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Abstract: Multilevel analysis of individual heterogeneity and discrimina-
tory accuracy (MAIHDA) enables intersectional quantitative educational 
research with distinct advantages over fixed-effects models. Using data 
from 9,672 physics students across 40 institutions, we compared MAIHDA 
to traditional fixed-effects models to assess the two methods’ theoretical 
alignment with intersectionality and ability to model outcomes for di-
verse social groups. The results indicated that MAIHDA provided more 
precise measures of outcomes for 95 of the 106 intersectional groups. The 
manuscript offers guidance for applying MAIHDA in educational research, 
including R code, and emphasizes the responsibility of researchers to 
consider critical quantitative theory throughout the research process. 
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Introduction

Historically, research using a critical perspective has used qualitative 
methods (Gillborn, 2018). The last decade, however, has seen a 

growing interest in using critical perspectives in quantitative investigations 



(Tabron & Thomas, 2023). While researchers have identified tensions 
between critical theory and quantitative methods (Garcia et al., 2018), 
these tensions have supported researchers in reimagining how quantita-
tive studies can promote a more just society (Wells, 2015; Castillo & 
Strunk, 2024; López et al., 2023). One point of this tension lies in how 
researchers can use intersectionality in quantitative research. Intersection-
ality highlights the importance of examining the dynamic interactions 
between an individual’s multi-faceted social identities and society’s power 
structures that lead to oppression or privilege (Cho, 2013; Crenshaw, 
1991). Quantitative analyses often require aggregating an individual’s 
social identities for statistical power. This aggregation can lead to the 
erasure of groups and the differences across aggregated social identities 
(e.g., heterogeneity). While a single study or analysis cannot consider all 
identity dimensions, we agree with McCall (2005) and Walter and An-
dersen (2013) that aggregation decisions should be driven by theoretical 
considerations rather than the limitations of the methods. Unfortunately, 
many studies are forced to aggregate students based on the limitations of 
their data and methods (Van Dusen, 2022). 

To reduce the need for researchers to aggregate data to meet the lim-
itations of their methods, Evans et al. (2015; 2018) proposed multilevel 
analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) 
as a statistical modeling method designed for intersectional research. Ev-
ans and colleagues developed MAIHDA in the context of health studies. 
Subsequent investigations have shown its efficacy in education research 
(Van Dusen et al., 2024; Keller et al., 2023; Prior et al., 2022). To support 
researchers in taking up MAIHDA in their investigations, we set out to 
accomplish four tasks in this manuscript: 

1. Provide an overview of MAIHDA and how it di!ers from inter-
sectional "xed-e!ect models.

2. Examine the ways that MAIHDA aligns with intersectionality 
and critical quantitative theory.

3. Provide an empirical example of the bene"ts of using MAIHDA 
for intersectional modeling in a science education context. 

4. Provide practical guidance on creating MAIHDA models.
In what follows, we will assume that our readers have a basic under-

standing of multilevel modeling. For more information on multilevel 
models, we recommend Woltman et al. (2012), Raudenbush (2002), 
and Peugh (2010).
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Definitions
We present a few definitions of terms in Table 1 that we use throughout 
the manuscript.
Table 1. Definition of Terms.

Term Definition

Aggregation Combining members of identity groups into a single 
group for the purpose of drawing statistical conclusions. 

Bayesian statistics A statistical approach that incorporates researchers’ pri-
or knowledge to predict the probability of an outcome. 
(Lee, 1989)

Critical quantitative 
(CritQuant) theory

CritQuant integrates critical theory with quantitative 
research methods to challenge power structures and 
address social inequalities by analyzing data through a 
lens of equity, justice, and systemic oppression. (Tabron 
& Thomas, 2023)

Cross-classified multilevel 
model

An extension to multilevel models that allows for high-
er-level units to share a level. For example, a student 
(level 1) can be nested in both a major (level 2a) and a 
course (level 2b).

Intersectional identities An individual can hold multiple memberships in various 
social identity groups, e.g., race, ethnicity, gender, sexu-
ality, class, religion, ability, etc. 

Intersectionality A theoretical framework named by Crenshaw (1989) 
that emphasizes that people do not experience dis-
crimination or privilege based solely on one identity 
category; rather, power structures interact dynamically 
with multiple facets of identities to create unique forms 
of advantage or disadvantage. 

