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ABSTRACT

In integrative distributional, demographic and coalescent (iDDC) modelling, a critical component is the statistical relationship
between habitat suitability and local population sizes. This study explores this relationship in two Enyalius lizard species from
the Brazilian Atlantic Forest: the high-elevation E. iheringii and low-elevation E. catenatus and how this transformation affects
spatiotemporal demographic inference. Most previous iDDC studies assumed a linear relationship, but this study hypothesises
that the relationship may be nonlinear, especially for high-elevation species with broader environmental tolerances. We test two
key hypotheses: (1) The habitat suitability to population size relationship is nonlinear for E. iheringii (high-elevation) and linear
for E. catenatus (low-elevation); and (2) E. iheringii exhibits higher effective migration across populations than E. catenatus. Our
findings provide clear support for hypothesis (2), but mixed support for hypothesis (1), with strong model support for a nonlinear
transformation in the high-elevation E. iheringii and some (albeit weak) support for a nonlinear transformation also in E. cat-
enatus. The iDDC models allow us to generate landscape-wide maps of predicted genetic diversity for both species, revealing
that genetic diversity predictions for the high-elevation E.iheringii align with estimated patterns of historical range stability,
whereas predictions for low-elevation E. catenatus are distinct from range-wide stability predictions. This research highlights
the importance of accurately modelling the habitat suitability to population size relationship in iDDC studies, contributing to our
understanding of species’ demographic responses to environmental changes.

1 | Introduction underlying changes in species abundance, spatial distribution

How species respond to their environments is a complex,
multidimensional phenomenon (Fenderson, Kovach, and
Llamas 2020). In particular, the dynamic and complex history
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and connectivity is difficult to detect without detailed mod-
els and data from multiple sources (Fenderson, Kovach, and
Llamas 2020; Lee-Yaw et al. 2022). Species distribution mod-
els (SDMs) can provide one direct way to explore how species'
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current and historic range dynamics are influenced by the en-
vironment (Elith and Leathwick 2009). Another approach com-
plimenting SDMs is geographically explicit population genomic
coalescent models that use geo-referenced genetic data to infer
processes underlying complex and dynamic spatiotemporal de-
mographic histories (Bradburd and Ralph 2019; Liu et al. 2019;
Kamm et al. 2020; Excoffier et al. 2021; Baumdicker et al. 2022).

Integrative distributional, demographic and coalescent model-
ling iDDC) provides a powerful framework that combines SDMs
and population genomic modelling to understand how past envi-
ronmental change has shaped species’ spatial demographic and
evolutionary histories (Brown and Knowles 2012; He, Edwards,
and Knowles 2013; Brown et al. 2016; Prates et al. 2016). iDDC
models use habitat suitability values extracted from SDMs to
inform spatially explicit demographic models of local popula-
tion sizes and migration. Parameters from these demographic
models are then applied to a coalescent model that simulates
population genomic data that can be directly compared with
the observed data (Alvarado-Serrano and Knowles 2014). In
addition to hypothesis testing and parameter inference, these
models can generate maps of predicted present-day spatial pat-
terns of genetic diversity across both sampled and unsampled
areas within a species’ range. This summary statistic of genetic
diversity (pi) is a key biodiversity metric for assessing species’
responses to environmental change over recent and historical
time scales (Exposito-Alonso et al. 2022; French et al. 2023;
Theodoridis et al. 2020).

A critical element of iDDC models is the assumed relationship
between habitat suitability and local population sizes (also re-
ferred to as deme sizes). How this relationship is parameterised
can dramatically impact the inferences drawn from iDDC mod-
els (Brown and Knowles 2012), yet explicit consideration of this
impact is relatively scarce. Typically, iDDC studies (Knowles
and Massatti 2017; Pan et al. 2020; Castilla et al. 2024), assume
that local deme sizes increase by one unit for each unit increase
in habitat suitability, implying a linear relationship. However,
this assumption may not hold across several ecological condi-
tions (VanDerWal et al. 2009; Weber et al. 2017). For instance,
the relationship could instead follow a wedge-shaped curve,
where local deme sizes rise rapidly to a maximum at a certain
SDM suitability threshold, or it might take another intermedi-
ate nonlinear form (VanDerWal et al. 2009). Furthermore, at
the coarse spatial resolution typical of SDM-based inferences,
access to diverse microhabitats—often not captured by coarse
climatic variables—may lead to a decoupling between SDM-
determined suitability and the actual local deme density, re-
sulting in a nonlinear rather than a linear relationship (Lu and
Jetz 2023; VanDerWal et al. 2009).

This nonlinear relationship may be particularly relevant in
montane habitats, where the elevational gradient can enable
species to more readily climb up or down in altitude and hence
access suitable environments more easily than those species
in lowland habitats (Dobrowski 2011). If the steep topography
enables high-elevation species to more easily buffer environ-
mental changes that reduce climate suitability, allowing them
to maintain high deme sizes despite those conditions, we expect
that iDDC models with a nonlinear relationship between local
SDM suitability based on macroclimatic data and local deme

sizes to be a better fit for high-elevation species than models as-
suming a linear relationship. In this case, local deme sizes are
expected to reach a high value even under relatively low suitabil-
ity scores. Conversely, a linear relationship can be expected in
low-elevation species, in which local deme sizes are limited by
the suitability of the landscape. If this is the case, then the spa-
tial resolution of the SDMs could be aligned more closely with
the granularity of habitat turnover in low- rather than in high-
elevation species.

In addition, emerging evidence has shown that high-elevation
ectotherm species tend to show greater resilience to climate fluc-
tuations, potentially due to broader environmental tolerances
relative to lowland animals (Janzen 1967; von May et al. 2017;
Strangas et al. 2019; Bovo et al. 2023). This resilience may re-
sult from highland species experiencing a wider range of cli-
mate variability, driving physiological adaptations or plasticity
(Brett 1956; Janzen 1967; Bozinovic, Calosi, and Spicer 2011),
or behavioural buffering (Sunday et al. 2014; Mufioz 2022).
Consequently, these broader environmental tolerances may
confer greater metapopulation connectivity (Qiao et al. 2016;
Carscadden et al. 2020). We therefore expect iDDC models of
high-elevation species to infer higher connectivity (Nm) com-
pared to low-elevation species, as indicated by higher estimated
migration rates.

