
1.  Introduction
Biogeochemical properties in the ocean, including nutrients and phytoplankton, exhibit patchiness at the 
mesoscale and submesoscale (Lévy & Martin, 2013; Mahadevan & Campbell, 2002; Martin et al., 2002). This 
is evident from satellite images of ocean color, a proxy for phytoplankton biomass, which clearly show the 
expression of eddies, filaments, and other small-scale structure in the flow (Gower et al., 1980). Phytoplank-
ton patchiness is generated by a complex interplay between physical and biogeochemical processes, each 
with their own range of length and time scales (Flierl & McGillicuddy, 2002; Lévy et al., 2012; McGillicud-
dy, 2016). This includes the lateral stirring of large-scale gradients by the turbulent flow (Abraham, 1998; 
Martin,  2003; McKiver et  al.,  2009) as well as stimulation of phytoplankton growth by (sub-)mesoscale 
processes delivering nutrients to the euphotic zone (Falkowski et al., 1991; Flierl & Davis, 1993; Freilich & 
Mahadevan, 2019; Lévy et al., 2001; Uchida et al., 2020).

The relative importance of stirring, which passively reorganizes existing gradients, versus localized up-
welling, which actively forces changes in phytoplankton abundance, must be determined in order to quan-
tify the global significance of (sub-)mesoscale productivity (Lévy et al., 2018). Still, it has been suggested 
that phytoplankton patchiness impacts large-scale productivity (Brentnall et al., 2003; Jenkins, 1988) and 
may be important to global biogeochemical budgets (Doney et al.,  2004; Falkowski et al.,  1991; Omand 
et al., 2015; Platt & Sathyendranath, 1988). This poses a problem for global climate models, which rarely 

Abstract  The distribution of oceanic biogeochemical tracers is fundamentally tied to physical 
dynamics at and below the mesoscale. Since global climate models rarely resolve those scales, turbulent 
transport is parameterized in terms of the large-scale gradients in the mean tracer distribution and the 
physical fields. Here, we demonstrate that this form of the eddy flux is not necessarily appropriate for 
reactive tracers, such as nutrients and phytoplankton. In an idealized nutrient-phytoplankton system, 
we show that the eddy flux of one tracer should depend on the gradients of itself and the other. For 
certain parameter regimes, incorporating cross-diffusion can significantly improve the representation 
of both phytoplankton and nutrient eddy fluxes. We also show that the efficacy of eddy diffusion 
parameterizations requires timescale separation between the flow and reactions. This result has 
ramifications for parameterizing subgrid scale biogeochemistry in more complex ocean models since 
many biological processes have comparable timescales to submesoscale motions.

Plain Language Summary  Tiny algae called phytoplankton play a key role in marine food 
webs and oceanic uptake of carbon dioxide. Therefore, determining the distribution of phytoplankton 
is necessary to model marine ecosystems and the global carbon cycle accurately. These organisms, and 
the nutrients they need to grow, are moved around by turbulent motions in the ocean. However, most 
climate models do not capture the small-scale eddies that help determine patterns in phytoplankton 
biomass. Instead, the models use mathematical approximations to indirectly estimate the transport of 
phytoplankton by these turbulent processes. In this study, we use idealized numerical simulations to show 
that the commonly used approximation method may not correctly characterize the eddy transport of 
phytoplankton in many cases. This result can be used to help improve the representation of phytoplankton 
in more complex models, which are used to predict future climate.
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resolve processes at or below the mesoscale, 𝐴𝐴 (100km) . Therefore, the tracer transport associated with the 
unresolved dynamics must be parameterized. This is typically done by assuming that eddy fluxes are pro-
portional to the gradients in the mean field, the so-called gradient-diffusion hypothesis. In this framework, 
the unresolved turbulent dispersion is represented as an enhanced molecular diffusion:

�′�′ = −��∇�̄,� (1)

where 𝐴𝐴 𝐴𝐴𝑒𝑒 is an effective diffusivity, 𝐴𝐴 𝐴𝐴 is any arbitrary tracer, the overbar represents an ensemble average and 
the prime denotes time-dependent fluctuations from the mean. The implicit assumption is that the chaotic 
random motions associated with turbulence are comparable to Brownian motion. Despite its near-ubiqui-
tous use, limitations of the eddy-diffusion parameterization have been noted (Ferrari & Nikurashin, 2010; 
Lee et al., 1997; Manucharyan et al., 2017; Sobel, 1999), particularly for reactive tracers, which have a growth 
or decay in time that is independent of the flow and thus do not remain constant following a fluid parcel.

