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Abstract The distribution of oceanic biogeochemical tracers is fundamentally tied to physical
dynamics at and below the mesoscale. Since global climate models rarely resolve those scales, turbulent
transport is parameterized in terms of the large-scale gradients in the mean tracer distribution and the
physical fields. Here, we demonstrate that this form of the eddy flux is not necessarily appropriate for
reactive tracers, such as nutrients and phytoplankton. In an idealized nutrient-phytoplankton system,
we show that the eddy flux of one tracer should depend on the gradients of itself and the other. For
certain parameter regimes, incorporating cross-diffusion can significantly improve the representation
of both phytoplankton and nutrient eddy fluxes. We also show that the efficacy of eddy diffusion
parameterizations requires timescale separation between the flow and reactions. This result has
ramifications for parameterizing subgrid scale biogeochemistry in more complex ocean models since
many biological processes have comparable timescales to submesoscale motions.

Plain Language Summary Tiny algae called phytoplankton play a key role in marine food
webs and oceanic uptake of carbon dioxide. Therefore, determining the distribution of phytoplankton

is necessary to model marine ecosystems and the global carbon cycle accurately. These organisms, and

the nutrients they need to grow, are moved around by turbulent motions in the ocean. However, most
climate models do not capture the small-scale eddies that help determine patterns in phytoplankton
biomass. Instead, the models use mathematical approximations to indirectly estimate the transport of
phytoplankton by these turbulent processes. In this study, we use idealized numerical simulations to show
that the commonly used approximation method may not correctly characterize the eddy transport of
phytoplankton in many cases. This result can be used to help improve the representation of phytoplankton
in more complex models, which are used to predict future climate.

1. Introduction

Biogeochemical properties in the ocean, including nutrients and phytoplankton, exhibit patchiness at the
mesoscale and submesoscale (Lévy & Martin, 2013; Mahadevan & Campbell, 2002; Martin et al., 2002). This
is evident from satellite images of ocean color, a proxy for phytoplankton biomass, which clearly show the
expression of eddies, filaments, and other small-scale structure in the flow (Gower et al., 1980). Phytoplank-
ton patchiness is generated by a complex interplay between physical and biogeochemical processes, each
with their own range of length and time scales (Flierl & McGillicuddy, 2002; Lévy et al., 2012; McGillicud-
dy, 2016). This includes the lateral stirring of large-scale gradients by the turbulent flow (Abraham, 1998;
Martin, 2003; McKiver et al., 2009) as well as stimulation of phytoplankton growth by (sub-)mesoscale
processes delivering nutrients to the euphotic zone (Falkowski et al., 1991; Flierl & Davis, 1993; Freilich &
Mahadevan, 2019; Lévy et al., 2001; Uchida et al., 2020).

The relative importance of stirring, which passively reorganizes existing gradients, versus localized up-
welling, which actively forces changes in phytoplankton abundance, must be determined in order to quan-
tify the global significance of (sub-)mesoscale productivity (Lévy et al., 2018). Still, it has been suggested
that phytoplankton patchiness impacts large-scale productivity (Brentnall et al., 2003; Jenkins, 1988) and
may be important to global biogeochemical budgets (Doney et al., 2004; Falkowski et al., 1991; Omand
et al., 2015; Platt & Sathyendranath, 1988). This poses a problem for global climate models, which rarely
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resolve processes at or below the mesoscale, @O(100km). Therefore, the tracer transport associated with the
unresolved dynamics must be parameterized. This is typically done by assuming that eddy fluxes are pro-
portional to the gradients in the mean field, the so-called gradient-diffusion hypothesis. In this framework,
the unresolved turbulent dispersion is represented as an enhanced molecular diffusion:

e =—K.\Vé (1)

where K. is an effective diffusivity, c is any arbitrary tracer, the overbar represents an ensemble average and
the prime denotes time-dependent fluctuations from the mean. The implicit assumption is that the chaotic
random motions associated with turbulence are comparable to Brownian motion. Despite its near-ubiqui-
tous use, limitations of the eddy-diffusion parameterization have been noted (Ferrari & Nikurashin, 2010;
Lee et al., 1997; Manucharyan et al., 2017; Sobel, 1999), particularly for reactive tracers, which have a growth
or decay in time that is independent of the flow and thus do not remain constant following a fluid parcel.

