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Abstract—Leveraging recent advances in wireless communica-
tion, IoT, and AI, intelligent transportation systems (ITS) played
an important role in reducing traffic congestion and enhanc-
ing user experience. Within ITS, navigational recommendation
systems (NRS) are essential for helping users simplify route
choices in urban environments. However, NRS are vulnerable to
information-based attacks that can manipulate both the NRS and
users to achieve the objectives of the malicious entities. This study
aims to assess the risks of misinformed demand attacks, where
attackers use techniques like Sybil-based attacks to manipulate
the demands of certain origins and destinations considered by
the NRS. We propose a game-theoretic framework for proactive
risk assessment of demand attacks (PRADA) and treat the
interaction between attackers and the NRS as a Stackelberg
game. Specifically, we consider the case of local-targeted attacks,
in which the attacker aims to make the NRS recommend the
authentic users towards a specific road that favors certain groups.
Our analysis unveils the equivalence between users’ incentive
compatibility and Wardrop equilibrium recommendations and
shows that the NRS and its users are at high risk when
encountering intelligent attackers who can significantly alter
user routes by strategically fabricating non-existent demands.
To mitigate these risks, we introduce a trust mechanism that
leverages users’ confidence in the integrity of the NRS, and
show that it can effectively reduce the impact of misinformed
demand attacks. Numerical experiments are used to corroborate
the results and support our discussion of the Resilience Paradox,
where locally targeted attacks can sometimes benefit the overall
traffic conditions. Our framework not only assists risk assessment
in automating the evaluation process and estimating potential
impacts but also aligns with standards like ISO/IEC 27005,
offering a proactive approach to managing risks in ITS.

Index Terms—Information attack, risk assessment, Stackelberg
game, navigational recommendation.

I. INTRODUCTION

HARNESSING vast information available from modern
wireless communication and Internet of Things (IoT)

advancements [1], [2], coupled with the progress made in
data science and artificial intelligence [3], [4], intelligent trans-
portation systems (ITS) have gained substantial attention for
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Fig. 1. The NRS receives user origin and destination (OD) requests, which
are vulnerable to exploitation by malicious entities for demand attacks:
(1) Sybil attack (2) Botnet (3) GNSS spoofing (4) Man-in-the-middle attack
(5) Insider threats.

their ability to effectively tackle traffic congestion and elevate
driver experiences. Within ITS, navigational recommendation
systems (NRS) such as Google Maps and Apple Maps play a
vital role in complex urban environments, as users, including
drivers and pedestrians, may be overwhelmed by diverse route
choices [5]. Based on the given information, the NRS offers
routes to simplify users’ decision-making processes, aiming to
reduce travel duration, elevate user experiences, and alleviate
congestion [6]. However, unlike routing in computer network
systems [7], [8] or routing in transportation networks for
connected autonomous vehicles [9], the NRS involves human
drivers who may not always adhere to the recommendations,
making user compliance unguaranteed [10]. Therefore, in this
work, we refer to the NRS as the platform that provides
incentive-compatible path recommendations [11], [12]. This
ensures that users can not be better off by unilaterally deviating
from the recommended strategies, and can be interpreted as a
routing game between NRS users.
However, as illustrated in Fig. 1, the navigational rec-

ommendations are prone to various vulnerabilities [13] that
attackers can leverage during the process to promote particular
groups or businesses in a locally targeted sense or potentially
exacerbate congestion levels on a broader network-wide scale.
Within this context, information-based attacks emerge as a
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critical concern, as they empower malicious entities to spread
misinformation and manipulate both the NRS and its users
to achieve their objectives [14]. Real-world examples include
cases on the Waze platform, where residents may fabricate
congestion reports to divert traffic away from their residential
areas, aiming to maintain the tranquility of their surround-
ings [15]. Additionally, the recent study [16] demonstrates
how Sybil-based attacks can effectively manipulate perceived
crowdedness at places of interest and traffic congestion levels
within Google Maps, which serves as an example that shows
how fake users (that can lead to fake demands) can impact the
NRS in real-time. These recent findings highlight that informa-
tional attacks are significant threats within NRS. Therefore, it
is important to understand and estimate their potential impact,
assess the associated risks, and develop proactive measures to
mitigate and manage these attacks before they lead to serious
consequences. Within this scope, our study is motivated by
the recent research [16] and specifically focuses on the misin-
formed demand attack, which is defined as the manipulation
of user demands between certain origins and destinations, and
can be achieved through a variety of attack methods, including
but not limited to Sybil-based attack, botnet, GNSS spoofing,
man-in-the-middle attack on wireless communication, insider
threat, etc.
According to ISO/IEC 27005 [17], an international standard

for information security risk management, the risk assessment
process includes the following key steps: (i) define the scope
of the risk assessment, (ii) identify the sources of risk and how
they exploit the vulnerabilities, (iii) assess the risk qualitatively
or quantitatively based on the chosen methodology, (iv) design
appropriate mitigation strategies for risk treatment, (v) decide
whether to accept the remaining risk after treatment as well as
monitor and periodically review the risk management process.
In this context, we focus on the informational demand attack

within the NRS. The sources of risk are illustrated in Fig. 1
and detailed in Section III-A. Then, the risk assessment is
based on event-based methodologies. One viable approach is
manual evaluations by human experts. Another one is the
data-driven method, which simulates user interactions within
the transportation network and executes documented demand
attacks manually to collect data for analysis [18]. While these
approaches provide detailed insights, they tend to be task-
specific and time-consuming to execute or implement. A more
cost-effective alternative is the model-based approach, which
offers essential estimates to guide proactive management,
though it may not perfectly align with real-world observa-
tions. However, this approach is often fragmented, requiring
multiple models to cover attackers, the NRS, users, and their
interactions. To bridge this gap, we introduce a holistic, game-
theoretic framework for Proactive Risk Assessment of Demand
Attacks (PRADA). As shown in Fig. 2, PRADA integrates nec-
essary elements into a cohesive framework, offering automated
estimates and analyses for risk assessment to complement
existing methods.
Specifically, the proposed PRADA framework is analyzed

through three layers of games. The inner layer is the process
for the NRS, as incentive-compatible recommendations can be
interpreted as a routing game between NRS users. The equiv-

Fig. 2. The PRADA framework is analyzed through three layers of games
between users, the NRS, the threat profile of the attacker, and the PRADA
risk evaluator.

alence between user incentive-compatible recommendations
and Wardrop equilibrium recommendations aids in analyzing
the middle layer, which captures the interaction between the
threat profile of the malicious entity and the NRS as a
Stackelberg game [12], [19]. In this game, the attacker acts
as the leader who conveys misinformed demands, while the
NRS, as the follower, responds to the provided information.
The outer layer captures the interplay between the PRADA
risk evaluator and the Stackelberg game at the middle layer.
Specifically, this study focuses on the locally targeted attack
for the attacker’s objective, as it has rather few systematic
studies. In this attack, the attacker manipulates the NRS to
direct genuine users towards a specific road that benefits
certain groups or businesses. From the perspective of the
PRADA risk evaluator, our analysis shows that by strategically
designing the misinformed demands, such as how many fake
users for which OD pairs, the attacker can make the NRS
redistribute the true users originally on other alternative paths
towards the target road, leading to a higher risk for the NRS
and its users.
Building on the PRADA framework, we propose a miti-

gation method to address key steps (iv) and (v) of the risk
assessment process. We utilize the concept of trust score,
which measures how much users trust the integrity of the
NRS and believe the recommendations are not manipulated.
A higher trust score indicates greater user willingness to follow
recommendations that differ from previous ones for the same
origin and destination. By proposing a trust mechanism that
incorporates trust score constraints into the model for NRS, we
can effectively reduce the impact of demand attacks and lower
the risk both locally and network-wide. Our analysis indicates
that the dual variable associated with the trust constraint can
be interpreted as a trust risk factor. It shows how sensitive the
user’s expected cost is to changes in the trust score.
To this end, our contribution can be summarized as follows:
• We identify vulnerabilities of the NRS and then propose

a game-theoretic framework for holistic proactive risk
assessment for misinformed demand attacks (PRADA).

• We employ a Stackelberg game approach to integrate the
threat profile with the NRS into the PRADA framework.
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Our analytical results and numerical studies demonstrate
that users are at high risk when encountering intelligent
attackers who target specific roads by fabricating fake
demands on alternative paths.

