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ABSTRACT
Ecological differences among species, particularly dispersal capacity and life history strategies, influence population response to 
environmental changes. Genetic simulations now allow us to directly incorporate this variation into models of past demographic 
changes. However, the impact of life history strategies in demographic inference has been far less explored relative to that of 
dispersal capacity. Here, we utilise individual- based simulations of a non- Wright- Fisher population to ask whether differences 
in life history traits (the average age of first reproduction of individuals, the average adult mortality and the average number 
of mates per reproductive season) lead to consistent and predictable differences in the summary statistics of genetic diversity 
commonly used for simulation- based parameter estimation and demographic inference. Using a Random Forest model, we also 
estimate three population parameters (variance in reproductive success, generation time and effective population size) from 
genome- wide SNP variation for two bird species known to have distinct life history strategies. The results demonstrate that life 
history variation leads to predictable differences in patterns of genetic diversity: higher values of life history traits, representing 
extreme polygamy, long adult longevity and later onset of reproduction, are associated with higher variance in reproductive 
success, longer generation times, smaller effective population sizes and overall lower genetic diversity. Parameter estimates from 
empirical datasets also agree with the general expectation that polygamic species with later onset of reproduction and long adult 
longevity exhibit higher variance in reproductive success, longer generation times and smaller effective population sizes. Since 
the signal of life history differences is observed in the genetic summary statistics, we argue that simulation-  and model- based 
multi- species demographic inference will gain from the incorporation of life history information.

1   |   Introduction

Ecological characteristics influence how individuals in-
teract with their surroundings and are therefore central to 
understanding species responses to environmental change 
(Comte et  al.  2024; Germain et  al.  2023). Species- specific 

morphological traits (Pabijan et al. 2012; Paz et al. 2015), unique 
microhabitat associations (Massatti and Knowles  2014) and 
behaviour (Burney and Brumfield  2009; Miller et  al.  2021), 
for instance, impact individual dispersal capacity and can 
lead to differences among species in inferred present and past 
population connectivity. Similarly, differences in life history 
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strategies across species are expected to lead to differences in 
inferred demographic changes over time, due to their effect 
on reproductive and mortality rates in a population (Sæther 
et al. 2004; Coulson et al. 2010). Collectively, these differences 
may result in idiosyncratic patterns of genetic variation across 
co- distributed species, even under a shared history of envi-
ronmental shifts (Carvalho et al. 2021; Fan et al. 2016; García- 
Rodríguez et al. 2020; Zamudio et al. 2016). To accurately infer 
demographic responses to past environmental changes, it is 
therefore important to account for ecological variation when 
building multi- species inferential models. Incorporating such 
variation allows for a better interpretation of pattern compar-
ison across species, where the expectation of pattern concor-
dance can be refined based on known ecological differences 
(Papadopoulou and Knowles 2015, 2016).

Inference of former demographic change is generally made 
through the estimation of parameters that describe the history 
of a population (i.e., population parameters) from empirical ge-
nomic data, given a probabilistic model (Hickerson et al. 2010; 
Knowles and Maddison 2002). Because these models are often 
too complex for parameter estimation in an analytical approach 
(Sunnåker et al. 2013), genetic simulations are commonly used 
to explore population parameter space (i.e., all possible param-
eter values), and parameter estimation is made by comparing 
simulated and observed datasets using approaches such as 
Approximate Bayesian Computation and Statistical Machine 
Learning (Csilléry et al. 2010; Schrider and Kern 2018; Sunnåker 
et al. 2013). The flexibility of available simulation tools allows 
us to explore ways of incorporating ecological variation across 
species to add more ecological realism into genetic simula-
tions (e.g., Blischak et  al.  2020; Sackman et  al.  2019; Tellier 
and Lemaire 2014; Xue and Hickerson 2020). Much of this ef-
fort has focused on the acknowledgement of ecological differ-
ences that impact spatial population connectivity, which have 
been incorporated either implicitly (e.g., when allowing wide 
priors for interspecific variation in migration rates in cross- 
species simulations; Xue and Hickerson  2020) or explicitly 

(e.g., by using ecological niche models as proxies of habitat 
preferences to inform landscape connectivity; Knowles and 
Alvarado- Serrano 2010).

One far less explored aspect, however, is age- dependent indi-
vidual variation in the probability of reproduction and death, 
which is translated into rates of reproduction and death within 
a population (i.e., demographic rates; Saether et  al.  2013). 
Differences across species in these demographic rates give 
rise to different life histories, which can be summarised as 
life history traits measurable at the population level: the aver-
age age at which individuals first reproduce, the average lon-
gevity of adult individuals and the average number of mates 
across individuals that successfully reproduce (Figure  1 left 
column; Lee et al. 2011; Waples et al. 2013). The combination 
of these life history traits governs two key population param-
eters (Figure 1, central column): the variance in reproductive 
success across individuals (Waples 2023) and the average age 
of parents in a reproductive cohort, usually referred to as 
the generation time (Ellner  2018). When individuals begin 
reproducing early in life (i.e., the average age at which indi-
viduals first reproduce is low), both the variance in repro-
ductive success across individuals of different ages as well as 
the average age of reproducing individuals (i.e., generation 
time) tend to be small. This life history strategy character-
ises short- lived, fast- reproducing species (Sæther et al. 2004). 
Alternatively, if individuals begin reproducing later in life, 
reproductive success is achieved in older individuals, leading 
to higher variance in reproductive success across individu-
als and higher generation times, characterising a long- lived, 
slow- reproducing species. Variance in reproductive success 
and generation time are also influenced by the mating system 
exhibited by species (Nunney 1991), which is reflected in the 
average number of mates per reproducing individual. When 
this average number is high (as the case, for instance, in po-
lygamic species), variance in reproductive success is increased 
since a small proportion of individuals in the current genera-
tion will be contributing to the next one (Gaiotti et al. 2020; 

FIGURE 1    |    Description of life history traits, population parameters and genetic summary statistics utilised in this simulation study. Life history 
traits are average values for traits measurable at the population level. Different values were provided to the model at the beginning of forward sim-
ulations (see main text). Population parameters are values that describe characteristics of the population and emerge from the simulations. Genetic 
summary statistics are values used to describe patterns of genomic variation at the end of simulations.
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McDonald 1993). Simultaneously, if older individuals exhibit 
higher reproductive success (which is the case in many po-
lygamic species; Hasselquist  1998; Ryder et  al.  2009; Dubuc 
et  al.  2014), the average age of reproducing individuals (i.e., 
generation time) tends to be higher.