Many biogeochemical quantities can be modeled as reactive tracers. For example, phytoplankton growth
via nutrient uptake and loss due to zooplankton grazing can be expressed mathematically as reaction terms.
The reaction timescale of a tracer is known to impact both the degree of observed patchiness (Mahadevan
& Campbell, 2002), as well as the validity of eddy diffusion parameterizations (Pasquero, 2005). Indeed,
assessing the ability of the gradient-diffusion hypothesis, Equation 1, to accurately represent the transport
of both reactive and nonreactive tracers is not a new concept (da Silva & Pereira, 2007; Lightstone & Raith-
by, 2009; Mooney & Wilson, 1993). However, the past work that approaches this problem in the context of
oceanic biogeochemical tracers typically either (a) uses relatively complex biogeochemical models coupled
to idealized background flows (Abraham, 1998; Denman, 2003; Tzella & Haynes, 2007) or (b) uses nonre-
active tracers in realistic flows (Smith et al., 2016). These approaches, while useful, are computationally
expensive and it can be challenging to isolate the fundamental dynamics. Here, we argue that there is still
insight to be gained from a system with a simple biogeochemical model and flow field. This allows us to
investigate the theoretical underpinnings of the physical-biological interactions and examine the system
across the full range of parameter space. The results can then inform past and future work that employs
more complex models, both physical and biogeochemical.

2. Methods and Theory
2.1. Biological Model

Nutrient-phytoplankton-zooplankton (NPZ) models have been used in oceanographic research for dec-
ades. A standard NPZ model has five transfer functions, each with countless possible functional forms (see
Franks, 2002 for a nice review). The NPZ framework has also been extended to include the effects of bacteria
and detritus, and is similar to the multicomponent systems used in the current generation of global climate
models (Aumont et al., 2015; Cushing, 1975; Fasham et al., 1990). However, a more complex biogeochemi-
cal model is not necessarily a better one for developing process-based understanding (Franks, 2002; Turner
et al., 2014). Here, we follow the lead of Hodges and Rudnick (2004), and Freilich and Mahadevan (2019),
and opt to ignore the zooplankton component entirely, selecting basic Lotka-Volterra forms for the remain-
ing transfer functions. The result is the simplest possible model that still captures fundamental aspects of
plankton dynamics. Including explicit diffusion (with diffusivity «) the equations are:

JdN

7_|.u.VN—;(V2]\’=—/4NP—/UV+)JVD @)
aa—l;+u~VP—KV2P=/4NP—ﬂP, ©)

where the nutrient (N) and phytoplankton (P) concentration fields have the same units (e.g., moles of
nitrogen per unit volume), 4 ([mol N m~3]=s71) is the nutrient uptake rate, A [s~']is the entrainment rate,
and u is a 2-dimensional velocity field. These equations describe the dynamics of the biology in the upper
ocean, where N and P represent average concentrations in the mixed layer, and N is the subsurface nutri-
ent concentration. The right-hand side reaction terms in Equation 2 correspond to nutrient depletion via
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uptake by phytoplankton (—u N P) and detrainment across the mixed-layer base (—AN), as well as nutrient
resupply by the entrainment of nutrient-rich waters from below (ANp). Although we suggest that A can be
interpreted as an entrainment rate, it is specified a priori and not related to the velocities. Technically, A acts
like a reaction rate from the perspective of the biological system. Analogous reaction terms are present in
Equation 3, with the exception that entrainment only decreases P (since it is assumed that subsurface wa-
ters below the mixed layer are also below the euphotic zone and thus devoid of phytoplankton). This system
can be nondimensionalized in terms of the following dimensionless variables:

X, u =E, t*=t;41\~/D, N*=~i, P*=~i, @
L U Np Np

where ~ Np is some characteristic N value, for example, ( Np)where (-) denotes a spatial average. The diffu-
sive terms in Equations 2 and 3 scale inversely with the Péclet number, Pe = U L /k. The entire right-hand
side of both equations scale with the Damk&hler number, Da = uNpL/U, which is the ratio of advective
(L/U) and reactive (1/uNp) timescales. The entrainment terms are further scaled by the ratio of reaction
rates (A/uNp). See Text S1 in Supporting Information S1 for the full nondimensional equations.