Many biogeochemical quantities can be modeled as reactive tracers. For example, phytoplankton growth 
via nutrient uptake and loss due to zooplankton grazing can be expressed mathematically as reaction terms. 
The reaction timescale of a tracer is known to impact both the degree of observed patchiness (Mahadevan 
& Campbell, 2002), as well as the validity of eddy diffusion parameterizations (Pasquero, 2005). Indeed, 
assessing the ability of the gradient-diffusion hypothesis, Equation 1, to accurately represent the transport 
of both reactive and nonreactive tracers is not a new concept (da Silva & Pereira, 2007; Lightstone & Raith-
by, 2009; Mooney & Wilson, 1993). However, the past work that approaches this problem in the context of 
oceanic biogeochemical tracers typically either (a) uses relatively complex biogeochemical models coupled 
to idealized background flows (Abraham, 1998; Denman, 2003; Tzella & Haynes, 2007) or (b) uses nonre-
active tracers in realistic flows (Smith et al., 2016). These approaches, while useful, are computationally 
expensive and it can be challenging to isolate the fundamental dynamics. Here, we argue that there is still 
insight to be gained from a system with a simple biogeochemical model and flow field. This allows us to 
investigate the theoretical underpinnings of the physical-biological interactions and examine the system 
across the full range of parameter space. The results can then inform past and future work that employs 
more complex models, both physical and biogeochemical.

2.  Methods and Theory
2.1.  Biological Model

Nutrient-phytoplankton-zooplankton (NPZ) models have been used in oceanographic research for dec-
ades. A standard NPZ model has five transfer functions, each with countless possible functional forms (see 
Franks, 2002 for a nice review). The NPZ framework has also been extended to include the effects of bacteria 
and detritus, and is similar to the multicomponent systems used in the current generation of global climate 
models (Aumont et al., 2015; Cushing, 1975; Fasham et al., 1990). However, a more complex biogeochemi-
cal model is not necessarily a better one for developing process-based understanding (Franks, 2002; Turner 
et al., 2014). Here, we follow the lead of Hodges and Rudnick (2004), and Freilich and Mahadevan (2019), 
and opt to ignore the zooplankton component entirely, selecting basic Lotka-Volterra forms for the remain-
ing transfer functions. The result is the simplest possible model that still captures fundamental aspects of 
plankton dynamics. Including explicit diffusion (with diffusivity 𝐴𝐴 𝐴𝐴 ) the equations are:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐮𝐮 ⋅ ∇𝑁𝑁 − 𝜅𝜅∇2𝑁𝑁 = −𝜇𝜇𝜇𝜇𝜇𝜇 − 𝜆𝜆𝜆𝜆 + 𝜆𝜆𝜆𝜆𝐷𝐷� (2)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐮𝐮 ⋅ ∇𝑃𝑃 − 𝜅𝜅∇2𝑃𝑃 = 𝜇𝜇𝜇𝜇𝜇𝜇 − 𝜆𝜆𝜆𝜆 𝜆� (3)

where the nutrient ( 𝐴𝐴 𝐴𝐴 ) and phytoplankton ( 𝐴𝐴 𝐴𝐴  ) concentration fields have the same units (e.g., moles of 
nitrogen per unit volume), 𝐴𝐴 𝐴𝐴 ([mol N 𝐴𝐴 m−3 ]−1𝐴𝐴 s−1) is the nutrient uptake rate, 𝐴𝐴 𝐴𝐴 [s−1] is the entrainment rate, 
and u is a 2-dimensional velocity field. These equations describe the dynamics of the biology in the upper 
ocean, where 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  represent average concentrations in the mixed layer, and 𝐴𝐴 𝐴𝐴𝐷𝐷 is the subsurface nutri-
ent concentration. The right-hand side reaction terms in Equation 2 correspond to nutrient depletion via 
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uptake by phytoplankton ( −���  ) and detrainment across the mixed-layer base ( −�� ), as well as nutrient 
resupply by the entrainment of nutrient-rich waters from below ( 𝐴𝐴 𝐴𝐴𝐴𝐴𝐷𝐷 ). Although we suggest that 𝐴𝐴 𝐴𝐴 can be 
interpreted as an entrainment rate, it is specified a priori and not related to the velocities. Technically, 𝐴𝐴 𝐴𝐴 acts 
like a reaction rate from the perspective of the biological system. Analogous reaction terms are present in 
Equation 3, with the exception that entrainment only decreases 𝐴𝐴 𝐴𝐴  (since it is assumed that subsurface wa-
ters below the mixed layer are also below the euphotic zone and thus devoid of phytoplankton). This system 
can be nondimensionalized in terms of the following dimensionless variables:

�∗ = �
�
, �∗ =

�
�
, 𝐮𝐮∗ = 𝐮𝐮

�
, �∗ = ���̃�, �∗ = �

�̃�
, � ∗ = �

�̃�
,� (4)

where 𝐴𝐴 ∼ 𝑁𝑁𝐷𝐷 is some characteristic 𝐴𝐴 𝐴𝐴 value, for example, 𝐴𝐴 ⟨𝑁𝑁𝐷𝐷⟩ where 𝐴𝐴 ⟨⋅⟩ denotes a spatial average. The diffu-
sive terms in Equations 2 and 3 scale inversely with the Péclet number, 𝐴𝐴 𝐴𝐴𝐴𝐴 = 𝑈𝑈𝑈𝑈∕𝜅𝜅 . The entire right-hand 
side of both equations scale with the Damköhler number, �� = ��̃��∕� , which is the ratio of advective 

𝐴𝐴 (𝐿𝐿∕𝑈𝑈 ) and reactive (1∕��̃�) timescales. The entrainment terms are further scaled by the ratio of reaction 
rates (�∕��̃�) . See Text S1 in Supporting Information S1 for the full nondimensional equations.

Our motivation in choosing this simplified set of equations is to avoid introducing extraneous nonlinearity, 
for example, from poorly constrained transfer functions associated with the zooplankton component in 
NPZ models. Certainly, we note that this system does not capture all of the relevant processes controlling 
phytoplankton biomass. By neglecting zooplankton, our model does not capture top–down controls, which 
have been shown to be important in determining phytoplankton abundance (Behrenfeld & Boss, 2014); 
these predator-prey interactions are also thought to be influenced by the dominant scales of motion in the 
flow (Richards & Brentnall, 2006; Srokosz et al., 2003; Taniguchi et al., 2014). The advantage of our ideal-
ized formulation, Equations 2 and 3, is that it is a tractable system which can be probed to understand the 
sensitivity to various parameters. Our reduced NPZ form allows us, for example, to conduct a multiple scale 
analysis, which provides theoretical insight into the appropriate form of reactive tracer eddy fluxes.

The concept of an eddy diffusivity introduced by Taylor (1921) is related to the Lagrangian velocity expe-
rienced by particles. However, this framework can be extended to the spreading of tracers in an Euleri-
an context. Papanicolaou and Pironneau (1981) showed that by assuming a scale separation between the 
eddies and mean flow, Equation 1 can be derived via a multiple scale analysis of the advection-diffusion 
equation for a passive tracer. Here, we apply a similar technique to Equations 2 and 3 to illustrate how 
additional reaction terms influence the form of the eddy flux. As in the passive tracer case, we assume a 
scale separation between the turbulent eddies ( 𝐴𝐴 𝓁𝓁 ) and the large-scale circulation ( 𝐴𝐴 𝐴𝐴 ). This suggests a per-
turbation expansion in terms of the small parameter � ≡ 𝓁𝓁∕� , where slow time and space variables are de-
fined as 𝐴𝐴 𝐴𝐴 = 𝜖𝜖𝜖𝜖 and 𝐴𝐴 𝐗𝐗 = 𝜖𝜖𝐱𝐱 , respectively. The velocity is also decomposed into mean and eddy components, 

𝐴𝐴 𝐮𝐮 = 𝐔𝐔(𝐗𝐗, 𝑇𝑇 ) + 𝐮𝐮′(𝐱𝐱, 𝑡𝑡; 𝐗𝐗, 𝑇𝑇 ) . Solutions for 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  then take the form:

� = �0(𝐗𝐗, � ) + ��1(𝐱𝐱, �;𝐗𝐗, � ) + (�2)� (5)

� = �0(𝐗𝐗, � ) + ��1(𝐱𝐱, �;𝐗𝐗, � ) + (�2).� (6)

Note that the mean flow and leading order biological behavior are both taken to be functions of the large 
scales only. We substitute the expansions, Equations 5 and 6, into the advection-diffusion-reaction system, 
Equations 2 and 3. At each order of 𝐴𝐴 𝐴𝐴 , averaging over the small and fast scales yields a solvability condition. 
The evolution equations for the large-scale, long-time, averaged tracer concentrations, 𝐴𝐴 𝑁̄𝑁 and 𝐴𝐴 𝑃𝑃  , are then 
obtained by summing the solvability conditions up to 𝐴𝐴 (𝜖𝜖2) . The results (see Text S2 in Supporting Informa-
tion S1 for details, and Flierl and McGillicuddy (2002), which uses a cruder approximation for the physics) 
imply that the eddy fluxes of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  have the form:

�′� ′ = −���∇� −���∇�,� (7)

�′� ′ = −���∇�̄ −���∇�̄,� (8)

where 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁 , 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁 , 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃 , are 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃 are effective diffusivities that can be expressed in terms of 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝑃𝑃  (see 
Text S4 in Supporting Information S1). Equations 7 and 8 have the eddy fluxes (i.e., the magnitude of the 
vectors 𝐴𝐴 |⟨𝐮𝐮′𝑃𝑃 ′

