
Characterizing CUDA and OpenMP

Synchronization Primitives

Brandon Alexander Burtchell

Department of Computer Science

Texas State University

San Marcos, USA

burtchell@txstate.edu

Martin Burtscher

Department of Computer Science

Texas State University

San Marcos, USA

burtscher@txstate.edu

Abstract—Over the last two decades, parallelism has become
the primary method for speeding up computer programs. When
writing parallel code, it is often necessary to use synchronization
primitives (e.g., atomics, barriers, or critical sections) to enforce
correctness. However, the performance of synchronization prim-
itives depends on a variety of complex factors that non-experts
may be unaware of. Since multiple primitives can typically be
used to complete the same task, choosing the best is often
non-trivial. In this paper, we study the performance impact
of these factors by measuring the throughput of OpenMP and
CUDA synchronization primitives along multiple dimensions. We
highlight interesting and non-intuitive behavior that software
developers should be aware of when writing parallel programs.

Index Terms—multithreading, parallel programming, synchro-
nization, scalability, CUDA, OpenMP

I. INTRODUCTION

Maximizing parallelism has become the primary method of

speeding up program execution. Until the early 2000s, the

performance of a program was mostly determined by the clock

frequency of the processor, which, according to optimistic

interpretations of Moore’s Law [1] and Dennard/MOSFET

scaling [2], was predicted to double approximately every

1.5 years. However, physical limitations have slowed this

scaling [3] [4] and led to the multi-core revolution. As a

consequence, the scalability of a program now depends on

the fraction of the code that can run in parallel [5], making

increasing the parallelism crucial—especially in the context of

high-performance computing.

When writing parallel code, it is often necessary to use

synchronization to prevent data races or to enforce a specific

ordering. Parallel-programming APIs provide commonly-used

parallelism constructs (e.g., barriers and atomics), which we

refer to as synchronization primitives. These primitives come

with their own complexities, such as whether an atomic

operation implies a memory fence. Moreover, the performance

of synchronization primitives may be impacted by hardware

factors other than the number of cores. Yet, developers are not

always aware of these ever-changing and system-dependent

complexities, which can lead to programs that do not exploit

This work has been supported in part by the National Science Foundation
under Award Number 1955367 and by an equipment donation from NVIDIA
Corporation.

the available parallelism well, resulting in poor performance

and/or scaling.

Software developers often have to choose between multiple

primitives that accomplish the same task. Each implementa-

tion provides a tradeoff between generality and performance.

However, a programmer may not be aware of these tradeoffs

and select a suboptimal solution. Such issues are exacerbated

when writing parallel programs for both CPUs and GPUs. Fun-

damental architectural differences between these devices mean

that primitives with the same net result may be implemented

differently and, therefore, exhibit non-trivial behavioral and

performance differences.

Seasoned programmers can internalize many of these in-

tricacies over time, but there are too many possible pitfalls

for non-experts to maximally exploit the potential benefits of

parallelism. Hence, we need to identify the behavior and mea-

sure the performance of important synchronization primitives

to guide non-experts in effectively choosing the best primitives

for a given scenario.

This paper studies the throughput behavior of many

commonly-used OpenMP and CUDA synchronization primi-

tives across various parameters. We perform our measurements

on several systems with CPUs and GPUs from different

vendors and generations. To the best of our knowledge, a

similar study has not been conducted before.

This paper makes the following main contributions.

• It describes a testing framework to measure the execution

time of single synchronization primitives.

• It presents a detailed throughput analysis of various

primitives across several parameters and systems.

• It analyzes the behavior of important synchronization

primitives and provides recommendations for software

developers.

The code and results are open-source and available [6].

The rest of this paper is structured as follows. Section II

gives an overview of OpenMP and CUDA. Section III de-

scribes our measurement approach. Section IV outlines our

experimental methodology. Section V presents and analyzes

the results. Section VI discusses related work. Section VII

provides a summary and conclusions.



II. BACKGROUND

This section briefly introduces the parallel-programming

APIs—OpenMP and CUDA—and their synchronization prim-

itives that we evaluate. It also provides an example that

demonstrates how the APIs evolve and how the performance

behavior of different primitives can be non-intuitive.

