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ABSTRACT
In integrative distributional, demographic and coalescent (iDDC) modelling, a critical component is the statistical relationship 
between habitat suitability and local population sizes. This study explores this relationship in two Enyalius lizard species from 
the Brazilian Atlantic Forest: the high- elevation E. iheringii and low- elevation E. catenatus and how this transformation affects 
spatiotemporal demographic inference. Most previous iDDC studies assumed a linear relationship, but this study hypothesises 
that the relationship may be nonlinear, especially for high- elevation species with broader environmental tolerances. We test two 
key hypotheses: (1) The habitat suitability to population size relationship is nonlinear for E. iheringii (high- elevation) and linear 
for E. catenatus (low- elevation); and (2) E. iheringii exhibits higher effective migration across populations than E. catenatus. Our 
findings provide clear support for hypothesis (2), but mixed support for hypothesis (1), with strong model support for a nonlinear 
transformation in the high- elevation E. iheringii and some (albeit weak) support for a nonlinear transformation also in E. cat-
enatus. The iDDC models allow us to generate landscape- wide maps of predicted genetic diversity for both species, revealing 
that genetic diversity predictions for the high- elevation E. iheringii align with estimated patterns of historical range stability, 
whereas predictions for low- elevation E. catenatus are distinct from range- wide stability predictions. This research highlights 
the importance of accurately modelling the habitat suitability to population size relationship in iDDC studies, contributing to our 
understanding of species' demographic responses to environmental changes.

1   |   Introduction

How species respond to their environments is a complex, 
multidimensional phenomenon (Fenderson, Kovach, and 
Llamas 2020). In particular, the dynamic and complex history 

underlying changes in species abundance, spatial distribution 
and connectivity is difficult to detect without detailed mod-
els and data from multiple sources (Fenderson, Kovach, and 
Llamas  2020; Lee- Yaw et  al.  2022). Species distribution mod-
els (SDMs) can provide one direct way to explore how species' 
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current and historic range dynamics are influenced by the en-
vironment (Elith and Leathwick 2009). Another approach com-
plimenting SDMs is geographically explicit population genomic 
coalescent models that use geo- referenced genetic data to infer 
processes underlying complex and dynamic spatiotemporal de-
mographic histories (Bradburd and Ralph 2019; Liu et al. 2019; 
Kamm et al. 2020; Excoffier et al. 2021; Baumdicker et al. 2022).

Integrative distributional, demographic and coalescent model-
ling (iDDC) provides a powerful framework that combines SDMs 
and population genomic modelling to understand how past envi-
ronmental change has shaped species' spatial demographic and 
evolutionary histories (Brown and Knowles 2012; He, Edwards, 
and Knowles 2013; Brown et al. 2016; Prates et al. 2016). iDDC 
models use habitat suitability values extracted from SDMs to 
inform spatially explicit demographic models of local popula-
tion sizes and migration. Parameters from these demographic 
models are then applied to a coalescent model that simulates 
population genomic data that can be directly compared with 
the observed data (Alvarado- Serrano and Knowles  2014). In 
addition to hypothesis testing and parameter inference, these 
models can generate maps of predicted present- day spatial pat-
terns of genetic diversity across both sampled and unsampled 
areas within a species' range. This summary statistic of genetic 
diversity (pi) is a key biodiversity metric for assessing species' 
responses to environmental change over recent and historical 
time scales (Exposito- Alonso et  al.  2022; French et  al.  2023; 
Theodoridis et al. 2020).

A critical element of iDDC models is the assumed relationship 
between habitat suitability and local population sizes (also re-
ferred to as deme sizes). How this relationship is parameterised 
can dramatically impact the inferences drawn from iDDC mod-
els (Brown and Knowles 2012), yet explicit consideration of this 
impact is relatively scarce. Typically, iDDC studies (Knowles 
and Massatti 2017; Pan et al. 2020; Castilla et al. 2024), assume 
that local deme sizes increase by one unit for each unit increase 
in habitat suitability, implying a linear relationship. However, 
this assumption may not hold across several ecological condi-
tions (VanDerWal et al. 2009; Weber et al. 2017). For instance, 
the relationship could instead follow a wedge- shaped curve, 
where local deme sizes rise rapidly to a maximum at a certain 
SDM suitability threshold, or it might take another intermedi-
ate nonlinear form (VanDerWal et  al.  2009). Furthermore, at 
the coarse spatial resolution typical of SDM- based inferences, 
access to diverse microhabitats—often not captured by coarse 
climatic variables—may lead to a decoupling between SDM- 
determined suitability and the actual local deme density, re-
sulting in a nonlinear rather than a linear relationship (Lu and 
Jetz 2023; VanDerWal et al. 2009).

This nonlinear relationship may be particularly relevant in 
montane habitats, where the elevational gradient can enable 
species to more readily climb up or down in altitude and hence 
access suitable environments more easily than those species 
in lowland habitats (Dobrowski 2011). If the steep topography 
enables high- elevation species to more easily buffer environ-
mental changes that reduce climate suitability, allowing them 
to maintain high deme sizes despite those conditions, we expect 
that iDDC models with a nonlinear relationship between local 
SDM suitability based on macroclimatic data and local deme 

sizes to be a better fit for high- elevation species than models as-
suming a linear relationship. In this case, local deme sizes are 
expected to reach a high value even under relatively low suitabil-
ity scores. Conversely, a linear relationship can be expected in 
low- elevation species, in which local deme sizes are limited by 
the suitability of the landscape. If this is the case, then the spa-
tial resolution of the SDMs could be aligned more closely with 
the granularity of habitat turnover in low-  rather than in high- 
elevation species.

In addition, emerging evidence has shown that high- elevation 
ectotherm species tend to show greater resilience to climate fluc-
tuations, potentially due to broader environmental tolerances 
relative to lowland animals (Janzen 1967; von May et al. 2017; 
Strangas et al. 2019; Bovo et al. 2023). This resilience may re-
sult from highland species experiencing a wider range of cli-
mate variability, driving physiological adaptations or plasticity 
(Brett  1956; Janzen  1967; Bozinovic, Calosi, and Spicer  2011), 
or behavioural buffering (Sunday et  al.  2014; Muñoz  2022). 
Consequently, these broader environmental tolerances may 
confer greater metapopulation connectivity (Qiao et  al.  2016; 
Carscadden et  al.  2020). We therefore expect iDDC models of 
high- elevation species to infer higher connectivity (Nm) com-
pared to low- elevation species, as indicated by higher estimated 
migration rates.