These differences in generation time and reproductive suc-
cess across individuals are relevant when inferring demo-
graphic change over time because they impact the number 
of reproducing individuals and consequently the effective 
population size (Ne)—a key population parameter that is di-
rectly linked to genetic diversity (Crow and Denniston  1988; 
Nomura  2002; Nunney  1991; Waples  2022b; Figure  1, central 
column). Populations with higher variance in reproductive 
success and longer generation time are expected to have fewer 
reproducing individuals and smaller effective population sizes 
(Nunney 1991, 1993; Waples 2023). As such, variation in life his-
tory traits across species is expected to impact (and be reflected 
in) the summary statistics used to describe patterns of genomic 
variation (Figure 1, right column). Nucleotide diversity, minor 
allele frequency and the site frequency spectrum, for instance, 
are all examples of summary statistics often employed in studies 
of historical demography (Hickerson et al. 2006; Knowles 2009; 
Tataru et al. 2017; Xue and Hickerson 2015), and which are all 
expected to be impacted by those life history traits. These sum-
mary statistics are commonly implemented in likelihood- free 
methods using simulations to infer the history of populations 
because they contain information on key demographic parame-
ters, such as past and present effective population sizes, as well 
as divergence times  (Hickerson et  al.  2010; Knowles  2009). If 
cross- species differences in life history parameters, like gener-
ation time and individual variance in reproductive success, are 
also reflected in cross- species differences in genetic summary 
statistics, it may be possible to estimate those life history param-
eters from genomic data (Bradburd and Ralph 2019; Ianni- Ravn 
et al. 2024). However, it remains to be seen (i) whether differ-
ences in life history traits lead to consistent differences in genetic 
summary statistics across species, (ii) whether the use of this set 
of summary statistics results in accurate estimates of popula-
tion parameters under life history variation, and (iii) whether 
predictions based on these same summary statistics from empir-
ical data agree with expectations based on observed life history 
strategies. This study aims to fill these knowledge gaps.

Here, we use genetic simulations to explore if and how cross- 
species differences in three target life history traits (average 
age of first reproduction, average adult longevity and average 
number of mates) lead to species- specific differences in key 
summary statistics inferred from genetic data. We further ver-
ify if they lead to different estimates of population parameters 
from empirical data of co- occurring species with contrasting life 
history strategies. Incorporating life history traits into genetic 
simulations is not straightforward because most simulation 
tools used to date rely on the Wright- Fisher (WF) population 
model (Fisher 1922; Wright 1931; Kingman 1982), which makes 
simplifying ecological assumptions such as random mating 
across individuals and non- overlapping generations (Haller 
and Messer  2019). Although other population models, such 
as the Moran model, have relaxed some of these assumptions 
(Hahn 2018), they are still limited both in the incorporation of 
life history traits measurable at the population level and in the 

exploration of how these traits interact to yield patterns of ge-
nomic variation. Additionally, they do not allow for cases where 
age- dependent reproductive success varies across sex (as is the 
case for polygamic species). To circumvent this, we implement 
individual- based simulations under a non- Wright Fisher model 
to allow for age- structured populations where the probability of 
reproduction and death depends on individual age. This allows 
us to explore how variation in values of the aforementioned life 
history traits (average age of first reproduction, average adult 
longevity and average number of mates across reproducing indi-
viduals) impact population parameters (variance in reproductive 
success, generation time and effective population size). The val-
ues of population parameters emerging from each combination 
of life history traits are then combined into coalescent simula-
tions for the calculation of genetic summary statistics, allowing 
us to map variation in life history traits to patterns of genomic 
variation (Figure 1). We expect that species whose individuals 
reproduce and die at an older age, or where the number of mates 
per individual is higher (i.e., species with more extreme forms of 
polygamy), will display higher variance in reproductive success, 
longer generation times, smaller effective population sizes and, 
consequently, lower levels of genetic diversity. Accordingly, we 
expect the opposite pattern for fast- reproducing species.

We additionally use our simulations to explore how accurately 
one can estimate the aforementioned population parameters 
(variance in reproductive success, generation time and effective 
population size; Figure 1) from genomic data under models that 
incorporate variation in the life history traits. For that, we imple-
ment a likelihood- free estimation method using supervised ma-
chine learning (Collin et al. 2021; Fonseca et al. 2021; Schrider 
and Kern 2018), allowing us to quantify our ability to accurately 
predict generation time, effective population size and variance 
in reproductive success using genetic summary statistics as pre-
dictor variables. To illustrate the applicability of this approach, 
we use it to estimate ecological parameters from published ge-
nomic information from two passerine birds: Pipra filicauda (the 
Wire- tailed Manakin, a slow- reproducing, long- lived species) 
and Thamnophilus aethiops (the White- shouldered Antshrike, a 
fast- reproducing, short- lived species). We expect that estimates 
of generation time and variance in reproductive success will be 
higher in the slow- reproducing P. filicauda relative to estimates 
for T. aethiops. The opposite, however, is expected for estimates 
of effective population size; we expect estimates for P. filicauda 
to be lower than those for T. aethiops.