A. OpenMP

OpenMP [7] is a popular open-source API that enables

multithreading in C/C++ and Fortran programs. In C/C++,

this is mostly accomplished with preprocessor directives. The

rest of this subsection discusses the commonly-used OpenMP

synchronization primitives that we evaluate.

1) Barrier: A barrier is one of the most basic synchroniza-

tion primitives. It blocks every thread until all other threads

have also reached it. Barriers can be explicitly called or are

implicitly present after many other primitives.

2) Atomics: Atomics ensure that only one thread can read/

write a variable at a time. OpenMP includes several flavors of

atomic operations, including update, read, write, and capture.

Atomic read and write are self-evident. Atomic update reads

a variable, performs an operation on it, and writes the result

back to the variable—all atomically. Atomic capture is similar

to atomic update, but a second variable “captures” the value

of the updated variable (e.g., v = x++).

3) Critical Section: A critical section is a section of code

that restricts execution to one thread at a time. As critical

sections enforce serial execution, they are generally used to

prevent data races on complex operations. Internally, OpenMP

implements the critical section by having each participating

thread acquire and later release a shared lock. The locking

overhead can be substantial, making critical sections slow for

simple operations.

4) Memory Flush: The memory consistency model specifies

the allowed reorderings of reads or writes of one variable

relative to the reads or writes of other variables in parallel

programs. In cases where a thread reads and writes multi-

ple variables without synchronization, the compiler and the

hardware may reorder the accesses to the different variables,

potentially breaking the code if the programmer intended for

one variable (e.g., a flag) to guard the other variable (e.g.,

so that a consumer thread will only access the other variable

after it is ready). Memory fences prevent such reorderings by

ensuring that all memory operations before the fence finish

before any memory operations start that appear after the fence.

In OpenMP, a memory fence is called a flush. Flushes are

implicit after many OpenMP primitives. They can also be

invoked explicitly.

B. CUDA

CUDA [8] is a proprietary API and language based on

C/C++ that allows programmers to write non-graphics code

for NVIDIA GPUs. GPU code is written as kernels—special

functions that are compiled for the GPU. Kernels are launched

with a specified number of thread blocks, a logical group of up

to 1024 threads. In hardware, these thread blocks are executed

on streaming multiprocessors (SMs), which are essentially

vector processors with their own cores, registers, and shared

memory/L1 cache. The specifications of an SM vary with

the architecture, and the number of SMs per GPU vary from

device to device. CUDA allows for multiple blocks to run

simultaneously on an SM, provided that the blocks do not

exceed the resources of the SM. Notably, the maximum threads

per SM can be more than the maximum threads per block.

GPUs achieve high throughput from their single-instruction-

multiple-thread behavior. On the SM, thread blocks are com-

posed of warps, or contiguous sets of 32 threads. A warp

of threads executing the same instruction(s) will execute

simultaneously—maximizing parallelism. However, if at least

one thread in a warp is not executing the same instruction as

the others (e.g., branching statements), this will result in thread

divergence, which can significantly impact performance.

The rest of this subsection discusses the commonly-used

CUDA synchronization primitives that we investigate.

1) Syncs: CUDA includes barriers at multiple granularities.

For example, __syncthreads() synchronizes all threads

in a block, and __syncwarp() synchronizes all threads in

a warp.

2) Atomics: CUDA provides many atomic operations (add,

sub, max, min, etc.). If an operation is not provided, the

programmer can often emulate it using an atomic compare-

and-swap (atomicCAS()), which compares the current value

at an address with the expected value, and exchanges it with

a new value if the comparison passes. atomicExch() is

similar but skips the comparison.

3) Thread Fences: In CUDA, a memory fence is im-

plemented as a __threadfence() call, which ensures

that all memory accesses before the fence occur before

any memory accesses after the fence, across the entire de-

vice. Variants such as __threadfence_block() and

__threadfence_system() also exist, which change the

scope to just a thread block and the entire system (CPU and

GPU), respectively.

4) Warp-Level Functions: CUDA includes warp shuffle

functions, which synchronize a defined subset of threads in

the warp and have them exchange values (without accessing

memory) according to the function’s exchange pattern. For

example, __shfl_sync() can broadcast a value from one

thread to all other participating warp threads.