To test if these expectations hold, we develop iDDC mod-
els for two lizard species endemic to the Brazilian Atlantic 
Forest (BAF), which features a pronounced elevational gra-
dient whereby low- elevation species in the north are expected 
to have experienced greater range stability than those in the 
south, which in turn experience more climate variability due to 
higher elevations and a more temperate climate (Carnaval and 
Moritz 2008). We specifically focus on two Enyalius lizard spe-
cies, E. iheringii and E. catenatus, whose contrasting elevation 
ranges yield different predictions regarding how climate change 
may have influenced their habitat suitability and local density 
over time (Figure 1). Both species inhabit forest and forest- edge 
habitats with allopatric distributions (Rodrigues et  al.  2014). 
Enyalius iheringii occurs in the southeastern BAF, a region 
farther from the equator and more environmentally variable at 
both current and historical time scales (Carnaval et al. 2014). In 
the northern part of its distribution, this species primarily in-
habits regions around 700 m above sea level (asl), reaching lower 
elevations at higher latitudes (Figure 1). Enyalius catenatus, on 
the other hand, occurs in the northeastern BAF from sea level to 
around 200 m asl, becoming rare above this elevation (Figure 1) 
(Rodrigues et  al.  2014). Both species are semi- arboreal, diur-
nal sit- and- wait foragers, and similar in size averaging around 
90 mm (Jackson  1978; Liou  2008; Rautenberg and Laps  2010; 
Rodrigues et al. 2014; Bruscagin et al. 2017). They live up to 6 
m above the ground, between the base of tree trunks and shrubs 
with leaves (Jackson 1978; Rodrigues et al. 2014), descending to 
the ground only to feed or reproduce.

In this study, we implement a novel iDDC method that inte-
grates supervised machine learning (SML) to (1) test two alter-
native statistical relationships (linear vs. nonlinear) between 
local SDM suitability and local deme sizes across space and 
time, predicting a linear relationship for the low- elevation E. 
catenatus and a nonlinear relationship for the high- elevation 
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E. iheringii; (2) evaluate the relationship between elevation and 
connectivity (by estimating local deme sizes (N) and effective 
migration rates (Nm) for each species), expecting lower Nm for 
E. catenatus compared to E. iheringii; and (3) use our estimates 
of local N and Nm, along with the best- fit transformation model, 
to generate landscape- wide maps of current predicted genetic 
diversity encompassing unsampled areas within each species' 
predicted range. For that, we combine SDMs with genomic data 
in a coalescent simulation framework across a grid- like land-
scape, where each grid cell represents a local population (deme). 
By approximating a spatially explicit coalescent model, we are 
able to efficiently generate simulated genotypes that match the 
spatial sampling configuration of the observed data (Figure 2). 
To assess the sensitivity of the assumption of a linear relation-
ship between habitat suitability values and local deme sizes, we 
compare the effect of linear versus nonlinear transformations 

of SDM- generated suitabilities on local deme sizes in our iDDC 
model, using geo- referenced genome- wide SNP data from the 
two Enyalius species differing in elevation and latitude. We then 
incorporate this uncertainty in transformation probabilities 
into our iDDC- based analysis producing estimates of historical 
demographic parameters and predictions of landscape- wide ge-
netic diversities.

2   |   Methods

2.1   |   Spatially Explicit Coalescent iDDC Model

To test the relative fit of the linear versus threshold trans-
formation of SDM suitabilities into local effective popula-
tion sizes, estimate demographic parameters under the best 

FIGURE 1    |    A map of Enyalius catenatus (orange) and Enyalius iheringii (blue) sampling localities and their elevational distributions. Enyalius 
catenatus is distributed across lower elevations in the northern portion of the BAF, while E. iheringii is distributed across higher elevations at the 
southern portion of the BAF. The northern BAF is closer to the equator and experiences less annual climate fluctuation than the southern BAF.
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transformation, and create predicted contemporary genetic 
diversity maps, we develop a new iDDC model that explicitly 
integrates SDMs with a coalescent two- dimensional stepping- 
stone model (2DSS) that simulates spatial patterns of genomic 
diversity for direct comparison with observed samples. By cal-
culating the same array of summary statistics in the simulated 
and observed datasets, we use SML to probabilistically dis-
criminate SDM transformation models, estimate demographic 
history model parameters and generate the genetic diversity 
maps (Figure 3).

SDMs use rasterised data to create probability maps of species 
occurrence, which can be used to infer ecological parameters 
like potential local abundance and resistance to dispersal, 
following the same precautions outlined in the Introduction 
(Guisan and Thuiller  2005; VanDerWal et  al.  2009; Weber 
et  al.  2017). We translate these ecological parameters into 
the population genetic parameters used by a 2DSS model 
(Figure 2). Specifically, the 2DSS model consists of a grid of 
rectangular demes connected by migration along their edges 
with effective population sizes scaled by the predicted SDM 
suitabilities. The grid is arranged in a rectangle that matches 
the extent of the SDM, where each cell with a predicted suit-
ability in the SDM corresponds to a deme in the 2DSS, and 
cells without predicted suitability correspond to empty demes. 
It is a simplification of a continuous geographical space, 
where demes located nearer to each other are more likely to 
exchange alleles, generating patterns of isolation- by- distance 
(Kimura, Weiss, and Weiss  1964). Additionally, deme sizes 
and migration can change through time, where SDMs pro-
jected to environmental conditions in the past are used to 
parameterise deme size changes and subsequent migration 
rate changes. This implementation of the 2DSS model simu-
lates local deme sizes and migration backwards- in- time in a 
fully coalescent framework, similar to Szép, Trubenová, and 
Csilléry  (2022), as opposed to a paired forward- time demog-
raphy, backward- time coalescent simulation approach like 
SPLATCHE3 and similar methods that implement the iDDC 
approach (Currat, Ray, and Excoffier 2004; Currat et al. 2019). 
Because backwards simulation under a coalescent model is far 
more efficient than forward time simulation, this iDDC ap-
proach directly links SDM suitability values with population 
genetic parameters in a computationally efficient manner.

To test the hypothesis of the influence of linear versus nonlin-
ear transformations on the inference of local deme sizes, we 
directly translate SDM suitability values into 2DSS local deme 
sizes using either a linear transformation function, where the 
SDM suitability values, which range from zero to one, are 
multiplied by a maximum local deme size, or a thresholded 
transformation function. While there are a variety of non-
linear shapes the relationship between SDM suitability val-
ues and local deme sizes could take, we opted to consider a 
thresholded binary distribution, the most extreme nonlinear 
realisation of this transformation function, which has been 
shown to influence the predicted genetic diversity of iDDC 
models (Brown et al. 2016). The threshold transformation uses 
a minimum SDM suitability value as a threshold, where SDM 
suitability values above the threshold are considered occupied 

FIGURE 2    |    Conceptual diagram of the iDDC model with hypotheses 
defined by SDM and local deme size transformation functions. (A) The 
transformation of SDM- derived habitat suitability values (ranging 
from 0 to 1) into effective population sizes of local demes within the 
2D stepping- stone (2DSS) model using a transformation function. Two 
transformation functions are considered: Linear (left) and thresholded 
(right). For the linear transformation, each SDM suitability value 
is multiplied by a maximum local deme size (maxlocal N) making 
local deme sizes directly proportional to the SDM suitability. For the 
thresholded transformation, only SDM cells with suitability values 
above a specified threshold are occupied, while those below or equal 
to the threshold remain unoccupied. To ensure comparability of total 
population size across the landscape between linear and thresholded 
models, the constant local deme size in a threshold transformation is 
calculated as the average of all occupied demes in the corresponding 
linear transformation with the same maxlocal N. Migration between 
neighbouring demes is scaled by neighbouring population sizes with 
the formula mN1–N2 = (NN1/NN2) × M, where M is a global migration 
rate, and N is the local deme size. (B) Predictions for elevation- based 
transformation hypotheses where a linear transformation is predicted 
for low- elevation species and a threshold transformation is predicted for 
high- elevation species. Additionally, higher migration rates (indicated 
by thicker lines) are expected for high- elevation species relative to low- 
elevation species. A full conceptual diagram that illustrates demographic 
change over time and the non- spatial portion of simulations is available 
in Figure S1.
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and SDM suitability values below the threshold are considered 
empty (Figure 2). The maximum local deme size is assigned to 
all occupied demes.