• We introduce a trust mechanism that leverages users’
confidence in the integrity of the NRS. Our findings show
that the resulting trusted recommendation can effectively
mitigate the impact of demand attacks, both in local-
targeted and network-wide contexts.

II. LITERATURE REVIEW

A. Generic Attacks on ITS
Intending to enhance mobility, safety, sustainability, and

traffic efficiency in urban transportation networks, mod-
ern ITS leverages a wide range of advanced technologies.
These include sensors and cameras for data collection, wire-
less communication—particularly vehicle-to-everything (V2X)
technology—for information exchange, GNSS for precise
positioning, data analytics coupled with AI for processing, as
well as mobile apps for distributing information. However,
the extensive network of interconnected devices with vast
information exchanged in ITS introduces vulnerabilities [20]
that expand the potential cyber-physical attack surface (see
[21] for real-world ITS attack cases). Within the domain of
ITS, malicious entities or potential adversaries [13], [22] can
exploit vulnerabilities within data and information infrastruc-
ture through a class of attacks known as informational attacks.
These attacks, which include data falsification, data integrity
breaches, and data poisoning [23], [24], are designed to divert
drivers and escalate traffic congestion that leads to increased
crash risks within urban transportation networks. These attacks
exploit various tactics, including sensor and GNSS spoofing
techniques [25], as well as employing man-in-the-middle and
Sybil-based methods [16], [26].

B. Informational Attacks on NRS
We scrutinize the particular vulnerabilities inherent to the

NRS, which are susceptible to a wide range of potential
attacks [25]. Regarding generic attacks in the scenario of nav-
igational guidance, attackers could compromise vehicles via
wireless communication networks or manipulate real-time traf-
fic conditions, leading to informational attacks. Such attacks
can result in inaccurate traffic predictions and misguidance
for drivers, contributing to network-wide traffic congestion
and safety concerns [27]. For more specific examples, [28]
illustrates how the availability of portable GNSS signal spoof-
ing devices enables attackers to divert drivers from their
intended destinations without their awareness. Additionally,
[26] demonstrates the significant impact of a single Sybil
device with limited resources on platforms like Waze, where
false reports of congestion and accidents can automatically
reroute user traffic. This work expands the threats discovered
by recent studies [16] targeting NRS, where misinformation,
such as fabricated demands, originates from Sybil-based users.
Specifically, we assess the risk of locally targeted attacks that
have rather few systematic studies, wherein attackers tend to
strategically mislead users onto specific roads that favor certain
groups.

C. Risk Assessment

Risk assessment is a systematic process for identifying,
analyzing, and evaluating risks within a particular system or
framework in various domains, including but not limited to
energy systems [29], supply chains [30], IoT-based systems
[31], autonomous vehicles [32], and transportation networks
[33], [34]. It aims to understand potential adverse outcomes,
enabling organizations or individuals to mitigate or manage
such risks effectively. Within the field of transportation, risk
assessment plays an important role, as evidenced by the
substantial focus on (highway) crash risk evaluation [35],
collision risk avoidance for autonomous vehicles [32], and
risk-based route selection [33]. When addressing potential
cyber risks in ITS, a deeper understanding of the attack
model is necessary [36]. Cyber attackers are often intelligent
and strategic, unlike non-strategic attackers who add distur-
bances uniformly or randomly. Therefore, a natural way to
integrate the attack model into risk assessment and capture
the interaction between the attacker and the target system
is through game-theoretic approaches. These approaches are
commonly employed to capture the threat posed by followers
in dynamic games, such as Stackelberg games [37], [38],
bargaining games [39], detection games [40], as well as in
mechanism design problems involving contract designs [41]
and incentive mechanisms [42], offering analytical tools and
strategies for effective risk assessment and mitigation.

III. MISINFORMED DEMAND ATTACK

The nature of ITS, characterized by a vast network of
interconnected devices and extensive data exchange, presents
vulnerabilities that can be exploited by malicious entities
through informational attacks, which target the system’s data
and information infrastructure. In this study, we specifically
investigate one type of informational attack within the context
of navigational recommendations, called the demand attack.
As depicted in Fig. 1, the NRS typically receives navigational
requests, including origin and desired destination (OD) pairs,
from users. These requests contribute to the demand associated
with each OD pair. More specifically, we denote Θ as the
set of all possible OD pairs, and each OD pair θ ∈ Θ is
associated with a demand dθ ∈ R≥0 contributed from the
users. Let d = {dθ}θ∈Θ represent all the demands for later
usage. For instance, suppose there are ten NRS users who
wish to travel from the Empire State Building (origin) to Times
Square (destination), which corresponds to OD pair θ, then the
demand for this OD pair is dθ = 10.
Different demands generally lead to different recommen-

dations from the NRS. For instance, with a single user, the
NRS can simply suggest the shortest path. However, if many
users are associated with the same OD pair, recommending
the shortest path can lead to the ‘flash crowd effect’ [43],
making it no longer the optimal choice. Malicious entities can
exploit this fact to manipulate demand d to some other d′,
steering the NRS toward other recommendations that fulfill
their own objectives. Therefore, the PRADA risk evaluator,
who is responsible for conducting the risk assessment, must
evaluate the risks for various libraries of attacks, consisting
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of different malicious goals, types of attackers, and attack
methods that can lead to demand attacks.

A. Demand Attack Methods
In this subsection, we mention some techniques indicated

in Fig. 1 that the attacker with related knowledge can utilize
to launch the misinformed demand attack.
1) Sybil Attacks: Attackers can generate numerous fake

identities (non-existent users) as shown in Fig. 1 and then
simulate these users at specific locations [26]. These non-
existent users send OD pair requests to the NRS through
emulators [16]. When computing recommendations, the NRS
considers these fake demands alongside genuine ones, leading
to recommendations that differ from those based solely on
authentic demands. Consequently, the attacker can strategically
redistribute legitimate users by launching Sybil-based attacks
with fake demands. Furthermore, since the non-existent users
do not actually drive on the roads after receiving the recom-
mendations, the actual traffic conditions caused by legitimate
users will differ from the NRS’s expectations.

2) Botnet: An attacker can deploy a botnet, a network of
compromised devices controlled remotely [44]. These devices
can range from infected smartphones to IoT devices and
computers. The attacker can command the botnet to send
numerous navigational OD pair requests to the NRS, as shown
in Fig. 1, simulating authentic users seeking guidance between
various origins and destinations. Similar to the Sybil attack, the
resulting recommendations will differ due to the fake demands
(that do not exist on roads) generated by the botnet. This
allows the attacker to redistribute legitimate users by utilizing
the botnet to strategically create fake demands, aligning the
recommendations with the attacker’s objectives.

3) GNSS Spoofing: Attackers can employ GNSS spoofing
techniques [25], [28] to alter the perceived location of NRS
users, as illustrated in Fig. 1. This manipulation can cause
users to send navigation requests with incorrect origins. For
example, when a user selects ‘current location’ as the origin,
the spoofed GNSS signal can make the NRS believe the user
is in a different place. Consequently, the requested OD pair
is being manipulated, affecting the overall demand considered
by the NRS. This disruption can significantly impact naviga-
tional recommendations, especially if multiple NRS users are
affected simultaneously, leading to incorrect navigational rec-
ommendations (that may align with the attacker’s objective).

4) Wireless Communication Network: We use the man-
in-the-middle attack as an illustrative example of a demand
attack through wireless communication networks [45]. In this
scenario, attackers attempt to position themselves between
the user’s device and the NRS server, allowing them to
intercept communications in between (see Fig. 1). When a
user sends a request for route recommendations for a specific
OD pair, the attacker modifies the request before it reaches
the system’s servers. This modification can involve altering
the origin, destination, or other parameters within the request.
By manipulating multiple requests from different users, the
attacker can increase or decrease the demand for specific OD
pairs. As a result, the manipulated demand influences the
NRS’s recommendation to align with the attacker’s objectives.

5) Insider Threats: An insider, such as an employee or
contractor with access to the NRS infrastructure, can directly
manipulate the data or algorithm within the system. This
manipulation may involve altering the demand data, such as
increasing or decreasing the number of requests for specific
OD pairs so that the insider can bias the recommendations
suggested by the NRS to align with their objectives. Since this
work focuses on misinformed demand attack, insider threats
here specifically correspond to manipulating demand-related
data rather than arbitrarily altering the NRS algorithms.
It is worth noting that although the technical procedures of

these five methods differ, they all lead to a common effect at
the system level: the demand vector observed by the NRS is
altered from d to a manipulated d′.