CUDA also includes warp voting functions, which take a

value from each thread in the warp and compare it with

zero. The results of the comparison are then reduced and

broadcasted to each participating thread.

C. CUDA Example

We now provide a small example illustrating how the CUDA

API evolved and how the performance of different synchro-

nization primitives can be non-intuitive. Listing 1 presents

five distinct ways of implementing a maximum reduction in

CUDA. Many other solutions exist. We show these five to

make several points.



1 const int lane = threadIdx.x % warpSize;

2 const int i = threadIdx.x + blockIdx.x * blockDim.x;

3 __shared__ int block_result;

4

5 // Reduction 1: since compute capability 1.3

6 if (i < size) atomicMax(&result, data[i]);

7

8 // Reduction 2: since compute capability 3.0

9 if (__any_sync(˜0, i < size)) {

10 int val = (i < size) ? data[i] : INT_MIN;

11 for (int j = warpSize / 2; j > 0; j /= 2)

12 val = max(val, __shfl_xor_sync(˜0, val, j));

13 if (lane == 0) atomicMax(&result, val);

14 }

15

16 // Reduction 3: since compute capability 6.0

17 if (threadIdx.x == 0) block_result = INT_MIN;

18 __syncthreads();

19 if (i < size) atomicMax_block(&block_result, data[i]);

20 __syncthreads();

21 if (threadIdx.x == 0) atomicMax(&result, block_result);

22

23 // Reduction 4: since compute capability 8.0

24 if (threadIdx.x == 0) block_result = INT_MIN;

25 __syncthreads();

26 if (__any_sync(˜0, i < size)) {

27 int val = (i < size) ? data[i] : INT_MIN;

28 val = __reduce_max_sync(˜0, val);

29 if (lane == 0) atomicMax_block(&block_result, val);

30 }

31 __syncthreads();

32 if (threadIdx.x == 0) atomicMax(&result, block_result);

33

34 // Reduction 5

35 int thread_result = INT_MIN;

36 if (threadIdx.x == 0) block_result = INT_MIN;

37 __syncthreads();

38 for (int j = i; j < size; j += blockDim.x * gridDim.x)

39 thread_result = max(thread_result, data[j]);

40 atomicMax_block(&block_result, thread_result);

41 __syncthreads();

42 if (threadIdx.x == 0) atomicMax(&result, block_result);

Listing 1: Five implementations of a reduction in CUDA

Reduction 1 is the most general. It works on all but the

very first GPUs that supported CUDA. Each thread processes

one data element and performs an atomic maximum operation

on a global variable.

Reduction 2 employs warp primitives that only became

available in later hardware generations (with higher compute

capabilities). These primitives complicate the code but lower

the number of atomic operations substantially.

Reduction 3 uses block-scoped atomics and barriers to

further minimize the number of global atomics.

Reduction 4 exploits a warp-based reduction, a recent hard-

ware addition, to lower the number of block-scoped atomics.

Reduction 5 is a variation of Reduction 3 that first computes

thread-local results using a persistent-thread approach.

Of the first four versions, Reduction 3 is the fastest, followed

by Reduction 4, then Reduction 1, and Reduction 2 is the

slowest. This is non-intuitive. After all, minimizing the number

of atomics does not yield the best performance, nor does

utilizing the latest hardware capabilities. In fact, Reduction

5, a persistent-thread [9] variant of Reduction 3 where each

thread processes multiple data elements, outperforms all four

shown versions and is about 2.5× faster than Reduction 2 on

our test input and GPU. It requires two block-scoped barriers, a

block-scoped atomic operation, and a global atomic operation

to be correctly synchronized.

These examples highlight the need for better understanding

of the performance of synchronization primitives for the

following reasons. 1) Even basic parallel primitives like re-

ductions have complex synchronization requirements. 2) Many

correct solutions exist, each with its own unique performance

implications. 3) It is non-obvious which solution will be the

fastest. Hence, even when targeting a single device, the pro-

grammer may want to implement and test several alternatives.

4) There is a tradeoff between portability and speed. To obtain

high performance on different devices, programmers may have

to maintain multiple versions of their code.