2.2   |   Species Distribution Modelling

2.2.1   |   Occurrence Data

We obtained occurrence data from across the species' ranges 
through field sampling and museum records, validating 
them with expert review and field notes (Table  S1, Figure  1). 
Additionally, all localities for Enyalius catenatus and nearly 
all localities (N – 2) for E. iheringii that were used for species 
distribution modelling have at least one individual who was 
sequenced for genomic analysis. However, four inland locali-
ties were discarded for E. catenatus after modelling and before 
thresholding the model output, due to their presence in very low 
suitability habitat and isolated relict forest fragments (Table S1). 
Including marginal habitat in SDMs is known to reduce the abil-
ity to detect environmental barriers to the species' occupation, 
so using them to threshold model output would result in overes-
timating the species' potential range (Soley- Guardia et al. 2016). 
These individuals were also not used in genetic simulations. We 
spatially thinned the occurrence data using a buffer distance 
of 20 km, which is twice the resolution of the environmental 
data, to reduce the impact of clustered sampling bias and the 

resultant artefactual spatial autocorrelation on the models 
using the spThin R package (Boria et al. 2014; Aiello- Lammens 
et al. 2015).

2.2.2   |   Environmental Data

The environmental data used for modelling were the 19 bio-
climatic variables from the CHELSA v2.1 database, which 
provide descriptions of temperature and precipitation based 
on statistical interpolation of weather station data (Karger 
et  al.  2017, 2018). These data were downloaded at 30 arc- 
second (approximately 1 km2 at the equator) resolution. We ag-
gregated the layers to five arc- minute (approximately 10 km2 
at the equator) resolution using bilinear interpolation before 
modelling to allow for the use of lower- resolution observation 
points and to match the resolution we chose for spatial demo-
graphic modelling.

For model calibration, we delineated the study area for each 
species using a minimum convex polygon around the species' 
localities, with a 0.5° buffer. This approach captures habitat the 
species can reasonably disperse to without encroaching deep 
into the Cerrado. This reduces the chance of bias imposed by 
sampling suitable environments that are unreachable due to the 
species' dispersal abilities (Anderson and Raza 2010). The area 
within the polygon was used as the background environment for 

FIGURE 3    |    Full analytical workflow for each species, from creating species distribution models (SDMs) to generating genetic diversity maps. 
SDMs are developed using weather station- derived bioclimatic variables (temperature and precipitation), resulting in habitat suitability ranging from 
0 to 1. The SDMs are projected to palaeoclimates back to the last glacial maximum (LGM, 22 kya) in 1000- year time steps. The suitability values 
for each projection are translated into local deme sizes in a two- dimensional stepping- stone (2DSS) model, where demes are arranged in a grid that 
matches the dimensions of the SDM and each 2DSS deme corresponds to an SDM suitability pixel. A full description of the model is available in 
the Methods section ‘Spatially explicit coalescent iDDC model’. The model outputs a genotype matrix for individuals matching empirical sampling 
localities, upon which a suite of genetic summary statistics are calculated. The same set of summary statistics is also calculated for empirical data. 
After running each model-  linear and threshold-  for approximately 50,000 replicates and aggregating the summary statistics, a supervised machine 
learning (SML) classification approach is employed to evaluate the model's ability to discriminate between the two transformation methods. After 
training the classifier with these simulations, the empirical data are classified into the best- fit transformation for the species. Following classification, 
demographic parameters are estimated using an SML regression approach with the summary statistics simulated from the best- fit transformation 
model. In addition to point estimates, 95% prediction intervals are inferred for each demographic parameter. Finally, to generate genetic diversity 
maps for each species, 100 random samples from the 95% prediction interval for each demographic parameter are used as inputs for 100 additional 
landscape- wide simulations. Genetic diversity is estimated for each deme in the current landscape containing at least two individuals based on the 
transformation from the SDM. The mean across these 100 simulations is used to derive an average genetic diversity estimate for each deme.
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SDM model building. All spatial processing was done using the 
terra v1.6 and sf v1.0 R packages (Pebesma 2018; Hijmans 2022; 
Pebesma and Bivand 2023).

2.2.3   |   SDM Model Building

We modelled the potential distribution of each species using 
Maxent v3.4.4 (Phillips, Anderson, and Schapire  2006), a su-
pervised machine learning technique and software package 
designed for using presence- background data, implemented in 
the dismo v1.3 R package (Hijmans et al. 2022). The maximum 
number of available background points were selected for each 
species' study area (considering a single point per pixel): 2355 
points for E. catenatus and 6515 points for E. iheringii. To reduce 
the impact of multicollinearity on model interpretability and re-
duce the potential of projecting to non- analogue environments 
in historical time periods (Fitzpatrick and Hargrove 2009), we 
filtered predictor variables for each species and retained only 
those with a variance inflation factor less than 10 using the 
usdm v2.1 R package (Dormann et al. 2013; Naimi et al. 2014).

We considered a suite of candidate models under varying com-
plexity, preferring simple over complex models to prevent model 
overfitting. In Maxent, the linear and quadratic feature classes, 
along with regularisation multipliers from 0.5 to 5.0 in 0.5 in-
crements, were considered. Models were constructed using the 
ENMeval v2.0.4 R package (Kass et al. 2021). To further prevent 
model extrapolation, we clamped predictors to the range of the 
training data.

2.2.4   |   SDM Model Evaluation

Due to the low number of occurrence records after spatial 
thinning, we used leave- one- out cross validation for model 
selection to maximise the amount of information available 
(Shcheglovitova and Anderson 2013). We used two criteria for 
model selection, the Akaike Information Criterion corrected 
for low sample sizes (AICc) and the minimum training pres-
ence (MTP) omission error rate, which is the lowest occurrence 
suitability value used to train the model. We first selected mod-
els with the lowest AICc values, then for all models within < 2 
AICc of each other, selected the model with the lowest MTP 
omission error rate. If there were multiple models with the same 
MTP omission error rate, we then considered the model with 
the highest average area under the curve (AUC) score perfor-
mance on validation data. This approach for model selection pri-
oritises simple models that reliably predict training data and are 
able to distinguish occurrences from background environment 
(Radosavljevic and Anderson 2014).

