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ABSTRACT

Our ability to forecast the spatial and temporal patterns of ecological processes at continental scales has drastically improved over the past
decade. Yet, predicting ecological patterns at broad scales while capturing fine-scale processes is a central challenge of ecological forecasting
given the inherent tension between grain and extent, whereby enhancing one often diminishes the other. We leveraged 10 years of terrestrial
and atmospheric data (2012-2021) to develop a high-resolution (2.9 x 2.9 km), radar-driven bird migration forecast model for a highly active re-
gion of the Mississippi flyway. Based on the suite of candidate models we examined, adding terrestrial predictors improved model performance
only marginally, whereas spatially distant atmospheric predictors, particularly air temperature and wind speed from focal and distant regions,
were major contributors to our top model, explaining 56 % of variation in regional migration activity. Among terrestrial predictors, which ranked
considerably lower than atmospheric predictors in terms of variable importance, vegetation phenology, artificial light at night, and percent of
forest cover were the most important predictors. Furthermore, we scale this model to demonstrate the capacity to generate real-time, high-
resolution forecasts for the continental United States that explained up to 65% of national variation. Our study demonstrates an approach for
increasing the resolution of migration forecasts, which could facilitate the integration of radar with other data sources and inform dynamic con-
servation efforts at a local scale that is more relevant to threats, such as anthropogenic light at night.
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LAY SUMMARY

e Current migration forecasts rely solely on local atmospheric conditions and predictions are made at a relatively coarse scale. Yet, the inclusion
of additional predictors may increase forecast resolution.

¢ \We integrated terrestrial variables and atmospheric conditions at various scales into an existing radardriven forecasting approach to signifi-
cantly enhance the spatial resolution of forecasting outputs.

e By comparing 6 modeling approaches, we demonstrate that integrating these variables improved forecasting performance at a high-resolution
of 2.9 x 2.9 km within North America’s most active flyway. As a proof of concept, we applied this approach to the entire continental United
States, where our model successfully explained up to 65% of variation in migration activity.

® The high-resolution predictions of our new models could facilitate data integration and inform migratory bird conservation efforts at local scales.

Integrar predictores terrestres y atmosféricos de multiples escalas mejora los prondsticos de
migracion nocturna de las aves

RESUMEN

Nuestra capacidad para pronosticar patrones espaciales y temporales de procesos ecolégicos a escalas continentales ha mejorado drasticamente
en la ultima década. Sin embargo, predecir patrones ecoldgicos a escalas amplias mientras se capturan procesos de escala fina sigue siendo
un desafio central en la prediccién ecoldgica debido a la tensién inherente entre grano y extension, donde mejorar uno a menudo disminuye
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el otro. Aprovechamos 10 afnos de datos terrestres y atmosféricos (2012-2021) para desarrollar un modelo de pronéstico de migraciéon de aves
de alta resolucion (2.9 x 2.9 km) mediado por radar, para una region altamente activa de la ruta migratoria del Mississippi. Basados en un con-
junto de modelos candidatos que examinamos, agregar predictores terrestres mejord el rendimiento del modelo solo de manera marginal,
mientras que los predictores atmosféricos espacialmente distantes, en particular la temperatura del aire y la velocidad del viento de regiones
focales y distantes, fueron los principales contribuyentes a nuestro mejor modelo, explicando el 56% de la variacion en la actividad migratoria
regional. Entre los predictores terrestres, que se posicionaron considerablemente mas bajos que los predictores atmosféricos en términos
de importancia de las variables, la fenologia de la vegetacion, la luz artificial durante la noche y el porcentaje de cobertura forestal fueron los
predictores méas importantes. Ademas, ampliamos este modelo para demostrar la capacidad de generar prondésticos en tiempo real de alta
resolucion para los Estados Unidos continentales, que explicaron hasta el 65% de la variacion nacional. Nuestro estudio brinda un enfoque para
aumentar la resolucion de los pronoésticos de migracion, lo que podria facilitar la integracion del radar con otras fuentes de datos y colaborar con
los esfuerzos de conservacion dindmicos a escala local que es mas relevante para las amenazas, como la luz artificial nocturna.

Palabras clave: aeroecologia, aprendizaje automatico, migracion de aves, prondsticos ecoldgicos, teledeteccion

INTRODUCTION

Our ability to forecast bird migration intensity at a contin-
ental scale has the potential to inform dynamic conservation
efforts (Horton et al. 2021). Yet, accounting for various scales
that influence ecological systems is an established challenge of
ecological forecasting (Wiens 1989, Dietze et al. 2018). There
is an inherent tradeoff between grain and extent, such that
expanding the spatial scope of a forecast typically comes at
the cost of capturing fine-scale processes (Levin 1992). Given
this, it is generally difficult to make ecological predictions at
a broad scale that account for fine-scale variation and pro-
vide insight that can be applied to local conservation efforts
(Petchey et al. 2015). One application of ecological forecasting
that has received considerable attention is the prediction of
migratory bird movements, with notable advancements in the
development of forecasting systems that leverage decades of
weather surveillance radar data to predict nightly migration
intensities (Van Doren and Horton 2018, Van Gasteren et al.
2019, Lippert et al. 2022). Many of these systems calculate
vertical profiles of activity, which take data across multiple
altitudes within more than 200,000 volumes and consolidate
them to as few as 30 values that summarize activity within an
altitudinal range of interest (Dokter et al. 2019).

Yet, these migration forecasting systems could be further
enhanced by incorporating additional geospatial predictors
that characterize the terrestrial landscape to provide add-
itional predictive power. Various land cover features such as
vegetation phenology (Gordo 2007, Youngflesh et al. 2021)
and the amount of canopy cover at the local scale (Buler and
Dawson 2014) have been shown to influence spatial and
temporal patterns of bird migration, with bird migration
advancing to keep up with phenological shifts and relying on
forested areas for migratory stopover. However, predictors in
current North American radar-driven forecasts like BirdCast
(Van Doren and Horton 2018) are solely composed of at-
mospheric variables, such as wind speed, wind direction, tem-
perature, and sampling variables, such as timing and location
of data collection, without incorporating terrestrial landcover
variables that may influence where birds take off from and
land.