III. APPROACH

Measuring the runtime of synchronization primitives in

parallel code requires careful design to avoid accidentally

timing irrelevant parts of the testing framework. Specifically,

we must avoid timing any overhead created by function calls,

loops, or variable initialization. Additionally, we must ensure

that the synchronization primitive we are timing is compiled

into actual machine code and runs as expected. This usually

requires that the tests perform some computation or use the

output so that the compiler does not mark the timed primitive

as dead code and remove it.

For each synchronization primitive, we define two

functions—a baseline and a test function—each of which

times how long it takes to perform many iterations of the

primitive. The functions are nearly identical except the test

function performs the measured synchronization at least one

more time in each iteration. For example, the loop bodies for

measuring the execution time of an OpenMP barrier would be

a single #pragma omp barrier in the baseline function

and two such pragmas in the test function. Thus, when we

subtract the runtime of the baseline from the test, we are

only left with the runtime of the measured synchronization

primitive—without any of the testing overhead. This method-

ology has been inspired by Bialas and Strzelecki’s work on

benchmarking thread divergence in CUDA [10].

Listing 2 shows the template pseudocode for OpenMP. We

run a warmup loop of N_WARMUP iterations before the timed

section to eliminate any overhead associated with, for example,

fetching data from main memory for the first time. We include

a barrier after the warmup but before the timed code section to

ensure all threads are ready to begin the measurement. Note

that the inner loops at lines 10 and 22 are unrolled. If the

compiler respects this unrolling, it removes any overhead from

initializing and iterating the inner loop, which should improve

the timing accuracy. In all our tests, we record the runtime of

each thread separately.

Listing 3 shows the template pseudocode for the CUDA

codes. The CUDA test framework is nearly identical to the

OpenMP counterpart, except it is a CUDA kernel and uses

CUDA’s clock64() function to read the clock-cycle counter

at the start and end of the measured code section.



1 void openmp_template(/* ... */) {

2 /* define shared variables here */

3

4 #pragma omp parallel num_threads(n_threads) ...

5 {

6 /* define private variables here */

7

8 for (int i = 0; i < N_WARMUP; i++) {

9 #pragma unroll

10 for (int j = 0; j < N_UNROLL; j++) {

11 /* measured synchronization(s) here */

12 }

13 }

14

15 #pragma omp barrier

16 double local_runtime;

17 timeval start, end;

18 gettimeofday(&start, NULL);

19

20 for (int i = 0; i < n_iter; i++) {

21 #pragma unroll

22 for (int j = 0; j < N_UNROLL; j++) {

23 /* measured sychronization(s) here */

24 }

25 }

26

27 gettimeofday(&end, NULL);

28 /* save elapsed time for each thread */

29 }

30 }

Listing 2: OpenMP Test Template Pseudocode

1 __global__ void cuda_template(/* ... */) {

2 /* define shared and private variables here */

3

4 for (int i = 0; i < N_WARMUP; i++) {

5 #pragma unroll

6 for (int j = 0; j < N_UNROLL; j++) {

7 /* measured synchronization(s) here */

8 }

9 }

10

11 __syncthreads();

12 long long start = clock64();

13

14 for (int i = 0; i < n_iter; i++) {

15 #pragma unroll

16 for (int j = 0; j < N_UNROLL; j++) {

17 /* measured synchronization(s) here */

18 }

19 }

20

21 long long stop = clock64();

22 /* save elapsed clock cycles for each thread */

23 }

Listing 3: CUDA Test Template Pseudocode

IV. EXPERIMENTAL METHODOLOGY

We use the following parameters in our experiments. All

tests vary the number of threads. For the CUDA codes, we

also vary the number of thread blocks. For tests that deal with

arithmetic or memory operations, we run the code with the

int, unsigned long long (ull), float, and double

data types. Since repeated type conversions can incur a large

performance cost, we ensure each variable that takes part

in an operation is of the tested type. In certain cases, we

omit data types that are not natively supported by the tested

synchronization primitive. Some of our codes operate across

arrays, with each thread reading/writing a private element. For

these codes, we vary the stride, which indicates the distance

between accessed elements. Lastly, some OpenMP tests vary

the thread affinity between “spread” and “close” to explore

the impact of thread placement. If the thread affinity is not

mentioned for a test, we did not specify the affinity and let

the system choose the thread placement.