2.2.5   |   Projecting Models to Historical Time Periods

To estimate distribution pattern shifts since the last glacial max-
imum (LGM, approximately 21 kya), we projected each species' 
SDM to environmental reconstructions in 22 sequential 1000- 
year timesteps from the present going back to the LGM, using 
Maxent's cloglog output. We obtained 30 arc- second resolution 
historical bioclimate variables from the CHELSA- TraCE21k 

dataset and aggregated them to five arc- minutes (Karger 
et  al.  2023). To represent areas the lizards may reasonably 
disperse to and between, we limited the study area for projec-
tions to a 2.0° buffer around a minimum convex hull polygon of 
the observed localities. To facilitate visual evaluation of range 
stability through time, we summarised the change in per- pixel 
suitability through time as stability maps, where MTP thresh-
olded projections were summed across time. Pixels were consid-
ered more stable if they had a higher number of timesteps with 
predicted presence, and less stable if they had a lower number.

2.3   |   Genomic Data

Samples for sequencing the two Enyalius species were obtained 
from 89 individuals collected from 66 sampling locations across 
the Brazilian Atlantic Forest, along with three outgroup individ-
uals (Figure 1 and Table S1). These samples were obtained under 
ICMBIO permits #10126, #30309, and #10754. Genomic DNA 
was isolated from liver or muscle tissues preserved in 100% eth-
anol using the Qiagen DNeasy blood and tissues kit extraction 
method. DNA quality was assessed by visualising high molecu-
lar weight bands on a 1% agarose gel, and DNA concentrations 
quantified using a Qubit 2.0 fluorometer (Life Technologies). All 
DNA extractions were normalised at a concentration of 10 ng/µL 
in a total volume of 50 µL for reduced- representation genomic 
library preparation.

A RAD- seq library (Baird et  al.  2008) was prepared by 
Floragenex Inc. (http:// flora genex. com) generating restriction- 
site associated DNA of thousands of short fragments distributed 
across the entire genome. Each individual's genomic DNA was 
digested with the enzyme SbfI (5′ CCTGCAGG 3′), then ligated 
to customised Illumina adapters containing 10- bp individual- 
specific barcodes and the enzyme overhang (6 bp). After liga-
tion, all samples were pooled into a single sequencing library 
followed by sonication and end repair. Fragments ranging from 
300 to 500 bp in size were selected. The fragments were then 
PCR- amplified, and finally sequenced across multiple sequenc-
ing lanes of the Hiseq2500 System Illumina sequencer, generat-
ing single- end reads of 100 bp.

2.3.1   |   Read Processing and Assembly

Raw reads were demultiplexed to individuals based on unique 
barcode sequences. Demultiplexed sequencing reads were then 
assembled across species with three outgroups using ipyrad 
v0.7.22 (Eaton and Overcast 2020). A de novo reference was cre-
ated, since no reference genome was available. Prior to assem-
bly, adapters were trimmed from reads based on quality scores, 
and low- quality reads were filtered using a PhredQ score cut-
off of less than 33, with a maximum of five low-  quality bases 
per read. We determined the optimal clustering threshold fol-
lowing McCartney- Melstad, Gidiş, and Shaffer (2019) (Methods 
S1 and Figures S6–S9). A minimum of four samples per locus 
were retained, with further missingness thresholds explored on 
a per- species basis. All remaining parameters were set to default 
values for the ipyrad assembly pipeline. Following assembly, 
we assessed the presence of batch effects, visualising potential 
differences in expected heterozygosity, missing data biases, and 

http://floragenex.com
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genetic structure among sequencing runs and found no pres-
ence of a significant effect (Methods S1 and Figures S10–S12). 
A single outlier individual was removed prior to applying SNP 
filters for each species due to a combination of high levels of al-
lele sharing across species and a high proportion of missing data 
(Table S1).

2.3.2   |   SNP Calling

We performed additional filtering on single nucleotide poly-
morphisms (SNPs) after quality filtering the reads, using 
vcftools v0.1.16 (Danecek et  al.  2011) and scikit- allel v1.3.7 
(Miles et al. 2023). Only biallelic sites were retained. We as-
sessed the impact of missing data using four missingness 
thresholds: 50%, 40%, 30% and 20% of sites missing across 
individuals per species. We additionally filtered for unlinked 
SNPs using a linkage disequilibrium (r2) threshold of 0.10. 
Finally, we removed invariant sites and singletons, which are 
likely overrepresented due to sequencing errors common in 
RADseq data.

2.3.3   |   Population Structure

We determined the number of non- spatial ancestral popula-
tions of each Enyalius species using the program sNMF (Frichot 
et al. 2014). The sNMF algorithm uses sparse non- negative ma-
trix factorisation to estimate ancestry coefficients without rely-
ing on population genetic model assumptions and is optimised 
for large genomic datasets (Frichot et al. 2014). We ran the al-
gorithm with empirical samples and explored 1–5 ancestral 
populations (K), with 20 replicates per K value. Multiple alpha 
regularisation parameter values (1, 10, 100) were explored to as-
sess the robustness of results to differing levels of model com-
plexity. We selected the best- fit K for each species according to 
the cross- entropy criterion.

2.4   |   2D Stepping- Stone Coalescent Model

We used a fully coalescent implementation of the 2DSS, de-
scribed above. Parameterised 2DSS models were simulated 
using the msprime coalescent simulator (v1.3.0, Baumdicker 
et al. 2022).

We discretised the landscape of predicted suitabilities derived 
from each species' SDM into a matrix of demes connected 
by migration (Figure 2A). Each deme has a local deme size, 
where N is the number of diploid individuals (i.e., the local 
effective population size), connected by continuous migra-
tion rates (m), which is the fraction of the recipient deme re-
placed by the donor deme. At discrete timesteps in the past, 
N and m are updated to reflect population size changes. The 
discrete timesteps correspond with SDM past projections (see 
Projecting models to historical time periods). Given the coales-
cent framework, population size changes and migration rate 
changes are instantaneous (Figure S1B).

For the demographic history before the LGM, the demes then 
collapse into two to three non- spatial ancestral populations 

(Figure S1C) whose number and sample assignment correspond 
to the number of ancestry clusters (K) determined from sNMF 
(Frichot et al. 2014). This non- spatial approximation of the co-
alescent process of the remaining uncoalesced sample gene lin-
eages allows for simulating the part of the data that is affected 
by older time periods for which SDMs are not available and are 
expected to be well approximated by the collecting phase of the 
coalescent under a variety of meta- population models in which 
the number of demes scales with a non- spatial panmictic effec-
tive population size parameter (Wakeley 2000, 2004).

The simulated demes corresponding to empirical sampling lo-
calities are sampled at the current time step identically to the 
observed samples with regards to numbers of individuals. The 
output from a simulation is a tree sequence representing the ge-
nealogical history of all sampled individuals under the standard 
coalescent with recombination (Baumdicker et  al.  2022), with 
mutations overlaid onto this tree sequence according to a Poisson 
distribution with a mean following a mutation rate µ (mutation/
base pair/generation). Each tree sequence is then converted to a 
genotype matrix whereby a fraction of the matrix is masked to 
correspond with missing data in the empirical genotype matrix, 
and genotypes were filtered according to linkage disequilibrium 
similar to the filter applied to empirical data (r < 0.1). Finally, 
the array of chosen summary statistics are calculated from this 
simulated and filtered genotype matrix.