Beyond the incorporation of terrestrial landcover, forecasts
could potentially be enhanced by integrating predictors at
multiple spatial scales rather than solely relying on local pre-
dictors that reflect conditions around each respective radar
site that is measuring migration activity. Migration is likely
driven by variables across a wide range of spatial scales, and
by integrating atmospheric and terrestrial predictors at re-
gional and macro scales, we can potentially enhance the spa-
tial resolution and predictive power to forecast migration

intensity, specifically the density of migrants in the airspace
3 hr after sunset, as measured by weather surveillance radar.
While many near-term forecasting models use predictors at the
local area around a focal point (e.g., Van Doren and Horton
2018) and remain limited by coarse spatial resolution (Dietze
et al. 2018), the inclusion of spatially distant predictors or
those that reflect conditions at a set range away from a given
focal point could capture both environmental cues at broad
scales and local conditions, such as temperature (Tottrup et
al. 2010), to enhance model resolution. This concept has been
demonstrated by Kranstauber et al. (2022), who developed
ensemble models that have leveraged multi-scale predictors
to improve bird migration forecasting performance. Such
findings strongly suggest that integrating both terrestrial and
atmospheric predictors across multiple scales into existing
forecasting systems in the continental United States may help
explain variance at a smaller spatial grain and effectively en-
hance the resolution of predictions.

This spatial enhancement could have important implica-
tions for both research and conservation applications. For
instance, while there have been considerable efforts to in-
tegrate Next Generation Weather Radar (NEXRAD) data
with crowdsourced occurrence data, such as eBird, to better
understand the taxonomic composition of migratory move-
ments (Shipley et al. 2018, Weisshaupt et al. 2021), there
is a spatial mismatch between the fine scale of these taxo-
nomic data products and the relatively coarse scale of pre-
vious NEXRAD estimates of migration activity (e.g., Haas et
al. 2022). Similarly, many pressing global landcover changes,
such as urbanization, occur at fine scales that require high
spatial resolution to properly investigate in an ecological con-
text (Cadenasso et al. 2007). From a conservation standpoint,
there is growing evidence that collisions with human-built
structures are a major source of mortality (Loss et al. 2014)
and the amount of anthropogenic light at night can influence
migrant behavior, attracting and trapping birds in brightly lit
areas (Horton et al. 2019). Near-term forecasting of migration
events has already demonstrated immense value to conserva-
tion practitioners (Horton et al. 2021) and is often used to
inform Lights Out campaigns across the United States, which
seek to reduce anthropogenic light during periods of intense
migration (Burt et al. 2023). However, previous studies have
demonstrated that birds respond to point light sources at a
remarkably local scale (Van Doren et al. 2017), far beyond
the coarse resolution of current forecasts. Relatedly, an in-
creased resolution could help target messaging to the appro-
priate stakeholders at a local scale, which is a noted barrier
to the efficacy of current Lights Out programs and campaigns
(Burt et al. 2023). Together, there is a strong motivation to en-
hance the spatial resolution of these forecasts to both advance
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research and improve our capacity for effective conservation
messaging and decision-making.

Here, our objectives were to enhance the spatial reso-
lution of migration forecasts while maintaining high pre-
dictive power by addressing the limitations noted above.
Our approach entailed (1) training models on rasters of wea-
ther surveillance radar products to capture heterogeneity in
nightly migration, (2) integrating terrestrial covariates, and
(3) incorporating spatially distant predictors. As a first step,
we developed these forecasts within the midwestern United
States, the most active flyway in North America. We then
scaled up our approach to the full continental United States
to test performance across a broad extent and compared our
models to existing continental forecast models (Van Doren
and Horton, 2018). We predicted that integrating both land
cover and distant predictor variables would explain add-
itional variance in observed data and, consequently, improve
the prediction of migration intensity.

METHODS

Study System and Overview of Approach

To understand the relationship between bird migration in-
tensity (as measured by radar) and predictor variables, we
focused on developing testbed forecasts in the midwestern
United States (Figure 1). We chose to focus on a smaller region
because of the computational intensity of developing high-
resolution forecasts, which required hundreds of gigabytes of
data. This region is dominated by low elevation and flat in-
terior plains, and has relatively dense coverage of NEXRAD
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stations, providing our model with ample measures for
training. This region serves as a major flyway for migratory
birds (Dokter et al. 2018, Horton et al. 2019). The combin-
ation of comprehensive NEXRAD radar coverage, minimal
topographical blockage, and high degree of bird migration
activity make this an ideal site for developing radar-driven
migration forecasting tools. Notably, Van Doren and Horton
(2018) reported that models in this region performed rela-
tively well at broad spatial scales (R? > 0.75). For this focal re-
gion, we chose 14 conterminous NEXRAD weather stations
in this region (Supplementary Material Table 1). Once devel-
oped, we extended our approach to the continental United
States to explore the possibility of broadening this approach
across the full extent of the NEXRAD system for potential
conservation science and outreach. We describe this expanded
forecast below in our national-scale forecasting section.

Weather Surveillance Radar Data

We used radar data collected through the NEXRAD network,
which is operated by the National Weather Service (NWS),
the Federal Aviation Administration (FAA), and the U.S. Air
Force. With the contiguous United States, this network consists
of 143 high-resolution Doppler weather radars (WSR-88D)
that scan 360° at 0.5° azimuthal intervals (e.g., 720 azimuths)
and multiple elevation angles (e.g., 0.5°, 1.5° ... 4.5°) to ac-
tively monitor the airspace every 5-10 min and are access-
ible through Amazon Web Services (https:/registry.opendata.
aws/noaa-nexrad/). We downloaded level-Il radar scans
2-4 hr after local sunset from 2012 to 2021 (from March 1
to November 15), since this 2-hr period usually encompasses