We use the following procedure to measure the speed of

a synchronization primitive. For each combination of param-

eters, we perform a total of nine runs. Each run attempts to

gather a valid measurement seven times. Each attempt runs the

baseline and test function, recording the maximum runtime

across the running threads. If the maximum runtime of the

test function was less than the baseline kernel (suggesting

a faulty measurement due to random fluctuations in system

performance [11]), we reattempt. After all runs are complete,

we determine the median runtime of the seven test runs,

the median runtime of the seven baseline runs, and compute

the difference. To find the runtime of a single primitive, we

divide the result by the number of loop iterations (n_iter

= 1000) and by the unroll factor (N_UNROLL = 100).

Section V presents our results in terms of throughput, or

operations per second per thread, which is 1 / runtime for

the OpenMP tests and 1 / num_cycles / clock_freq

for the CUDA tests.

We set the number of runs, loop iterations, etc. after

experimenting with a wide range of parameter values and

finding that the results stabilize above a certain threshold. We

chose values that are well within the stable region but not too

high to keep the overall experiment runtimes reasonable.

Table I describes the CPUs and GPUs in our three test

systems. Additionally, we list the g++ and nvcc versions

on each system as well as the compute capability of each

GPU. For the GPUs, we list the clock frequency reported by

the cudaDeviceProp struct included in CUDA’s API [12].

We chose these systems for their diversity in architecture

generation, specifications, and manufacturer.

We compiled the OpenMP codes using g++ with the -O3

optimization flag and the CUDA codes using nvcc with the

same flag and the target GPU’s compute capability. We ran all

test codes on the three systems.

Note that each measured CUDA primitive is directly sup-

ported by the hardware and compiles into a single machine

instruction. Hence, we expect other compilers and GPU pro-

gramming APIs (e.g., OpenCL [13]) to yield similar results.

On the CPU, OpenMP primitives like atomics and memory

flushes are also compiler independent as they are supported in

hardware. Other primitives like barriers and critical sections

are implemented in the OpenMP library, so different compilers

using the same OpenMP library should produce similar results.

To minimize fluctuations, we ensure we are the only user on

the machine during tests. On System 3’s CPU, across the nine

runs, the standard deviation of a single primitive’s runtime

is typically about 7.8 nanoseconds, which is negligible. On

the GPU, there are no background processes or OS, and we

directly read the cycle counter. Thus, many of the GPU tests

yield the exact same runtime for all nine runs.















bottlenecks (e.g., thread divergence, stalls for atomics) that

occur and how much they affect the application runtime.

Additionally, they perform simulations to understand the im-

pact of cache sizes, cache and memory latencies, etc. Our

work measures the throughput of synchronization primitives

on physical hardware.

Lee et al. [26] performed a detailed study and analysis

to debunk claims that GPUs outperform multi-core CPUs

by a factor of 10 to 1,000. They found that the average

performance gap was only 2.5×. Their work highlights that in-

herent differences between CPU and GPU architectures make

them appropriate for different types of problems. Whereas our

primary goal is not a direct comparison of GPU and CPU

performance, our results do illustrate how effective the various

synchronization primitives are on the two types of devices.

VII. SUMMARY AND CONCLUSIONS

This work presents a test framework to measure the through-

put of individual OpenMP and CUDA synchronization prim-

itives under a variety of parameters. The code and results

are open-source and publicly available [6]. Through our ex-

periments, we arrive at a number of recommendations for

parallel-program developers. For example, we suggest that

OpenMP programmers be mindful of false sharing and avoid

the utilization of critical sections. Furthermore, we observe

that the use of hyperthreading has little to no effect on

per-thread throughput. Section V-A5 provides further recom-

mendations. For CUDA, we recommend that programmers

stay wary of overlapping memory accesses as well as the

number of simultaneous atomic operations. We also generally

recommend the use of whole warps except for certain atomics.

Section V-B5 lists additional recommendations. We hope this

information will help software engineers write more efficient

parallel CPU and GPU codes and proves useful to hardware

manufacturers and parallel-programming-library developers.