⟩| and 𝐴𝐴 |⟨𝐮𝐮′𝑁𝑁 ′
⟩| ) depending on the large-scale, mean tracer gradients ( 𝐴𝐴 |∇⟨𝑃𝑃 ⟩| and 𝐴𝐴 |∇⟨𝑁𝑁⟩| ), as in 
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the traditional gradient-diffusion result. However, unlike in the passive tracer case, we find that the fluxes 
of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  depend on the large-scale gradients of both tracers. There may be cases, for example, where the 
eddy flux of phytoplankton is controlled by the gradient in the mean nutrient concentration (rather than 
by gradients in 𝐴𝐴 𝑃𝑃  ). This phenomenon is known as cross-diffusion (Vanag & Epstein, 2009) and is due to the 
coupling between Equations 2 and 3 that results from the nonlinear uptake term, 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴  .

To understand cross-diffusion physically, consider a case where 𝐴𝐴 ⟨𝑁𝑁⟩ increases to the north. A parcel of fluid 
moving south will have a positive 𝐴𝐴 𝐴𝐴 ′ ; as a result 𝐴𝐴 𝐴𝐴 ′ will increase. When it arrives at some latitude, it will 
have positive 𝐴𝐴 𝐴𝐴 ′ and negative 𝐴𝐴 𝐴𝐴′ . Likewise, a parcel coming from the south will arrive at the same latitude 
with negative 𝐴𝐴 𝐴𝐴 ′ and positive 𝐴𝐴 𝐴𝐴′ . Thus, the flux 𝐴𝐴 ⟨𝑣𝑣′𝑃𝑃 ′

⟩ is negative, corresponding to a 𝐴𝐴 𝐴𝐴  flux down the gradi-
ent of 𝐴𝐴 ⟨𝑁𝑁⟩ . There can, of course, also be contributions from the gradient of 𝐴𝐴 ⟨𝑃𝑃 ⟩ , but, for linearized perturba-
tion equations, the two contributions can be treated separately and added to get the net flux. The diffusive 
coefficients associated with the cross terms can also be negative. For example, consider an infinitesimal 
wave on a background with uniform 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 and no gradient in nutrients. Flows away from high subsurface 
nutrients carry excess phytoplankton, which draws down nutrients producing a negative anomaly, while 
flow the other way has a positive anomaly. In other words, although there is no background gradient in 
nutrients, there is a nutrient flux up the gradient of phytoplankton.

2.2.  Physical Model

With the results from the multiple scale analysis in mind, we now investigate the dynamics of the nutri-
ent-phytoplankton model in a simple flow field. The dimensional Equations 2 and 3 are coupled to a 2-D 
stirring flow adapted from the clever “renovating wave” model in Pierrehumbert (1994). The velocity fields 
are generated by a stream function of the form:

Ψ =
4
∑

𝑛𝑛=1

𝑈𝑈𝑛𝑛cos(𝑘𝑘1𝑛𝑛𝑥𝑥 + 𝑘𝑘2𝑛𝑛𝑦𝑦 + 𝜃𝜃𝑛𝑛),� (9)

where the wavenumbers 𝐴𝐴 𝐴𝐴1𝑛𝑛 and 𝐴𝐴 𝐴𝐴2𝑛𝑛 and amplitude 𝐴𝐴 𝐴𝐴𝑛𝑛 are selected so that the kinetic energy spectrum 
is consistent with scaling laws of turbulence (i.e., 𝐴𝐴 𝐴𝐴−5∕3 slope) and 𝐴𝐴 𝐴𝐴𝑛𝑛 is a random-walking phase shift. In 
other words, sinusoidal shear flows are periodically “renovated” by a random phase shift at each time step 
( 𝐴𝐴 𝐴𝐴𝐴𝐴 = 1∕32 to satisfy a Courant-Friedrichs-Lewy condition) to generate a flow that is zero-mean in time and 
has qualitative similarities to 2-D turbulence. We tested multiple spectra, including a nonlocal 𝐴𝐴 𝐴𝐴−3 spectrum, 
but opted for a flow with more small-scale energy, since this is common in surface quasi-geostrophic tur-
bulence characteristic of the upper ocean. The exact choice of spectrum does not affect the existence of the 
cross-fluxes or the dependence on the relative time scales. Similar models have been used in the study of 
phytoplankton patchiness (Hodges & Rudnick, 2006; Young et al., 2001). The model domain is 𝐴𝐴 4𝜋𝜋 × 4𝜋𝜋 and 
doubly periodic. 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  transport is represented by a first-order upwind advection scheme to maintain 
positivity. The flow is homogeneous by construction and nearly isotropic (it is not exactly isotropic due to 
the double periodicity), so it can be represented by a single constant diffusivity.