To test if these expectations hold, we develop iDDC mod-
els for two lizard species endemic to the Brazilian Atlantic
Forest (BAF), which features a pronounced elevational gra-
dient whereby low-elevation species in the north are expected
to have experienced greater range stability than those in the
south, which in turn experience more climate variability due to
higher elevations and a more temperate climate (Carnaval and
Moritz 2008). We specifically focus on two Enyalius lizard spe-
cies, E.iheringii and E. catenatus, whose contrasting elevation
ranges yield different predictions regarding how climate change
may have influenced their habitat suitability and local density
over time (Figure 1). Both species inhabit forest and forest-edge
habitats with allopatric distributions (Rodrigues et al. 2014).
Enyalius iheringii occurs in the southeastern BAF, a region
farther from the equator and more environmentally variable at
both current and historical time scales (Carnaval et al. 2014). In
the northern part of its distribution, this species primarily in-
habits regions around 700 m above sea level (asl), reaching lower
elevations at higher latitudes (Figure 1). Enyalius catenatus, on
the other hand, occurs in the northeastern BAF from sea level to
around 200 m asl, becoming rare above this elevation (Figure 1)
(Rodrigues et al. 2014). Both species are semi-arboreal, diur-
nal sit-and-wait foragers, and similar in size averaging around
90mm (Jackson 1978; Liou 2008; Rautenberg and Laps 2010;
Rodrigues et al. 2014; Bruscagin et al. 2017). They live up to 6
m above the ground, between the base of tree trunks and shrubs
with leaves (Jackson 1978; Rodrigues et al. 2014), descending to
the ground only to feed or reproduce.

In this study, we implement a novel iDDC method that inte-
grates supervised machine learning (SML) to (1) test two alter-
native statistical relationships (linear vs. nonlinear) between
local SDM suitability and local deme sizes across space and
time, predicting a linear relationship for the low-elevation E.
catenatus and a nonlinear relationship for the high-elevation
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FIGURE1 | A map of Enyalius catenatus (orange) and Enyalius iheringii (blue) sampling localities and their elevational distributions. Enyalius
catenatus is distributed across lower elevations in the northern portion of the BAF, while E. iheringii is distributed across higher elevations at the
southern portion of the BAF. The northern BAF is closer to the equator and experiences less annual climate fluctuation than the southern BAF.

E. iheringii; (2) evaluate the relationship between elevation and
connectivity (by estimating local deme sizes (V) and effective
migration rates (Nm) for each species), expecting lower Nm for
E. catenatus compared to E. iheringii; and (3) use our estimates
of local N and Nm, along with the best-fit transformation model,
to generate landscape-wide maps of current predicted genetic
diversity encompassing unsampled areas within each species’
predicted range. For that, we combine SDMs with genomic data
in a coalescent simulation framework across a grid-like land-
scape, where each grid cell represents a local population (deme).
By approximating a spatially explicit coalescent model, we are
able to efficiently generate simulated genotypes that match the
spatial sampling configuration of the observed data (Figure 2).
To assess the sensitivity of the assumption of a linear relation-
ship between habitat suitability values and local deme sizes, we
compare the effect of linear versus nonlinear transformations

of SDM-generated suitabilities on local deme sizes in our iDDC
model, using geo-referenced genome-wide SNP data from the
two Enyalius species differing in elevation and latitude. We then
incorporate this uncertainty in transformation probabilities
into our iDDC-based analysis producing estimates of historical
demographic parameters and predictions of landscape-wide ge-
netic diversities.

2 | Methods
2.1 | Spatially Explicit Coalescent iDDC Model
To test the relative fit of the linear versus threshold trans-

formation of SDM suitabilities into local effective popula-
tion sizes, estimate demographic parameters under the best
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FIGURE2 | Conceptual diagram of theiDDC model with hypotheses
defined by SDM and local deme size transformation functions. (A) The
transformation of SDM-derived habitat suitability values (ranging
from 0 to 1) into effective population sizes of local demes within the
2D stepping-stone (2DSS) model using a transformation function. Two
transformation functions are considered: Linear (left) and thresholded
(right). For the linear transformation, each SDM suitability value
is multiplied by a maximum local deme size (max,, ,) making
local deme sizes directly proportional to the SDM suitability. For the
thresholded transformation, only SDM cells with suitability values
above a specified threshold are occupied, while those below or equal
to the threshold remain unoccupied. To ensure comparability of total
population size across the landscape between linear and thresholded
models, the constant local deme size in a threshold transformation is
calculated as the average of all occupied demes in the corresponding
linear transformation with the same max, ., .. Migration between
neighbouring demes is scaled by neighbouring population sizes with
vz = /Ny,) X M, where M is a global migration
rate, and N is the local deme size. (B) Predictions for elevation-based

the formula m

transformation hypotheses where a linear transformation is predicted
for low-elevation species and a threshold transformation is predicted for
high-elevation species. Additionally, higher migration rates (indicated
by thicker lines) are expected for high-elevation species relative to low-
elevation species. A full conceptual diagram thatillustrates demographic
change over time and the non-spatial portion of simulations is available
in Figure S1.

transformation, and create predicted contemporary genetic
diversity maps, we develop a new iDDC model that explicitly
integrates SDMs with a coalescent two-dimensional stepping-
stone model (2DSS) that simulates spatial patterns of genomic
diversity for direct comparison with observed samples. By cal-
culating the same array of summary statistics in the simulated
and observed datasets, we use SML to probabilistically dis-
criminate SDM transformation models, estimate demographic
history model parameters and generate the genetic diversity
maps (Figure 3).

SDMs use rasterised data to create probability maps of species
occurrence, which can be used to infer ecological parameters
like potential local abundance and resistance to dispersal,
following the same precautions outlined in the Introduction
(Guisan and Thuiller 2005; VanDerWal et al. 2009; Weber
et al. 2017). We translate these ecological parameters into
the population genetic parameters used by a 2DSS model
(Figure 2). Specifically, the 2DSS model consists of a grid of
rectangular demes connected by migration along their edges
with effective population sizes scaled by the predicted SDM
suitabilities. The grid is arranged in a rectangle that matches
the extent of the SDM, where each cell with a predicted suit-
ability in the SDM corresponds to a deme in the 2DSS, and
cells without predicted suitability correspond to empty demes.
It is a simplification of a continuous geographical space,
where demes located nearer to each other are more likely to
exchange alleles, generating patterns of isolation-by-distance
(Kimura, Weiss, and Weiss 1964). Additionally, deme sizes
and migration can change through time, where SDMs pro-
jected to environmental conditions in the past are used to
parameterise deme size changes and subsequent migration
rate changes. This implementation of the 2DSS model simu-
lates local deme sizes and migration backwards-in-time in a
fully coalescent framework, similar to Szép, Trubenova, and
Csilléry (2022), as opposed to a paired forward-time demog-
raphy, backward-time coalescent simulation approach like
SPLATCHES3 and similar methods that implement the iDDC
approach (Currat, Ray, and Excoffier 2004; Currat et al. 2019).
Because backwards simulation under a coalescent model is far
more efficient than forward time simulation, this iDDC ap-
proach directly links SDM suitability values with population
genetic parameters in a computationally efficient manner.