REFERENCES

[1] G. Moore, “Cramming more components onto integrated circuits,”
Proceedings of the IEEE, vol. 86, no. 1, pp. 82–85, 1998. [Online].
Available: https://ieeexplore.ieee.org/document/658762

[2] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous,
and A. LeBlanc, “Design of ion-implanted MOSFET’s with very
small physical dimensions,” IEEE Journal of Solid-State Circuits,
vol. 9, no. 5, pp. 256–268, Oct. 1974. [Online]. Available:
https://ieeexplore.ieee.org/document/1050511

[3] M. Bohr, “A 30 Year Retrospective on Dennard’s MOSFET Scaling
Paper,” IEEE Solid-State Circuits Society Newsletter, vol. 12, no. 1, pp.
11–13, 2007. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/4785534

[4] R. Gonzalez and M. Horowitz, “Energy dissipation in general
purpose microprocessors,” IEEE Journal of Solid-State Circuits,
vol. 31, no. 9, pp. 1277–1284, Sep. 1996. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/535411

[5] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,

1967, spring joint computer conference on - AFIPS ’67 (Spring).
Atlantic City, New Jersey: ACM Press, 1967, p. 483. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1465482.1465560

[6] B. A. Burtchell and M. Burtscher, “SyncPerformance,” 2024. [Online].
Available: https://github.com/burtscher/SyncPerformance

[7] OpenMP Architecture Review Board, “OpenMP API Specification:
Version 5.1 November 2020,” 2020. [Online]. Available: https:
//www.openmp.org/spec-html/5.1/openmp.html

[8] NVIDIA, “CUDA C Programming Guide Version 12.5,” 2024. [Online].
Available: https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html

[9] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of Persistent Threads
style GPU programming for GPGPU workloads,” in 2012 Innovative

Parallel Computing (InPar). San Jose, CA, USA: IEEE, May 2012, pp.
1–14. [Online]. Available: http://ieeexplore.ieee.org/document/6339596

[10] P. Bialas and A. Strzelecki, “Benchmarking the cost of thread
divergence in CUDA,” Apr. 2015. [Online]. Available: http://arxiv.org/
abs/1504.01650

[11] E. Vicente and R. Matias Jr., “Exploratory Study on the Linux
OS Jitter,” in 2012 Brazilian Symposium on Computing System

Engineering. Natal, Brazil: IEEE, Nov. 2012, pp. 19–24. [Online].
Available: http://ieeexplore.ieee.org/document/6473626/

[12] NVIDIA, “CUDA Runtime API Version 12.5,” 2024. [Online].
Available: https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

[13] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming
standard for heterogeneous computing systems,” Computing in Science

Engineering, vol. 12, no. 3, pp. 66–73, 2010. [Online]. Available:
https://doi.org/10.1109/MCSE.2010.69

[14] D. A. Patterson and J. L. Hennessy, Computer organization and design:

the hardware/software interface, 4th ed., ser. The Morgan Kaufmann
series in computer architecture and design. Waltham, MA: Morgan
Kaufmann, 2012.

[15] NVIDIA, “NVIDIA TESLA V100 GPU ARCHITECTURE,” 2017. [On-
line]. Available: https://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf

[16] A. Adinets, “CUDA pro tip: Optimized filtering with warp-aggregated
atomics,” 2017. [Online]. Available: https://developer.nvidia.com/blog/
cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/

[17] NVIDIA, “Parallel Thread Execution ISA Version 8.5,” 2024. [Online].
Available: https://docs.nvidia.com/cuda/parallel-thread-execution/

[18] NVIDIA, “Whitepaper: NVIDIA’s next generation
CUDA compute architecture: Fermi,” 2009. [Online].
Available: https://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf

[19] J. Torrellas, A. Gupta, and J. Hennessy, “Characterizing the caching and
synchronization performance of a multiprocessor operating system,”
ACM SIGPLAN Notices, vol. 27, no. 9, pp. 162–174, Sep. 1992.
[Online]. Available: https://dl.acm.org/doi/10.1145/143371.143506

[20] P. Wang, W. Gao, J. Fang, C. Huang, and Z. Wang, “Characterizing
OpenMP Synchronization Implementations on ARMv8 Multi-Cores,”
in 2021 IEEE 23rd Int Conf on High Performance Computing &

Communications; 7th Int Conf on Data Science & Systems; 19th Int

Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud &

Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys),
Dec. 2021, pp. 669–676. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/9780950

