Ap A dpx dpk
min|| ————F—=—+ 5 5 e~ + Px |-
P am2faff Op,  8m*(fr —fa) fa fadpx  fr(fr —fa)  (fr —f4)
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