2.3.  Model Parameters

In principle, 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴𝐷𝐷 could all be spatially variable. Here, we describe simulations in which 𝐴𝐴 𝐴𝐴 is mod-
eled as a sinusoid, 𝐴𝐴 𝐴𝐴0 + 𝜇𝜇1cos(𝑦𝑦∕2) . This form is chosen to maintain periodicity. The 𝐴𝐴 𝐴𝐴𝐷𝐷 and initial distribu-
tion of total nitrogen in the system ( 𝐴𝐴 𝐴𝐴 = 𝑁𝑁 + 𝑃𝑃  ) are also selected to be sinusoidal, although with east-west 
gradients to distinguish from gradients in 𝐴𝐴 𝐴𝐴 ; 𝐴𝐴 𝐴𝐴 is chosen to be a constant. The motivation for selecting 𝐴𝐴 𝐴𝐴 and 

𝐴𝐴 𝐴𝐴𝐷𝐷 to be orthogonal is to create gradients in 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  which are distinctly different, allowing us to more 
easily investigate the cross fluxes. The initial 𝐴𝐴 𝐴𝐴  distribution is determined from the leading order 𝐴𝐴 𝐴𝐴  solution 
found in the multiple scale analysis ( 𝐴𝐴 𝐴𝐴0 = 𝑁𝑁𝐷𝐷 − 𝜆𝜆∕𝜇𝜇 ). The initial 𝐴𝐴 𝐴𝐴 distribution is determined by subtract-
ing 𝐴𝐴 𝐴𝐴0 from the initialized 𝐴𝐴 𝐴𝐴 ( 𝐴𝐴 𝐴𝐴0 = 𝑆𝑆0 − 𝑃𝑃0 ). The initial conditions are plotted in Figure S1 in Supporting In-
formation S1. Eddies and filaments in the 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  fields quickly form, and are maintained, in many cases, 
through biological reactions. Figure 1 shows snapshots of the nutrient and phytoplankton concentration 
fields (a, b) and nutrient and phytoplankton eddy fluxes (c, d) for two different simulations after reaching 
equilibrium. The patchy, filamentary distributions in Figure 1a are representative of many oceanic regimes. 
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The simulations have the same flow field and initial conditions but varied reaction rates, namely 𝐴𝐴 𝐴𝐴𝐴𝐴 = 1 for 
Figures 1a and 1c and 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.1 for Figures 1b and 1d. Mean fields for these simulations are plotted in Figure 
S2 in Supporting Information S1. Parameter choices for all the different experiments in this study are given 
in Table S1 in Supporting Information S1.

3.  Results
The long-time behavior of the model is greatly affected by the presence of reaction terms as well as the 
reaction timescales. To illustrate this, several simulations were run with different values of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 ⟨𝜇𝜇⟩ . Fig-
ure 2 shows time series of phytoplankton concentration and variance for different values of 𝐴𝐴 𝐴𝐴𝐴𝐴 , which is 
diagnosed from the dimensional model using the spatial averages 𝐴𝐴 ⟨𝜇𝜇⟩ , 𝐴𝐴 ⟨𝑁𝑁𝐷𝐷⟩ , and 𝐴𝐴

√

⟨𝑢𝑢2⟩ . For a nonreactive 
tracer (i.e., 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0 ) the mean tracer concentration over the domain stays constant and the variance decays 
exponentially to zero as the stirring smooths out the gradients associated with the initial conditions (Hodges 
& Rudnick, 2006; Pierrehumbert, 2000). Biological reaction terms introduce a chaotic time dependence. 
After an initial transient period, the mean tracer concentration fluctuates randomly in time around an equi-
librium level which depends on the relative rates of phytoplankton growth and losses. When the ratio of 
phytoplankton detrainment to growth, 𝐴𝐴 𝐴𝐴∕⟨𝜇𝜇⟩ , is held constant, the equilibrium concentration value is fixed. 
Fluctuations are also seen in the tracer variance, which never decays to zero. The amplitude of the changes 
in 𝐴𝐴 ⟨𝑃𝑃 ⟩ depends on the ratio of reaction and flow timescales, 𝐴𝐴 𝐴𝐴𝐴𝐴 . The fluctuations (and consequently the 
variance) are largest for 𝐴𝐴 𝐴𝐴𝐴𝐴 = 1 and 𝐴𝐴 𝐴𝐴𝐴𝐴 = 10 due to the interaction between stirring and growth. This can 
be seen from the snapshots of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  in Figure 1; the tracers are well-mixed in 1b ( 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.1 ) compared 
to 1a ( 𝐴𝐴 𝐴𝐴𝐴𝐴 = 1 ).