B. Types of Attackers

We can categorize attackers into two main types.
1) Non-Strategic Attacker: Non-strategic attackers may

lack the understanding of how the NRS generates recommen-
dations for users, or they may not pay attention to and simply
disregard this information. Instead, a non-strategic attacker
often manipulates demands by uniformly or randomly increas-
ing or decreasing the number of requests associated with
some OD pairs. They then observe whether such manipulation
achieves their desired outcome.
2) Strategic Attacker: Strategic attackers are often more

intelligent and possess either a deep understanding of how the
NRS generates recommendations for users or the ability to
model the NRS. With this knowledge, they assess or observe
the outcomes of the NRS when under attack. By leveraging
this insight, strategic attackers can utilize efficient strategies
to achieve their goals with fewer resources used and less time
spent.

C. Attacker’s Goals

Imagine an attacker driven by self-interest, in conflict with
the overall social welfare goal of reducing congestion. This
scenario can be studied at both local targeted and network-
wide levels: the former pertains to specific groups or locations,
while the latter considers the system-wide impact.
1) Local-Targeted Attacks: The attacker seeks

to bias the system by suggesting paths that favor
particular groups (e.g., higher-paying users) or businesses
(e.g., those paying the attacker to ensure users see particular
ads or pass by their shops). For example, a restaurant owner
could pay malicious entities to ensure a certain volume of
users are directed by the NRS to pass by the road where the
restaurant is located, as illustrated in Fig. 3.
The impact of these attacks can be measured by the dif-

ference in traffic flow on specific roads with and without the
attacks.
2) Network-Wide Attacks: The attacker aims to disrupt the

system by increasing delays or congestion levels across the
network, consequently raising the overall travel time cost for
users. These attacks can harm the system’s reputation, leading
to user dissatisfaction or a loss of trust in the NRS.
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Fig. 3. Local-targeted attacks: The malicious entity manipulates the NRS
to guide users through the target road. The blue dashed line represents the
original recommendation from the NRS, and the red line illustrates the one
under attack.

Note that in this work, we categorized attackers by types
and goals for illustration of systematic risk assessment; how-
ever, real-world attackers may have non-binary types and
pursue more diverse or unpredictable goals. Moreover, while
this study focuses on malicious entities with local-targeted
objectives, these attacks can result in both local-targeted and
network-wide impacts. The metrics used to assess these risks
are detailed in Section IV-D.

IV. PROACTIVE RISK ASSESSMENT

This section aims to assess the risk caused by misin-
formed demand attacks on the NRS. The proposed framework
for proactive risk assessment of demand attacks (PRADA)
is illustrated in Fig. 2. The PRADA evaluator proactively
evaluates risks by employing a library of potential and real-
world documented attack scenarios. Each attack scenario is
characterized by the attacker’s goal (objective), attack strategy
(type of attacker), and attack method (knowledge), which
together form the threat profile. The resulting demand attack
from the threat profile then influences the recommendations
suggested by the NRS.
The framework is analyzed through meta-game, which

consists of three layers of games. The inner layer focuses on
the routing game between NRS users. That is, the NRS aims
to provide incentive-compatible recommendations to users, as
human users may not always follow recommendations if they
find better alternatives that align with their pReferences. The
middle layer employs a Stackelberg game approach to capture
the interaction between the threat profile of the attacker and
the NRS. Here, the attacker acts as the leader, manipulating
demand, while the NRS, as the follower, responds to the
provided information. The outer layer is a meta-game for the
interplay between the PRADA risk evaluator and the middle
layer. It involves assessing the impacts of different threat
profiles from the attack libraries. Note that while this work
focuses on incentive-compatible NRS, it is flexible enough to
accommodate other types of NRS as well. In such cases, the
outcomes of the inner layer will differ, and the analysis of the
middle and outer layers will be based on the corresponding
results from the inner layer.

We then conduct a sensitivity analysis of demand attacks
and propose metrics for measuring local-targeted and network-
wide impacts.

A. Settings for Urban Transportation Networks
The urban transportation network can be represented by G =

{V , E}, where the set of nodes V corresponds to intersections
and the set of edges E indicates the roads. Traveling along
a road e ∈ E incurs a road-specific cost ce : R≥0 $→ R+

associated with the flow xe ∈ R≥0 on road e. One usual choice
for the cost ce(·) is the standard Bureau of Public Roads (BPR)
function

ce(xe) = te

 
1+ α

!
xe
ke

"β!

for travel time costs. Here, te ∈ R+ represents the free-flow
travel time on road e, ke ∈ R+ signifies the capacity of
road e, and α, β ∈ R≥0 are some parameters.

B. Models for NRS
The user set of NRS is denoted as U . Each user, u ∈ U ,

is associated with a specific origin Ou ∈ V and destination
Du ∈ V pair. We refer to the pair as an OD pair, expressed by
θu = (Ou,Du), and the set of OD pairs for the NRS users is
ΘU ⊆ Θ, with Θ = |V | × |V | representing all the possible OD
pairs within the network. Then, user u with OD pair θu has the
feasible path choice set Su = {su,1, . . . , su,ku }, which is identical
to the feasible path choice set Sθ = {sθ,1, . . . , sθ,kθ } for OD
pair θ, where θ = θu. Each choice su,i ∈ Su or sθ,i ∈ Sθ provides
the user u a path from the origin to the desired destination.
To this end, the elements of the urban transportation network
considered by the NRS can be encapsulated using the notation
R = ⟨G, (ce(·))e∈E ,U , (Su)u∈U ⟩, and we call R the “NRS
component”.
1) User Equilibrium Recommendations (UE): We consider

the scenario where the NRS recommends a mixed strategy
over feasible path choices to the users. Define Pu := ∆Su as
the simplex of Su. A mixed strategy for user u is pu ∈ Pu
so that pu = {pu,i}su,i∈Su is a probability distribution over Su.
Each element pu,i ∈ [0, 1] denotes the probability that the NRS
recommends path su,i ∈ Su to user u, and needs to satisfy the
constraints

Pku
i=1 pu,i = 1, ∀u ∈ U . That is,

Pu :=

(
pu ∈ Rku | pu,i ≥ 0, i = 1, · · · , ku,

kuX
i=1

pu,i = 1

)
.

Then, let P := Πu∈UPu, the recommendation suggested by the
NRS to all users is p = {pu}u∈U ∈ P . Note that p can be
written as {pu,p−u}. Here, pu ∈ Pu is the recommendation to
user u, while p−u ∈ Πu′∈U\uPu′ represents the recommendations
to other users except user u.
In transportation, from a microscopic perspective, the prob-

ability pu,i can be interpreted as the expected volume generated
by user u along path su,i. This, in turn, contributes to the overall
expected road flow (load) xre : P $→ R≥0 on road e ∈ E , which
aggregates the expected volumes from users whose feasible
paths include road e as below.

xre(p) =
X
u∈U

X
su,i∈Su

pu,iaesu,i ,
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where aesu,i is an element of the road-path incidence matrix
A|E |×|Πu∈USu | = [aesu,i ], and is defined as follows.

aesu,i =

(
1 if e ∈ su,i,
0 otherwise.

Hence, from user u’s perspective, recommendations to other
users, p−u, can affect the expected road load on the roads
within their feasible paths. In this context, xre(p) can also
be written as xre(pu,p−u). Accordingly, the generalized travel
cost Cu,i : P $→ R+ for user u’s path su,i is calculated by
summing the costs of all the roads along the path, with such
costs influenced by recommendations given to other users.
Specifically, we can express Cu,i(p) as:

Cu,i(pu,p−u) =
X
e∈su,i

ce(xre(pu,p−u)).