To test the hypothesis of the influence of linear versus nonlin-
ear transformations on the inference of local deme sizes, we
directly translate SDM suitability values into 2DSS local deme
sizes using either a linear transformation function, where the
SDM suitability values, which range from zero to one, are
multiplied by a maximum local deme size, or a thresholded
transformation function. While there are a variety of non-
linear shapes the relationship between SDM suitability val-
ues and local deme sizes could take, we opted to consider a
thresholded binary distribution, the most extreme nonlinear
realisation of this transformation function, which has been
shown to influence the predicted genetic diversity of iDDC
models (Brown et al. 2016). The threshold transformation uses
a minimum SDM suitability value as a threshold, where SDM
suitability values above the threshold are considered occupied
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FIGURE 3 | Full analytical workflow for each species, from creating species distribution models (SDMs) to generating genetic diversity maps.
SDMs are developed using weather station-derived bioclimatic variables (temperature and precipitation), resulting in habitat suitability ranging from
0 to 1. The SDMs are projected to palaeoclimates back to the last glacial maximum (LGM, 22 kya) in 1000-year time steps. The suitability values
for each projection are translated into local deme sizes in a two-dimensional stepping-stone (2DSS) model, where demes are arranged in a grid that
matches the dimensions of the SDM and each 2DSS deme corresponds to an SDM suitability pixel. A full description of the model is available in
the Methods section ‘Spatially explicit coalescent iDDC model’. The model outputs a genotype matrix for individuals matching empirical sampling
localities, upon which a suite of genetic summary statistics are calculated. The same set of summary statistics is also calculated for empirical data.
After running each model- linear and threshold- for approximately 50,000 replicates and aggregating the summary statistics, a supervised machine
learning (SML) classification approach is employed to evaluate the model's ability to discriminate between the two transformation methods. After
training the classifier with these simulations, the empirical data are classified into the best-fit transformation for the species. Following classification,
demographic parameters are estimated using an SML regression approach with the summary statistics simulated from the best-fit transformation
model. In addition to point estimates, 95% prediction intervals are inferred for each demographic parameter. Finally, to generate genetic diversity
maps for each species, 100 random samples from the 95% prediction interval for each demographic parameter are used as inputs for 100 additional
landscape-wide simulations. Genetic diversity is estimated for each deme in the current landscape containing at least two individuals based on the

transformation from the SDM. The mean across these 100 simulations is used to derive an average genetic diversity estimate for each deme.

and SDM suitability values below the threshold are considered
empty (Figure 2). The maximum local deme size is assigned to
all occupied demes.

2.2 | Species Distribution Modelling
2.2.1 | Occurrence Data

We obtained occurrence data from across the species' ranges
through field sampling and museum records, validating
them with expert review and field notes (Table S1, Figure 1).
Additionally, all localities for Enyalius catenatus and nearly
all localities (N-2) for E.iheringii that were used for species
distribution modelling have at least one individual who was
sequenced for genomic analysis. However, four inland locali-
ties were discarded for E. catenatus after modelling and before
thresholding the model output, due to their presence in very low
suitability habitat and isolated relict forest fragments (Table S1).
Including marginal habitat in SDMs is known to reduce the abil-
ity to detect environmental barriers to the species’ occupation,
so using them to threshold model output would result in overes-
timating the species' potential range (Soley-Guardia et al. 2016).
These individuals were also not used in genetic simulations. We
spatially thinned the occurrence data using a buffer distance
of 20km, which is twice the resolution of the environmental
data, to reduce the impact of clustered sampling bias and the

resultant artefactual spatial autocorrelation on the models
using the spThin R package (Boria et al. 2014; Aiello-Lammens
et al. 2015).

2.2.2 | Environmental Data

The environmental data used for modelling were the 19 bio-
climatic variables from the CHELSA v2.1 database, which
provide descriptions of temperature and precipitation based
on statistical interpolation of weather station data (Karger
et al. 2017, 2018). These data were downloaded at 30 arc-
second (approximately 1km? at the equator) resolution. We ag-
gregated the layers to five arc-minute (approximately 10km?
at the equator) resolution using bilinear interpolation before
modelling to allow for the use of lower-resolution observation
points and to match the resolution we chose for spatial demo-
graphic modelling.

For model calibration, we delineated the study area for each
species using a minimum convex polygon around the species’
localities, with a 0.5° buffer. This approach captures habitat the
species can reasonably disperse to without encroaching deep
into the Cerrado. This reduces the chance of bias imposed by
sampling suitable environments that are unreachable due to the
species' dispersal abilities (Anderson and Raza 2010). The area
within the polygon was used as the background environment for
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SDM model building. All spatial processing was done using the
terra v1.6 and sfv1.0 R packages (Pebesma 2018; Hijmans 2022;
Pebesma and Bivand 2023).

2.2.3 | SDM Model Building

We modelled the potential distribution of each species using
Maxent v3.4.4 (Phillips, Anderson, and Schapire 2006), a su-
pervised machine learning technique and software package
designed for using presence-background data, implemented in
the dismo v1.3 R package (Hijmans et al. 2022). The maximum
number of available background points were selected for each
species' study area (considering a single point per pixel): 2355
points for E. catenatus and 6515 points for E. iheringii. To reduce
the impact of multicollinearity on model interpretability and re-
duce the potential of projecting to non-analogue environments
in historical time periods (Fitzpatrick and Hargrove 2009), we
filtered predictor variables for each species and retained only
those with a variance inflation factor less than 10 using the
usdm v2.1 R package (Dormann et al. 2013; Naimi et al. 2014).

We considered a suite of candidate models under varying com-
plexity, preferring simple over complex models to prevent model
overfitting. In Maxent, the linear and quadratic feature classes,
along with regularisation multipliers from 0.5 to 5.0 in 0.5 in-
crements, were considered. Models were constructed using the
ENMeval v2.0.4 R package (Kass et al. 2021). To further prevent
model extrapolation, we clamped predictors to the range of the
training data.

2.2.4 | SDM Model Evaluation

Due to the low number of occurrence records after spatial
thinning, we used leave-one-out cross validation for model
selection to maximise the amount of information available
(Shcheglovitova and Anderson 2013). We used two criteria for
model selection, the Akaike Information Criterion corrected
for low sample sizes (AICc) and the minimum training pres-
ence (MTP) omission error rate, which is the lowest occurrence
suitability value used to train the model. We first selected mod-
els with the lowest AICc values, then for all models within <2
AICc of each other, selected the model with the lowest MTP
omission error rate. If there were multiple models with the same
MTP omission error rate, we then considered the model with
the highest average area under the curve (AUC) score perfor-
mance on validation data. This approach for model selection pri-
oritises simple models that reliably predict training data and are
able to distinguish occurrences from background environment
(Radosavljevic and Anderson 2014).