2.4.1   |   Alternative Models of SDM to Deme Size 
Transformation

The two competing models of SDM suitability to 2DSS deme 
size transformation were the linear model (where the SDM 
suitability is multiplied by a maximum deme size to give each 
deme their N), and the threshold model (where an SDM suit-
ability threshold determines whether a deme is occupied or not 
and the deme size is set at a fixed value for N). We determined 
the threshold as the minimum SDM suitability value that an 
empirical locality is found when projecting the SDM across the 
present- day landscape. To ensure that the total N across the 
total landscape (i.e., the sum across all demes) was comparable 
between linear and threshold models, the constant local deme 
size for threshold models were set as the average of all non- zero 
deme sizes of corresponding linear models with a set maximum 
deme size. Under both models, migration is scaled by the donor 
and recipient deme size, where m between a donor and recipient 
is (Ndonor/Nrecipient) × mglobal, where mglobal is a globally assigned 
migration rate. This ensures that a proportional number of in-
dividuals are exchanged between demes relative to their deme 
sizes. All empty demes were given a very small deme size (1e- 
10) to comply with msprime. Any deme that was preceded by 
an empty deme migrated to its neighbours backwards- in- time 
in proportion to the neighbour's sizes to mimic short- distance 
colonisation.

A 1- year generation time was assumed for all Enyalius species, 
comparable with ecologically similar Anolis species (Jezkova, 
Leal, and Rodríguez- Robles 2009; Prates et al. 2016). Given that 
SDMs were projected to 1000- year intervals into the past, local 
deme sizes and continuous migration rates were updated every 
1000 generations back to the LGM. All demes collapsed into K 
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ancestral populations at 22,000 generations in the past accord-
ing to results from sNMF. Ancestral populations merged into a 
single population 1,000,000 generations into the past, a param-
eter whose choice had minimal impact on genetic summary sta-
tistics in exploratory simulations.

2.4.2   |   2DSS Model Parameters

Parameter space was explored through a grid search procedure, 
with 10 values selected for each parameter. Maximum local 
deme size was evenly spaced from 100 to 5000, Nm was geomet-
rically spaced from 0.1 to 5, and the ancestral deme size priors 
varied among species, with a full range from 5000 to 3,000,000 
(Table S3). To account for stochastic coalescent and mutational 
variation, each parameter combination was simulated five 
times. For both species, a mutation rate of 1e- 9 mutations per 
base pair per generation and a recombination rate of 1e- 9 were 
assumed (Perry et al. 2018).

After obtaining the better fit of the two alternate models, we use 
the best- fit model to estimate three classes of parameters by way 
of simulation- based SML techniques: (1) the maximum local 
deme size; (2) the migration rate (Nm, expressed as the number 
of individuals); and (3) the ancestral deme sizes for each ances-
tral population, where all species had K ancestral populations. 
The same set of simulations was used for model fitting and pa-
rameter estimation.

2.4.3   |   Genetic Summary Statistics

From the observed and simulated sample of each of the two spe-
cies, we calculated the same suite of seven spatial and nonspatial 
summary statistics. All statistics were calculated from each set 
of samples that correspond to each of the K ancestral populations 
according to sNMF results. The full array of statistics includes 
the first two Hill numbers (q = 1 and q = 2) of the site- frequency 
spectrum (SFS) corrected for the number of allele frequency 
classes (to remove the potential bias introduced by sampling ef-
fort). The q = 1 Hill number is a measure of allelic diversity and 
corresponds with Shannon's entropy of allele frequencies, while 
the q = 2 Hill number corresponds with heterozygosity (Sherwin 
et al. 2017; Gaggiotti et al. 2018; Overcast et al. 2021). Additional 
nonspatial summary statistics include nucleotide diversity (π) 
and Tajima's D. Two spatial summary statistics included the 
slope and R2 of an ordinary least squares regression between 
pairwise geographic distances and genetic distances among 
sampled demes, where geographic distances are the great- circle 
distances among the centroids of the sampled demes and genetic 
distances are the average number of nucleotide differences be-
tween two sets of sampled individuals (dxy). Prior to the regres-
sion, the geographic distances were log10 transformed and the 
genetic distances were corrected with the function (dxy/(1 – dxy) 
according to Rousset (1997)). Finally, we included raw pairwise 
dxy values calculated between sets of sampled demes. Given 
the varying number of K ancestral populations determined by 
sNMF, the total number of summary statistics varies per spe-
cies. Summary statistics were calculated using the Python pack-
ages scikit- allel v1.3.7 (Miles et al. 2023), numpy v1.26.4 (Harris 
et al. 2020) and scikit- learn 1.3.0 (Pedregosa et al. 2011).

2.4.4   |   Model Selection With SML

We used gradient boosting to classify the two competing mod-
els of SDM suitability to 2DSS deme size transformation, im-
plemented in the Python packages xgboost v2.0.4 (Chen and 
Guestrin  2016) and scikit- learn v1.3.7. Gradient boosting is 
a SML approach that builds an ensemble of simple decision 
tree models that in composite form a strong predictive model. 
We centred and scaled all predictor data prior to training the 
algorithm. Simulated data, comprising summary statistics cal-
culated from simulated genetic data along with the associated 
model indices and parameter values, were split into 80% for 
training and 20% for testing. The model was tuned using five- 
fold cross- validation paired with Bayesian optimisation, an effi-
cient algorithm for selecting an optimal set of hyperparameters 
(Table S4) (Wu et al. 2019). Model performance was assessed by 
the area under the receiver operating curve (AUC) and predic-
tion accuracy. The best performing model was chosen according 
to its AUC and variable importance was determined using the 
total gain metric, which measures the reduction in training error 
for each decision tree node the variable is present in, summed 
across nodes. The best performing model was then fit to the full 
training set and predicted to the withheld test data to assess the 
generalisation capabilities of the model. The model is not overfit 
if the model performance is similar on the test data compared to 
the training data. Finally, the SDM suitability to 2DSS deme size 
transformation was estimated from the empirical data using the 
best performing predictive model.

Additionally, we assessed the goodness of fit of the models by 
comparing the empirical summary statistics with those from the 
simulation output of both transformation models using a princi-
pal component analysis (PCA). To this end, we projected the em-
pirical data into the PC space of the simulated dataset replicates, 
visualising them along the first two PC axes.

2.4.5   |   Parameter Estimation With SML

We estimated the maximum local deme size, effective migra-
tion rate (Nm), and ancestral population sizes for each species. 
The summary statistics from the best- fit simulation model 
(linear or threshold) were used as the training data. We used 
a multi- output gradient boosted regression approach, which 
functions identically to the gradient boosting approach used 
for model classification, except outputs are transformed for 
continuous, rather than categorical data. The multi- output 
functionality also allows for efficient estimation of the pa-
rameters given that each parameter is dependent on the same 
set of training data. For each model, we centred and scaled 
all predictor data prior to training the algorithm. Simulated 
data was split into 80% training and 20% testing. The model 
was tuned over a suite of seven hyperparameters (Table  S4) 
using five- fold cross- validation paired with Bayesian optimis-
ation (Wu et al. 2019). Model performance was assessed using 
the mean absolute error (MAE) and variable importance was 
determined using the total gain metric. The best performing 
model was chosen according to its MAE. The best performing 
model was then fit to the full training set and predicted to the 
withheld test data to assess the generalisation capabilities of 
the model. The model is not overfit if the model performance 



9 of 18

is similar on the test data compared to the training data. 
Finally, the empirical data were predicted using the best per-
forming model. We used the CV+ approach to estimate pre-
diction error (95% prediction interval), which uses the error 
from five- fold cross- validation to calibrate prediction inter-
vals (Barber et al. 2021). All machine learning analyses were 
performed with Python v3.10.9.