FIGURE 1. Overview of the study area and sampling methodology. (A) Dots represent 143 weather surveillance radar (NEXRAD) stations across the
contiguous United States, and the inset box represents our study area. (B) A zoomed-in view of our study area, where circular domains represent 14
radar sampling regions. Within these domains, we show 1,287 sampling points (dots) used to collect bird migration observation data and predictor
values for training and evaluating our forecast model. Within each circle, the light background represents the radar station coverage after removing
clutter and beam blockage. (C) A schematic view of our sampling method to collect predictor values from an example focal cell (2.9 x 2.9 km), as well

as 150-km distant predictor values in cardinal directions (not drawn to scale).
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peak nightly bird migration activity (Farnsworth et al. 2016).
These data provide the meteorological base moments of re-
flectivity, mean radial velocity, and spectrum width, which are
commonly used for biological analysis. We downloaded polar
volumes (PPIs), or a collection of azimuthal scans for all 14
stations and used the native date and time stamp associated
with each radar scan. We used the R package bioRad (Dokter
et al.2019) in R version 4.2.2 (R Core Team 2022) to process
data and we used the apply_mistnet function to filter out pre-
cipitation from PPIs and during the construction of vertical
profiles of reflectivity (Lin et al. 2019). We used static clutter
masks to remove clutter from physical structures (e.g., build-
ings and wind turbines) and elevational beam blockage (e.g.,
mountains). Because weather surveillance radars sample at
increasing height above ground level with increasing distance
from the radar, the biological coverage (and thus migra-
tion activity) covaries with distance to radar. Specifically, as
the distance from the radar increases, our ability to quan-
tify migrant density decreases, especially beyond 80-100
km, and thus density and distance negatively covary. To
reduce this bias, and leverage the spatial information com-
posed within polar volumes, we corrected for range artifacts
(Buler and Diehl 2009). To account for errors associated with
measures taken at increasing distance from each radar, we
range-corrected planned position indicator (PPIs) using the
integrate_to_ppi function in bioRad. We calculated the ex-
pected reflectivity at each pixel in each PPI as weighted by
the vertical profile of reflectivity. We excluded individual PPI
pixels that had range adjustment factors (R) higher than 10.
The result of this correction was a range-corrected measure
of vertically integrated reflectivity (cm? km2), which we used
as a raster of biological activity. For volumes that were la-
beled as precipitation by MistNet, we changed the reflectivity
values to zero. We aggregated the resulting polar volumes to
rasters with a grain of 2.9 x 2.9 km.

Weather Reanalysis—North American Regional
Reanalysis

We used the North American Regional Reanalysis (NARR)
(National Centers for Environmental Prediction/NWS/
NOAA/U.S. Department of Commerce 2005) to produce a
best estimate of weather conditions that occurred across the
Midwest region (Mesinger et al. 2006) on the basis that it
is commonly used for similar research across this extent.
NARR is a combined model and assimilated dataset of
many different atmospheric measurements, reanalyzed to
generate continuous continental scale coverage. The NARR
model provides 8 daily measurements every 3 hr of vari-
ables at 29 pressure levels with a 32-km resolution. We
downloaded NARR data from 2012 to 2021, and for each
geographic coordinate we only included measurements of
the closest 3-hr Coordinated Universal Time (UTC) to the
local sunset. We then extracted the following parameters:
air temperature (°C), geopotential height (m), zonal and
meridional wind components (m s™), surface pressure (Pa),
relative humidity (%), visibility (m), mean sea level pres-
sure (Pa), and total cloud cover (%). For variables available
at multiple pressure levels (air temperature and zonal and
meridional wind speed), we extracted data from the surface
level to 800 hPa at 50 hPa intervals. We have summarized
the atmospheric predictor variables included in this study
in Table 1.
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Weather Forecasts—North American Mesoscale
Forecast System

To understand how the model performed in real-time scenarios
for nightly migration forecasts, we quantified the performance
using true forecasts of atmospheric measures. We used the
North American Mesoscale Forecast System (NAM; https://
www.ncei.noaa.gov/products/weather-climate-models/north-
american-mesoscale), which generates weather forecasts up
to 84 hr. In contrast to NARR, NAM is a true forecast and
naturally is prone to predictive error. Forecasts are available
hourly from 1 to 36 hr and subsequently every 3 hr until hour
84. Forecast models are run every 6 hr. NAM predictions are
made on a 12-km grid. We downloaded forecasts from 0 to
6 UTC and extracted the same parameters as for NARR, and
matched NAM data to cells within the radar coverage.

Terrestrial Predictors

To understand how terrestrial variables influence migration
activity, we selected 3 categories of predictors: land cover,
vegetative phenology, and artificial light at night. We ex-
tracted terrestrial variables as potential predictors of bird mi-
gration activity. We derived land cover data from the MODIS
Land Cover Type Product (MCD12Q1 v 6.0; Sulla-Menashe
and Friedl 2018). This product comes with 6 different land
cover classifications at ~500-m resolution and annual time,
of which we used the University of Maryland (UMD) classi-
fication scheme. The UMD classification scheme provides 16
classes/types of land cover. For cropland, forest, shrubland,
and savanna land cover types, we first summed all associated
classes, and then calculated the percent cover at 2.9-km reso-
lution. Specifically, for croplands, we combined the Cropland
and Cropland/Natural Vegetation classes. For forest, we com-
bined Evergreen Needleleaf Forests, Evergreen Broadleaf
Forests, Deciduous Needleleaf Forests, Deciduous Broadleaf
Forests, and Mixed Forests. For shrublands, we combined
Closed and Open Shrublands. For Savanna, we combined
Savannas and Woody Savannas.

For each of the terrestrial predictors, we aggregated ~500
m cells by 6 x 6 (roughly 2.9 x 2.9 km) cell quadrants and
calculated the mean and standard deviation for each re-
sultant cell. Resampling these datasets allowed us to project
the data onto roughly the same resolution (2.9 x 2.9 km).
We selected this resolution because it is the current reso-
lution of publicly available eBird community science data
(Auer et al. 2020, Fink et al. 2020). Since radars do not pro-
vide species-specific information, we view eBird as a natural
point of future data integration to strengthen insights and
conservation actions.