Our motivation in choosing this simplified set of equations is to avoid introducing extraneous nonlinearity,
for example, from poorly constrained transfer functions associated with the zooplankton component in
NPZ models. Certainly, we note that this system does not capture all of the relevant processes controlling
phytoplankton biomass. By neglecting zooplankton, our model does not capture top-down controls, which
have been shown to be important in determining phytoplankton abundance (Behrenfeld & Boss, 2014);
these predator-prey interactions are also thought to be influenced by the dominant scales of motion in the
flow (Richards & Brentnall, 2006; Srokosz et al., 2003; Taniguchi et al., 2014). The advantage of our ideal-
ized formulation, Equations 2 and 3, is that it is a tractable system which can be probed to understand the
sensitivity to various parameters. Our reduced NPZ form allows us, for example, to conduct a multiple scale
analysis, which provides theoretical insight into the appropriate form of reactive tracer eddy fluxes.

The concept of an eddy diffusivity introduced by Taylor (1921) is related to the Lagrangian velocity expe-
rienced by particles. However, this framework can be extended to the spreading of tracers in an Euleri-
an context. Papanicolaou and Pironneau (1981) showed that by assuming a scale separation between the
eddies and mean flow, Equation 1 can be derived via a multiple scale analysis of the advection-diffusion
equation for a passive tracer. Here, we apply a similar technique to Equations 2 and 3 to illustrate how
additional reaction terms influence the form of the eddy flux. As in the passive tracer case, we assume a
scale separation between the turbulent eddies (#) and the large-scale circulation (L). This suggests a per-
turbation expansion in terms of the small parameter ¢ = #/L, where slow time and space variables are de-
fined as T = ef and X = ex, respectively. The velocity is also decomposed into mean and eddy components,
u=UX,T)+u'(x,t; X,T).Solutions for N and P then take the form:

N =No(X,T)+eNi(x,: X, T) + O(e?) 5)
P=PXT)+eP(x,::X,T) + O(e?). (6)

Note that the mean flow and leading order biological behavior are both taken to be functions of the large
scales only. We substitute the expansions, Equations 5 and 6, into the advection-diffusion-reaction system,
Equations 2 and 3. At each order of ¢, averaging over the small and fast scales yields a solvability condition.
The evolution equations for the large-scale, long-time, averaged tracer concentrations, N and P, are then
obtained by summing the solvability conditions up to O(e?). The results (see Text S2 in Supporting Informa-
tion S1 for details, and Flier]l and McGillicuddy (2002), which uses a cruder approximation for the physics)
imply that the eddy fluxes of N and P have the form:

WN' = —KnpVP — KyyVN, (7)
u'P’Z—Kppr—KPNVN, (8)

where Ky p, Knn, Kpp, are Kpy are effective diffusivities that can be expressed in terms of u, 4, and P (see
Text S4 in Supporting Information S1). Equations 7 and 8 have the eddy fluxes (i.e., the magnitude of the
vectors [(u’ P’} and [(u’ N’)|) depending on the large-scale, mean tracer gradients (|V(P)|and |V(N)|), as in
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the traditional gradient-diffusion result. However, unlike in the passive tracer case, we find that the fluxes
of N and P depend on the large-scale gradients of both tracers. There may be cases, for example, where the
eddy flux of phytoplankton is controlled by the gradient in the mean nutrient concentration (rather than
by gradients in P). This phenomenon is known as cross-diffusion (Vanag & Epstein, 2009) and is due to the
coupling between Equations 2 and 3 that results from the nonlinear uptake term, y N P.