2   |   Methods

2.1   |   Simulation Framework

To simulate age- structured populations with variation in repro-
ductive success across age groups, we utilised SLiM (v 4.2.1), an 
individual- based forward- time simulator that allows us to con-
trol individual behaviour to explore complex ecological dynam-
ics (Haller and Messer  2019, 2023). A model in SLiM consists 
of repeated cycles of reproduction and death (Figure 2), where 
model parameters pre- defined in a custom- made script control 
how individuals reproduce and die. A general description of the 
model is given below and the full script is available online (see 
Data Availability statement).

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.70155 by C
uny - B

aruch C
ollege, W

iley O
nline Library on [10/11/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



4 of 14 Molecular Ecology, 2025

The model simulates a population of individuals with vary-
ing ages. Three model parameters influence the distribution 
of ages across individuals (Figure  2): intrinsic fecundity, 
offspring mortality and adult mortality. At each cycle of the 
simulation, adult individuals reproduce and the number of 
offspring individuals generated at each reproduction event is 
randomly drawn from a Poisson distribution where the mean 
number of events (λ) equals the intrinsic fecundity. Offspring 
individuals are then assigned age 0 and, during the same cycle, 
a proportion of them dies according to the value of offspring 
mortality. Finally, a proportion of adult individuals dies at the 
end of the cycle, according to the value of adult mortality. In 
the model, offspring mortality does not interact with carry-
ing capacity, that is, it is considered as an intrinsic rate of the 
population and interpreted as the fixed proportion of offspring 
that dies right after birth, without reproducing. However, 
adult mortality does interact with the carrying capacity (K) to 
allow control of the population size over time. We implement a 

ceiling carrying capacity (Gotelli and Ellison 2004) where the 
survival probability for each adult individual (derived from 
the model constant for adult mortality) is multiplied by the 
ratio between K and the number of individuals in the popula-
tion above age 0 (N). When N > K, the ratio is below 1 and the 
survival probability is therefore reduced. The fecundity and 
mortality parameters control the degree of generation overlap 
in the population; in the simulations, they were kept constant 
at values that generate a population with a high degree of gen-
eration overlap and a uniform age distribution across individ-
uals (see Supporting Information).

Life history traits—that is, the average age of first reproduc-
tion, average adult longevity and average number of mates per 
reproduction—are included in the simulations through model 
parameters that control when and how individuals reproduce 
(Figure 2). In this study, we focused on controlling the age of 
first reproduction and the average number of mates for male 

FIGURE 2    |    Top: Description of one simulation cycle in the SLiM model, highlighting how the value for each life history trait is incorporated 
throughout the two phases of the cycle (reproduction and death). Individuals are coloured according to sex: males are green and females are yellow. 
Colour shades represent different ages: lighter shades indicate younger individuals, whereas darker shades indicate older individuals. Black arrows 
connecting individuals represent reproductive events. During the reproduction phase, only individuals above a certain age (ar) are able to reproduce 
(reproducing individuals are indicated by solid black contour lines). The number of female mates per male individual is determined by the average 
number of mates (mates). During the death phase, individuals that have reached the maximum average adult longevity (l) are removed from the 
population (indicated by the dashed red contour lines). The cycle is then repeated. Bottom: Double- ended arrows represent the gradient of life his-
tory traits that was explored in simulations. Arrows on the left represent the gradient on age- related traits, that is, average age of first reproduction 
and average adult longevity, whereas the arrow on the right represents the gradient in the average number of mates per male individual. Arrows are 
coloured according to the effect they have on the simulation: Age arrows follow the colour shading for young and old individuals observed in the 
simulation diagram at the top, whereas the arrow for average number of mates follow a grey gradient reflecting the number of reproductive events 
in the top diagram (i.e., black arrows) per male per cycle. Gradient arrows for age are coloured following the colours for each sex in the top diagram 
(i.e., green for males and yellow for females) to highlight that the model parameters affecting age- dependent rates (ar and l) impact sexes differently: 
ar impacts males only (red dashed line in green arrow), whereas l impacts both males and females (red dashed line in both green and yellow arrows).
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individuals only, since polygyny (i.e., a reproductive system 
where a single male individual mates with several female in-
dividuals) is the most common type of polygamy in nature 
(Lindström and Kokko 1998). Polygyny leads to a higher vari-
ance in the age of first reproduction and the average number of 
mates across males than across females. In our simulations, at 
every cycle during reproduction, the average age of first repro-
duction (ar) controls male age- dependent fecundity (i.e., which 
male individuals are allowed to reproduce) based on their age. 
This model parameter therefore determines the average young-
est age for reproducing males. Adult longevity (l) determines the 
maximum age that all individuals (both males and females) can 
reach; any individual reaching that threshold is removed from 
the population during the death cycle. As such, the probability 
that an individual male will reproduce is zero when its age is 
below ar, and non- zero between ages ar and l (Figure 2). This 
probability is further reduced by different levels of polygamy, 
dictated by a model parameter controlling the average number 
of female mates per male (mates). While in monogamous pop-
ulations males have a similar probability of reproduction, in 
polygamous populations each male reproduces with more than 
one female. Due to the limited number of female individuals, the 
number of reproducing males is smaller than the total number of 
males. At every reproduction cycle, a number of potential female 
mates for each male is defined based on this model parameter, 
and individuals are randomly matched.