In total, our aggregation process resulted in 9 classes of
land cover in our forecasting model using this dataset (Table
1). Additionally, we used the MODIS vegetation index
(VI) to measure the mean enhanced vegetation index (EVI)
at a ~500-m resolution (Didan et al. 2015). We used the
MOD13A1 v6.0 layer to extract EVI. We aggregated EVI
values to 2.9-km resolution (roughly 6 x 6 cells) and calculated
the mean and standard deviation per grid cell (i.e., generating
2 variables, mean EVI, and SD EVI, using this dataset). Lastly,
we used NASA’s visible infrared imaging radiometer suite
(VIIRS; the “vem” version of tiled monthly cloud-free Day/
Night band composites) dataset as a measure of anthropo-
genic light at night at a 15 arc second (roughly 500 m) spatial
resolution (available at the Colorado School of Mines’ Earth
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TABLE 1. A list of the sampling, atmospheric, and terrestrial predictor variables used to predict bird migration density with gradient boosted trees.

Class of Cardinal
Predictor variables Resolution Collection metrics directions
Ordinal date Sampling - - No
Time after sunset Sampling - - No
Distance from radar Sampling - - No
Elevation Sampling NASADEM (30 m) - No
Air temperature Atmospheric NARR (32 km) NAM (12 km) 2 m above ground, 800-1,000 hPa Yes
Geospatial height Atmospheric NARR (32 km) NAM (12 km)  Surface Yes
Pressure Atmospheric NARR (32 km) NAM (12 km)  Surface, mean sea level Yes
Relative humidity Atmospheric NARR (32 km) NAM (12 km) 2 m above ground Yes
Total cloud cover Atmospheric NARR (32 km) Entire atmosphere Yes
NAM (12 km)
Visibility Atmospheric NARR (32 km) Surface Yes
NAM (12 km)
Zonal and meridional wind speed Atmospheric NARR (32 km) 10 m above ground, 800-1000 hPa Yes
NAM (12 km)
Enhanced vegetation index (EVI)  Terrestrial MOD13A1 (500 m) Aggregated to 2.9 km, and mean and No
standard deviation collected
Visible infrared imaging radiom-  Terrestrial VIIRS nighttime lights (~500 m  Aggregated to 2.9 km, and mean and No
eter suite (VIIRS) at the equator) standard deviation collected
Water bodies Terrestrial MCD12Q1 (500 m) Aggregated to 2.9 km and the relative per- No
centage calculated
Grasslands Terrestrial MCD12Q1 (500 m) Aggregated to 2.9 km and the relative per- No
centage calculated
Permanent wetlands Terrestrial MCD12Q1 (500 m) Aggregated to 2.9 km and the relative per- No
centage calculated
Urban and built-up lands Terrestrial MCD12Q1 (500 m) Aggregated to 2.9 km, and the relative per- No
centage calculated
Non-vegetated lands Terrestrial MCD12Q1 (500 m) Aggregated to 2.9 km and the relative per- No
centage calculated
Forests Terrestrial MCD12Q1 (500 m) Aggregated to 2.9 km and the relative per- No
centage calculated
Shrublands Terrestrial MCD12Q1 (500 m) Aggregated to 2.9 km and the relative per- No
centage calculated
Croplands Terrestrial MCD12Q1 (500 m) Aggregated to 2.9 km and relative percentage No
calculated
Savannas Terrestrial MCD12Q1 (500 m) Aggregated to 2.9 km and the relative per- No

centage calculated

Observation Group webpage: https://eogdata.mines.edu/
products/vnl/). We applied the same method as EVI to this
dataset and generated 2 new variables, mean and standard
deviation values of radiance derived from VIIRS (hereafter
“anthropogenic light”). In total, we derived 13 terrestrial pre-
dictors to be included in our forecasting model (Table 1).

Supervised Machine Learning

We used gradient boosted trees that predict bird migration ac-
tivity from atmospheric and terrestrial features. We matched
the timestamps of the terrestrial and atmospheric data to the
nearest available timestamps of the radar observations, en-
suring the data from different sources were temporally co-
herent. For this supervised learning approach, we divided our
data into 3 sets: (1) a training set to train the model with 70%
of data, (2) a validation set for hyperparameter tuning (15%),
and (3) a test set to evaluate performance (15%). The pur-
pose of this division was to train the model using the training

set and to tune the hyperparameters of the model using the
validation set. To tune the hyperparameters, we performed a
grid search by trying different combinations of parameters,
such as the objective for regression application, learning rate,
number of trees, max number of leaves in one tree, and max-
imum depth for the tree model. Specifically, we set an initial
learning rate of 0.1, with a maximum tree depth of 30 and
500 leaves per tree. We constrained the minimum number of
data points in each leaf to 3,000 and required a minimum
gain of 3 to perform a split. Additionally, a minimum sum of
2 for the Hessian in each leaf was imposed. We used a serial
tree learner, leveraging 10 computational threads, with a fixed
random seed (123) for reproducibility. To enhance general-
ization, a bagging fraction of 80% was employed, along with
a bagging frequency of 5 iterations and a feature fraction of
95%. Early stopping was applied after 7 rounds of no im-
provement. The importance of features was saved based on
split gains, and column-wise processing of features was forced
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to improve computational efficiency. We used the LightGBM
package in R (Ke et al. 2017), which employs gradient-based
one-sided sampling and exclusive feature bundling to accel-
erate the training process while maintaining high accuracy.

We randomly selected 1,287 unique points for training
our forecasting system from our testbed region (Figure 1).
Points were distributed proportional to the coverage of each
NEXRAD site (i.e., sites with great blockage and clutter ac-
counted for a smaller proportion of points) with a maximum
of 100 points per site. We then extracted the atmospheric and
terrestrial predictor values associated with each point. For at-
mospheric predictor variables, we also extracted spatially dis-
tant predictors (i.e., from locations 150 km from each focal
point in each cardinal directions; Table 1). We included dis-
tant predictors to reflect conditions at a set range away from
the focal area to capture the possibility that birds respond to
environmental cues at a macroscale. This definition doubles
the range of remote predictors used by Kranstauber et al.
(2022) and was informed by estimated average flight distance
of Catharus ustulatus (Swainson’s Thrush), which on average
flew 265 km per night (Wikelski et al. 2003). Given the large
amount of data included in each model, experimenting with
multiple scales would have been exceedingly difficult from
both a time and computational perspective. In total, we as-
sessed 167 predictor variables associated with each point to
train a gradient boosted tree. The final dataset for training
and evaluating our machine learning-based forecasting model
contained 11,993,543 weather radar scan-derived bird mi-
gration estimates collected from 1,287 sampling points from
2,587 nights across 10 years.