2.4.6   |   Maps of Predicted Genetic Diversity

One hundred additional simulations were conducted to create 
landscape- wide maps of predicted genetic diversity for each spe-
cies using the parameter estimates from the best model given the 
observed data for each species. We sampled from the 95% predic-
tion intervals of each estimated parameter to generate an addi-
tional 100 simulations for each species. For each simulation, we 
sampled two individuals from demes with N ≥ 2 and calculated 
per- deme π using tskit v0.5.6. To efficiently estimate diversity 
across the landscape, we calculated π directly on tree sequences, 
returning π values that diverge from those calculated as simu-
lation summary statistics, but follow the same spatial patterns 
(Baumdicker et al. 2022). To create the maps, we took the aver-
age π across simulations for each deme.

3   |   Results

3.1   |   Sequencing and SNP Calling

An average of 3,311,792 reads were sequenced per individual, 
with an average of 3,306,666 reads retained after quality control 
filtering. A clustering threshold of 0.92 was determined to be the 
most appropriate for this data set (Methods S1 and Figures S6–
S9). An average of 62,541 high- depth clusters per sample were 
recovered with an average read coverage of 42.37. After filter-
ing, 14,916 SNPs with 40% missing data were ascertained for E. 
catenatus and 12,722 unlinked SNPs with 40% missing data for 
E. iheringii.

3.2   |   Species Distribution Modelling

The species distribution models (SDMs) chosen for each species 
were of simple to moderate complexity, with moderate perfor-
mance (Figure 4). The optimal models for E. iheringii and E. cat-
enatus had the linear feature class and 1.5 and 0.5 regularisation 
multipliers, respectively. Three predictors were used for each 
species (Figure S2). The test AUC for each species was 0.768 for 
E. iheringii and 0.813 for E. catenatus. Highest suitability was 
along the Brazilian coast for E. catenatus and E. iheringii.

3.3   |   Spatial Coalescent Simulations

The 2DSS matrices used for simulations had dimensions of 
92 × 65 demes (2824 occupied at present day) for E. catenatus 
and 118 × 110 demes (4900 occupied) for E. iheringii. A total 
of 88,000 simulations were completed for E. catenatus and 
100,000 simulations were completed for E. iheringii. Descriptive 
statistics of the simulations indicate comparable simulated 

demographic histories given the linear and threshold transfor-
mations (Table S2).

3.4   |   Population Structure

The sNMF analysis revealed different levels of population struc-
ture for the two species (Figure 4 and Figure S4). The best- fit 
number of populations (K), assessed by minimising the cross- 
entropy score, was three for E. catenatus and two for E. iheringii. 
The population splits followed a latitudinal gradient for both 
species (Figure 4). These population assignments were used as 
ancestral populations for 2DSS coalescent simulations.

3.5   |   Genetic Summary Statistics

Given the different number of sampled localities and ancestral 
populations for each species, the number of genetic summary 
statistics varied per species. Enyalius catenatus had 102 sum-
mary statistics and E. iheringii had 279, the majority being raw 
pairwise dxy values. Raw summary statistics for empirical sam-
ples and raw summary statistics for simulation output are avail-
able on https:// github. com/ conno r-  french/ enyal ius_ project.

3.6   |   Model Classification

PCAs indicate that the empirical data falls within the range of 
the simulation data (Figure 5). Classification of the linear and 
threshold iDDC models was more confident for the higher el-
evation E. iheringii compared to lower elevation E. catenatus 
(Figure 6). The best model, chosen based on the highest AUC 
score, predicted a threshold transformation for E. iheringii with 
a 99% probability and a threshold transformation for E. catena-
tus with a 60% probability (Figure 7).

The best model chosen through five- fold cross- validation for 
E. catenatus had an AUC of 0.74 on withheld test data and an 
average prediction accuracy of 67.09%, while E. iheringii had 
an AUC of 0.86 and an accuracy of 77.45% (Figure 6). A mix of 
population- wide summary statistics (e.g., π, Tajima's D, and Hill 
numbers of the site- frequency spectrum) and between- deme 
dxy values were present in the top ten most important variable 
scores, with a majority of dxy statistics (Figure S5).

3.7   |   Parameter Estimation

According to performance on withheld test data, parameter es-
timation accuracy (represented by observed versus estimated 
plots) was higher in the higher elevation E. iheringii compared 
to lower elevation E. catenatus for all parameters (Figure  6 
and Figure  S3). Mean absolute error (MAE) for max deme 
size was 520.31 for E. iheringii and 880.47 for E. catenatus. 
MAE for Nm was 0.33 for E. iheringii and 0.57 for E. catena-
tus. Predictions were also less biased for E. iheringii, with lower 
over-  or under- prediction made at the ends of the distributions 
of observed values. Maximum deme size was estimated to be 
higher in E. catenatus (point estimate = 3083, 95% prediction in-
terval = [1162, 4970]) versus E. iheringii (1588, [275, 2987]), but 

https://github.com/connor-french/enyalius_project
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FIGURE 4    |     Legend on next page.
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migration (Nm) was inferred to be lower in E. catenatus (0.59, 
[−0.84, 2.04]) than E. iheringii (1.47, [0.30, 2.68]) (Figure  7). 
Ancestral population size estimates varied widely and are re-
ported in Figure  S3. A mix of population- wide summary sta-
tistics and between- deme dxy values were present in the top 10 
most important variable scores, with a majority of dxy statistics 
(Figure S5).

3.8   |   Genetic Diversity Maps

Genetic diversity is predicted to be higher at the core of E. cat-
enatus's range compared to the edges, while genetic diversity 
is predicted to be high through most of E. iheringii's range ex-
cept towards the southern portion (Figure  8A,B). Genetic di-
versity roughly corresponds with range stability since the last 
glacial maximum for E. iheringii, but diverges for E. catenatus 
(Figure 8C,D). Genetic diversity is predicted to be higher in the 
centre of E. catenatus's range and lower towards the edges of 
the range, while stability is predicted through the extent of their 
range. For E. iheringii, high genetic diversity is predicted in areas 
surrounded by more stable environments, while low genetic di-
versity is predicted in areas surrounded by less stable environ-
ments. Additionally, the total number of individuals across the 
landscape are expected to have fluctuated more widely in E. cat-
enatus compared with E. iheringii, with an overall decrease in 
size for E. catenatus and no change for E. iheringii (Figure 8E,F). 

This value is different from the effective population size (Ne). It 
is calculated as the sum of the local deme sizes across the entire 
simulated landscape, without taking into account the impact of 
migration on Ne.