To understand cross-diffusion physically, consider a case where ( N') increases to the north. A parcel of fluid
moving south will have a positive N’; as a result P’ will increase. When it arrives at some latitude, it will
have positive P’ and negative v’. Likewise, a parcel coming from the south will arrive at the same latitude
with negative P’ and positive v’. Thus, the flux (¢/ P’} is negative, corresponding to a P flux down the gradi-
ent of ( N'). There can, of course, also be contributions from the gradient of ( P), but, for linearized perturba-
tion equations, the two contributions can be treated separately and added to get the net flux. The diffusive
coefficients associated with the cross terms can also be negative. For example, consider an infinitesimal
wave on a background with uniform g, 4 and no gradient in nutrients. Flows away from high subsurface
nutrients carry excess phytoplankton, which draws down nutrients producing a negative anomaly, while
flow the other way has a positive anomaly. In other words, although there is no background gradient in
nutrients, there is a nutrient flux up the gradient of phytoplankton.

2.2. Physical Model

With the results from the multiple scale analysis in mind, we now investigate the dynamics of the nutri-
ent-phytoplankton model in a simple flow field. The dimensional Equations 2 and 3 are coupled to a 2-D
stirring flow adapted from the clever “renovating wave” model in Pierrehumbert (1994). The velocity fields
are generated by a stream function of the form:

4

Y= Z U,cos(ki,x + ka,y + 6,), )

n=1

where the wavenumbers k;, and k,, and amplitude U, are selected so that the kinetic energy spectrum
is consistent with scaling laws of turbulence (i.e., k=>/3 slope) and 6, is a random-walking phase shift. In
other words, sinusoidal shear flows are periodically “renovated” by a random phase shift at each time step
(dt = 1/32 to satisfy a Courant-Friedrichs-Lewy condition) to generate a flow that is zero-mean in time and
has qualitative similarities to 2-D turbulence. We tested multiple spectra, including a nonlocal k=3 spectrum,
but opted for a flow with more small-scale energy, since this is common in surface quasi-geostrophic tur-
bulence characteristic of the upper ocean. The exact choice of spectrum does not affect the existence of the
cross-fluxes or the dependence on the relative time scales. Similar models have been used in the study of
phytoplankton patchiness (Hodges & Rudnick, 2006; Young et al., 2001). The model domain is 4z x 4 and
doubly periodic. N and P transport is represented by a first-order upwind advection scheme to maintain
positivity. The flow is homogeneous by construction and nearly isotropic (it is not exactly isotropic due to
the double periodicity), so it can be represented by a single constant diffusivity.

2.3. Model Parameters

In principle, u, 4, and Np could all be spatially variable. Here, we describe simulations in which y is mod-
eled as a sinusoid, uo + uicos(y/2). This form is chosen to maintain periodicity. The Np and initial distribu-
tion of total nitrogen in the system (S = N + F) are also selected to be sinusoidal, although with east-west
gradients to distinguish from gradients in y; 4 is chosen to be a constant. The motivation for selecting y and
Np to be orthogonal is to create gradients in N and P which are distinctly different, allowing us to more
easily investigate the cross fluxes. The initial P distribution is determined from the leading order P solution
found in the multiple scale analysis (Py = Np — A/u). The initial N distribution is determined by subtract-
ing P, from the initialized .S (Ny = Sy — P). The initial conditions are plotted in Figure S1 in Supporting In-
formation S1. Eddies and filaments in the N and P fields quickly form, and are maintained, in many cases,
through biological reactions. Figure 1 shows snapshots of the nutrient and phytoplankton concentration
fields (a, b) and nutrient and phytoplankton eddy fluxes (c, d) for two different simulations after reaching
equilibrium. The patchy, filamentary distributions in Figure 1a are representative of many oceanic regimes.
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Figure 1. Snapshot at 1 = 1,000 of nutrient (purples) and phytoplankton (greens) concentrations (a), (b) as well as nutrient (left) and phytoplankton (right)
eddy fluxes (c), (d) for two simulations with the same flow field but varied reaction rates, (a), (c) 4 = 0.03, (i) = 0.08, Da = 1 and (b), (d) 4 = 0.003, (x) = 0.008,

Da =0.1.