For model fitting, we used Root Mean Square Error (RMSE)
as a measure of model performance as it measures the average
magnitude of the error between predicted and actual values,
while also penalizing large errors more heavily than small
errors (Morley et al. 2018). To prevent overfitting, we used
early stopping and stopped the algorithm after 10 boosting
iterations in which performance on the validation set failed
to improve the RMSE. We then used the validation dataset to
select the best-performing model based on the lowest RMSE.
The best combination of model parameters was: regression
for the objective, 0.1 for learning rate, 1,000 for number of
trees, 500 for maximum number of leaves, and 30 for max-
imum depth. Finally, we evaluated the performance of the
model on the test set to assess its generalization ability.

Description of Six Candidate Models

We created 6 modeling scenarios with varying candidate pre-
dictor sets using different combinations of 167 predictor vari-
ables to explore 6 hypotheses relating to the importance of
atmospheric, terrestrial, and spatially distant predictors in
forecasting bird migration density. All atmospheric variables
used to develop and evaluate the forecasting system were
obtained from NARR. To evaluate our model performance,
we performed a 10-fold cross-validation across 10 years of
historical data (2012-2021) and calculated the coefficient of
determination (R?) per year. Below, we summarize the details
of each model scenario:

Scenario 0: As a null model test, we designed a system to
predict bird migration forecast using only sampling variables
to understand the extent to which the chosen predictors (or-
dinal date, hour after sunset, elevation, and distance to radar)
can explain the observed variation in bird migration patterns.
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By isolating the impact of these sampling variables, we aimed
to understand the underlying processes driving bird migration
better.

Scenario 1: In this scenario, we designed a system similar
to Van Doren and Horton (2018), but using the currently en-
hanced spatial resolution (~2.9 x 2.9 km), representing the
hypothesis that nightly bird migration intensity is best pre-
dicted solely by atmospheric predictors. Our scenario one
model included 28 atmospheric and sampling predictors as-
sociated with the focal area/cell. This scenario was chosen as
the benchmark for comparison of improvement as we added
more predictor variables to the system. Note that Van Doren
and Horton (2018) trained their model on vertical profiles of
reflectivity, a product that averages migration intensity across
a broad spatial extent (4,417 km?), whereas our model is
trained on considerably smaller spatial extents (9 km?).

Scenario 2: We added terrestrial variables (i.e., land cover,
EVI, and artificial light at night) associated with the focal area
to Scenario 1, representing the hypothesis that terrestrial pre-
dictors would improve forecasting performance. The model
in Scenario 2 included 41 total predictors.

Scenario 3: We added spatially distant terrestrial predictors
150 km away in each cardinal direction to Scenario 2, repre-
senting the hypothesis that including terrestrial predictors at
multiple scales would increase forecasting performance. This
model included 71 total predictors.

Scenario 4: We added spatially distant atmospheric vari-
ables 150 km away from the focal pixel in each cardinal direc-
tion to Scenario 2, representing the hypothesis that including
atmospheric predictors at multiple spatial scales would in-
crease forecasting performance. The model in Scenario 4 in-
cluded 137 total predictors.

Scenario 3: In the last scenario, we integrated all 167 pre-
dictors used across all previous models to represent the hy-
pothesis that including both terrestrial and atmospheric
predictors at multiple spatial scales would best predict noc-
turnal bird migration density.

Across these 6 modeling scenarios, we used the coeffi-
cient of determination (R?) to compare forecasted migration
density vs. observed migration density to assess the perform-
ance of the models represented in each predictor set. The
R? value represents the amount of variation in the response
variable explained by predictors (Renaud and Victoria-Feser
2010). We selected this metric vs. other available ones (e.g.,
RMSE and MAE) because R? can be used to compare model
performance across all stations/regions or time periods, while
for other metrics we need to provide ranges throughout the
region or time (Chicco et al. 2021).

Regional-Scale Forecasting
We selected Scenario 4 for subsequent regional- and national-
scale analyses on the basis of the highest consistent high per-
formance with the fewest additional predictors (see Model
performance across 6 candidate predictor sets in Results).
Using our validated migration forecasting model, we made
predictions across the midwestern region covered by 14 radar
stations for 20 nights from 2020 and 2021 (i.e., 10 nights per
year). Prior to making predictions, we excluded observations
associated with 2020 and 2021 and trained the model on the
remaining 9 years.

We selected nights with high and low migration activity
and spatial heterogeneity in intensities through the region—
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some areas showing visually lower activity than others. We
defined “high” and “low” migration nights, using the Live
Bird Migration Maps tool from BirdCast (https://birdcast.
info/migration-tools/live-migration-maps/). For “high” mi-
gration nights, we selected dates during peak migration sea-
sons when migration traffic rates were close to 50,000 birds
km™ hr! over a wide area, indicating widespread and intense
migration activity. For “low” migration nights, we chose from
dates outside peak migration periods when the migration
traffic rates did not reach 2,000 birds km™ hr™!, being often
around 500-1,000 individual birds, reflecting minimal migra-
tory activity. By setting these quantitative thresholds based on
migration traffic rate values from BirdCast, we ensured that
our selection of “high” and “low” migration nights was con-
sistent and representative of typical migration patterns, which
helped to evaluate the performance of our model better across
different migration intensities.

To forecast bird migration density, we generated 2 sets of
prediction maps at 3 hr after local sunset per night for com-
parison (i.e., 40 maps in total), one using atmospheric vari-
ables obtained from the 32-km NARR grids, and another
using similar atmospheric variables obtained from the 12-km
NAM grids. The archived NAM dataset helped simulate a
real-world forecasting event since this system generates wea-
ther forecasts up to 84 hr. Last, to standardize distance from
radars for forecasting, we assumed that each cell block was
35 km away from a radar station.