2.2.5 | Projecting Models to Historical Time Periods

To estimate distribution pattern shifts since the last glacial max-
imum (LGM, approximately 21 kya), we projected each species’
SDM to environmental reconstructions in 22 sequential 1000-
year timesteps from the present going back to the LGM, using
Maxent's cloglog output. We obtained 30 arc-second resolution
historical bioclimate variables from the CHELSA-TraCE21k

dataset and aggregated them to five arc-minutes (Karger
et al. 2023). To represent areas the lizards may reasonably
disperse to and between, we limited the study area for projec-
tions to a 2.0° buffer around a minimum convex hull polygon of
the observed localities. To facilitate visual evaluation of range
stability through time, we summarised the change in per-pixel
suitability through time as stability maps, where MTP thresh-
olded projections were summed across time. Pixels were consid-
ered more stable if they had a higher number of timesteps with
predicted presence, and less stable if they had a lower number.

2.3 | Genomic Data

Samples for sequencing the two Enyalius species were obtained
from 89 individuals collected from 66 sampling locations across
the Brazilian Atlantic Forest, along with three outgroup individ-
uals (Figure 1 and Table S1). These samples were obtained under
ICMBIO permits #10126, #30309, and #10754. Genomic DNA
was isolated from liver or muscle tissues preserved in 100% eth-
anol using the Qiagen DNeasy blood and tissues kit extraction
method. DNA quality was assessed by visualising high molecu-
lar weight bands on a 1% agarose gel, and DNA concentrations
quantified using a Qubit 2.0 fluorometer (Life Technologies). All
DNA extractions were normalised at a concentration of 10 ng/uL
in a total volume of 50uL for reduced-representation genomic
library preparation.

A RAD-seq library (Baird et al. 2008) was prepared by
Floragenex Inc. (http://floragenex.com) generating restriction-
site associated DNA of thousands of short fragments distributed
across the entire genome. Each individual's genomic DNA was
digested with the enzyme SbfI (5 CCTGCAGG 3’), then ligated
to customised Illumina adapters containing 10-bp individual-
specific barcodes and the enzyme overhang (6bp). After liga-
tion, all samples were pooled into a single sequencing library
followed by sonication and end repair. Fragments ranging from
300 to 500bp in size were selected. The fragments were then
PCR-amplified, and finally sequenced across multiple sequenc-
ing lanes of the Hiseq2500 System Illumina sequencer, generat-
ing single-end reads of 100 bp.

2.3.1 | Read Processing and Assembly

Raw reads were demultiplexed to individuals based on unique
barcode sequences. Demultiplexed sequencing reads were then
assembled across species with three outgroups using ipyrad
v0.7.22 (Eaton and Overcast 2020). A de novo reference was cre-
ated, since no reference genome was available. Prior to assem-
bly, adapters were trimmed from reads based on quality scores,
and low-quality reads were filtered using a PhredQ score cut-
off of less than 33, with a maximum of five low- quality bases
per read. We determined the optimal clustering threshold fol-
lowing McCartney-Melstad, Gidis, and Shaffer (2019) (Methods
S1 and Figures S6-S9). A minimum of four samples per locus
were retained, with further missingness thresholds explored on
a per-species basis. All remaining parameters were set to default
values for the ipyrad assembly pipeline. Following assembly,
we assessed the presence of batch effects, visualising potential
differences in expected heterozygosity, missing data biases, and

6 0f 18

Molecular Ecology, 2024


http://floragenex.com

genetic structure among sequencing runs and found no pres-
ence of a significant effect (Methods S1 and Figures S10-S12).
A single outlier individual was removed prior to applying SNP
filters for each species due to a combination of high levels of al-
lele sharing across species and a high proportion of missing data
(Table S1).

2.3.2 | SNP Calling

We performed additional filtering on single nucleotide poly-
morphisms (SNPs) after quality filtering the reads, using
vcftools v0.1.16 (Danecek et al. 2011) and scikit-allel v1.3.7
(Miles et al. 2023). Only biallelic sites were retained. We as-
sessed the impact of missing data using four missingness
thresholds: 50%, 40%, 30% and 20% of sites missing across
individuals per species. We additionally filtered for unlinked
SNPs using a linkage disequilibrium (#?) threshold of 0.10.
Finally, we removed invariant sites and singletons, which are
likely overrepresented due to sequencing errors common in
RADseq data.

2.3.3 | Population Structure

We determined the number of non-spatial ancestral popula-
tions of each Enyalius species using the program sNMF (Frichot
et al. 2014). The sSNMF algorithm uses sparse non-negative ma-
trix factorisation to estimate ancestry coefficients without rely-
ing on population genetic model assumptions and is optimised
for large genomic datasets (Frichot et al. 2014). We ran the al-
gorithm with empirical samples and explored 1-5 ancestral
populations (K), with 20 replicates per K value. Multiple alpha
regularisation parameter values (1, 10, 100) were explored to as-
sess the robustness of results to differing levels of model com-
plexity. We selected the best-fit K for each species according to
the cross-entropy criterion.

2.4 | 2D Stepping-Stone Coalescent Model

We used a fully coalescent implementation of the 2DSS, de-
scribed above. Parameterised 2DSS models were simulated
using the msprime coalescent simulator (v1.3.0, Baumdicker
et al. 2022).

We discretised the landscape of predicted suitabilities derived
from each species’ SDM into a matrix of demes connected
by migration (Figure 2A). Each deme has a local deme size,
where N is the number of diploid individuals (i.e., the local
effective population size), connected by continuous migra-
tion rates (m), which is the fraction of the recipient deme re-
placed by the donor deme. At discrete timesteps in the past,
N and m are updated to reflect population size changes. The
discrete timesteps correspond with SDM past projections (see
Projecting models to historical time periods). Given the coales-
cent framework, population size changes and migration rate
changes are instantaneous (Figure S1B).

For the demographic history before the LGM, the demes then
collapse into two to three non-spatial ancestral populations

(Figure S1C) whose number and sample assignment correspond
to the number of ancestry clusters (K) determined from sNMF
(Frichot et al. 2014). This non-spatial approximation of the co-
alescent process of the remaining uncoalesced sample gene lin-
eages allows for simulating the part of the data that is affected
by older time periods for which SDMs are not available and are
expected to be well approximated by the collecting phase of the
coalescent under a variety of meta-population models in which
the number of demes scales with a non-spatial panmictic effec-
tive population size parameter (Wakeley 2000, 2004).

The simulated demes corresponding to empirical sampling lo-
calities are sampled at the current time step identically to the
observed samples with regards to numbers of individuals. The
output from a simulation is a tree sequence representing the ge-
nealogical history of all sampled individuals under the standard
coalescent with recombination (Baumdicker et al. 2022), with
mutations overlaid onto this tree sequence according to a Poisson
distribution with a mean following a mutation rate u (mutation/
base pair/generation). Each tree sequence is then converted to a
genotype matrix whereby a fraction of the matrix is masked to
correspond with missing data in the empirical genotype matrix,
and genotypes were filtered according to linkage disequilibrium
similar to the filter applied to empirical data (r<0.1). Finally,
the array of chosen summary statistics are calculated from this
simulated and filtered genotype matrix.