Throughout the simulation, the model records four emergent 
values: the actual number of mates per male individual, the 
total number of offspring per male individual, the number of 
all reproducing adults and the average age across all reproduc-
ing adults. These values are used to calculate three population 
parameters: variance in reproductive success, generation time 
and effective population size. Reproductive success is defined as 
the successful mating and generation of offspring; the value of 
reproductive success for each male individual is therefore calcu-
lated as the product between the number of mates and the total 
number of offspring per male individual. The distribution of in-
dividual reproductive success is used to calculate the total vari-
ance. To facilitate a biological interpretation of the results, we 
extracted the square root of that variance to obtain the standard 
deviation, a metric that is in the same measurement unit of the 
original values of individual reproductive success. Generation 
time is directly calculated as the average age of all reproducing 
individuals at each cycle (Ellner 2018). Finally, the number of 
reproducing individuals is used to calculate the effective pop-
ulation size, using the formula Ne =

(

4NfNm

)

∕
(

NfNm

)

, where 
Nf and Nm are the number of female and male individuals that 
effectively reproduce at each cycle, respectively (Wright 1931). 
This estimation of Ne is independent from genetic data and in-
corporates solely the number of reproducing individuals per sex, 
therefore accounting for the variance in reproductive success 
across different mating systems (Nomura 2002). The final value 
for each of these three population parameters is obtained as the 
average of the values across all cycles of the simulation.

Each forward simulation in SLiM consists of a combination of 
values of life history traits (i.e., average age of first reproduc-
tion, average adult longevity and average number of mates 
per male individual), which yield a set of values for the three 
population parameters (i.e., variance in reproductive success, 

generation time and effective population size). For each forward 
simulation, we utilised the emergent values of population pa-
rameters to implement a corresponding coalescent simulation 
that generates a pattern of genomic variation for that simulated 
population. Because the rates of coalescence, mutation and re-
combination are implemented per generation in a coalescent 
simulation (Battey et al. 2020), we scaled parameters of the co-
alescent simulation by the generation time emerging from the 
forward simulation. Specifically, the effective population size 
used in coalescent simulations was derived from the product 
between the emergent values of effective population size and 
the generation time in forward simulations. This multiplication 
assures that inferred longer generation times are interpreted in 
coalescent simulations as relatively higher effective population 
sizes and therefore lower coalescence rates (Haller et al. 2019; 
Battey et al. 2020). Similarly, the rates of mutation and recom-
bination of coalescent simulations were derived by dividing a 
pre- defined rate value by the generation time emerging from 
forward simulations, to represent a decrease in the rates of mu-
tation and recombination over longer generation times (Battey 
et al. 2020). This scaling allows us to establish a correspondence 
between the parameter space and the genetic summary statistics 
explored in the coalescent simulations with the parameter space 
and the demographic traits explored by the forward simulations.

2.2   |   Simulating Variation in Life History Traits

Within the simulation framework described above, we explored 
the impact of life history traits on population parameters and 
genetic summary statistics by simulating panmictic populations 
while varying, across models, the three model parameters corre-
sponding to life history traits: ar, l and mates. We implemented 
1000 replicates of forward simulations; at each replicate, values 
of these three model parameters were randomly sampled from 
a pre- defined range. The limits of this range were chosen to 
represent the range of variation in life history traits observed 
in passerine birds, to facilitate comparison with the empirical 
data utilised in this study (Bird et al. 2020; Saether 1988). Values 
for ages at first reproduction ranged from 1 to 7, values for aver-
age adult longevity ranged from 8 to 16, and values for average 
number of mates ranged from 1 to 5. In all simulations, carrying 
capacity (K) was set to 100,000 individuals. Populations were 
simulated for 100 cycles, and emergent population parameters 
(variance in reproductive success, generation time and effective 
population size) were calculated as an average across all cycles, 
after confirming that the values of these parameters were stable 
throughout the simulation.

For each of the 1000 populations simulated in SLiM, patterns 
of genomic variation were then simulated using the software 
msprime (Baumdicker et al. 2022). We simulated a single chro-
mosome with 10 million base pairs (Mb), under a mutation rate 
of 2.5 × 10−10 substitutions per site per generation and a recombi-
nation rate of 1 × 10−8 per site per generation. This mutation rate 
is a conservative estimation of the average genomic mutation 
rate in birds (Nadachowska- Brzyska et  al.  2015). The recom-
bination rate was kept relatively low to minimise the memory 
overhead of simulations. Effective population size, mutation 
rate and recombination were scaled by generation time as de-
scribed in the previous section. We utilised a sample size of 20 

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.70155 by C
uny - B

aruch C
ollege, W

iley O
nline Library on [10/11/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



6 of 14 Molecular Ecology, 2025

diploid individuals for easier comparison with the empirical 
data utilised in this study.

Simulated genomes were then exported using the vcf format and 
the following genetic summary statistics were calculated using 
the software vcftools (Danecek et al. 2011): nucleotide diversity 
(π), Tajima's D, linkage disequilibrium and minor allele fre-
quencies (MAF). Nucleotide diversity, Tajima's D, and linkage 
disequilibrium were calculated using 10,000 base pairs (10 kb) 
windows across the simulated genome. Linkage disequilibrium 
was calculated as the squared correlation coefficient between 
genotypes within a 10 kb window (Sved 2009). We utilised the 
mean and the standard deviation of these three metrics calcu-
lated across the genome as the summary statistics describing 
genomic variation at each replicate. We additionally calculated 
the Site Frequency Spectrum from all variant sites across the 
simulated genome, utilising the Python script easySFS (http:// 
github. com/ isaac overc ast/ easySFS). To allow for comparisons 
across simulations and with the empirical data, we calculated 
the relative proportion of variant sites within each bin of the 
site frequency spectrum by dividing the number of variant sites 
observed per bin by the total number of variant sites observed 
in the genome. The calculation of the mean and the standard 
deviation for each summary statistic and the calculation of the 
relative proportion of variant sites for the bins of the site fre-
quency spectrum were performed in the R platform (R Core 
Team 2024).