National-Scale Forecasting

To simulate a real-world scenario for national-scale
forecasting, we randomly selected 2,020 points from all 143
radar stations in the lower 48 states of the United States. The
number of sampling points varied based on the coverage area
of each radar station; for stations with larger coverage, we
sampled more points. We repeated this process 25 times, each
time selecting a different set of 2,020 random points and ex-
tracting values for the 137 predictors in our scenario 4 with
integrated predictors. We used these 25 datasets to train 25
national-scale models, with 70% of the data for training, 15%
for validation, and 15% for testing. After training, we applied
the process outlined in the preceding section to produce bird
migration forecasts using NAM data for the same 20 nights
from 2020 to 2021. To create a final national bird migration
forecast map, we calculated the average value across the 25
predictions per each 2.9 x 2.9 km cell.

Evaluating Regional and National Model
Performance
Similar to Van Doren and Horton (2018), we used R?
to evaluate regional and national model performance.
Additionally, we evaluated the spatial accuracy of our system
at the regional scale over areas with no radar coverage, by
iteratively removing observational data from each of the 14
radar stations and retraining the model on the remaining data.
To evaluate the temporal accuracy of our regional system, we
iteratively excluded a year from our 10-year historical dataset
(2012-2021), retrained the model on the remaining 9 years,
and forecast bird migration density for each observational re-
cord per sampling point.

At both scales, we selected 10 nights each from 2020 to
2021 that had moderate-to-high migration activity and spa-
tial heterogeneity in the distribution of migration activity. We
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calculated the R? for each of these 20 nights across the ran-
domly selected unique locations for training. Additionally, we
selected 10 of the lowest activity nights in March 2020 to as-
sess model performance on nights with low migration inten-
sity. We used the Van Doren and Horton (2018) model, which
uses Global Forecast System (GFS) data, as a comparison
point of model performance.

RESULTS

Model Performance Across Six Modeling Scenarios

The median R? for Scenario 0 (null model using only sam-
pling variables) was 0.29. Scenario 1 (including atmos-
pheric and sampling variables) yielded a median R? of 0.53
(Figure 2). The addition of terrestrial predictors in Scenario 2
resulted in a slight improvement, increasing R? from 0.53 to
0.54. The inclusion of spatially distant terrestrial predictors
in Scenario 3 did not further increase forecasting perform-
ance (R?=0.54); however, the inclusion of spatially distant
atmospheric predictors in Scenario 4 further improved fore-
casts (R?=0.56). Last, Scenario 5, which included the pre-
dictors used across all models performed similarly to Scenario
4 (R?=0.56), demonstrating that the addition of spatially
distant terrestrial variables does not improve our predictive
power for bird migration.

To understand important predictors for bird migration
density forecast, we calculated the relative percentage of
the gain value provided per predictor in Scenario 4 for both
spring (March 1 to June 15) and fall (August 1 to November
15) migration seasons across 10 years. In spring, the top 5
predictors included ordinal date, air temperature at 950 hPa
pressure level in the west, distance from radar (km), and me-
ridional wind (north/south component) at 850 and 900 hPa
pressure levels to the west. Among terrestrial predictors, the
mean value of anthropogenic light (rank 52), percentage of
forest cover (rank 53), and the mean value of EVI (rank 55)
were the most important variables. In fall, the top 5 pre-
dictors included ordinal date, meridional wind of the focal
area at 950 hPa pressure level, meridional wind at 950 hPa
pressure level in both north and east, and distance from radar
(km). Among terrestrial predictors, the mean value of an-
thropogenic light (rank 37), the mean value of EVI (rank 48),
and the percentage of forest cover (rank 52) were the most
important variables.

In total, for spring models, atmospheric variables com-
prised 55.70% of gain, sampling variables comprised
42.85%, and terrestrial variables comprised 1.45%. For fall
models, atmospheric variables comprised 70.56% of gain,
sampling variables comprised 27.29%, and terrestrial vari-
ables comprised 2.15%. We provide a full list of spring and
fall feature importance and the relative gain for this model in
Supplementary Material Table 2.

Regional Forecasting Spatial and Temporal
Accuracy

With regard to spatial accuracy, the median R? for withheld
stations was 0.58, while R? was 0.57 or higher for 10 stations.
We did not detect any patterns among stations with higher R?
rates, such as spatial proximity or overlapping coverage with
other stations. With regard to temporal accuracy, the median
R?across 10 years was 0.56, and we achieved a 0.54 or higher
R? for 8 years.
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FIGURE 2. (A) Violin box plots representing model performance (R?) across 5 predictor scenarios (excluding Scenario 0). One thousand gradient boosted
trees were produced for each predictor set using different combinations of atmospheric and terrestrial predictors at varying scales to predict regional
bird migration intensity. (B) Scatterplot of observed vs. predicted bird migration density using Scenario 4: we show 10% of points randomly selected
from our 2021 holdout experiment (i.e., all data from 2021 excluded during model training). Higher values represent higher migration density and the
line represents the best fit.

Forecasts Performance in Capturing Spatial R? to evaluate our model performance, and averaged predic-
Heterogeneity tion values (migration density) across multiple cell blocks to
Using the NARR and NAM datasets, we generated 2 pre-  smooth prediction maps. Due to different spatial resolutions

diction maps at 3 hr after local sunset per night, calculated in atmospheric datasets, we averaged predictions across 7 x 7
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and 3 x 3 cell blocks to smooth maps for NARR and NAM
data, respectively. Median R? for forecasting 20 nights using
NARR data was 0.43. The R? values ranged from 0.01 to
0.70 across selected nights. The median R? for NAM data
was markedly lower (R?>=0.32), while the R? variation
among nights was similar to NARR, ranging from 0.02 to
0.69. For the same night that showed the lowest R? rate using
both NARR (R?=0.01) and NAM (R? = 0.02) data, the Van
Doren and Horton (2018) model also performed relatively
low (R?=0.13), considering they developed the model on a
much coarser resolution.

For the national forecast map, we calculated the average
prediction for each cell based on the output from the 25
models using NAM data. The median R? for the 25 rounds
of training of our national-scale models was 0.73. We evalu-
ated the forecasting performance for each of the 20 nights by
computing the R? values for all 25 models, and then taking
the median R? value for each night. Across the 20 nights,
the median R? values ranged from 0.26 to 0.65, with a me-
dian of 0.54. When using NAM data, our national forecast
system achieved a higher median R? rate (R?>=0.54) com-
pared to the regional forecast system (R? = 0.32). On nights
of low migration activity, side-by-side visual comparison
of our high-resolution forecast system with Van Doren and
Horton’s (2018) model suggests their performance was, as
expected, substantially poorer with a median R? of 0.09
(Figure 3).