2.4.1 | Alternative Models of SDM to Deme Size
Transformation

The two competing models of SDM suitability to 2DSS deme
size transformation were the linear model (where the SDM
suitability is multiplied by a maximum deme size to give each
deme their N), and the threshold model (where an SDM suit-
ability threshold determines whether a deme is occupied or not
and the deme size is set at a fixed value for N). We determined
the threshold as the minimum SDM suitability value that an
empirical locality is found when projecting the SDM across the
present-day landscape. To ensure that the total N across the
total landscape (i.e., the sum across all demes) was comparable
between linear and threshold models, the constant local deme
size for threshold models were set as the average of all non-zero
deme sizes of corresponding linear models with a set maximum
deme size. Under both models, migration is scaled by the donor
and recipient deme size, where m between a donor and recipient
is (Ndonor/Nredpiem)xmglobal, where Mgiobal is a globally assigned
migration rate. This ensures that a proportional number of in-
dividuals are exchanged between demes relative to their deme
sizes. All empty demes were given a very small deme size (le-
10) to comply with msprime. Any deme that was preceded by
an empty deme migrated to its neighbours backwards-in-time
in proportion to the neighbour's sizes to mimic short-distance
colonisation.

A 1-year generation time was assumed for all Enyalius species,
comparable with ecologically similar Anolis species (Jezkova,
Leal, and Rodriguez-Robles 2009; Prates et al. 2016). Given that
SDMs were projected to 1000-year intervals into the past, local
deme sizes and continuous migration rates were updated every
1000 generations back to the LGM. All demes collapsed into K
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ancestral populations at 22,000 generations in the past accord-
ing to results from sNMF. Ancestral populations merged into a
single population 1,000,000 generations into the past, a param-
eter whose choice had minimal impact on genetic summary sta-
tistics in exploratory simulations.

2.4.2 | 2DSS Model Parameters

Parameter space was explored through a grid search procedure,
with 10 values selected for each parameter. Maximum local
deme size was evenly spaced from 100 to 5000, Nm was geomet-
rically spaced from 0.1 to 5, and the ancestral deme size priors
varied among species, with a full range from 5000 to 3,000,000
(Table S3). To account for stochastic coalescent and mutational
variation, each parameter combination was simulated five
times. For both species, a mutation rate of le-9 mutations per
base pair per generation and a recombination rate of 1e-9 were
assumed (Perry et al. 2018).

After obtaining the better fit of the two alternate models, we use
the best-fit model to estimate three classes of parameters by way
of simulation-based SML techniques: (1) the maximum local
deme size; (2) the migration rate (Nm, expressed as the number
of individuals); and (3) the ancestral deme sizes for each ances-
tral population, where all species had K ancestral populations.
The same set of simulations was used for model fitting and pa-
rameter estimation.

2.4.3 | Genetic Summary Statistics

From the observed and simulated sample of each of the two spe-
cies, we calculated the same suite of seven spatial and nonspatial
summary statistics. All statistics were calculated from each set
of samples that correspond to each of the K ancestral populations
according to sSNMF results. The full array of statistics includes
the first two Hill numbers (q=1 and q=2) of the site-frequency
spectrum (SFS) corrected for the number of allele frequency
classes (to remove the potential bias introduced by sampling ef-
fort). The q=1 Hill number is a measure of allelic diversity and
corresponds with Shannon's entropy of allele frequencies, while
the =2 Hill number corresponds with heterozygosity (Sherwin
et al. 2017; Gaggiotti et al. 2018; Overcast et al. 2021). Additional
nonspatial summary statistics include nucleotide diversity ()
and Tajima's D. Two spatial summary statistics included the
slope and R? of an ordinary least squares regression between
pairwise geographic distances and genetic distances among
sampled demes, where geographic distances are the great-circle
distances among the centroids of the sampled demes and genetic
distances are the average number of nucleotide differences be-
tween two sets of sampled individuals (dxy). Prior to the regres-
sion, the geographic distances were log, transformed and the
genetic distances were corrected with the function (dxy/(l —dxy)
according to Rousset (1997)). Finally, we included raw pairwise
dxy values calculated between sets of sampled demes. Given
the varying number of K ancestral populations determined by
sNMF, the total number of summary statistics varies per spe-
cies. Summary statistics were calculated using the Python pack-
ages scikit-allel v1.3.7 (Miles et al. 2023), numpy v1.26.4 (Harris
et al. 2020) and scikit-learn 1.3.0 (Pedregosa et al. 2011).

2.4.4 | Model Selection With SML

We used gradient boosting to classify the two competing mod-
els of SDM suitability to 2DSS deme size transformation, im-
plemented in the Python packages xgboost v2.0.4 (Chen and
Guestrin 2016) and scikit-learn v1.3.7. Gradient boosting is
a SML approach that builds an ensemble of simple decision
tree models that in composite form a strong predictive model.
We centred and scaled all predictor data prior to training the
algorithm. Simulated data, comprising summary statistics cal-
culated from simulated genetic data along with the associated
model indices and parameter values, were split into 80% for
training and 20% for testing. The model was tuned using five-
fold cross-validation paired with Bayesian optimisation, an effi-
cient algorithm for selecting an optimal set of hyperparameters
(Table S4) (Wu et al. 2019). Model performance was assessed by
the area under the receiver operating curve (AUC) and predic-
tion accuracy. The best performing model was chosen according
to its AUC and variable importance was determined using the
total gain metric, which measures the reduction in training error
for each decision tree node the variable is present in, summed
across nodes. The best performing model was then fit to the full
training set and predicted to the withheld test data to assess the
generalisation capabilities of the model. The model is not overfit
if the model performance is similar on the test data compared to
the training data. Finally, the SDM suitability to 2DSS deme size
transformation was estimated from the empirical data using the
best performing predictive model.

Additionally, we assessed the goodness of fit of the models by
comparing the empirical summary statistics with those from the
simulation output of both transformation models using a princi-
pal component analysis (PCA). To this end, we projected the em-
pirical data into the PC space of the simulated dataset replicates,
visualising them along the first two PC axes.