In this context, the expected cost evaluated by user u is
Fr
u : P $→ R≥0, where

Fr
u(pu,p−u) =

kuX
i=1

pu,iCu,i(pu,p−u). (1)

Note that a recommendation p ∈ P can be interpreted as
the strategy profile in a routing game between NRS users.
Hence, the routing game addressed by the NRS can be
defined as Γr = ⟨R,F r⟩, where F r = (Fr

u)u∈U represents
the costs evaluated by users. However, human users may
choose not to follow the NRS recommendation if they find
a better alternative. Therefore, to ensure user adherence that
leads to a guaranteed performance over the network, the NRS
must suggest a recommendation p ∈ P , where pu ∈ Pu
is preferred by user u given the recommendations to other
users p−u ∈ Πu′∈U\{u}Pu′ , for all u ∈ U . That is, given the
recommendations p−u to users other than u, user u has no
incentive to unilaterally deviate from the recommended pu.
This coincides with the concept of user equilibrium (UE),
which is defined as follows:
Definition 1 (User Equilibrium Recommendation): Con-

sidering a routing game addressed by the NRS defined as
Γr = ⟨R,F r⟩, a mixed strategy profile p ∈ P for all the users
is called a user equilibrium recommendation if it satisfies:

Fr
u(pu,p−u) − Fr

u(p′u,p−u) ≤ 0, ∀ p′u ∈ Pu, ∀u ∈ U . (2)

UE recommendation can be found by gradient descent-
based method. Let projPu

represent the projection onto simplex
Pu and ρ ∈ R denote the step size, problem (2) can be solved
by finding a fixed point to:

P∗u = projPu

#
p∗u − ρ∇uFr

u(p∗u,p∗−u)
$
, ∀u ∈ U . (3)

Note that according to our work [46] [Proposition 2], we have
proved that, assuming

P∞
n=1 ρ

2
n < ∞, where ρn represents

the step size at time step n, the update algorithm P(n+1)
u =

projPu

h
p(n)u − ρn∇uFr

u(p
(n)
u ,p(n)−u)

i
for all user u ∈ U leads to

the convergence to a UE under mild conditions.

2) Wardrop Equilibrium Recommendations (We): In this
subsection, we use the concept of Wardrop equilibrium (WE)
as the foundation for the WE-based recommendations.
Recall that U represents the user set of the NRS, with

their associated set of OD pairs, denoted as ΘU . For each
OD pair θ ∈ ΘU , the demand flow aggregated from users,
dθ =

P
u∈U 1{θu=θ}, must be routed from the corresponding

origin to the desired destination. As for OD pair θ ∈ Θ \
ΘU , dθ = 0. The set of feasible paths for each OD pair θ is
Sθ = {sθ,1, . . . , skθ }. Then, let vector yθ = {yθ,i}sθ,i∈Sθ ∈ Rkθ so
that each element yθ,i represents the expected flow generated
by the users being recommended through path sθ,i, and needs
to satisfy the constraints:

P
sθ,i∈Sθ yθ,i = dθ. That is, we can

define

Yθ :=
(
yθ ∈ Rkθ | yθ,i ≥ 0, i = 1, · · · , kθ,

kθX
i=1

yθ,i = dθ

)
.

By denoting Y := Πθ∈ΘYθ, the expected flow recommended by
the NRS on all the paths sθ,i ∈ Sθ, θ ∈ Θ is y = {yθ}θ∈Θ ∈ Y .
Similar to the UE recommendation, y also contributes to the
expected road flow (load) xwe : Y $→ R≥0 on road e ∈ E as
below.

xwe (y) =
X
θ∈Θ

X
sθ,i∈Sθ

yθ,ia′esθ,i ,

where a′esθ,i is an element of the road-path incidence matrix
A′|E |×|Πθ∈ΘSθ | = [a′esθ,i ], and is defined as follows.

a′esθ,i =

(
1 if e ∈ sθ,i,
0 otherwise.

Then, the cost evaluated by user u with OD pair θ = θu for
path sθ,i is Fw

θ,i : Y $→ R≥0, where

Fw
θ,i(y) =

X
e∈sθ,i

ce
%
xwe (y)

&
.

In this context, the routing game addressed by the NRS
can be defined as Γw = ⟨R,Fw⟩, where Fw = (Fw

θ,i)sθ,i∈Sθ ,θ∈Θ
represents the costs evaluated by users. Then, the WE-based
recommendation is defined as the following.

Definition 2: [Wardrop Equilibrium Recommendation] Con-
sider a routing game addressed by the NRS, defined as
Γw = ⟨R,Fw⟩. A feasible path flow and road load pair (y, xw)
with y ∈ Y and xw = {xwe (y)}e∈E ∈ R|E |

≥0 is called a Wardrop
equilibrium recommendation if it satisfies:

Fw
θ,i(y) ≤ Fw

θ, j(y) when yθ,i > 0,
∀sθ,i, sθ, j ∈ Sθ, ∀θ ∈ Θ. (4)

In other words, the WE-based recommendation results in the
minimal prevailing costs for all used paths. Then, according
to Beckmann [47], WE can be computed as the solution to the
following optimization problem,

W(d) : min
y,xw

X
e∈E

Z xwe

0
ce(z)dz (5a)

s.t.
kθX
i=1

yθ,i = dθ, ∀θ ∈ Θ, (5b)
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yθ,i ≥ 0, ∀sθ,i ∈ Sθ, ∀θ ∈ Θ, (5c)

xwe (y) =
X
θ∈Θ

X
sθ,i∈Sθ

yθ,ia′esθ,i , ∀e ∈ E , (5d)

and the corresponding WE recommendation pair is represented
as (by,bxw).
3) Connection Between UE and We: Correspondence can

be observed between Definition 1 and 2, which assists us in
the subsequent analysis when integrating the demand attack
model into our PRADA framework. That is, user u and the set
of feasible paths Su in UE correspond to OD pair θ and Sθ in
WE, the expected flow xre on the road e correspond to the road
load xwe , and the probability pu,i that user u be recommended
on the path su,i in UE corresponds to the path flow yθ,i in WE.
Note that letting dθ = 1 in WE leads to

Pkθ
i=1 yθ,i = 1 that

corresponds to pu ∈ Pu for θ = θu.
Let (p, xr) denote the UE pair, where p ∈ P and xr =

{xre(p)}e∈E ∈ R|E |
≥0. As a result, the WE solution pair (by,bxw) that

corresponds to the (p, xr) pair can be viewed as a feasible
solution for the UE recommendation. More specifically, if
(p, xr) is a WE, then for all user u ∈ U in constraint (2):
Since only paths with minimum cost are utilized, all the paths
used by any given user have the same cost. That is, for
pu,i > 0, the cost Cu,i(pu,p−u) should be the same for u. The
overall expected cost

Pku
i=1 pu,iCu,i(pu,p−u) is independent of

the probability pu,i of Cu,i(pu,p−u). Lastly, note that if (p, xr)
is an equilibrium, there is no incentive for a user u to deviate
to any other p′u ∈ Pu.

Proposition 1: A WE solution pair (by,bxw) defined in Defi-
nition 2 that corresponds to the UE pair (p, xr) is a feasible
solution for the UE recommendation defined in Definition 1.

Proof: The proof follows from the discussion above. !

Similarly, in the case where dθ =
P

u∈U 1{θu=θ} > 1, the
NRS can recommend a mixed strategy pu,i over the feasible
path su,i ∈ Su = Sθu , with each pu,i = byθ,i/dθ, where byθ,i
comes from the WE flow-load pair (by,bxw) in which only
paths with minimum cost are utilized for each OD pair.
Following this recommendation, the recommended path flow
yr := {yrθ,i}θ∈Θ,sθ,i∈Sθ , with each yrθ,i =

P
u∈U pu,i1{θu=θ}, is the

same as the WE path flow by.
Since a feasible UE recommendation can be computed from

the WE solution pair(by,bxw), we have the following remarks.
Remark 1: The recommended road flow load xr provided

by the UE recommendation coincides with bxw in WE.
It is worth noting that, according to problem (5), the

WE road flow load bxw is uniquely determined if the cost
function ce(·) on each road e ∈ E is strictly increasing in the
corresponding road flow load xe [48].
Remark 2: Under the assumption that the cost function ce(·)

on each road e ∈ E is strictly increasing in the corresponding
road flow load xe, the UE road flow load xr is also uniquely
determined and is equivalent to bxw. Hence, we can denote
x ∈ R|E |

≥0 and have x =bxw = xr.