Legacy forecast derived from GFS

Night of
April 23,
2020

Night of
April 23,
2020

lllinois

Indiana |

Missouri

Kentucky

Tennessee
Arkansas

Missouri
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DISCUSSION

This study sought to enhance forecasts of migratory activity
while maintaining high model performance by integrating
multi-scale terrestrial and atmospheric predictors. Through
this work, we illuminate both the benefits and potential limi-
tations of these integrations. Although terrestrial predictors
across multiple scales offered marginal predictive gain,
including atmospheric predictors at multiple spatial scales
with detailed spatial information from weather surveillance
radars enhanced nightly migration forecasts at a continental
scale. Ultimately, integrating these variables did allow us to
make predictions at high resolution, while maintaining con-
sistently strong forecasting performance across a broad ex-
tent. Here, we discuss the implications that our findings and
similar high-resolution forecasts may have for data integra-
tion and advancing migratory bird conservation.
Surprisingly, terrestrial predictors were not strong pre-
dictors of migration intensity, and they only contributed
marginally to model performance at both local and distant
scales. Notably, elevation was a top 10 predictor in both sea-
sons, which may be partly due to topographic-driven vari-
ations in birds reaching a flight height, where they can be
detected by radar. Alternatively, migrating birds could be re-
sponding to altitudinal conditions driven by the underlying
topography, which would be consistent with studies in al-
pine systems (Katzner et al. 2015, Lindenmayer et al. 2014).
Among terrestrial predictors, EVI and forest cover were also

Current forecast derived from NAM

training data
(response) for
forecast

Precipitation
Predicted migration
intensity

high

lllinois Indiana

Kentucky

Tennessee

low

FIGURE 3. Performance comparison of different forecasting models vs. the actual observations of bird migration density for the night of April 23, 2020
in both national- and regional-scale. The upper right corner demonstrates range-corrected radar reflectivity across 14 radar stations. Lighter shades
represent higher migration density and darker colors represent lower migration density in cm? km=2. Areas identified as precipitation are shaded in
white; weather contaminated pixels were removed from our analysis. (Left) Migration predictions derived from the framework established by Van Doren
and Horton (2018) (accessible on https://birdcast.info/). We show these predictions in their native 0.5° resolution; predictions are solely dependent on
atmospheric variables derived from the global forecast system (GFS). (Right) High-resolution forecast of bird migration density using sampling and
terrestrial predictors, as well as atmospheric predictors derived from the North American Mesoscale (NAM) Forecast System. The R? rates for this night
using the NAM dataset were 0.66 and 0.50 for regional and national scales, respectively.
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important, which is consistent with previous literature sug-
gesting that vegetation phenology impacts the timing of mi-
gration (Kelly et al. 2016) and that forest cover is a strong
driver of migratory stopover (Buler and Dawson 2014), but
their relative gain was marginal relative to atmospheric pre-
dictors. Although this lack of predictive gain contrasted our
predictions, we note that our response variable of migration
intensity was ultimately a metric of birds aloft. Thus, it is per-
haps unsurprising that it was driven largely by atmospheric
habitat conditions. Nevertheless, our models were trained on
data from 2 to 4 hr after sunset. However, the importance
of terrestrial features could increase as birds depart for noc-
turnal flights and land in stopover or breeding habitats, both
of which are periods when their behavior may be more tied
to land cover. Therefore, studies that directly incorporate this
dynamic nature, for example by comparing the relative im-
portance of terrestrial features at different stages of the night,
could provide important insights to inform the appropriate
scales, at which terrestrial predictors may best support migra-
tion forecasts.

In contrast, integrating spatially distant atmospheric pre-
dictors did improve model performance, with many of our
top predictors being reflective of distant conditions (150 km
from the sampling point). This finding comports with recent
work in European systems, which integrated multi-scale pre-
dictors into ensemble models to improve forecasting per-
formance (Kranstauber et al. 2022). Additionally, we found
a distinct difference in the impact of scale between terrestrial
and atmospheric predictors, suggesting that birds respond to
atmospheric conditions on a relatively large scale, whereas
on-the-ground drivers may have a more localized effect. This
finding is consistent with the proposed stopover theory, sug-
gesting that “extrinsic” site effects, or habitat characteristics
around a stopover site, are stronger than “intrinsic” effects,
or habitat characteristics within a stopover site, with respect
to stopover decisions (Martin and Finch 1995). Our findings
add to a well-established literature suggesting that bird mi-
gration behavior is driven by a multi-scale process (Buler et
al. 2007, Sapir et al. 2011, Mellone et al. 2015) and more
broadly, highlights the importance of incorporating multiple
scales to model macroecological processes, such as bird mi-
gration.

Our ability to produce high-resolution migration forecasts
across the continental United States that explain up to 65% of
variation builds on the work of existing migration forecast ef-
forts (Kranstauber et al. 2022, Lippert et al. 2022, Van Doren
and Horton 2018). Given the complex relationship between
spatial resolution and model uncertainty (Pogson and Smith
20135), it is difficult to directly compare our model perform-
ance to these previous works. However, we do feel that the
consistently strong predictive performance of our models at
a high resolution is encouraging and addresses long-standing
challenges within scaling theory. As stated by Wiens (1989),
to understand ecological systems, we must view them “on the
appropriate scale.” Although bird migration is a hemispheric
process, many of the most pressing biological and conserva-
tion questions occur at a much more local scale. While radar
has played an increasingly large role in studying migration, its
insights are typically limited to relatively coarse spatial reso-
lution. The ability to predict migration activity at a 2.9 x 2.9
km resolution across both regional and national scales has
widespread implications for research and conservation. We
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demonstrate that this scale-up approach (Fritsch et al. 2020)
may be applicable to ecological forecasting in other sys-
tems as a method of integrating multiple scales to assess the
scale-dependence of ecological processes (Sandel and Smith
2009). Specific to ornithology, the enhanced resolution pro-
duced here could also provide opportunities to elucidate the
relationship between migration activity and rapid, fine-scale
landcover change processes, such as urbanization (Cadenasso
et al. 2007). This high-resolution output could also be
coupled with increasingly fine-scale remote sensing datasets
(e.g., Zanaga et al. 2022) and species distribution models
(e.g., Fink et al. 2020) to advance the integration of radar
data with crowdsourced compositional data. Such research
could advance our understanding of how the migration of dif-
ferent taxonomic groups may be disproportionately impacted
by various predictors (Flack et al. 2022). Furthermore, the
enhanced spatial resolution may be more relevant for action-
able conservation efforts. Anthropogenic light at night has
been found to impact birds far more local scales (Parkins et
al. 2015, Van Doren et al. 2021) than the level of operation of
current forecasts. Even within a single urban landscape, point
sources of anthropogenic light can seriously affect migra-
tory bird behavior and activity (Van Doren et al. 2017). The
output demonstrated here could be a step toward more tar-
geted conservation messaging, in particular by incorporating
information about migration activity at a scale more relevant
to Lights Out programs working with local building owners
and residents, which is a well-documented outreach discon-
nect amongst conservation practitioners (Burt et al. 2023).