The presence of biological reactions impacts the appropriate value of the effective diffusivity (see Figure 
S3 and Text S3 in Supporting Information S1), as well as the validity of the gradient-diffusion hypothesis. 
Since the time-mean of the velocity field is zero, the tracer fluxes from the model advection scheme are 
equal to the eddy fluxes �′� ′ and �′� ′ , taken to be the magnitude of the vectors 𝐴𝐴 |⟨𝐮𝐮′𝑃𝑃 ′

⟩| and 𝐴𝐴 |⟨𝐮𝐮′𝑁𝑁 ′
⟩| . Note 

Figure 1.  Snapshot at 𝐴𝐴 𝐴𝐴  = 1,000 of nutrient (purples) and phytoplankton (greens) concentrations (a), (b) as well as nutrient (left) and phytoplankton (right) 
eddy fluxes (c), (d) for two simulations with the same flow field but varied reaction rates, (a), (c) 𝐴𝐴 𝐴𝐴  = 0.03, 𝐴𝐴 ⟨𝜇𝜇⟩  = 0.08, 𝐴𝐴 𝐴𝐴𝐴𝐴  = 1 and (b), (d) 𝐴𝐴 𝐴𝐴  = 0.003, 𝐴𝐴 ⟨𝜇𝜇⟩  = 0.008, 

𝐴𝐴 𝐴𝐴𝐴𝐴  = 0.1.
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that here, eddy flux refers to the advective transport of tracers by the fluctuating component of the velocity 
field, rather than the biological fluxes (i.e., 𝐴𝐴 𝐴𝐴 ′𝑃𝑃 ′ terms), often called eddy reactions. While eddy reactions 
also affect the distribution of biogeochemical tracers, their magnitude depends inherently on the mathe-
matical form of the reaction terms. For our highly simplified model, the eddy reactions are much smaller 
than the eddy transports, although this is not necessarily the case in more complex biological models (Lévy 
& Martin, 2013).

Since we are focused on transport by the time-fluctuating velocity, the advective fluxes diagnosed directly 
from the model are referred to as the “true” eddy flux. These are depicted, for example, at a single time step 
in Figures 1c and 1d. An effective diffusivity, 𝐴𝐴 𝐴𝐴𝑒𝑒 can be computed by regressing the true eddy flux onto the 
tracer gradients, 𝐴𝐴 |∇⟨𝑃𝑃 ⟩| and 𝐴𝐴 |∇⟨𝑁𝑁⟩| , calculated at each grid cell from the mean 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  distributions after 
the simulation reaches equilibrium ( 𝐴𝐴 𝐴𝐴 = 1000 ) to the end of the run ( 𝐴𝐴 𝐴𝐴 = 5000 ). It is then possible to compare 
the true eddy flux with 𝐴𝐴 −𝐾𝐾𝑒𝑒∇𝑐𝑐 at each grid point. Figure 3 gives examples of this for two simulations with 
the same initial conditions, one with biological reaction terms (Figure 3a) and one without (Figure 3b). De-
viations from the black 1:1 line indicate a breakdown of the standard gradient-diffusion hypothesis.

Figure 3 suggests that, for the same initial conditions and velocity field, reactive tracer transport is poorly 
represented in terms of an eddy diffusion when compared to the nonreactive tracer case. Naturally, how-
ever, the specifics will depend on the model parameters. To illustrate this, we calculate the 𝐴𝐴 𝐴𝐴2 value, which 
measures the goodness of fit, to quantify the validity of �′�′ = −��∇�̄ for different values of 𝐴𝐴 𝐴𝐴𝐴𝐴 . 𝐴𝐴 𝐴𝐴2 values 
near 1 suggest that the gradient-diffusion hypothesis is a good assumption, whereas smaller 𝐴𝐴 𝐴𝐴2 values indi-
cate that it breaks down. The results in Section 2.1 point to the possible importance of cross-diffusion, so we 
also compute 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁 , 𝐴𝐴 𝐴𝐴𝑁𝑁𝑁𝑁 , 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃 , and 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃 by regressing the true eddy fluxes onto both 𝐴𝐴 ∇𝑃𝑃  and 𝐴𝐴 ∇𝑁̄𝑁 , rather than 
regressing �′� ′ onto 𝐴𝐴 ∇𝑃𝑃  only (and �′� ′ onto 𝐴𝐴 ∇𝑁̄𝑁 only). Adding additional predictors to a regression model 
can lead to spurious increases in 𝐴𝐴 𝐴𝐴2 , so adjusted 𝐴𝐴 𝐴𝐴2 values (Cramer, 1987) are calculated for the multiple 
regression (see Text S4 in Supporting Information S1).