C. Stackelberg Game for Risk Assessment
In this work, “risk” refers to the adverse impact on the NRS

and its users due to manipulated demands. To assess such risks

across different attack types and goals, we adopt a Stackelberg
game approach to capture the interaction between the attacker
(AT) and the NRS. In this setup, the attacker acts as the leader,
deciding on the misinformed demands, while the NRS, as the
follower, generates recommendations based on the provided
information. The risk is assessed by quantifying changes in
resulting traffic flows of authentic users, measured through the
local-targeted and network-wide impact metrics.

1) Strategic Attackers With Local-Targeted Objectives: The
subsequent analyses focus on scenarios involving strategic
attackers with local-targeted attack objectives. Specifically, the
attacker intends to have a desired level of expected flow load
caused by genuine NRS users on the target road e′ ∈ E . That
is, the attacker aims to make xre′ (p) =

P
u∈U

P
su,i∈Su

pu,iae′ su,i
in UE recommendation, which is equivalent to xwe′ (by) =P
θ∈Θ

P
sθ,i∈Sθbyθ,ia′e′ sθ,i in WE according to Remark 2, achieve

a desired level γ ∈ R≥0.
Consider the situation where a Sybil-based attacker gen-

erates non-existent demands da ∈ D, where D = Z|Θ|
≥0 using

Sybil (fake) users. Then, the NRS will need to consider an
aggregated demand of d′ = d + da when generating the
recommendation. Note that for each OD pair θ, the demand
d′θ under attack consists of dθ+daθ . Without loss of generality,
we can assume that only a proportion of dθ

dθ+daθ
of the WE

expected path flow by′θ,i with respect to W(d′) is caused by
authentic users. Hence, we denote byuθ,i =

'
dθ

dθ+daθ

(
by′θ,i and

byu = {byuθ,i}θ∈Θ,sθ,i∈Sθ for path flow generated by true users.
In this case, the attacker aims to make the flow load from
genuine users xwe′ (byu) =

P
θ∈Θ

P
sθ,i∈Sθbyuθ,ia′e′ sθ,i on the targeted

road e′ reach the desired level γ. To this end, the Stackelberg
game between the attacker (AT) and the NRS can be defined
as Γs = ⟨AT,D,UAT , (e′, γ),Γw⟩, where UAT : D $→ R≥0 is the
attacker’s cost in terms of the resources spent in fabricating
fake demands. The leader-follower problem is formulated
as follows, and can be solved by gradient descent-based
algorithms [49].

min
da

UAT (da) =
X
θ∈Θ

daθ (6a)

s.t.
X
θ∈Θ

X
sθ,i∈Sθ

byuθ,ia′e′ sθ,i ≥ γ, (6b)

(by,bxw) ∈ argminW(d+ da), (6c)
daθ ≥ 0,∀θ ∈ Θ. (6d)

Lastly, note that the level γ in problem (6) can not be
arbitrarily large, which leads us to the following.
Remark 3: The edge load xwe is bounded by the total demand

of the true user dT =
P
θ∈Θ dθ. Hence, the attacker’s desired

level γ is also upper-bounded by dT =
P
θ∈Θ dθ.

It is important to note that the proposed Stackelberg game
formulation abstracts away from the specific attack method
and focuses on the resulting manipulated demand perceived
by the NRS. This abstraction then allows us to analyze the
influence of diverse attack methods under a single mathemat-
ical framework.
2) Sensitivity Analysis for Demand Attack: Under the

assumption that the cost function ce(·) is continuous and
increasing in xe, a pair (y, x) is a minimizer of W(d) if and
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only if it satisfies the following Karush–Kuhn–Tucker (KKT)
conditions.

ce(xe) − λe = 0, ∀e ∈ E , (7a)

−νθ +
X
e∈E
λea′esθ,i − µθ,i = 0, ∀sθ,i ∈ Sθ, ∀θ ∈ Θ, (7b)

µθ,iyθ,i = 0, ∀sθ,i ∈ Sθ, ∀θ ∈ Θ, (7c)

with Lagrangian multipliers νθ ∈ R≥0,∀θ ∈ Θ, λe ∈
R≥0,∀e ∈ E , and µθ,i ∈ R≥0,∀sθ,i ∈ Sθ,∀θ ∈ Θ. Then, a
pair (y, x) satisfying the constraints with multipliers −ν =
−(νθ)θ∈Θ, λ = (λe)e∈E ,µ = (µθ,i)sθ,i∈Sθ ,θ∈Θ also satisfies

νθ =
X
e∈sθ,i

ce(xe) − µθ,i

8̂
<̂
ˆ̂:

=
X
e∈sθ,i

ce(xe), yθ,i > 0,

≤
X
e∈sθ,i

ce(xe), yθ,i = 0,

which coincides with the definition of WE recommendation.
Then, with KKT conditions, we aim to examine how

the WE pair (by,bxw) can be influenced by changes in the
demand d according to [48].

Proposition 2: Let the pair (y, x) with the corresponding
multipliers ν and µ described in (7) be a WE for demand d
and (y′, x′) with corresponding multipliers ν′ and µ′ be a WE
for demand d′. Then, (ν′ − ν)T (d′ − d) ≥ µ′Ty+ µTy′ ≥ 0.

Proof: Under the assumption that the cost function ce(·)
is continuous and increasing in xe, which indicates that
[ce(x′e) − ce(xe)](x′e − xe) ≥ 0,∀e ∈ E , then with x′e = xwe (y′) =P
θ∈Θ

P
sθ,i∈Sθ y

′
θ,ia
′
esθ,i and xe = xwe (y) =

P
θ∈Θ

P
sθ,i∈Sθ yθ,ia

′
esθ,i ,

we have the following:
X
θ∈Θ

X
sθ,i∈Sθ

X
e∈E

[ce(x′e) − ce(xe)]a′esθ,i (y′θ,i − yθ,i) ≥ 0.

Note that the KKT conditions in (7a) give us ce(xe) = λe,∀e ∈
E . With (7b), the above inequality becomes:

X
θ∈Θ

X
sθ,i∈Sθ

[(ν′θ + µ′θ,i) − (νθ + µθ,i)](y′θ,i − yθ,i) ≥ 0.

By (7c) and
P

sθ,i∈Sθ yθ,i = dθ, we have the following:
X
θ∈Θ

(ν′θ − νθ)(d′θ − dθ) ≥
X
θ∈Θ

X
sθ,i∈Sθ

(µ′θ,iyθ,i + µθ,iy′θ,i).

Note that µ′θ,i, yθ,i, µθ,i, y
′
θ,i ≥ 0, we complete the proof. !

The result of Proposition 2 can also be written as2
4X

e∈sθ,i
ce(x′e) − ce(xe)

3
5 (d′θ − dθ) ≥ 0, ∀sθ,i ∈ Sθ

with y′θ,i, yθ,i > 0. The Proposition 2 states that if one demand
dθ is increased by fake users, with other demands remaining
the same, then the equilibrium cost νθ perceived by the NRS
for the user u with OD pair θu = θ is also increased.

Proposition 3: For W(d) with demand d, let x
be a WE corresponds to cost ce(·) and x′ be a
WE corresponds to cost c′e(·), then

#
c′e(xe) − ce(xe)

$
(x′e − xe) ≤ 0 and

#
c′e(x′e) − ce(x′e)

$
(x′e − xe) ≤ 0.

Proof: Under the assumption that the cost functions ce(·) and
c′e(·) are continuous and increasing in xe and x′e, respectively,
with the optimality conditions for x′ be a WE corresponds to
cost function c′e(·) and x be a WE corresponds to ce(·), we
have the following inequalities:

#
ce(x′e) − ce(xe)

$
(x′e − xe) ≥ 0 (8a)#

c′e(x
′
e) − c′e(xe)

$
(x′e − xe) ≥ 0 (8b)

ce(xe)(x′e − xe) ≥ 0 (8c)
c′e(x

′
e)(xe − x′e) ≥ 0 (8d)

Then, summing up (8a), (8c), and (8d) gives us#
ce(x′e) − c′e(x′e)

$
(x′e − xe) ≥ 0, while adding (8b), (8c),

and (8d) leads us to
#
ce(xe) − c′e(xe)

$
(x′e − xe) ≥ 0. We

complete the proof. !

That is, Proposition 3 demonstrates that an increasing cost
on a road e ∈ E will cause the equilibrium load xe on that
road to decrease. This reduced load can be interpreted as a
redistribution to alternative feasible paths. Thus, the attacker
can achieve the desired flow load level γ on the target road
e′ by redistributing the load there. Alongside Proposition 2,
this can be accomplished by strategically increasing the per-
ceived demands (by adding non-existent ones) on certain
roads, thereby raising their costs and leading to redistribution.