MAIHDA Alternative to fixed-effects modeling that leverages 
multilevel modeling to nest individuals within strata 
(Evans, 2015).

Strata A code (typically numeric) that represents each group in 
the model. These groups are based on social identities, 
but can also include other model factors that interact 
with social identity groups. For example, our model 
included race, gender, and whether it was pretest or 
posttest scores. 

Shrinkage Bayesian shrinkage is a statistical feature of multilevel 
models by which the predicted outcomes for a strata are 
informed by data from other strata. This process, also 
known as ‘borrowing strength,’ helps to stabilize esti-
mates, especially when data for some strata are sparse. 
By incorporating information from the entire dataset, 
Bayesian shrinkage reduces the variance of estimates 
and improves their accuracy (Raudenbush & Bryk, 
1986; Evans et al. 2024).

Positionality
Ben Van Dusen: I identify as a continuing-generation White cisgender, 
heterosexual man with a mild visual impairment and partial hearing 
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disability. I was raised in low-income households, but now earn an 
upper-middle-class income. People with similar privileges have created 
and maintained our society’s unjust power structures. I believe it is the 
obligation of those with the privilege to dismantle oppressive systems. 
My privilege, however, limits my perspective on the lived experiences of 
marginalized individuals. 

Jayson Nissen: My identity as a White, cisgendered, heterosexual, 
nondisabled man has provided me with an assumed acceptance and op-
portunities denied to others in the sciences. I focus on science education 
to better share the financial and intellectual benefits that science has 
provided me by broadening participation in the sciences. Growing up in 
a poor home and as a veteran of the all-male submarine service informs 
my work and the need for quantitative research that emphasizes disaggre-
gation and intersectionality. My work on this project was shaped by the 
post-positivist scientific culture I was educated in and my questioning 
of objectivity that lies at the core of that culture. 

Heidi Cian: I am drawn to studying intersectionality and the use of 
social groups in research to understand how learners of all ages can ex-
perience STEM in ways that affirm how they identify with their bodies, 
communities, and histories. I am particularly interested in how intersec-
tional research can consider group membership beyond the traditional 
demographic categories of gender and race, and enlighten understanding 
of how individuals experience STEM opportunities in ways that respect 
or reject their politics and cultural wealth. I identify as a White cisgen-
der heterosexual woman with centrist political views and a rural, lower 
socioeconomic upbringing. 

Lucy Arellano: As a Xicana from East L.A., raised in a low-income 
household, the first in my family to be born in the U.S., the first to 
attend college, moving 2,500 miles away from home to enter an under-
graduate STEM major at a prestigious university, I utilize intersection-
ality and quantitative methods to understand my own journey through 
higher education. Now, utilizing my privilege as a cisgender, heterosexual 
professor at an R-1 university, I endeavor to spotlight the multiple sys-
tems of oppression endured by minoritized student groups to transform 
postsecondary institutions.

MAIHDA Background
When developing intersectional models, education researchers will often 
account for the dynamic interactions between facets of an individual’s so-
cial identity (e.g., gender and race) by including interaction terms between 
each social identity variable (Van Dusen et al., 2024). For example, if a 
model included primary terms for White and man, it would also include 
an interaction term for White*man. In this simple example, only a single 
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interaction term is required. However, the number of interaction terms 
can increase geometrically as social identity groups increase. We refer 
to these models as fixed-effect models as they rely on the fixed-effect 
coefficients to predict group outcomes. 

Like fixed-effect models, MAIHDA models include primary terms for 
each social identity group of interest. Instead of using interaction terms, 
however, MAIHDA nests individuals in social identity groups (Figure 
1). The nesting creates an error term for each social identity group. This 
error term accounts for the difference between the actual outcomes for 
each intersectional group and the predicted outcomes for those groups 
based on the fixed-effects terms. Researchers can then generate predict-
ed outcomes for each social identity group by combining their relevant 
primary terms with the error term. 

Figure 1. MAIHDA model structure with the study participants nested within their inter-
sectional identity group.