2.3   |   Quantifying Accuracy in Estimating 
Population Parameters

To investigate the relationship between life history traits, pop-
ulation parameters and genetic summary statistics, we first 
visually explored the distribution of their values across all sim-
ulations and further calculated the correlation between each 
trait, population parameter and genetic summary statistics 
using a Spearman correlation. We then explored the relationship 
between the population parameters and summary statistics to 
investigate how accurately one may be able to estimate those pa-
rameters directly from genetic data. To quantify this accuracy, 
we used a supervised machine learning regression model based 
on all simulations previously generated, using the genetic sum-
mary statistics as predictor variables, and the three population 
parameters (variance in reproductive success, generation time 
and effective population size) as response variables. We trained 
the machine learning regression model using the Random 
Forest algorithm (Breiman  2001) implemented in the R pack-
age ranger (Wright and Ziegler 2015). We estimated the best set 
of Random Forest parameters (i.e., number of trees, number of 
variables per tree and minimum node size) using the R package 
tune (Kuhn 2023). We explored different combinations of values 
for the following parameters: number of trees (from 1 to 2000), 
number of variables per tree from (1 to 22) and minimum node 
size (from 2 to 40).

We explored prediction accuracy by generating 1000 replicates 
of the Random Forest model for each population parameter, re-
sulting in a total of 3000 replicates. For each replicate, 70% of 
the simulations were retained as a training dataset, on which 
the model learns how to estimate parameters from the summary 

statistics, and 30% of the simulations were used as a testing 
dataset, on which predictions of parameter values were made. 
Accuracy was evaluated by calculating the coefficient of deter-
mination (r2), which summarises differences between observed 
and predicted values of the population parameter for each repli-
cate. The final distribution of r2 values represents the degree of 
accuracy in the models used to estimate each of the population 
parameters from genetic summary statistics.

2.4   |   Estimating Population Parameters From 
Empirical Data

To illustrate how simulations of different life history traits can 
be used to estimate population parameters, we utilised the 
Random Forest approach described previously to estimate our 
target population parameters (variance in reproductive success, 
generation time and effective population size) from empirical 
genomic data for two passerine birds with contrasting life his-
tory strategies: Pipra filicauda (a slow- reproducing species) and 
Thamnophilus aethiops (a fast- reproducing species; Figure  3). 
Males of P. filicauda commonly engage in cooperative reproduc-
tive displays, where a single dominant (and usually older) male 
in the cooperative group reproduces with the female visiting the 
display territory (Heindl 2002). Since different females can visit 
the same territory during the reproductive season, this repro-
ductive behaviour leads to cases where few older male adults 
each mate with several female individuals; one study taking 
place during a reproductive season in eastern Ecuador reported 
that the three top- ranked males in each of six reproductive leks 
contributed 70%–90% of the offspring generated in that season 
(Ryder et al. 2009). This life history strategy results in popula-
tions where a small subset of males contributes to the next gen-
eration, and many younger male individuals do not reproduce in 
their first years, leading to high variance in reproductive success 
across males and a longer generation time. The opposite repro-
ductive behaviour is observed in T. aethiops: male and female 
individuals are known to form monogamous pairs and defend 
a territory during their reproductive season (Lima et al. 2019). 
Both sexes are assumed to start reproducing at an early age, and 
pairs have been observed to remain the same for multiple re-
productive seasons (Billerman et al. 2022). This leads to an ex-
pectation of lower variance in reproductive success across males 
and shorter generation times than what would be observed in 
P. filicauda.

To estimate population parameters, we utilised summary genetic 
statistics calculated from empirical genetic datasets for P. fili-
cauda and T. aethiops as predictor variables in a Random Forest 
model previously trained on the simulated dataset. Empirical 
summary statistics were calculated from two restriction- site as-
sociated DNA sequences (RADSeq) datasets retrieved from pub-
lished phylogeographic studies (Barrera- Guzmán et  al.  2022; 
Musher et  al.  2024). We utilised the results from individual 
admixture analyses presented in these studies to guide our se-
lection of individuals and focused on sampling a single differen-
tiated panmictic lineage within the distribution of each species. 
For P. filicauda, we retrieved sequences from individuals across 
the entire range of the species, since no signal of intraspecific 
genetic structure was observed in a previous study (Barrera- 
Guzmán et  al.  2022). For T. aethiops, given the intraspecific 
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genetic structure found in a previous study (Musher et al. 2024), 
we retrieved sequences from solely one panmictic population 
distributed in the westernmost portion of the species range. This 
approach minimised the differences between the two datasets 
by focusing on panmictic populations, allowing us to attribute 
differences in summary statistics to differences in their life his-
tory strategies. The final selected dataset consisted of 28 indi-
viduals across 11 localities for P. filicauda, and 15 individuals 
across 13 localities for T. aethiops (Figure 3; Table S1).

Raw sequences were downloaded and mapped into a reference 
genome utilising the iPyrad pipeline (Eaton and Overcast 2020). 
We utilised reference genomes available for species that are phy-
logenetically close to the focal species: the sequenced genome of 
Lepidothrix coronata (GenBank Assembly: GCA_001604755.1) 
was utilised for P. filicauda, and the sequenced genome of 
Sakesphorus luctuosus (GenBank Assembly: GCA_013396695.1) 
was utilised for T. aethiops. The parameters utilised in the as-
sembly pipeline were kept at their default values, except for the 
clustering threshold and the percentage of missing data. We 
tested different values of clustering threshold (0.85, 0.9 and 0.95) 
to explore the impact of this parameter on the final dataset. We 
found no impact of this parameter on reference mapping and 
therefore set a strict value of 0.95. Additionally, we implemented 
a strict filter that allowed for no missing data, forcing all variant 
sites to be present in all individuals, to allow comparison of the 
empirical data with the simulated dataset on which the Random 
Forest model was created. We retrieved the vcf file exported 
by the assembly and utilised the approach described above to 
calculate, for the empirical dataset, the same genetic summary 