D. Impact Metrics for Risk Reports
In this subsection, we introduce two metrics as the outcomes

of our PRADA framework. Let p be the recommendation to
all the users without attack and p′ is the one under attack.
1) Local-Targeted Impact: We define the targeted impact

metric (TI) as the difference in traffic flow on each road with
and without the demand attack, divided by the flow without
the attack. Specifically, for each road e ∈ E , the measure T Ie
is given by:

T Ie =
|xre(p′) − xre(p)|

xre(p)
, (9)

which can assists in measuring the percentage change in traffic
flow on specific or targeted road affected by the demand attack.
A larger value of T Ie indicates the road e is influenced more,
often implying higher risk under the attack.
2) Network-Wide Impact: Given the metrics T Ie,∀e ∈ E ,

we define the network impact metric (NI) as the mean of T Ie
across all the roads/edges within the network. The measure
NI is as follows:

NI =
1
|E |
X
e∈E

T Ie =
1
|E |
X
e∈E

|xre(p′) − xre(p)|
xre(p)

. (10)

The metric NI allows us to evaluate the percentage change
in traffic flow across the entire network. It is important to
note that if the demand attack primarily affects traffic flow on
roads within a small area, as indicated by the T Ie values for
those roads, this localized impact will be averaged out when
considering the network-wide impact.

V. RISK MITIGATION

In this section, we aim to explore an effective mechanism
to mitigate the impact of misinformed demand attacks.
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A. Mitigation Through User Trust

Denote pou = {pou,i}su,i∈Su ∈ Pu as the UE recommendation
defined in Definition 1 for user u without attack (under
normal traffic condition), which can be obtained from previous
experience of requesting recommendation for the same OD
pair. Let Tu ∈ R≥0 for all u ∈ U represent the trust score,
which quantifies the degree to which users trust that some
malicious entities do not manipulate the recommendations
provided by the NRS. The trust score then leads to the
following trust constraint, implying that the user trusts the
recommendation pu ∈ Pu because its deviation from the user’s
previous experience is within an acceptable range (i.e., Tu).
Definition 3 (Trust Constraint (TC)): Consider an NRS

component, denoted as R. A recommended mixed strategy
pu ∈ Pu for a user u is said to satisfy the trust constraint if
the distance (in terms of Kullback–Leibler (KL) divergence)
between the currently and previous recommended strategy
pou ∈ Pu is less than the trust score Tu ∈ R≥0:

D(pu||pou) =
kuX
i=1

pu,i log

 
pu,i
pou,i

!
≤ Tu. (11)

A higher trust score indicates greater user trust in the current
integrity of the NRS, as its associated trust constraint (11)
forms a larger trust region. This means the user is more willing
to tolerate larger differences between current and previous
recommendations, believing that such variations are due to
changes in traffic conditions rather than malicious demand
manipulation. In contrast, Tu = 0 indicates a lack of trust in the
current NRS, leading the user to follow only recommendations
that match their past experiences.
In practice, from user u’s perspective, the trust score Tu can

be calculated from a weighted sum of factors contributing to
the trustworthiness of the NRS. These factors may include the
reputation of the NRS, which is influenced by the reliability
of its data sources and algorithms, particularly in the face of
potential attacks or data poisoning. The engagement level of
the user’s family and friends with the NRS can also enhance
trust, as consistent usage by close contacts often increases con-
fidence. In addition, historical experience is another important
factor, as alignment of past recommendations with user needs
and preferences also builds trust. From the NRS’s perspective,
the trust score Tu for user u can be determined in several ways:
directly reported by the user, estimated by the NRS using the
factors mentioned above, or adaptively learned by the NRS
through continuous interaction and feedback from the user.
Moreover, let pu be the recommendation to user u without

attack and p′u is the one manipulated by the attacker. If each
element p′u,i = pu,i+ ϵu,i, where ϵu,i is a small perturbation due
to demand attacks, we have the following sensitivity property
for the manipulated recommendation using first-order Taylor
expansion.

D(p′u||pou) − D(pu||pou) ≈
kuX
i=1

ϵu,i

 
log

pu,i
pou,i

+ 1

!
.

From the attacker’s point of view, in order to fulfill TC,
D(p′u||pou) ≤ Tu, so that user u is still willing follow the

manipulated recommendation p′u, the perturbations ϵu,i,∀su,i ∈
Su must satisfy:

D(pu||pou)+
kuX
i=1

ϵu,i

 
log

pu,i
pou,i

+ 1

!
≤ Tu,

which indicates that the trust score Tu bounds the total
perturbation to the probabilities pu,i on feasible paths su,i ∈ Su.

B. Trust Mechanism for NRS
Since TC bounds and mitigates the severity of manipulation

caused by demand attacks, it is reasonable to incorporate such
a user trust mechanism into the navigation recommendation
process. In this context, users are either learned or warned to
follow only the recommendations that satisfy their TC. Then,
with Definition 1 and 3, the NRS must identify feasible rec-
ommendations that can be trusted by all users, ensuring their
participation and adherence to the recommended strategies.
This leads to the following definition.
Definition 4 (Trusted Recommendation): Considering a

routing game addressed by the NRS defined as Γr = ⟨R,F r⟩,
a trusted recommendation profile to all users p ∈ P needs to
satisfy:

Fr
u(pu,p−u) − Fr

u(p′u,p−u) ≤ 0, ∀ p′u ∈ Pu, ∀u ∈ U , (12a)
D(pu||pou) − Tu ≤ 0, ∀u ∈ U , (12b)

Incorporating trust constraints ensures that the current
recommendation provided by the NRS cannot deviate signifi-
cantly from the previous one for the same OD pair, based on
the assumption that traffic conditions usually evolve smoothly.
Consequently, if there is a sudden change in demand caused
by malicious entities, the recommendation will stay relatively
aligned with past recommendations in normal circumstances.
The NRS’s problem of finding trusted recommended mixed

strategies for all users can also be interpreted using a non-
cooperative game, defined as Γ̃r := (R,F r, (Tu)u∈U ), where
F r = (Fr

u)u∈U and Fr
u is expressed in (1). Each user u ∈ U of

the NRS is a player of the game Γ̃r. User u aims to minimize
his/her own expected cost Fr

u by deciding a mixed strategy
pu ∈ Pu over feasible path choice set Su given other users’
strategies p−u, under the trust constraint that pu cannot deviate
too much from previous experience pou. That is, for all user
u ∈ U in Γ̃r, given other users’ strategies p−u,

OPu : min
pu∈Pu

Fr
u(pu,p−u)

s.t. D(pu||pou)) − Tu ≤ 0. (13)

Then, by denoting C′u,i(p) =
P

e∈su,i te
)
1+ α

'
xre(p)
ke

(β
+ βxue(pu) αke

'
xre(p)
ke

(β−1*
, we have the

following proposition.

Proposition 4: Consider the problem defined in (12). Under
the conditions that for all u ∈ U , the expected cost Fu is con-
tinuously differentiable in p ∈ P and convex in pu ∈ Pu, and
that the trust constraint is active, the trusted recommendation
p∗ is as follows: ∀u ∈ U ,

p∗u,i =
pou,i exp

'−C′u,i(p)
λu
− 1
(

µ′u,i
,∀su,i ∈ Su, (14)
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where µ′u =
Pku

i=1 p
∗
u,i is the normalization term and λu ∈ R+

is the Lagrange multiplier for the trust constraint.

Proof: Let Lu(pu, λu, µu) as follows denote the Lagrangian
of user u’s optimization problem OPu:

Lu(pu, λu, µu) =
kuX
i=1

pu,iCu,i(pu,p−u)

+ λu

" kuX
i=1

pu,i log

 
pu,i
pou,i

!
− Tu

#

− µu
kuX
i=1

pu,i,

where λu ∈ R+, µu ∈ R+ are the Lagrange multipliers. We

consider Cu,i(pu,p−u) =
P

e∈su,i te
!
1+ α

'
xre(p)
ke

(β"
, and the

first-order condition ∂Lu/∂pu,i = 0 for each pu,i becomes:

X
e∈su,i

te

"
1+ α

!
xre(p)
ke

"β
+ βxue(pu)

α

ke

!
xre(p)
ke

"β−1#

+ λu

"
log

 
pu,i
pou,i

!
+ 1

#
− µu = 0.

By letting log(µ′u) = −µu/λu, then
C′u,i(p)
λu

+ log

 
pu,i
pou,i

!
+ 1+ log(µ′u) = 0.