The simulations have the same flow field and initial conditions but varied reaction rates, namely Da = 1for
Figures 1a and 1c and Da = 0.1for Figures 1b and 1d. Mean fields for these simulations are plotted in Figure
S2 in Supporting Information S1. Parameter choices for all the different experiments in this study are given
in Table S1 in Supporting Information S1.

3. Results

The long-time behavior of the model is greatly affected by the presence of reaction terms as well as the
reaction timescales. To illustrate this, several simulations were run with different values of A and (u). Fig-
ure 2 shows time series of phytoplankton concentration and variance for different values of Da, which is
diagnosed from the dimensional model using the spatial averages (u), (Np), and 1/(u?). For a nonreactive
tracer (i.e., Da = 0) the mean tracer concentration over the domain stays constant and the variance decays
exponentially to zero as the stirring smooths out the gradients associated with the initial conditions (Hodges
& Rudnick, 2006; Pierrehumbert, 2000). Biological reaction terms introduce a chaotic time dependence.
After an initial transient period, the mean tracer concentration fluctuates randomly in time around an equi-
librium level which depends on the relative rates of phytoplankton growth and losses. When the ratio of
phytoplankton detrainment to growth, A/(u), is held constant, the equilibrium concentration value is fixed.
Fluctuations are also seen in the tracer variance, which never decays to zero. The amplitude of the changes
in (P) depends on the ratio of reaction and flow timescales, Da. The fluctuations (and consequently the
variance) are largest for Da = 1 and Da = 10 due to the interaction between stirring and growth. This can
be seen from the snapshots of N and P in Figure 1; the tracers are well-mixed in 1b (Da = 0.1) compared
tola(Da = 1).

The presence of biological reactions impacts the appropriate value of the effective diffusivity (see Figure
S3 and Text S3 in Supporting Information S1), as well as the validity of the gradient-diffusion hypothesis.
Since the time-mean of the velocity field is zero, the tracer fluxes from the model advection scheme are
equal to the eddy fluxes «’ P’ and i’ N’, taken to be the magnitude of the vectors|(u’ P’)| and |(u’ N’}|. Note
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Figure 2. Time series of (a) Mean phytoplankton concentration, and (b) Phytoplankton concentration variance
integrated over the domain. Plotted for five simulations with the same initial conditions and flow field but varied Da.

that here, eddy flux refers to the advective transport of tracers by the fluctuating component of the velocity
field, rather than the biological fluxes (i.e., N’ P’ terms), often called eddy reactions. While eddy reactions
also affect the distribution of biogeochemical tracers, their magnitude depends inherently on the mathe-
matical form of the reaction terms. For our highly simplified model, the eddy reactions are much smaller
than the eddy transports, although this is not necessarily the case in more complex biological models (Lévy
& Martin, 2013).

Since we are focused on transport by the time-fluctuating velocity, the advective fluxes diagnosed directly
from the model are referred to as the “true” eddy flux. These are depicted, for example, at a single time step
in Figures 1c and 1d. An effective diffusivity, K, can be computed by regressing the true eddy flux onto the
tracer gradients, |V(P)|and |V(N)|, calculated at each grid cell from the mean N and P distributions after
the simulation reaches equilibrium (# = 1000) to the end of the run (¢ = 5000). It is then possible to compare
the true eddy flux with — K, V. at each grid point. Figure 3 gives examples of this for two simulations with
the same initial conditions, one with biological reaction terms (Figure 3a) and one without (Figure 3b). De-
viations from the black 1:1 line indicate a breakdown of the standard gradient-diffusion hypothesis.