Figure 2.  Time series of (a) Mean phytoplankton concentration, and (b) Phytoplankton concentration variance 
integrated over the domain. Plotted for five simulations with the same initial conditions and flow field but varied 𝐴𝐴 𝐴𝐴𝐴𝐴 .
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𝐴𝐴 𝐴𝐴2 is found to vary strongly with 𝐴𝐴 𝐴𝐴𝐴𝐴 (Figure  4 and Figure S4 in Supporting  Information  S1). Since re-
action terms scale with 𝐴𝐴 𝐴𝐴𝐴𝐴 in the nondimensionalized 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  equations, they are negligible in the 
limit of slow reaction rates relative to stirring, 𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴 1 . Consequently, in these regimes, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  can be 
treated as nonreactive tracers and have high 𝐴𝐴 𝐴𝐴2 values ( >0.7 ), both for �′� ′ = −��∇�̄  (blue in Figure 4) 
and �′� ′ = −���∇�̄ −���∇�̄ (orange in Figure  4). Still, even passive tracer transport is not perfectly 
described by an eddy diffusion, which may be related to nonlocal effects (Lee et al., 1997; Manucharyan 
et al., 2017; Sobel, 1999). When the reaction and flow timescales are of the same order, 𝐴𝐴 𝐴𝐴𝐴𝐴 ∼ (1) , 𝐴𝐴 𝐴𝐴2 values 
are much lower ( <0.3 ), suggesting a breakdown of the gradient-diffusion hypothesis. We note that this is 
true even when cross-diffusion terms are included. Recall that the derivation of Equations 7 and 8 required 
space and time-scale separation between the turbulent eddies and reactions. This assumption is violated, 
by definition, when 𝐴𝐴 𝐴𝐴𝐴𝐴 ∼ (1) . In other words, mimicking turbulent transport as an enhanced diffusion is 
only valid when there is a timescale separation between the reaction and eddies. We also find that when 

𝐴𝐴 𝐴𝐴𝐴𝐴 ∼ (1) , fluctuations in 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  persist over the scales of variation of 𝐴𝐴 𝑃𝑃 𝑃 𝑁̄𝑁𝑁 𝑁𝑁 , and 𝐴𝐴 𝐴𝐴𝐷𝐷 , and tend to be out 

Figure 3.  (a) Calculated eddy fluxes of 𝐴𝐴 𝐴𝐴 (purple) and 𝐴𝐴 𝐴𝐴  (green) from 𝐴𝐴 ∇𝑐𝑐 and least squares fitted 𝐴𝐴 𝐴𝐴𝑒𝑒 versus the diagnosed eddy fluxes at each grid cell for a 
simulation with biological reaction terms ( 𝐴𝐴 𝐴𝐴  = 0.03, 𝐴𝐴 ⟨𝜇𝜇⟩  = 0.08), and (b) For the same initial conditions but with reaction rates 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 ⟨𝜇𝜇⟩ set to 0 (i.e., 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  
are nonreactive tracers).

Figure 4. 𝐴𝐴 𝐴𝐴2 of the parameterized eddy flux and true eddy flux as a function of 𝐴𝐴 𝐴𝐴𝐴𝐴 assuming �′� ′ = −��∇�̄  (blue) and 
�′� ′ = −���∇�̄ −���∇�̄ (orange).
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of phase with the flow (Text S2 in Supporting Information S1), which likely contribute to the breakdown of 
the parameterization.

In the limit of fast reaction rates relative to stirring, 𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴 1 , the 𝐴𝐴 𝐴𝐴2 values are significantly increased by in-
cluding cross-diffusion (Figure 4). This suggests that there are parameter regimes where the mean nutrient 
gradient is a better predictor of the phytoplankton eddy fluxes than the mean phytoplankton gradient. The 
importance of cross-diffusion can be examined through ���∕��� , the ratio of effective diffusivities from 
Equation 8, which depends on the ratio of reaction rates, �∕��� (see Text S4 in Supporting Information S1). 
�∕��� also scales the entrainment terms in the nondimensionalized 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  equations. When �∕��� ≪ 1 , 

𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃 is larger than 𝐴𝐴 𝐴𝐴𝑃𝑃𝑃𝑃 , that is, the phytoplankton eddy flux is controlled by the mean nutrient gradient. 
This corresponds to cases where the leading order biological behavior is governed solely by the nonlinear 
growth term, which explicitly couples 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  . While the specifics of this result depend on the mathemati-
cal representation of the biological reaction terms, cross-diffusion in more complex biogeochemical models 
deserves further examination.