Therefore, for all u ∈ U , su,i ∈ Su, we have each

p∗u,i =
pou,i exp

'−C′u,i(p)
λu
− 1
(

µ′u
,

where µu,∀u ∈ U are normalizations ensuring p∗ ∈ P . !

Under stable conditions, for each su,i ∈ Su, u ∈ U being
used, C′u,i(p) remains identical, and p remains the same as po.
However, if there is a demand attack, each C′u,i(p) perceived
by the NRS will differ, causing p to deviate from po and tilt
towards paths with lower perceived costs (which may not be
the true costs) caused by misinformed demand. Additionally,
the extent of deviation from previous po to current p depends
on the multipliers λu, which are associated with the trust score
Tu for each u ∈ U . Let p∗u denote the trusted recommendation
for user u in Proposition 4, the optimal λ∗u can be found by
numerically evaluating the dual function defined below.

Gu(λu) := min
pu∈Pu

Fr
u(pu,p−u)+ λu

#
D(pu||pou) − Tu

$

=

kuX
i=1

p∗u,iCu,i(p∗u,p−u)

+ λu

" kuX
i=1

p∗u,i log

 
p∗u,i
pou,i

!
− Tu

#
(15)

which leads us to the dual problem of OPu as follows:

DOPu : max
λu∈R+

Gu(λu) (16)

Note that Proposition 4 considers the situation that the trust
score Tu is carefully determined so that TC is active with

λu > 0. When λu = 0, which suggests that TC is non-binding,
potentially due to the UE recommendation pu defined in Defi-
nition 1 under current traffic condition is close to the previous
experienced pou, or because the user has high confidence in the
current recommendation (i.e., Tu is large), the NRS can then
recommend the user with p∗u ∈ argminpu∈Pu

Fr
u(pu,p−u).

Algorithm 1 Trust Mechanism
1: Input NRS component R = ⟨G, (ce(·))e∈E ,U , (Su)u∈U ⟩
2: Collect trust scores Tu from all the users u ∈ U
3: Obtain pou,∀u ∈ U from historical data
4: Initialize recommendation p based on (3)
5: for u ∈ U do
6: if TC for u non-binding then
7: p∗u = pu
8: else
9: p∗u,i =

pou,i exp((−C′u,i(p)/λu)−1)
µ′u,i

,∀su,i ∈ Su

10: λ∗u ∈ argmaxλu∈R+
Gu(λu)

11: end if
12: end for
13: Return p∗ to users and PRADA risk evaluator

To this end, the proposed trust mechanism can be summa-
rized by the following Algorithm 1.
In practice, recognizing the vulnerabilities illustrated in

Fig. 1, an NRS can consult the PRADA risk evaluator to assess
risks for threat profiles from attack libraries. If the risk metrics
TI and NI in the reports surpass the company’s standards, one
approach for the NRS to mitigate these risks is to collect user
trust scores and implement a trust mechanism. The PRADA
risk evaluator can then use the trust recommendation p∗ from
Algorithm 1 to reassess the risks and ensure they align with
the company’s standards.

C. Sensitivity Analysis for Trust Mitigation
In this subsection, we aim to examine the relationship

between the multiplier λu, the optimal value for problem (12),
and the user’s trust score Tu. Suppose Tu is changed to T ′u
(due to positive or negative news related to the NRS), where
T ′u = Tu + ηu, the TC then becomes

D(pu||pou) − Tu ≤ ηu. (17)

Proposition 5: Consider the optimization problem OPu.
Under the assumptions that Fu is convex in pu and Tu,T ′u
are chosen so that the Slater’s condition holds, let v∗u,0 and
v∗u,ηu denote the optimal value for OPu associated with Tu, and
T ′u, respectively, and let λ∗u represent the optimal dual variable
for OPu associated with Tu, then

v∗u,tu ≥ v∗u,0 − λ∗uηu. (18)

Proof: Suppose that pu ∈ Pu is any feasible point for OPu
associated with T ′u, then by strong duality

v∗u,0 = Gu(λ∗u) ≤ Fr
u(pu,p−u)+ λ∗u

#
D(pu||pou) − Tu

$
≤ v∗u,ηu + λ

∗
uηu,

which completes the proof. !
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Fig. 4. An example network (based on the network structure of Sioux Falls)
for our case study. The value on each edge denotes the free-flow road travel
time.

Proposition 5 indicates that if λ∗u is large and user u shrinks
his/her trust region (i.e., ηu < 0), then the optimal value
of user u’s expected cost becomes much higher. Conversely,
if λ∗u is small, even if user u expands his/her trust region
(i.e., ηu > 0), the optimal value of user u’s expected cost does
not decrease substantially. That is, when λ∗u is large (small), the
optimal value of user u’s expected cost is more (less) sensitive
to changes in the trust region. Thus, λ∗u can be interpreted as
a risk factor. A larger λ∗u indicates a higher risk for user u
in modifying the trust region, as it leads to more significant
changes in the user’s optimal expected cost.
It is essential for users to understand that the trust score must

be carefully determined due to the trade-offs between low and
high values. For instance, if a user has low confidence in the
NRS, resulting in a very small Tu, the recommendation will
closely follow the user’s past experiences. While this mini-
mizes the impact of potential demand attacks, it also means
the user may lose the chance to adapt to gradually changing
traffic conditions if no attack occurs. On the other hand, a
high trust score allows users to receive recommendations that
reflect the latest traffic conditions, optimizing their travel time
when there is no attack. However, this high trust also increases
susceptibility to demand attacks, potentially leading to more
significant manipulation of their recommendations.

VI. DISCUSSION THROUGH CASE STUDY

We use the traffic network abstracted in Fig. 4 as a case
study of our PRADA framework, where we adopt the structure
from the Sioux Falls network [50], and utilize the BPR
function for the cost ce(·) on each road e ∈ E with parameters
α = 0.4, β = 2, and ke = 50 for simplicity. The number
displayed on each edge represents the free-flow time cost te.
Then, we focus on the case where 20 users seeking to travel
from node 2 to 17 (OD 2-17) and other 20 users from node 9
to 19 (OD 9-19). The feasible path set for users is specified
in Table I.

A. Risks Under Different Attacker Models
In the context of a misinformed demand attack, attack

methods (1)–(5) in subsection III-A lead to fabricated user
demands for a set K ⊂ V×V of distinct OD pairs. We consider

TABLE I
CASE STUDY SETUP

the case where the attacker has a local-targeted objective, and
aims to make NRS recommend a level of γ = 20 flow load
from authentic users passing (10, 17), the target road. (The
flow load without attack is 12, originally.) We compare the
risk in terms of TI and NI of the following types of attackers
in Fig. 5. This risk report provides the PRADA risk evaluator
with a holistic overview, highlighting the attacks that require
the most attention and urgent mitigation.
1) Strategic Attacker: A strategic attacker who has the

knowledge of NRS can identify the desired fake demand levels
by solving the leader-follower problem in section IV-C. The
expected flow on the target road (10, 17) caused by authentic
users meets the desired level γ ≥ 20 by generating a total of
less than 35 non-existent demands within the traffic network.
2) Non-Strategic Attacker: A non-strategic attacker may

not know how NRS generates the recommendation for users.
Hence, the uniform attacker evenly distributes the total demand
across all OD pairs near the target road, while the random
attacker distributes the demand randomly among the OD
pairs. Note that for comparison, the non-strategic attackers
are restricted to allocating the same amount of demands,
totaling 35, as the optimal strategic attacker.
Fig. 5 shows the risk report in terms of network-wide impact

(NI) and local-targeted impact (TI) on roads/edges along users’
feasible paths. First, we can observe that none of the attack
scenarios affect roads (2, 6) and (6, 8). Since true users with the
OD pair 2-17 must travel through these two roads to reach their
destination (as all three feasible paths include these roads),
the attacker cannot impact these roads by redistributing users
through fake demands. This suggests that the road users must
go through is at lower risk of demand attack, as it is hard for
malicious entities to influence the flow load by fabricating non-
existent demands. Moreover, the alternative roads to the target
road (10, 17), including (10, 15), (10, 16), and (16, 17), are at
higher risk. This is because the attacker achieves their goal by
manipulating the NRS to redistribute users originally passing
through these roads to the target road, which also illustrates
the analysis in Section IV-C2.
However, we can observe that the local-targeted impacts

(TI) on roads (8, 9) and (8, 16) are lower under strategic attacks
compared with non-strategic attacks. This is because non-
strategic attacks may accidentally cause a greater increase (or
decrease) in traffic on the road (8, 9) and a more significant
decrease (or increase) in traffic on the road (8, 16) than a
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Fig. 5. Risk report in terms of TI (local-targeted impact on roads along users’ feasible paths) and NI (network-wide impact) when encountering non-strategic
(random, uniform) and strategic attackers.