2.4.5 | Parameter Estimation With SML

We estimated the maximum local deme size, effective migra-
tion rate (Nm), and ancestral population sizes for each species.
The summary statistics from the best-fit simulation model
(linear or threshold) were used as the training data. We used
a multi-output gradient boosted regression approach, which
functions identically to the gradient boosting approach used
for model classification, except outputs are transformed for
continuous, rather than categorical data. The multi-output
functionality also allows for efficient estimation of the pa-
rameters given that each parameter is dependent on the same
set of training data. For each model, we centred and scaled
all predictor data prior to training the algorithm. Simulated
data was split into 80% training and 20% testing. The model
was tuned over a suite of seven hyperparameters (Table S4)
using five-fold cross-validation paired with Bayesian optimis-
ation (Wu et al. 2019). Model performance was assessed using
the mean absolute error (MAE) and variable importance was
determined using the total gain metric. The best performing
model was chosen according to its MAE. The best performing
model was then fit to the full training set and predicted to the
withheld test data to assess the generalisation capabilities of
the model. The model is not overfit if the model performance
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is similar on the test data compared to the training data.
Finally, the empirical data were predicted using the best per-
forming model. We used the CV+ approach to estimate pre-
diction error (95% prediction interval), which uses the error
from five-fold cross-validation to calibrate prediction inter-
vals (Barber et al. 2021). All machine learning analyses were
performed with Python v3.10.9.

2.4.6 | Maps of Predicted Genetic Diversity

One hundred additional simulations were conducted to create
landscape-wide maps of predicted genetic diversity for each spe-
cies using the parameter estimates from the best model given the
observed data for each species. We sampled from the 95% predic-
tion intervals of each estimated parameter to generate an addi-
tional 100 simulations for each species. For each simulation, we
sampled two individuals from demes with N>2 and calculated
per-deme 7 using tskit v0.5.6. To efficiently estimate diversity
across the landscape, we calculated 7 directly on tree sequences,
returning 7 values that diverge from those calculated as simu-
lation summary statistics, but follow the same spatial patterns
(Baumdicker et al. 2022). To create the maps, we took the aver-
age 7 across simulations for each deme.

3 | Results
3.1 | Sequencing and SNP Calling

An average of 3,311,792 reads were sequenced per individual,
with an average of 3,306,666 reads retained after quality control
filtering. A clustering threshold of 0.92 was determined to be the
most appropriate for this data set (Methods S1 and Figures S6-
S9). An average of 62,541 high-depth clusters per sample were
recovered with an average read coverage of 42.37. After filter-
ing, 14,916 SNPs with 40% missing data were ascertained for E.
catenatus and 12,722 unlinked SNPs with 40% missing data for
E. iheringii.

3.2 | Species Distribution Modelling

The species distribution models (SDMs) chosen for each species
were of simple to moderate complexity, with moderate perfor-
mance (Figure 4). The optimal models for E. iheringii and E. cat-
enatus had the linear feature class and 1.5 and 0.5 regularisation
multipliers, respectively. Three predictors were used for each
species (Figure S2). The test AUC for each species was 0.768 for
E. iheringii and 0.813 for E. catenatus. Highest suitability was
along the Brazilian coast for E. catenatus and E. iheringii.

3.3 | Spatial Coalescent Simulations

The 2DSS matrices used for simulations had dimensions of
92 x65 demes (2824 occupied at present day) for E. catenatus
and 118 x110 demes (4900 occupied) for E. iheringii. A total
of 88,000 simulations were completed for E. catenatus and
100,000 simulations were completed for E. iheringii. Descriptive
statistics of the simulations indicate comparable simulated

demographic histories given the linear and threshold transfor-
mations (Table S2).

3.4 | Population Structure

The sNMF analysis revealed different levels of population struc-
ture for the two species (Figure 4 and Figure S4). The best-fit
number of populations (K), assessed by minimising the cross-
entropy score, was three for E. catenatus and two for E. iheringii.
The population splits followed a latitudinal gradient for both
species (Figure 4). These population assignments were used as
ancestral populations for 2DSS coalescent simulations.

3.5 | Genetic Summary Statistics

Given the different number of sampled localities and ancestral
populations for each species, the number of genetic summary
statistics varied per species. Enyalius catenatus had 102 sum-
mary statistics and E. iheringii had 279, the majority being raw
pairwise dxy values. Raw summary statistics for empirical sam-
ples and raw summary statistics for simulation output are avail-
able on https://github.com/connor-french/enyalius_project.

3.6 | Model Classification

PCAs indicate that the empirical data falls within the range of
the simulation data (Figure 5). Classification of the linear and
threshold iDDC models was more confident for the higher el-
evation E. iheringii compared to lower elevation E. catenatus
(Figure 6). The best model, chosen based on the highest AUC
score, predicted a threshold transformation for E. iheringii with
a 99% probability and a threshold transformation for E. catena-
tus with a 60% probability (Figure 7).

The best model chosen through five-fold cross-validation for
E. catenatus had an AUC of 0.74 on withheld test data and an
average prediction accuracy of 67.09%, while E. iheringii had
an AUC of 0.86 and an accuracy of 77.45% (Figure 6). A mix of
population-wide summary statistics (e.g., 77, Tajima’s D, and Hill
numbers of the site-frequency spectrum) and between-deme
dxy values were present in the top ten most important variable
scores, with a majority of d  statistics (Figure S5).

3.7 | Parameter Estimation

According to performance on withheld test data, parameter es-
timation accuracy (represented by observed versus estimated
plots) was higher in the higher elevation E. iheringii compared
to lower elevation E. catenatus for all parameters (Figure 6
and Figure S3). Mean absolute error (MAE) for max deme
size was 520.31 for E. iheringii and 880.47 for E. catenatus.
MAE for Nm was 0.33 for E. iheringii and 0.57 for E. catena-
tus. Predictions were also less biased for E. iheringii, with lower
over- or under-prediction made at the ends of the distributions
of observed values. Maximum deme size was estimated to be
higher in E. catenatus (point estimate =3083, 95% prediction in-
terval =[1162, 4970]) versus E. iheringii (1588, [275, 2987]), but
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FIGURE 4 | Raw (A, C) and thresholded (B, D) projections of SDMs for Enyalius catenatus (A, B) and Enyalius iheringii (C, D) under current
climates. The minimum training presence threshold was applied to the thresholded projections, aligning with the threshold used in iDDC modelling.
In the raw projections, cooler colours indicate lower suitability, while warmer colours indicate higher suitability. In the thresholded models, blue
indicates non-suitable areas and red indicates suitable areas. Shapes in (A-D) correspond to sSNMF admixture population assignments, where the
best K for E. catenatus (A, B) was three and the best K for E. iheringii (C, D) was two. Circles, triangles, and squares represent assigned populations,
while open, crossed circles indicate localities used for SDM modelling without genetic samples. Further details on sSNMF modelling are available in

the Methods and Figure S4.
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FIGURES5 | Thefirst two principal components (PCs) of a principal component analysis (PCA) conducted on the full summary statistic simulation

output for Enyalius catenatus and Enyalius iheringii. Yellow and purple dots represent individual simulations, while red dots indicate empirical data

projected into the simulation PC space.

migration (Nm) was inferred to be lower in E. catenatus (0.59,
[—0.84, 2.04]) than E. iheringii (1.47, [0.30, 2.68]) (Figure 7).
Ancestral population size estimates varied widely and are re-
ported in Figure S3. A mix of population-wide summary sta-
tistics and between-deme dxy values were present in the top 10
most important variable scores, with a majority of dxy statistics
(Figure S5).