4   |   Discussion

4.1   |   Using iDDC to Test the Fit of Alternative 
Transformation Functions in Montane 
and Lowland Enyalius

Comparing the fit of alternative iDCC models with different 
SDM suitability- deme size transformation functions provided 
mixed support for our hypothesised relationship between the 
transformation function and elevational range. The iDDC 
model with a thresholded transformation function had a 
higher probability given the data from both Enyalius species, 
yet the classification probability and AUC score were higher 
for the high elevation E. iheringii. This suggests that while the 
nonlinear, that is threshold, transformations are the best fit 
for both species, the lower- elevation E. catenatus may achieve 
maximum densities in areas where they are predicted to be 
present, even in regions where the SDM predicts intermediate 
levels of habitat suitability. These findings agree with previ-
ous studies on the relationship between SDM suitabilities and 
ecological abundance, which suggest that a wedge- shaped, 

FIGURE 4    |    Raw (A, C) and thresholded (B, D) projections of SDMs for Enyalius catenatus (A, B) and Enyalius iheringii (C, D) under current 
climates. The minimum training presence threshold was applied to the thresholded projections, aligning with the threshold used in iDDC modelling. 
In the raw projections, cooler colours indicate lower suitability, while warmer colours indicate higher suitability. In the thresholded models, blue 
indicates non- suitable areas and red indicates suitable areas. Shapes in (A–D) correspond to sNMF admixture population assignments, where the 
best K for E. catenatus (A, B) was three and the best K for E. iheringii (C, D) was two. Circles, triangles, and squares represent assigned populations, 
while open, crossed circles indicate localities used for SDM modelling without genetic samples. Further details on sNMF modelling are available in 
the Methods and Figure S4.

FIGURE 5    |    The first two principal components (PCs) of a principal component analysis (PCA) conducted on the full summary statistic simulation 
output for Enyalius catenatus and Enyalius iheringii. Yellow and purple dots represent individual simulations, while red dots indicate empirical data 
projected into the simulation PC space.
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rather than linear, relationship best explains the connec-
tions between SDM suitabilities and empirical abundance 
estimates (VanDerWal et  al.  2009; Weber et  al.  2017). The 
fact that thermal physiological adaptation and plasticity are 
more prominent than previously thought (Muñoz et al. 2014; 
Strangas et al. 2019; Bodensteiner et al. 2021) may also be con-
tributing to the maintenance of higher population densities in 
areas predicted to be poor habitats by SDM. Since adaptation 
to novel thermal environments may be more pronounced in 
high- elevation species compared to low- elevation counter-
parts (von May et al. 2017), E. iheringii could indeed exhibit 
wider environmental tolerances, allowing them to achieve 
high densities even in habitats classified as sub- optimal. Yet, 
beyond the influence of macroclimate, both biotic interac-
tions (Wisz et al. 2013) and microclimate variation (Stark and 
Fridley 2022) may also mediate the relationship between SDM 
suitabilities and local deme sizes.

A fundamental factor contributing to the probabilistic ambi-
guity in discriminating between the two transformations in E. 
catenatus may be the nearly bimodal distribution of the under-
lying SDM suitabilities prior to the linear transformation. This 
resulted in a demographic model closely resembling the binary, 
thresholded transformation model (Figure  4). Our inability to 
distinguish a linear vs. thresholded transformation function 
in E. catenatus could also be due to modelling choices. For in-
stance, removing inland E. catenatus localities likely raised 
the SDM values used as a threshold by limiting the marginal 
habitats considered in determining the minimum training pres-
ence threshold. This may have contributed to only highly suit-
able habitats being considered occupied, excluding potentially 

habitable areas from the model. Likewise, the presence of uni-
formly suitable habitat, regardless of the SDM transformation 
applied, may have caused local deme size to be inferred from 
sampling density, thereby decoupling the relationship between 
local deme size and genetic diversity. In general, larger local 
deme sizes correlate with larger neighbourhood sizes and conse-
quently higher genetic diversity (Nunney 2016). An alternative 
approach could involve considering various thresholds, which 
would result in different levels of habitat patchiness and total 
landscape population size potentially allowing for better dis-
crimination between linear and threshold models (Brown and 
Knowles 2012). When the goal is to identify the best- fitting rela-
tionship between SDM suitabilities and local deme sizes, a more 
flexible sigmoid transformation may be warranted. However, 
this approach comes with a trade- off of requiring additional 
parameters to be inferred, increasing model complexity and de-
manding additional computational resources, which may not be 
necessary depending on the study's objectives.

4.2   |   Testing Expectations of Migration Rates in 
High-  and Low- Elevation Enyalius

Our finding that estimates of effective migration are higher in 
the high- elevation E. iheringii aligns with Janzen's mountain 
pass hypothesis, which predicts increased migration through 
lowland mountain passes for species exposed to greater season-
ality, such as high- elevation species or those from more temper-
ate regions. Although Janzen's original predictions compared 
temperate versus tropical mountains (Janzen 1967), E. iheringii 
experiences greater seasonality due to its occurrence in higher 

FIGURE 6    |    Model performance plots, assessed on withheld test data, coloured by species (Enyalius catenatus in orange, Enyalius iheringii in 
blue). (A) and (C) are receiver operator curves displaying the true positive rate relative to the false positive rate for classification predictions. (B) 
and (D) confusion matrices showing the average prediction accuracy, where coloured squares indicate correct classifications and blank squares 
indicate incorrect classifications. (E–H) observed versus estimated plots for the two parameters of interest: Maximum deme size and Nm. Estimated 
values are derived from the best- fit SML model, while observed values are those used to generate simulations. The dashed line indicates a perfect 
relationship between observed and estimated values.
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elevations and its occurrence farther away from the equator com-
pared to E. catenatus. While greater habitat heterogeneity across 
the range of E. iheringii might imply increased genetic structure 
(as suggested by the isolation- by- environment hypothesis, Wang 
and Summers 2010), our estimates of higher effective migration 
indicate that adaptation to substantial temporal environmen-
tal fluctuation may buffer the effects of spatial environmental 
variation. Conversely, the lower effective migration observed in 
E. catenatus also highlights a potential vulnerability to future 
climate change. Reduced connectivity can lead to range gaps, 
as the species struggles to track temperature isotherms upslope 
due to decreased dispersal ability (Colwell et al. 2008).

The higher estimates of maximum deme size in E. catenatus 
suggests that this low- elevation taxon may exist at higher local 
densities than E. iheringii populations. Although published 
natural history information on the two species is scarce, field 
collections and observations indicate that E. catenatus occurs 
at higher local densities than E. iheringii (Rodrigues, personal 
obs.). Other aspects of their natural history are similar, including 
comparable clutch sizes (E. catenatus = 5–17, E. iheringii = 4–17) 
and body sizes (mean snout- vent- length, E. catenatus = 92.9 mm, 
E. iheringii = 92.0 mm) (Rand 1982; Liou 2008; Rautenberg and 
Laps 2010; Carilo Filho et al. 2017). Home range size informa-
tion is only available for E. iheringii, which is estimated from 
two individuals (88.05 and 154.44 m2) (Liou 2008). One poten-
tial explanation for the higher effective deme size estimates in 

E. catenatus could be a greater degree of geographic genetic 
structure, which may contribute to higher levels of genetic di-
versity within the 10 km2 grid cells used in this study (Laporte 
and Charlesworth 2002). This stronger genetic structure is con-
sistent with the lower migration rate estimates observed be-
tween demes, likely due to limited dispersal (Prosser, Gibbs, and 
Weatherhead 1999; Walters, Trujillo, and Berg 2022). However, 
other forces that typically impact genetic structure acting at 
small spatial scales, like biotic interactions, social behaviour, 
and environmental variation may also be at play (Costa  1998; 
Adams et al. 2016).