statistics used to train the Random Forest model. Summary sta-
tistics were calculated across all samples since previous studies 
confirm they belong to a single panmictic population. To allow 
for comparisons with the simulated dataset, we projected the 
sample size of the Site Frequency Spectrum calculated for each 
species to 20 diploid individuals, following Marth et al. (2004). 
Empirical summary statistics were then utilised as predictors in 
the Random Forest model to estimate the values for variance in 
reproductive success, generation time and effective population 
size for both species. A confidence interval around each value 
was calculated by estimating the prediction standard error using 
the jackknife procedure described by (Wager et al. 2014). That 
procedure estimates the standard error associated with a predic-
tion based on the bootstrap replicates that are performed during 
the building of the Random Forest model (Efron 1992; Wager 
et al. 2014). We then compared the predicted values and their 
respective confidence intervals between both species to verify 
whether they suggested that the slow- reproducing long- lived 
P. filicauda has higher variance of reproductive success, longer 
generation time and smaller effective population size relative to 
the fast- reproducing short- lived T. aethiops—hence supporting 
our expectations given their natural history observations.

3   |   Results

Forward simulations on SLiM revealed that population param-
eters (variance in reproductive success, generation time and ef-
fective population size) were sensitive to variation in life history 
traits (Figure 4; Table 1). The average age of first reproduction 

FIGURE 3    |    Geographic distribution of the samples utilised for estimates of population parameters from empirical genomic data. Red points 
represent the localities sampled for Pipra filicauda, a slow- reproducing polygamic species, while blue dots represent the localities sampled for 
Thamnophilus aethiops, a fast- reproducing monogamic species (see text for more information on their life history differences).
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showed a weak positive correlation with variance in reproduc-
tive success (ρ = 0.136) and a weak negative correlation with 
effective population size (ρ = −0.279), but a strong positive cor-
relation with generation time (ρ = 0.758; Figure 4). Average adult 
longevity showed a weak positive correlation with both variance 
in reproductive success (ρ = 0.09) and effective population size 
(ρ = 0.265), but a strong positive correlation with generation 
time (ρ = 0.614; Figure 4, top row). The average number of mates 
showed a strong positive correlation with variance in reproduc-
tive success (ρ = 0.979) and a strong negative correlation with 
effective population size (ρ = −0.681), but a weak negative cor-
relation with generation time (ρ = −0.077; Figure 4, bottom row).

Varying life history traits also impacted our target genetic sum-
mary statistics (Figure 5 and Figures S1–S3; Table 2), although 
the sensitivity of the summary statistics to changes in life history 
traits was more varied. Average nucleotide diversity showed a 

weak negative correlation with average age of first reproduction 
(ρ = −0.286) and a weak positive correlation with average adult 
longevity (ρ = 0.175), but a strong negative correlation with aver-
age number of mates (ρ = −0.679; Figure 5, left column). Similar 
correlation values were found for measurements of average link-
age disequilibrium but in the opposite direction: average linkage 
disequilibrium showed a weak positive correlation with average 
age of first reproduction (ρ = 0.251) and a weak negative cor-
relation with average adult longevity (ρ = −0.099), but a strong 
positive correlation with the average number of mates (ρ = 0.676; 
Figure 5, central column). Correlation of life history traits with 
average Tajima's D, average minor allele frequencies and the fre-
quency classes of the site frequency spectrum were overall low, 
ranging between −0.06 and 0.062 (Figure 5, right column, for 
average minor allele frequencies; Figure S1 left for Tajima's D; 
Figure S2 for the site frequency spectrum). Finally, the average 
number of mates showed a moderate negative correlation with 

FIGURE 4    |    Variation in values of population parameters (left column: Variance in reproductive success; central column: Generation time; right 
column: Effective population size) emerging from simulations varying life history traits (top row: combinations of age of first reproduction and aver-
age adult longevity; bottom row: combinations of average age of first reproduction and average number of mates).

TABLE 1    |    Coefficient values of Spearman correlations between life history traits (columns) and population parameters (rows).

Average age at first 
reproduction

Average adult 
longevity

Average number of mates per 
reproducing male individual

Variance in reproductive 
success

0.1362 0.0903 0.9792

Generation time 0.7582 0.6136 −0.0772

Effective population size −0.2791 0.2649 −0.6809
Note: Coefficient values below −0.5 and above 0.5 are highlighted in bold.

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.70155 by C
uny - B

aruch C
ollege, W

iley O
nline Library on [10/11/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



9 of 14Molecular Ecology, 2025

the standard deviation of nucleotide diversity across the genome 
(ρ = −0.668; Figure  S3, left) and a moderate positive correla-
tion with the standard deviation of both Tajima's D (ρ = 0.528; 
Figure S2, right) and measurements of linkage disequilibrium 
(ρ = 0.67; Figure S3, right) across the genome.

Random forest models of ecological population parameters, 
built with simulated genetic summary statistics as predictor 
variables, showed high accuracy in estimating variance in re-
productive success (mean R2 = 0.8098 ± 0.0405) and effective 
population size (mean R2 = 0.8155 ± 0.161), and low accuracy 

FIGURE 5    |    Variation in the values of three genetic summary statistics (left column: average nucleotide diversity; central column: average link-
age disequilibrium; right column: average minor allele frequencies) across different values of life history traits (top row: combinations of age of first 
reproduction and average adult longevity; bottom row: combinations of average age of first reproduction and average number of mates).

TABLE 2    |    Coefficient values of Spearman correlations between life history traits (columns) and genetic summary statistics (rows).