Beyond enhancing forecasting resolution, our ability to
rank the predictive gain associated with different variables
informs us about the relative importance of different drivers
of migration that have been identified by previous research.
Ordinal date was the top predictor across both seasons, re-
flecting the strong seasonality of migration (Helm et al. 2013)
and internal, endogenous programs that drive migration
timing (Akesson and Helm 2020). Beyond this, we found that
atmospheric variables, such as wind speed and air tempera-
ture, made up the vast majority of our top predictors across
both seasons (Figure 4; Supplementary Material Table 2). The
connection between migratory behavior and weather condi-
tions has been recognized for over a century (Smith 1917)
and research advancements continue to strengthen our under-
standing of this relationship. The growing use of radar, for
example, has consistently highlighted atmospheric conditions
as major predictors of the migration intensity of birds en
masse ( Shamoun-Baranes et al. 2017, Horton et al. 2021).
Work tying individual departure timing to wind regimes
(Akesson and Hedenstrém 2000) and air pressure (Cooper et
al. 2023) have not only supported this notion, but also illu-
minated additional nuance with respect to variability across
age and sex classes. The combination of ordinal date and at-
mospheric conditions is consistent with a hierarchical migra-
tory decision-making model (Cooper et al. 2023), whereby
birds have a broad departure window but rely on weather
cues to inform their nightly behavior. The corroboration of
these findings suggests that this relationship transcends across
scales and investigative approaches (e.g., individuals vs. com-
munity assemblages).

There were several limitations of our study that serve as
areas that are ripe for additional developments and future ex-
periments. First, we note that our approach could be extended
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B) Important predictors for Fall migration season
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FIGURE 4. Top 10 seasonal (spring and fall) predictors as estimated by model gain, a measure of the relative contribution of the corresponding feature

to the model.

to integrate more modern and higher-resolution predictor
datasets as they become available. For example, while our
models rely on NARR data for weather condition predic-
tions as a comparison point to previous forecasting systems,
the integration of recently developed global atmospheric and
climate variables estimates, such as ECMWF Reanalysis v5
(Hersbach et al. 2020), which provides 1-hr resolution, could
be an exciting opportunity to improve the temporal reso-
lution of model predictions. To some degree, our comparison
of GFS- and NAM-derived forecasts demonstrates sensitivity
to the resolution of weather forecast inputs (Figure 3). For ex-
ample, in this comparison, the GFS forecast includes hotspots
over Kentucky, Tennessee, and West Virginia that are much
more diffuse in the NAM forecast. Nevertheless, GFS pro-
vides a base horizontal resolution of ~50 km, whereas NAM
pixels are produced at 12 km. While it is difficult to identify
what is driving these differences, GFS hotspots may be more
diffuse in reality, but NAM fails to detect this heterogeneity.

More generally, integrating predictor datasets with high tem-
poral resolution may continue to improve nuanced informa-
tion during critical time-sensitive events, such as migration
initiation at sunset. In sum, although we did not provide an
exhaustive exploration of different atmospheric predictor
datasets, future studies that address these tradeoffs could be
an exciting and valuable direction for migration forecasting.
Similarly, our choice to define distant predictors at a range
of 150 km was based on relatively limited information on
flight distances of migratory birds (Wikelski et al. 2003). As
noted above, our definition doubles the range of “remote”
predictors used by Kranstauber et al. (2022), highlighting a
lack of consensus in the macroscales that may influence mi-
gratory bird behavior, and exploring the effect of this range
could be explicitly investigated in future forecasting efforts.
Finally, because our goal was to predict migration during
the peak within the night (3 hr after local sunset), we were not
able to investigate how predictor importance changes over
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the course of a single night. This may be particularly relevant
to dynamic variables that can change rapidly throughout a
given night, such as wind speed, air pressure, and the amount
of anthropogenic light at night being emitted across a land-
scape. For instance, terrestrial predictors may rise in im-
portance early and late in the night as migrants emerge or
look to land—behaviors that are likely shaped by underlying
spatial heterogeneity in resources. On the contrary, atmos-
pheric conditions may better predict migration traffic rates of
birds aloft, such as the altitudinal distribution of birds aloft.
Future work that seeks to understand the relative importance
of different predictors throughout a given night could have
important research and applied implications. For example,
high-resolution predictions of the specific hours, at which mi-
gration will peak over a given area could inform conservation
actions, such as reducing anthropogenic light at night during
that time window. While this framework has been suggested
at the season level (Horton et al. 2021), to our knowledge it
has not been explored at a temporal scale within individual
nights.

Billions of birds migrate across North America every year
and are facing rapid declines (Rosenberg et al. 2019). Our
ability to predict when and where they move throughout their
full annual cycle is central to inform conservation actions.
Here, we provide an enhanced forecasting model that inte-
grates terrestrial and atmospheric predictors at various scales
to predict migratory movements of birds aloft at a high reso-
lution. In doing so, we highlight limitations, promising paths
forward, and potential data integration and conservation ap-
plications of this approach.

Supplementary material

Supplementary material is available at Ornithological

Applications online.
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