4.3   |   Mapping Genetic Diversity Across the Range 
of the Target Species

The predicted spatial distribution of genetic diversity across the 
putative ranges of both species show distinct patterns: genetic 
diversity in E. catenatus is predicted to be highest at the range 
core, while in E. iheringii it is predicted to be highest across the 
northern two- thirds of its range (Figure 8). For E. iheringii, this 
aligns with climate stability maps (Figure 8), where higher ge-
netic diversity is observed in the northern, more equatorial por-
tion of its range, which has remained relatively stable since the 
LGM. In contrast, the southern portion of E. iheringii's range is 
within a narrow strip of historically stable habitat surrounded 
by relatively unstable habitat since the LGM.

FIGURE 7    |    Classification probabilities for empirical data (A, B) and 95% prediction intervals for empirical estimates of maximum deme size 
(C) and effective migration (Nm) (D). In the prediction interval plots (C, D), point estimates are displayed with 95% prediction intervals. Horizontal 
dashed lines indicate the full range of values used as inputs in the simulations.
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For E. catenatus, higher levels of genetic diversity predicted to be 
found in the core may result from asymmetric, increased migra-
tion from the range edges as deme sizes have reduced over time 
(Figure 8E). However, the region with highest stability extends 
beyond the region with highest genetic diversity (Figure  8). 
This inconsistency may stem from greater uncertainty in de-
mographic parameter inferences from the iDDC model for 
E. catenatus, suggesting that key demographic processes occur 
at different spatiotemporal scales, potentially biasing genetic di-
versity predictions (Cushman and Landguth 2010; Mascarenhas 
et  al.  2019). This pattern, in addition to E. catenatus's lower 
effective migration and potentially higher fragmentation, may 

render it vulnerable to additional factors like anthropogenic 
activity impacting its survival (Schlaepfer et al. 2018). Further 
conservation research for the species may be warranted.

Predictions on withheld test data indicate that the focal pa-
rameter estimates from the iDDC model (maximum deme 
size, effective migration, and ancestral population sizes) for 
E. catenatus were underestimated at high values and over-
estimated at low values (Figure  6 and Figure  S3). This is 
likely due to the model overfitting the mean due to limited 
signal in the summary statistics to precisely estimate these 
parameters. High uncertainty in parameter estimates from 

FIGURE 8    |    Maps of genetic diversity (A, B) and range stability since the last glacial maximum (LGM) (C, D) for the low- elevation Enyalius 
catenatus (in orange) (A, C) and the high- elevation Enyalius iheringii (in blue) (B, D). Grey areas in the maps indicate regions with no predicted 
genetic diversity or no predicted suitability since the LGM. Shapes in (A–D) represent sNMF admixture population assignments, where the best 
K = 3 for E. catenatus (A, B) and the best K = 2 for E. iheringii (C, D). Panels E and F depict line plots showing the changes in the total number of 
individuals (Total N) simulated across the landscape since the LGM. Red lines indicate the Total N for landscapes calculated using the point estimate 
of maximum deme size for each species, while grey shading indicates 95% prediction intervals of the estimates.
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likelihood- free simulation based methods such as the SML 
approach used here and approximate Bayesian computation 
can arise when parameter values are not well correlated with 
summary statistics generated from the simulation model 
(Aeschbacher, Beaumont, and Futschik  2012). Despite this, 
the cross- validation analysis did recover some correlation be-
tween parameter values and estimates given that both focal 
iDDC models (linear and thresholded transformation) were 
successfully distinguished by the SML algorithm with moder-
ate accuracy for E. catenatus (AUC: 0.74) and higher accuracy 
for E. iheringii (AUC: 0.86) (Figure 6).

4.4   |   iDDC Models and Their Challenges

A general challenge for iDDC models is addressing uncer-
tainties inherent to both approaches used (SDMs and spatial 
demographic models) within a unified framework (Brown 
and Knowles  2012; Alvarado- Serrano and Knowles  2014; 
Brown et  al.  2016). The SDMs are influenced by different 
decisions concerning modelling and data (Radosavljevic 
and Anderson  2014; Soley- Guardia, Alvarado- Serrano, and 
Anderson  2024), while the population genetic simulations 
incorporate the uncertainty from coalescent and mutational 
variance (Edwards Scott and Beerli  2000) and the necessary 
modelling simplifications to simulate spatial data (Dabi and 
Schrider 2024). The suitabilities inferred from SDM can vary 
with modelling choices, potentially leading to simulated demo-
graphic scenarios that may not accurately reflect the species' 
ecological tolerances (Lee- Yaw et  al.  2022). A potential solu-
tion is to include SDM uncertainty in the demographic model 
selection, where alternative models reflect different SDM mod-
elling choices (Castilla et al. 2024). Simplifying assumptions in 
our demographic models—such as instantaneous population 
size changes and continuous migration over 1000- generation 
intervals—may not fully capture the demographic dynamics 
of the species, where population sizes and migration might 
fluctuate over shorter intervals and in a more heterogeneous 
way. Furthermore, biased migration or deep fine- scale frag-
mentation below the five arc- minute resolution used could in-
flate estimates of local deme size, while recurrent extinction 
events might reduce them (Ryman, Laikre, and Hössjer 2019). 
Still, population genetic models are inherently oversimplifica-
tions of reality aimed at balancing tractability with capturing 
relevant parameters in complex natural systems. By directly 
parameterising coalescent models from SDMs, without inter-
mediate forward- in- time steps, we significantly reduce sim-
ulation time without sacrificing accuracy. Goodness of fit 
comparisons between simulated and observed summary sta-
tistics demonstrate that this approach effectively captures key 
features for both species. In addition, our efficient simulation 
model enables future studies to rigorously explore modelling 
choices such as SDM grain size and demographic parameter 
space moving forward iDDC- based approaches.

5   |   Conclusions

In summary, our results show that iDDC model discrimination 
led to a better model fit for the thresholded transformation in both 
species, with higher confidence in model discrimination in the 

high- elevation Enyalius iheringii compared to the low- elevation 
E. catenatus. This supports our prediction that high elevation 
species, exposed to greater seasonality, exhibit wider environ-
mental tolerances and a corresponding nonlinear relationship 
between SDM habitat suitability and local deme size. Moreover, 
consistent with Janzen's hypothesis that high- latitude and high- 
elevation species have better dispersal potential, we estimated 
lower local deme sizes and higher effective migration rates in the 
high- elevation species. These insights underscore the importance 
of carefully selecting SDM suitability- to- deme transformations in 
iDDC modelling frameworks, advancing our understanding of 
both species distribution and demography while providing a ro-
bust methodological approach for testing ecological hypotheses.
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