Figure 3 suggests that, for the same initial conditions and velocity field, reactive tracer transport is poorly
represented in terms of an eddy diffusion when compared to the nonreactive tracer case. Naturally, how-
ever, the specifics will depend on the model parameters. To illustrate this, we calculate the R? value, which
measures the goodness of fit, to quantify the validity of w’¢’ = —K, V. for different values of Da. R? values
near 1 suggest that the gradient-diffusion hypothesis is a good assumption, whereas smaller R? values indi-
cate that it breaks down. The results in Section 2.1 point to the possible importance of cross-diffusion, so we
also compute Ky p, Ky, Kpp, and Kpy by regressing the true eddy fluxes onto both VP and VN, rather than
regressing «’ P’ onto V P only (and «’ N’ onto VN only). Adding additional predictors to a regression model
can lead to spurious increases in R?, so adjusted R® values (Cramer, 1987) are calculated for the multiple
regression (see Text S4 in Supporting Information S1).
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Figure 3. (a) Calculated eddy fluxes of N (purple) and P (green) from V. and least squares fitted K, versus the diagnosed eddy fluxes at each grid cell for a
simulation with biological reaction terms (4 = 0.03, (4) = 0.08), and (b) For the same initial conditions but with reaction rates A and () set to 0 (i.e., N and P

are nonreactive tracers).

R? is found to vary strongly with Da (Figure 4 and Figure S4 in Supporting Information S1). Since re-
action terms scale with Da in the nondimensionalized N and P equations, they are negligible in the
limit of slow reaction rates relative to stirring, Da < 1. Consequently, in these regimes, N and P can be
treated as nonreactive tracers and have high R? values (>0.7), both for w’ P’ = —K,V P (blue in Figure 4)
and W' P’ = —KppVP — Kpy VN (orange in Figure 4). Still, even passive tracer transport is not perfectly
described by an eddy diffusion, which may be related to nonlocal effects (Lee et al., 1997; Manucharyan
et al., 2017; Sobel, 1999). When the reaction and flow timescales are of the same order, Da ~ (9(1), R? values
are much lower (<0.3), suggesting a breakdown of the gradient-diffusion hypothesis. We note that this is
true even when cross-diffusion terms are included. Recall that the derivation of Equations 7 and 8 required
space and time-scale separation between the turbulent eddies and reactions. This assumption is violated,
by definition, when Da ~ O(1). In other words, mimicking turbulent transport as an enhanced diffusion is
only valid when there is a timescale separation between the reaction and eddies. We also find that when
Da ~ O(1), fluctuations in N and P persist over the scales of variation of P, N, u, and Np, and tend to be out
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08{ & z *
0.7 1 z ¢
™ 06 <o
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Figure 4. R? of the parameterized eddy flux and true eddy flux as a function of Da assuming u’ P’ = —K,V P (blue) and
u P = —Kppvp - KPNV]\_] (Orange).
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of phase with the flow (Text S2 in Supporting Information S1), which likely contribute to the breakdown of
the parameterization.

In the limit of fast reaction rates relative to stirring, Da > 1, the R? values are significantly increased by in-
cluding cross-diffusion (Figure 4). This suggests that there are parameter regimes where the mean nutrient
gradient is a better predictor of the phytoplankton eddy fluxes than the mean phytoplankton gradient. The
importance of cross-diffusion can be examined through Kpp/Kpy, the ratio of effective diffusivities from
Equation 8, which depends on the ratio of reaction rates, A/u Np (see Text S4 in Supporting Information S1).
AuNp also scales the entrainment terms in the nondimensionalized N and P equations. When A/uNp < 1,
Kpy is larger than Kpp, that is, the phytoplankton eddy flux is controlled by the mean nutrient gradient.
This corresponds to cases where the leading order biological behavior is governed solely by the nonlinear
growth term, which explicitly couples N and P. While the specifics of this result depend on the mathemati-
cal representation of the biological reaction terms, cross-diffusion in more complex biogeochemical models
deserves further examination.