Average age at first 
reproduction

Average adult 
longevity

Average number of mates per 
reproducing male individual

Average nucleotide diversity −0.286 0.1753 −0.6788
Standard deviation of nucleotide 
diversity

−0.2979 0.1651 −0.6675

Average minor allele frequency −0.0165 0.007 0.0044

Standard deviation of minor allele 
frequency

0.0143 0.0102 −0.0137

Average Tajima's D −0.0018 0.0075 0.0086

Standard deviation of Tajima's D 0.2779 −0.1495 0.5281
Mean linkage disequilibrium 0.2509 −0.0989 0.6758
Standard deviation of linkage 
disequilibrium

0.2563 −0.0963 0.6703

Site Frequency Spectrum −0.0075 −0.0238 −0.005
Note: Coefficient values below −0.5 and above 0.5 are highlighted in bold. Values for the site frequency spectrum represent the average correlation coefficient across all 
frequency classes.
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in estimating generation time (mean R2 = 0.1713 ± 0.0457). 
However, parameter values estimated from a Random Forest 
model trained on the entire simulated dataset, and utilising em-
pirical genetic data from our target bird species as predictor vari-
ables, show little overlap in the confidence interval of estimated 
values and agree with our original expectations: estimated val-
ues of the variance in reproductive success and generation time 
were higher for P. filicauda than T. aethiops, whereas estimated 
values of effective population size were lower for P. filicauda 
than for T. aethiops (Figure 6).

4   |   Discussion

Our simulations showed that interspecific differences in mea-
surable life history traits (average age of first reproduction, av-
erage adult longevity and average number of mates) do impact 
population parameters (variance in reproductive success, gen-
eration time and effective population size). Variation in life his-
tory traits also impacts genetic summary statistics with varying 
levels of correlation depending on the metric of choice. Our sim-
ulations support previous expectations that populations char-
acterised by higher values of life history traits tend to exhibit 
higher variance in reproductive success, longer generation times 
and smaller effective population sizes (Figure  4 and Table  1; 
Waples 2023; Waples et al. 2013). However, the results from our 
simulations suggest that age- related traits (i.e., average age of 
first reproduction and average adult longevity) have a stronger 
impact on generation time than variance in reproductive success 
and effective population size (Figure 4, top row, central column; 
Table 1, central row). The opposite is observed for the average 
number of mates: although we found the expected influence of 
this life history trait on variance in reproductive success and 
effective population size (Figure  4, bottom row, left and right 
columns; Table 1, top and bottom rows), we found it to be weakly 
correlated with generation time (Figure 4, bottom row, central 
column; Table 1, central row), in contrast to suggestions from 
previous studies (Nunney 1991).

Through our simulations, we additionally observe that the 
average nucleotide diversity and estimates of linkage disequi-
librium are influenced by life history traits, especially the 
average number of mates, which shows the highest correla-
tion coefficients with those two summary statistics (Figure 5, 
bottom row; Table  2). Additionally, the standard deviation of 

three summary statistics (i.e., nucleotide diversity, Tajima's D 
and estimates of linkage disequilibrium) was highly correlated 
with the average number of mates (Figures S1 and S3; Table 2). 
Collectively, these results suggest that (1) mating systems (rep-
resented by the average number of mates) have the strongest 
impact on summaries of patterns of genomic variation; (2) the 
signal of life history variation is pervasive across different met-
rics that summarise genomic variation. While recent studies 
have shown that measurements of genetic diversity correlate 
with different life history strategies in both empirical and sim-
ulated datasets (Barry et al. 2022; Waples 2022a), in this study, 
we were able to look beyond nucleotide diversity and show 
that the signal of life history variation is additionally present 
across measurements of minor allele frequencies, linkage dis-
equilibrium and traditional population genetic statistics such 
as Tajima's D. Following expectations from the literature, we 
found that polygamous populations have lower genetic diver-
sity and higher levels of linkage disequilibrium due to higher 
variance in reproductive success leading to smaller popula-
tion sizes. Surprisingly, age- related traits (which are the ones 
largely influencing generation time; Figure 4, central column; 
Table 1) have a relatively weaker impact on almost all genetic 
summary statistics: their influence is mostly observed in sim-
ulations where male individuals start reproducing late and die 
young (Figure 5, top row, central and right column; Table 2), 
that is, a combination of life history traits that lead to a largely 
reduced number of reproducing male individuals. An excep-
tion to this pattern is observed through the effect of age- related 
traits on average nucleotide diversity, which tends to decrease 
as the average age of first reproduction increases (Figure 5, top 
row, left column; Table  2). This reduced effect of age- related 
traits on genetic summary statistics is reflected in the overall 
lower predictive accuracy observed in Random Forest models 
when using simulated summary statistics to estimate genera-
tion time (mean R2 = 0.17) than that observed for estimates of 
variance in reproductive success and effective population size 
(mean R2 = 0.8). The lower predictive accuracy reflects the low 
correlation, observed within the simulated dataset, between 
age- related traits and genetic summary statistics. However, 
when utilising the same Random Forest model to estimate 
population parameters of two bird species with contrasting 
life histories, our estimates agree with theoretical expectations 
for all three parameters: estimates of variance in reproductive 
success and generation time were higher for P. filicauda than 
the estimates of these same parameters for T. aethiops, while 

FIGURE 6    |    Estimates and confidence intervals for variance in reproductive success (left), generation time (centre) and effective population size 
(right) for Pipra filicauda (red) and Thamnophilus aethiops (blue), based on summary statistic values calculated from empirical data.
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the opposite was observed for the effective population size 
(Figure 6). These results suggest that the relative difference be-
tween the two empirical genomic datasets follows the pattern 
of genomic variation found in our simulations; that is, lower 
genetic diversity is observed in both the simulated populations 
exhibiting higher values of life history traits as well as the em-
pirical populations in species for which those same values were 
shown to be comparatively higher (in our case, populations 
of P. filicauda). Although the panmictic populations analysed 
here occur in different parts of western Amazon (i.e., sam-
ples of P. filicauda occur at lower latitudes than the samples of 
T. aethiops; Figure 3), both species inhabit similar habitat types 
in this region, consisting of secondary growth evergreen forest 
and often associated with forest gaps and streams (Snow 2020; 
Zimmer and Isler 2020). This suggests that historical changes 
in the availability of suitable habitat would have been similar 
for both species, and any relative differences in effective popu-
lation size are likely to be the result of their differences in life 
history strategies. Despite the low correlation of life history 
traits with some of the summary statistics, our results indicate 
that a Random Forest model is able to combine the small ef-
fect of life history traits across all summary statistics to provide 
relative parameter estimates with enough resolution to distin-
guish between these different life history strategies.