4.  Discussion and Conclusions
It is well known that mesoscale and submesoscale processes impact phytoplankton variability (Flierl & 
McGillicuddy, 2002; Lévy et al., 2012, 2018; Mahadevan, 2016; McGillicuddy, 2016). However, these scales 
are not resolved in most global climate models. While significant progress has been made in the parameter-
ization of turbulent fluxes for ocean models (D’Asaro et al., 2014; Fox-Kemper et al., 2008; Gent et al., 1995; 
Visbeck et al., 1997), many subgrid scale processes are still poorly represented (Fox-Kemper et al., 2019; 
Hamlington et al., 2014; Li et al., 2019; Smith et al., 2016). Biogeochemical tracers pose an added challenge 
due to nonlinear reactions, which impact their distribution in addition to advection by the flow (Wallhead 
et al., 2013). Our goal in this study has been to examine the theoretical limitations of eddy diffusion pa-
rameterizations for reactive tracers such as nutrients and phytoplankton. Note that in the context of our 
simulations, eddy flux refers to the advective transport by the time fluctuating velocity rather than a param-
eterization of subgrid scale processes. However, the multiple scale analysis from Section 2 is more general, 
and implies that cross-diffusion will also exist in the ensemble and coarse-grained problems.

We find that the efficacy of the parameterized eddy fluxes depends strongly on the ratio of biological and 
physical timescales, the Damköhler number. At low 𝐴𝐴 𝐴𝐴𝐴𝐴 , gradient-diffusion is accurate since the reaction 
rates are slow enough that the scalar is approximately nonreactive. At high 𝐴𝐴 𝐴𝐴𝐴𝐴 , the scalar is reacting faster 
than diffusion can act on it, so the gradient seen by the turbulence is small. The tracer evolution is primarily 
governed by the biological reactions, which explicitly couple 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴  . Consequently, cross-diffusion can be 
important in these regimes. At intermediate 𝐴𝐴 𝐴𝐴𝐴𝐴 , the tracers are reacting on the same timescales as the back-
ground flow, so changes in tracer concentration result from a complex combination of stirring and growth. 
As a result, the covariance of 𝐴𝐴 𝐴𝐴′ and 𝐴𝐴 𝐴𝐴 ′ , which determines the phytoplankton flux, is not well represented in 
terms of the mean fields. The parameterization fails in these regimes, regardless of whether cross-diffusion 
is included. This is not surprising, since 𝐴𝐴 𝐴𝐴𝐴𝐴 ∼ (1) violates the timescale separation condition needed to 
derive Equations 7 and 8.

Previous studies have proposed an effective diffusivity that varies as a function of the reaction rate 
(Plumb, 1979; Pasquero, 2005). However, even simple biogeochemical models, such as the one used in this 
study, can have multiple reaction timescales whose relative magnitudes affect the equilibrium behavior. 
Furthermore, the reaction-dependent effective diffusivity in Pasquero (2005) was found to be least accurate 
when 𝐴𝐴 𝐴𝐴𝐴𝐴 ∼ (1) . We suggest this is due to the lack of timescale separation rendering gradient diffusion 
invalid. When the flow and reaction timescales are similar, it may be difficult to improve the accuracy 
of parameterized fluxes within the eddy diffusion framework, even if modified to account for the reac-
tion timescale as in Pasquero  (2005). This result has implications for coarse resolution climate models, 
since 𝐴𝐴 𝐴𝐴𝐴𝐴 ∼ (1) approximately applies to phytoplankton growth and loss processes at the submesoscale 
(Smith, 2017). Therefore, there may be large errors associated with applying gradient diffusion to parame-
terize eddy fluxes of phytoplankton at the submesoscale.

In large 𝐴𝐴 𝐴𝐴𝐴𝐴 regimes, we find that the eddy fluxes of 𝐴𝐴 𝐴𝐴  can depend strongly on gradients in 𝐴𝐴 𝐴𝐴 due to the 
coupling between the phytoplankton and nutrient evolution equations via biological reaction terms. 
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Incorporating cross-diffusion in our idealized simulations greatly increased the accuracy of the parameter-
ized fluxes when 𝐴𝐴 𝐴𝐴𝐴𝐴 𝐴 1 . This is significant since 𝐴𝐴 𝐴𝐴𝐴𝐴 ∼ (102) roughly applies to phytoplankton processes 
at the mesoscale (Smith, 2017). Therefore, including cross-terms in complex models may provide a way to 
improve the parameterized fluxes of phytoplankton at the mesoscale using information about the large 
scales only. We note though that any eddy parameterization which assumes locality in space and time is 
missing fundamental physical effects. As was shown in Manucharyan et al.  (2017), the large-scale eddy 
field has a finite memory of past ocean states. Recent efforts have also incorporated nonlocal effects into 
eddy parameterizations using an effective diffusivity kernel that depends on the statistics of the flow field 
(Bhamidipati et al., 2020). Extending these frameworks to reactive tracers is worth investigation given the 
key role of phytoplankton in marine ecosystems and the global carbon cycle.

Data Availability Statement
The code to run the coupled physical-biological model used in this study can be found at http://doi.
org/10.5281/zenodo.4067095.
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