[21] B. Gurumurthy, D. Broneske, M. Schäler, T. Pionteck, and G. Saake,
“Novel insights on atomic synchronization for sort-based group-by
on GPUs,” Distributed and Parallel Databases, vol. 41, no. 3,
pp. 387–409, Sep. 2023. [Online]. Available: https://doi.org/10.1007/
s10619-023-07424-2

[22] M. Elteir, H. Lin, and W.-C. Feng, “Performance Characterization
and Optimization of Atomic Operations on AMD GPUs,” in 2011

IEEE International Conference on Cluster Computing. Austin,
TX, USA: IEEE, Sep. 2011, pp. 234–243. [Online]. Available:
http://ieeexplore.ieee.org/document/6061141/

[23] L. Zhang, M. Wahib, H. Zhang, and S. Matsuoka, “A Study of
Single and Multi-device Synchronization Methods in Nvidia GPUs,”
in 2020 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), May 2020, pp. 483–493. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9139854

[24] G. Bronevetsky, J. Gyllenhaal, and B. R. de Supinski, “CLOMP: Ac-
curately Characterizing OpenMP Application Overheads,” International

Journal of Parallel Programming, vol. 37, no. 3, pp. 250–265, Jun.
2009. [Online]. Available: https://doi.org/10.1007/s10766-009-0096-7

[25] M. A. O’Neil and M. Burtscher, “Microarchitectural performance
characterization of irregular GPU kernels,” in 2014 IEEE International

Symposium on Workload Characterization (IISWC). Raleigh, NC,
USA: IEEE, Oct. 2014, pp. 130–139. [Online]. Available: http:
//ieeexplore.ieee.org/document/6983052

[26] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D.
Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund,



R. Singhal, and P. Dubey, “Debunking the 100X GPU vs. CPU
myth: an evaluation of throughput computing on CPU and GPU,” in
Proceedings of the 37th annual international symposium on Computer

architecture, ser. ISCA ’10. New York, NY, USA: Association for
Computing Machinery, Jun. 2010, pp. 451–460. [Online]. Available:
https://dl.acm.org/doi/10.1145/1815961.1816021



APPENDIX

A. Abstract

This artifact description provides information about the

workflow required to execute the testing framework for mea-

suring the execution time of synchronization primitives on

a supported system. We describe how the software can be

obtained as well as the necessary steps to install and set

up scripts to automate running the synchronization-primitive

measurements across all parameters. Furthermore, the artifact

contains the raw results and figures obtained from the three

tested systems specified in the paper. Some of them were not

presented in the paper for the sake of avoiding redundancy.

Here they are provided in full.

B. Artifact check-list (meta-information)

• Program: SyncPerformance v1.0.0
• Compilation: GNU C++ (g++) and NVIDIA CUDA (nvcc)

compiler
• Hardware: Our results are from the following systems, but the

codes can be run on any supported hardware and should yield
similar trends.

– System 1: Intel Xeon E5-2687 v3, NVIDIA GeForce RTX
2070 SUPER

– System 2: Intel Xeon Gold 6226R, NVIDIA A100 40GB
– System 3: AMD Ryzen Threadripper 2950X, NVIDIA

GeForce RTX 4090

• Output: For each synchronization primitive test code: raw
runtime results and a figure summarizing the behavior in terms
of throughput.

• Time needed to complete experiments: Approximately 72
hours for all codes on a single system. This can be more or
less—primarily depending on the number of cores in the CPU
and the number of SMs in the GPU, but also other factors.

• Publicly available: The code and results obtained from our
test systems are publicly available.

• Archived: https://doi.org/10.5281/zenodo.13227900

C. Description

1) How to access: The software can be obtained from

GitHub: https://github.com/burtscher/SyncPerformance.