3.8 | Genetic Diversity Maps

Genetic diversity is predicted to be higher at the core of E. cat-
enatus's range compared to the edges, while genetic diversity
is predicted to be high through most of E. iheringii's range ex-
cept towards the southern portion (Figure 8A,B). Genetic di-
versity roughly corresponds with range stability since the last
glacial maximum for E. iheringii, but diverges for E. catenatus
(Figure 8C,D). Genetic diversity is predicted to be higher in the
centre of E. catenatus's range and lower towards the edges of
the range, while stability is predicted through the extent of their
range. For E. iheringii, high genetic diversity is predicted in areas
surrounded by more stable environments, while low genetic di-
versity is predicted in areas surrounded by less stable environ-
ments. Additionally, the total number of individuals across the
landscape are expected to have fluctuated more widely in E. cat-
enatus compared with E. iheringii, with an overall decrease in
size for E. catenatus and no change for E. iheringii (Figure 8E,F).

This value is different from the effective population size (Ne). It
is calculated as the sum of the local deme sizes across the entire
simulated landscape, without taking into account the impact of
migration on Ne.

4 | Discussion

4.1 | Using iDDC to Test the Fit of Alternative
Transformation Functions in Montane
and Lowland Enyalius

Comparing the fit of alternative iDCC models with different
SDM suitability-deme size transformation functions provided
mixed support for our hypothesised relationship between the
transformation function and elevational range. The iDDC
model with a thresholded transformation function had a
higher probability given the data from both Enyalius species,
yet the classification probability and AUC score were higher
for the high elevation E. iheringii. This suggests that while the
nonlinear, that is threshold, transformations are the best fit
for both species, the lower-elevation E. catenatus may achieve
maximum densities in areas where they are predicted to be
present, even in regions where the SDM predicts intermediate
levels of habitat suitability. These findings agree with previ-
ous studies on the relationship between SDM suitabilities and
ecological abundance, which suggest that a wedge-shaped,
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rather than linear, relationship best explains the connec-
tions between SDM suitabilities and empirical abundance
estimates (VanDerWal et al. 2009; Weber et al. 2017). The
fact that thermal physiological adaptation and plasticity are
more prominent than previously thought (Mufioz et al. 2014;
Strangas et al. 2019; Bodensteiner et al. 2021) may also be con-
tributing to the maintenance of higher population densities in
areas predicted to be poor habitats by SDM. Since adaptation
to novel thermal environments may be more pronounced in
high-elevation species compared to low-elevation counter-
parts (von May et al. 2017), E. iheringii could indeed exhibit
wider environmental tolerances, allowing them to achieve
high densities even in habitats classified as sub-optimal. Yet,
beyond the influence of macroclimate, both biotic interac-
tions (Wisz et al. 2013) and microclimate variation (Stark and
Fridley 2022) may also mediate the relationship between SDM
suitabilities and local deme sizes.

A fundamental factor contributing to the probabilistic ambi-
guity in discriminating between the two transformations in E.
catenatus may be the nearly bimodal distribution of the under-
lying SDM suitabilities prior to the linear transformation. This
resulted in a demographic model closely resembling the binary,
thresholded transformation model (Figure 4). Our inability to
distinguish a linear vs. thresholded transformation function
in E. catenatus could also be due to modelling choices. For in-
stance, removing inland E. catenatus localities likely raised
the SDM values used as a threshold by limiting the marginal
habitats considered in determining the minimum training pres-
ence threshold. This may have contributed to only highly suit-
able habitats being considered occupied, excluding potentially

habitable areas from the model. Likewise, the presence of uni-
formly suitable habitat, regardless of the SDM transformation
applied, may have caused local deme size to be inferred from
sampling density, thereby decoupling the relationship between
local deme size and genetic diversity. In general, larger local
deme sizes correlate with larger neighbourhood sizes and conse-
quently higher genetic diversity (Nunney 2016). An alternative
approach could involve considering various thresholds, which
would result in different levels of habitat patchiness and total
landscape population size potentially allowing for better dis-
crimination between linear and threshold models (Brown and
Knowles 2012). When the goal is to identify the best-fitting rela-
tionship between SDM suitabilities and local deme sizes, a more
flexible sigmoid transformation may be warranted. However,
this approach comes with a trade-off of requiring additional
parameters to be inferred, increasing model complexity and de-
manding additional computational resources, which may not be
necessary depending on the study’s objectives.

4.2 | Testing Expectations of Migration Rates in
High- and Low-Elevation Enyalius

Our finding that estimates of effective migration are higher in
the high-elevation E. iheringii aligns with Janzen's mountain
pass hypothesis, which predicts increased migration through
lowland mountain passes for species exposed to greater season-
ality, such as high-elevation species or those from more temper-
ate regions. Although Janzen's original predictions compared
temperate versus tropical mountains (Janzen 1967), E. iheringii
experiences greater seasonality due to its occurrence in higher
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elevations and its occurrence farther away from the equator com-
pared to E. catenatus. While greater habitat heterogeneity across
the range of E. iheringii might imply increased genetic structure
(as suggested by the isolation-by-environment hypothesis, Wang
and Summers 2010), our estimates of higher effective migration
indicate that adaptation to substantial temporal environmen-
tal fluctuation may buffer the effects of spatial environmental
variation. Conversely, the lower effective migration observed in
E. catenatus also highlights a potential vulnerability to future
climate change. Reduced connectivity can lead to range gaps,
as the species struggles to track temperature isotherms upslope
due to decreased dispersal ability (Colwell et al. 2008).

The higher estimates of maximum deme size in E. catenatus
suggests that this low-elevation taxon may exist at higher local
densities than E. iheringii populations. Although published
natural history information on the two species is scarce, field
collections and observations indicate that E. catenatus occurs
at higher local densities than E. iheringii (Rodrigues, personal
obs.). Other aspects of their natural history are similar, including
comparable clutch sizes (E. catenatus=5-17, E. iheringii=4-17)
and body sizes (mean snout-vent-length, E. catenatus=92.9 mm,
E. iheringii=92.0mm) (Rand 1982; Liou 2008; Rautenberg and
Laps 2010; Carilo Filho et al. 2017). Home range size informa-
tion is only available for E. iheringii, which is estimated from
two individuals (88.05 and 154.44m?) (Liou 2008). One poten-
tial explanation for the higher effective deme size estimates in

E. catenatus could be a greater degree of geographic genetic
structure, which may contribute to higher levels of genetic di-
versity within the 10km? grid cells used in this study (Laporte
and Charlesworth 2002). This stronger genetic structure is con-
sistent with the lower migration rate estimates observed be-
tween demes, likely due to limited dispersal (Prosser, Gibbs, and
Weatherhead 1999; Walters, Trujillo, and Berg 2022). However,
other forces that typically impact genetic structure acting at
small spatial scales, like biotic interactions, social behaviour,
and environmental variation may also be at play (Costa 1998;
Adams et al. 2016).