4. Discussion and Conclusions

It is well known that mesoscale and submesoscale processes impact phytoplankton variability (Flier]l &
McGillicuddy, 2002; Lévy et al., 2012, 2018; Mahadevan, 2016; McGillicuddy, 2016). However, these scales
are not resolved in most global climate models. While significant progress has been made in the parameter-
ization of turbulent fluxes for ocean models (D’Asaro et al., 2014; Fox-Kemper et al., 2008; Gent et al., 1995;
Visbeck et al., 1997), many subgrid scale processes are still poorly represented (Fox-Kemper et al., 2019;
Hamlington et al., 2014; Li et al., 2019; Smith et al., 2016). Biogeochemical tracers pose an added challenge
due to nonlinear reactions, which impact their distribution in addition to advection by the flow (Wallhead
et al., 2013). Our goal in this study has been to examine the theoretical limitations of eddy diffusion pa-
rameterizations for reactive tracers such as nutrients and phytoplankton. Note that in the context of our
simulations, eddy flux refers to the advective transport by the time fluctuating velocity rather than a param-
eterization of subgrid scale processes. However, the multiple scale analysis from Section 2 is more general,
and implies that cross-diffusion will also exist in the ensemble and coarse-grained problems.

We find that the efficacy of the parameterized eddy fluxes depends strongly on the ratio of biological and
physical timescales, the Damkohler number. At low Da, gradient-diffusion is accurate since the reaction
rates are slow enough that the scalar is approximately nonreactive. At high Da, the scalar is reacting faster
than diffusion can act on it, so the gradient seen by the turbulence is small. The tracer evolution is primarily
governed by the biological reactions, which explicitly couple N and P. Consequently, cross-diffusion can be
important in these regimes. At intermediate Da, the tracers are reacting on the same timescales as the back-
ground flow, so changes in tracer concentration result from a complex combination of stirring and growth.
As a result, the covariance of v’ and P’, which determines the phytoplankton flux, is not well represented in
terms of the mean fields. The parameterization fails in these regimes, regardless of whether cross-diffusion
is included. This is not surprising, since Da ~ (O(1) violates the timescale separation condition needed to
derive Equations 7 and 8.

Previous studies have proposed an effective diffusivity that varies as a function of the reaction rate
(Plumb, 1979; Pasquero, 2005). However, even simple biogeochemical models, such as the one used in this
study, can have multiple reaction timescales whose relative magnitudes affect the equilibrium behavior.
Furthermore, the reaction-dependent effective diffusivity in Pasquero (2005) was found to be least accurate
when Da ~ O(1). We suggest this is due to the lack of timescale separation rendering gradient diffusion
invalid. When the flow and reaction timescales are similar, it may be difficult to improve the accuracy
of parameterized fluxes within the eddy diffusion framework, even if modified to account for the reac-
tion timescale as in Pasquero (2005). This result has implications for coarse resolution climate models,
since Da ~ (1) approximately applies to phytoplankton growth and loss processes at the submesoscale
(Smith, 2017). Therefore, there may be large errors associated with applying gradient diffusion to parame-
terize eddy fluxes of phytoplankton at the submesoscale.

In large Da regimes, we find that the eddy fluxes of P can depend strongly on gradients in N due to the
coupling between the phytoplankton and nutrient evolution equations via biological reaction terms.
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Incorporating cross-diffusion in our idealized simulations greatly increased the accuracy of the parameter-
ized fluxes when Da > 1. This is significant since Da ~ ©(10%) roughly applies to phytoplankton processes
at the mesoscale (Smith, 2017). Therefore, including cross-terms in complex models may provide a way to
improve the parameterized fluxes of phytoplankton at the mesoscale using information about the large
scales only. We note though that any eddy parameterization which assumes locality in space and time is
missing fundamental physical effects. As was shown in Manucharyan et al. (2017), the large-scale eddy
field has a finite memory of past ocean states. Recent efforts have also incorporated nonlocal effects into
eddy parameterizations using an effective diffusivity kernel that depends on the statistics of the flow field
(Bhamidipati et al., 2020). Extending these frameworks to reactive tracers is worth investigation given the
key role of phytoplankton in marine ecosystems and the global carbon cycle.
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