$ git clone \

https://github.com/burtscher/SyncPerformance.git

To set the repository to the paper version, run:

$ git checkout v1.0.0

2) Hardware dependencies: The experiments can be exe-

cuted on any system that meets the following requirements:

• OpenMP tests require a multicore CPU

• CUDA tests require a CUDA-enabled NVIDIA GPU with

a minimum compute capability of 7.5

3) Software dependencies: All code is intended to run in

a Linux environment. The requirements for compiling and

executing individual test codes on a CPU and GPU are:

• g++ version 12.2 or higher

• nvcc version 12.0 or higher

We provide Python scripts to automate compiling and

running each test code across parameters as well as generating

subsequent tables and figures. The requirements to run these

scripts are:

• Python 3.11

• Numpy (https://numpy.org/) version 1.25 or later

• Matplotlib (https://matplotlib.org/) version 3.8 or later

• Seaborn (https://seaborn.pydata.org/) version 0.13.2 or

later

D. Installation

Install the necessary Python packages. It is recommended

to install these with pip, i.e.:

$ pip3 install numpy matplotlib seaborn

1) CUDA setup: If testing CUDA codes, it may be neces-

sary to specify the compute capability (see https://developer.

nvidia.com/cuda-gpus) when compiling codes to match a

system’s GPU, especially if the system has multiple GPUs.

To do so, create config.py in the root of the repository.

Inside, specify the desired nvcc “-arch=” argument. For

example, for an NVIDIA GeForce RTX 4090 GPU, which

has a compute capability of 8.9, config.py should simply

contain:

nvcc_arch = "sm_89"

A working example is provided in

./config.py.example and can be copied. If the

compute capability is not a concern (e.g., if only running

OpenMP codes), this step can be safely ignored, and the code

will default to nvcc_arch = "native".

If the system has multiple GPUs, ensure the GPU of interest

is selected before running any scripts, e.g.:

$ export CUDA_VISIBLE_DEVICES=1

E. Experiment workflow

Before launching any experiments, care should be taken

to minimize running background processes. Otherwise, the

yielded measurements could be inaccurate.

1) Whole experiment (all codes): To run all OpenMP and

CUDA codes with a single command, run:

$ ./launch.py all

The script will list every code that will be compiled and run

and prompt the user for confirmation to proceed.

2) Partial experiment (OpenMP or CUDA only): To run

only the OpenMP or CUDA set of codes, specify which as an

argument. For example, to only run the OpenMP codes:

$ ./launch.py openmp

3) Individual codes: To run individual codes across all

parameters, list the paths to the desired codes. For example,

to launch the code that measures an OpenMP atomic update

on a single shared variable, run:

$ ./launch.py ./codes/omp/omp_atomicadd_scalar.cpp



F. Evaluation and expected results

Each test’s results will be output to a corresponding di-

rectory in ./results/<hostname>/. If the test uses

different strides, there will be subdirectories for each stride.

Inside is a log of the raw program output (log.txt), a binary

file containing the runtime results in Python data structures

(runtimes.bin), a CSV file listing the runtime of the

single primitive across all parameters (runtimes.csv), and

a figure summarizing the behavior of the primitive across

parameters in terms of throughput (<testname>.pdf). For

the CUDA tests, one figure will be generated for each block

configuration.

The results may vary from those presented in the paper

if run on a system with different specifications than ours.

Nonetheless, we expect the same general trends to be evident

on a majority of similar hardware.

G. Experiment customization

Global test parameters (e.g., N_UNROLL, N_RUNS) can be

found and edited in ./include/config.h. Other per-

code parameters (e.g., n_iter, thread_range) can be

found in ./run_tests.py for both OpenMP and CUDA

in the functions execute_omp() and execute_cuda(),

respectively.

H. Notes

We provide the raw results and figures obtained

from the three tested systems specified in the paper in

./results/system*/.

I. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/

artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html


	Introduction
	Background
	OpenMP
	Barrier
	Atomics
	Critical Section
	Memory Flush

	CUDA
	Syncs
	Atomics
	Thread Fences
	Warp-Level Functions

	CUDA Example

	Approach
	Experimental Methodology
	Results
	OpenMP Results
	Barrier
	Atomics
	Critical Section
	Memory Flush
	Recommendations

	CUDA Results
	Syncs
	Atomics
	Thread Fences
	Warp-Level Functions
	Recommendations


	Related Work
	Summary and Conclusions
	References
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	CUDA setup

	Experiment workflow
	Whole experiment (all codes)
	Partial experiment (OpenMP or CUDA only)
	Individual codes

	Evaluation and expected results
	Experiment customization
	Notes
	Methodology