4.3 | Mapping Genetic Diversity Across the Range
of the Target Species

The predicted spatial distribution of genetic diversity across the
putative ranges of both species show distinct patterns: genetic
diversity in E. catenatus is predicted to be highest at the range
core, while in E. iheringii it is predicted to be highest across the
northern two-thirds of its range (Figure 8). For E. iheringii, this
aligns with climate stability maps (Figure 8), where higher ge-
netic diversity is observed in the northern, more equatorial por-
tion of its range, which has remained relatively stable since the
LGM. In contrast, the southern portion of E. iheringii's range is
within a narrow strip of historically stable habitat surrounded
by relatively unstable habitat since the LGM.

13 0f 18



A) B)

E. catenatus E. iheringii
10°S
22°S A )
Genetic
12°S A SiES diversity
High
14°S - 26°S A
28°S A
16°S
30°S A Low
18°S
A D N N $ N N N
SO R S A S @ W&
C) s D)
22°S -
Stability
&= 24 S+
High
14°8 26°S 1
28°S -
16°S
Low
30°S A
18°S
A N \$ \v\ \$ $
AN INSPS
E) F)
7.5e+06
z
T 5.0e+06 1
(]
F 2.5¢+06 -
Oloe+00- T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20
Time (kya) Time (kya)

FIGURE 8 | Maps of genetic diversity (A, B) and range stability since the last glacial maximum (LGM) (C, D) for the low-elevation Enyalius
catenatus (in orange) (A, C) and the high-elevation Enyalius iheringii (in blue) (B, D). Grey areas in the maps indicate regions with no predicted
genetic diversity or no predicted suitability since the LGM. Shapes in (A-D) represent SNMF admixture population assignments, where the best
K =3 for E.catenatus (A, B) and the best K=2 for E. iheringii (C, D). Panels E and F depict line plots showing the changes in the total number of
individuals (Total N) simulated across the landscape since the LGM. Red lines indicate the Total N for landscapes calculated using the point estimate
of maximum deme size for each species, while grey shading indicates 95% prediction intervals of the estimates.

For E. catenatus, higher levels of genetic diversity predicted to be
found in the core may result from asymmetric, increased migra-
tion from the range edges as deme sizes have reduced over time
(Figure 8E). However, the region with highest stability extends
beyond the region with highest genetic diversity (Figure 8).
This inconsistency may stem from greater uncertainty in de-
mographic parameter inferences from the iDDC model for
E. catenatus, suggesting that key demographic processes occur
at different spatiotemporal scales, potentially biasing genetic di-
versity predictions (Cushman and Landguth 2010; Mascarenhas
et al. 2019). This pattern, in addition to E. catenatus's lower
effective migration and potentially higher fragmentation, may

render it vulnerable to additional factors like anthropogenic
activity impacting its survival (Schlaepfer et al. 2018). Further
conservation research for the species may be warranted.

Predictions on withheld test data indicate that the focal pa-
rameter estimates from the iDDC model (maximum deme
size, effective migration, and ancestral population sizes) for
E. catenatus were underestimated at high values and over-
estimated at low values (Figure 6 and Figure S3). This is
likely due to the model overfitting the mean due to limited
signal in the summary statistics to precisely estimate these
parameters. High uncertainty in parameter estimates from
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likelihood-free simulation based methods such as the SML
approach used here and approximate Bayesian computation
can arise when parameter values are not well correlated with
summary statistics generated from the simulation model
(Aeschbacher, Beaumont, and Futschik 2012). Despite this,
the cross-validation analysis did recover some correlation be-
tween parameter values and estimates given that both focal
iDDC models (linear and thresholded transformation) were
successfully distinguished by the SML algorithm with moder-
ate accuracy for E. catenatus (AUC: 0.74) and higher accuracy
for E. iheringii (AUC: 0.86) (Figure 6).

4.4 | iDDC Models and Their Challenges

A general challenge for iDDC models is addressing uncer-
tainties inherent to both approaches used (SDMs and spatial
demographic models) within a unified framework (Brown
and Knowles 2012; Alvarado-Serrano and Knowles 2014;
Brown et al. 2016). The SDMs are influenced by different
decisions concerning modelling and data (Radosavljevic
and Anderson 2014; Soley-Guardia, Alvarado-Serrano, and
Anderson 2024), while the population genetic simulations
incorporate the uncertainty from coalescent and mutational
variance (Edwards Scott and Beerli 2000) and the necessary
modelling simplifications to simulate spatial data (Dabi and
Schrider 2024). The suitabilities inferred from SDM can vary
with modelling choices, potentially leading to simulated demo-
graphic scenarios that may not accurately reflect the species’
ecological tolerances (Lee-Yaw et al. 2022). A potential solu-
tion is to include SDM uncertainty in the demographic model
selection, where alternative models reflect different SDM mod-
elling choices (Castilla et al. 2024). Simplifying assumptions in
our demographic models—such as instantaneous population
size changes and continuous migration over 1000-generation
intervals—may not fully capture the demographic dynamics
of the species, where population sizes and migration might
fluctuate over shorter intervals and in a more heterogeneous
way. Furthermore, biased migration or deep fine-scale frag-
mentation below the five arc-minute resolution used could in-
flate estimates of local deme size, while recurrent extinction
events might reduce them (Ryman, Laikre, and Hossjer 2019).
Still, population genetic models are inherently oversimplifica-
tions of reality aimed at balancing tractability with capturing
relevant parameters in complex natural systems. By directly
parameterising coalescent models from SDMs, without inter-
mediate forward-in-time steps, we significantly reduce sim-
ulation time without sacrificing accuracy. Goodness of fit
comparisons between simulated and observed summary sta-
tistics demonstrate that this approach effectively captures key
features for both species. In addition, our efficient simulation
model enables future studies to rigorously explore modelling
choices such as SDM grain size and demographic parameter
space moving forward iDDC-based approaches.

5 | Conclusions
In summary, our results show that iDDC model discrimination

led to a better model fit for the thresholded transformation in both
species, with higher confidence in model discrimination in the

high-elevation Enyalius iheringii compared to the low-elevation
E.catenatus. This supports our prediction that high elevation
species, exposed to greater seasonality, exhibit wider environ-
mental tolerances and a corresponding nonlinear relationship
between SDM habitat suitability and local deme size. Moreover,
consistent with Janzen's hypothesis that high-latitude and high-
elevation species have better dispersal potential, we estimated
lower local deme sizes and higher effective migration rates in the
high-elevation species. These insights underscore the importance
of carefully selecting SDM suitability-to-deme transformations in
iDDC modelling frameworks, advancing our understanding of
both species distribution and demography while providing a ro-
bust methodological approach for testing ecological hypotheses.
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