Our findings highlight the importance of incorporating life his-
tory variation into simulation- based models for demographic in-
ference across an assemblage of species with a shared climatic 
history. In any local community, genetic patterns across spe-
cies will differ due to both stochastic and deterministic factors 
(Papadopoulou and Knowles  2016). Our power in identifying 
shared responses and accurately estimating demographic pa-
rameters in the presence of different genetic patterns depends on 
the extent to which our simulations incorporate the determinis-
tic factors that have led to differences across species. If variation 
across species in life history strategies alone leads to measur-
able differences in genetic patterns, our findings suggest that, 
whenever life history variation is not incorporated in the sim-
ulation approach, differences in summary statistics that stem 
from it will be treated as unexplained variation. This may only 
be ideal when one is mostly interested in the signal of shared 
demography response to a historical event instead of the signal 
of ecological differences, in which cases these differences can 
effectively be treated as nuisance parameters (Prates et al. 2016; 
Xue and Hickerson 2020). When ecological differences are large, 
or when the goal is to specifically capture any (even if weak) sig-
nal of ecological differences, explicitly incorporating such dif-
ferences may increase the power to infer historical demographic 
parameters (Massatti and Knowles  2014; Papadopoulou and 
Knowles  2015). Understanding the best simulation approach 
for a specific group therefore requires stating what ecological 
mechanisms, if any, may lead to predictable differences in ge-
netic patterns.

Our study focused on one of those mechanisms: how differences 
in life history traits lead to consistent and predictable differ-
ences in genetic patterns through their impact on key popula-
tion parameters: variance in reproductive success, generation 
time and effective population size. Life history traits impact 
variance in reproductive success and generation time through 
their influence on the distribution of reproductive success across 

individuals based on age and sex. Since variance in reproductive 
success, and to a lesser extent generation time, is negatively cor-
related with the number of reproducing individuals (Figure 4), 
life history traits ultimately influence the fundamental popula-
tion genetic parameter θ (=4Neµ) through their influence on the 
effective population size (Ne). As such, variance in reproductive 
success and generation time are two key parameters to describe 
the deterministic way in which life history influences patterns 
of genetic diversity. Although many theoretical and simulation 
studies have highlighted the link between these parameters 
and effective population size (Waples et  al.  2013; Waples and 
Yokota  2007), few empirical studies performing demographic 
inference utilise them to describe differences across species 
when defining demographic hypotheses, and/or explicitly incor-
porate them in simulations.

A remaining challenge to understand how life history variation 
across species impacts inference of comparative historical de-
mography is investigating at what temporal and spatial scales 
the signal of life history variation is expected to be most im-
portant, and at what scales it is expected to be surpassed by the 
signal of other ecological factors, such as species- specific disper-
sal capacities or environmental tolerances (Papadopoulou and 
Knowles 2016). For instance, we observe that a slow- reproducing 
polygamic life history strategy leads to lower effective popula-
tion size; however, if the same species also exhibits low intrinsic 
dispersal capacity, high genetic differentiation would be ob-
served among localities within the species' range. In this sce-
nario, inferred effective population size would be small when 
estimated at local spatial scales, with low genetic differentiation, 
but higher if estimated across larger spatial scales. Because the 
influence of space is ubiquitous in spatial patterns of genomic 
variation (Bradburd and Ralph 2019), future studies investigat-
ing the relevance of life history variation for historical demo-
graphic inference will benefit from exploring those differences 
under spatially explicit simulation approaches, where both vari-
ation in life history and variation in landscape connectivity can 
be investigated.

We understand that several methodological approaches exist 
to implement life history variation in the simulation- based in-
ference framework, many of those based on classic coalescent 
methods. Under the coalescent, one can incorporate varia-
tion in effective population size, migration rates or generation 
time by integrating across a wide prior parameter space (Xue 
and Hickerson  2020). Other studies have relaxed the coales-
cence assumption that all individuals have equal reproductive 
success by explicitly stating a vector of relative probabilities 
of reproduction for the parental generation in a Wright- Fisher 
model (Waples 2022a). Extensions of coalescent methods have 
also been developed to account for life history complexity, such 
as the skewed distribution of offspring size across individu-
als, and other forms of complex demographic structure, using 
multiple merger coalescence (Lepers et  al.  2021; Tellier and 
Lemaire 2014). Here, we followed a non- coalescence approach 
to estimate the parameters impacting effective population size 
directly from phenotypic ecological information (i.e., life his-
tory traits that are measurable at the population level). This ap-
proach differs from Wright- Fisher models in that the effective 
population size (along with other focal population parameters) 
emerges from the interaction of the different life history traits 
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and informs the exploration of parameter space in coalescent 
simulations. This allowed us to explore the relationship between 
life history traits and effective population size in coalescent sim-
ulations, as well as map patterns of genomic variation arising 
from these simulations to parameter values for generation time 
and variance in reproductive success that are not explicitly in-
corporated in coalescent simulations. Because we implement 
life history traits that are measurable at the population level as 
values in our forward simulation, this approach additionally al-
lowed us to incorporate available information on the life history 
of species as input in our models, making it similar to other mea-
surable and available phenotypic traits such as body size or diet. 
Even though life history traits may not be as easily measurable 
in nature as other phenotypic traits, an attempt to directly incor-
porate them into simulations can bring important insights into 
how effective population size scales with life history, and there-
fore, how it can be better interpreted or modelled in traditional 
coalescent approaches.
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