Fig. 6. Risk report in terms of TI and NI when adopting mitigation methods (random update and trusted recommendation) under strategic attacks. The trusted
recommendation mitigation can effectively reduce both the severe local-targeted and network-wide impacts compared to the random update one.

strategic attack, potentially leading to higher risks. In contrast,
the risks associated with the target road (10, 17) from a non-
strategic attack may not be as high as those from a strategic
attack, as the traffic changes from OD pair 9-19 can acci-
dentally offset those from OD pair 2-17 under a non-strategic
attack, reducing the overall impact on the road (10, 17). Lastly,
the network-wide impact (NI) indicates that the risks posed by
strategic attackers are higher compared to non-strategic ones.
This heightened risk in the risk report emphasizes the urgent
need for mitigation strategies against intelligent attackers.

B. Potential Mitigation of the Risk
In this subsection, we aim to assess the risk when the NRS

adopts the trusted recommendation described in Definition 4.
To evaluate whether such a trust mechanism can effectively
mitigate the impact of misinformed demand attacks, we
compare it with a straightforward random update mitigation
method and a scenario without any mitigation. The risk report
associated with these mitigation methods is shown in Fig. 6.
This report aids the PRADA risk evaluator in determining the
most efficient mitigation mechanism.
1) Trusted Recommendation Mitigation: In practice, users

may not adhere to recommendations that differ significantly
from previously received recommendations for the same OD
pair. Therefore, to ensure user compliance, the NRS incorpo-
rates user trust constraints into its recommendations, called
trusted recommendations. Such a trust mechanism ensures
that the current recommendation does not deviate signifi-
cantly from the previous one for the same OD pair. The
degree of deviation allowed in the current recommendation

depends on the user’s trust score Tu. A higher trust score
indicates greater user trust in the integrity of NRS, with the
user interpreting deviations as responses to sudden changes
in traffic conditions rather than malicious demand attacks.
In this context, the current recommendation for all users is
given based on Algorithm 1.
2) Random Update Mitigation: In practice, not all users

receive the updated recommendations simultaneously. There-
fore, we consider the random update algorithm that may assist
in mitigating the risk of sudden changes in demands perceived
by the NRS caused by demand attacks. In this context, each
user gets his/her current recommendation pu with a predefined
probability 0 < πu < 1; otherwise remains pou. That is,

pu =

(
pu satisfying (1), w.p. πu,
Po
u, w.p. 1 − πu.

(19)

The probability of update πu may vary based on the user’s
driving habits or the capabilities of V2X technologies within
the region containing the user’s origin and destination. Here,
we consider πu = 0.5,∀u ∈ U for simplicity.
Fig. 6 shows the risk report in terms of NI and TI on

roads/edges along users’ feasible paths when the NRS adopts
mitigation methods. With πu = 0.5 for all users u ∈ U ,
the random update mitigation method reduces the risk from
strategic attacks by half. It is important to note that a lower πu
could potentially decrease risks further, but it may also result
in users losing access to the most recent recommendations
based on current traffic conditions. Noticing this, we can
consider a more complex scenario where the probability of
receiving updated recommendation πu for all u ∈ U can be
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Fig. 7. A carefully crafted example for the discussion on the “Resilience
Paradox”.

dynamically adjusted (updated), which provides more flexi-
bility in balancing the trade-off between the risk mitigation
and the most recent recommendations. For instance, πu can be
increased during peak hours, in areas with higher driving risks,
or in response to sudden changes in traffic patterns. Besides,
πu can also be adjusted based on user feedback regarding the
timeliness of updates. If a user expresses dissatisfaction with
delayed recommendations, πu for that user can be increased
to improve their experience. In addition to adjusting πu,
synchronization methods can assist in meeting real-time needs.
One viable approach is to synchronize the updates within
specific time windows, determined by factors like geographical
areas or traffic conditions. For example, during high-impact
events like accidents or road closures, shorter synchroniza-
tion windows may be necessary. Another method is setting
thresholds for critical traffic conditions that trigger immediate
updates, ensuring users receive timely recommendations in
urgent situations.
As for the proposed trusted recommendation in Fig. 6, it

can effectively mitigate risk by constraining flow load changes
based on user trust scores. Additionally, comparing the road
(10, 16) with the road (8, 16), we can observe that the trusted
recommendation mitigation is more obvious when the roads
are originally facing higher risks of demand attack.

C. Discussion on the Resilience Paradox
To this end, a natural question is: Can the locally targeted

attack lead to a better overall outcome (total travel time costs
for users) in some situations?We begin with a carefully crafted
example using the classical Braess’ network [51], which
illustrates Braess’s Paradox, a well-documented phenomenon
where adding roads to a network can sometimes degrade
overall traffic performance. Conversely, removing roads from
a network can, in certain cases, improve performance.
Within the transportation network shown in Fig. 7, there

are 30 users aiming to go from node A to node B, and
the ϵ is small enough so that the cost on C-D is close to
0 even though all 30 users are passing through. Before the
attack (illustrated in Fig. 7a), the RS will recommend a mixed
strategy (1/3, 1/3, 1/3) on path A-C-B, A-C-D-B, and A-D-B,
respectively. The overall costs on these three paths are all 4,
which leads to a total travel time cost of 120 for users. Suppose
the attacker wants more “users” to pass D-B by fabricating a
large demand on C-D to make C-D seem congested to the RS,
as in Fig. 7b. The RS will recommend a strategy (0.5, 0, 0.5) on
paths A-C-B, A-C-D-B, and A-D-B, respectively. The overall

costs on A-C-B and A-D-B are both 3.5, which leads to the
total travel time cost for users becoming 105. Therefore, we
can conclude that the cost under attack is better than the
performance without attack in this carefully crafted example.
This points out that the local-targeted attack is a potential
aspect worth further investigation.

VII. CONCLUSION

This paper assesses the risk of potential informational
attacks on navigational recommendation systems (NRS). We
introduce the attack methods and identify vulnerabilities that
attackers can exploit to launch demand attacks, achieving
locally targeted goals that benefit certain groups or busi-
nesses. Then, we propose a holistic framework for proactive
risk assessment of demand attacks (PRADA) that integrates
necessary elements. Given that modern attackers are often
intelligent, our focus, from the perspective of the PRADA
risk evaluator, is on strategic attacks. We analyze the inter-
action between the attacker and the incentive-compatible NRS
through a Stackelberg game. Our study indicates that users are
at high risk when facing strategic attacks that target specific
roads by creating non-existent demands for OD pairs with
alternative path options. To mitigate these risks, we introduce a
trust mechanism, and our investigation shows that it is a viable
approach to reducing the risk posed by misinformed demand
attacks in both local-targeted and network-wide senses.
While the proposed PRADA framework captures the core

interactions between the attacker and the NRS, it relies on
modeling assumptions in order to facilitate tractable analy-
sis. Hence, it may not fully reflect real-world complexities
such as user bounded rationality or attackers with different
preferences. Extending the framework to incorporate these
broader behavioral models can be one important direction for
future work. In addition, according to the case study, the
trusted recommendation mechanism can improve resilience
against demand attacks. However, the mechanism itself may
also be targeted by sophisticated adversaries. For example,
attackers could poison the trust score estimation or reduce
user confidence through misinformation. Therefore, exploring
attack-aware trust mechanisms for risk mitigation can be
another future direction. One of the other possible directions
will be investigating different scenarios, such as impacts of
misinformed traffic conditions (costs) attacks on NRS.
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