Replacing a large number of fixed-effect interaction terms with error 
terms allows MAIHDA models to produce more accurate predictions 
(Bell et al., 2019; Evans et al., 2020; Lizotte et al., 2020), particularly 
for small-N groups (Van Dusen et al., 2024). The improved performance 
stems from two places. First, MAIHDA reduces the number of fixed-ef-
fect terms, thereby reducing the model’s statistical power requirements. 
Second, the error terms generated by MAIHDA models are unlikely to 
be extreme because shrinkage pulls estimates toward the value predicted 
by the fixed-effect terms, preventing overfitting to small, noisy samples. 
This shrinkage ensures that the model produces more reasonable estimates 
by balancing the specific data for each group with the overall trend. This 
results in more stable and reliable predictions, especially when data is 
sparse or noisy. 

Conceptual Framework
We grounded our theoretical perspective in intersectionality and CritQuant. 
In this manuscript, we use MAIHDA as a concrete example of how these 
theories can intersect in practice.

C*%,u-0+%1 I%0e.(e-0+*%&/ Qu&%0+0&0+2e A%&/)(+( 3+04 MAIHDA 67



Intersectionality
Intersectionality originated as a legal framework (Crenshaw, 1991) that 
examines the dynamic interactions of social positions (e.g., race, gender, 
and class) and their relations to power structures to understand socie-
tal inequities (Bauer et al., 2021). For example, the inequities between 
men and women created by power structures in the science, technology, 
engineering, and mathematics disciplines are well established (Cheryan 
et al., 2017; Cimpian et al., 2020). However, the impacts of oppressive 
systems on intersecting gender identification with other identity factors 
such as geographic region (Galvin et al., 2024), racial identity (Ireland et 
al., 2018), socioeconomic status (Hailu, 2022), experience of colonialism 
(Idahosa & Mkhize, 2021) and religious affiliation (Avraamidou, 2020) 
have shown that examining STEM-related outcomes for “women” as a 
whole obscures systemic marginalization of women occupying space not 
just as women but also as racialized individuals within cultural contexts. 
As such, educational research has embraced intersectional interpretive 
lenses in qualitative research, bringing awareness that individuals occu-
pying multiple marginalized identities exist in distinct categories at the 
intersections of those identities.

Intersectional theory’s focus on individuals’ unique and dynamic 
experiences lies in tension with quantitative method’s aggregation of 
individuals into groups for statistical analyses. While this tension can be 
productive (Cho et al., 2017), historical quantitative research practices 
have oppressed marginalized groups of people (Strunk, 2023) through 
erasure (Lopez & Gaskin, 2022). 

Quantitative research can lead to data “erasure” of social identity 
groups through researchers’ aggregation decisions. Aggregating groups who 
share a single identifying feature (e.g., race) ignores intersectional expe-
riences and can focus on a single cause of marginalization (e.g., “racism” 
rather than “racism and ableism”). This “erasure” through aggregation 
can produce conclusions about a broad category (e.g., Asian Americans 
in STEM; “Indigenous people”) that is driven by a subcategory that only 
partially represents that larger category (e.g., Southeast Asian Americans; 
Jang, 2018) (Cole, 2009; Shafer, 2021). Hailu (2022) illustrates how, even 
among a relatively narrowly-defined population (i.e., Ethiopian STEM col-
lege women), considerations of economic and geographic background yield 
disparate experiences of gender marginalization. Quantitative researchers 
can address data erasure by collecting finer-grained demographic data, 
collecting data from more participants, and disaggregating that data in the 
analysis. Executing these aims, however, requires resources. Quantitative 
researchers can draw on qualitative findings and community participation 
to target their data collection or to seek additional resources to mitigate 
data erasure. To address data erasure, demographic surveys can also provide 
more categorical choices (Rubin et al., 2018), such as identifying with a 
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home country rather than aggregating “Hispanic American” or providing 
tribal nation drop-down menus or write-in options for American Indian 
and Alaskan Native (AIAN) participants.

Multilevel analysis of individual heterogeneity and discriminatory accuracy 
(MAIHDA) shows promise as an analytical method conducive to applying 
an intersectional lens (Evans, 2015; Evans et al., 2018; Merlo, 2018; Ev-
ans, 2019). MAIHDA leverages multilevel modeling to nest individuals 
within social identities and allows for smaller-N groups (Van Dusen et 
al., 2024) without meaningfully increasing the statistical power required 
to include many unique groups. This limits the risk of data erasure by 
maintaining accurate predictions with smaller grain sizes that account for 
intersectional groups that are less represented in the population, such as 
AIAN respondents. 

Critical Quantitative Theory
Applying a CritQuant lens requires attending to both theoretical and tech-
nical considerations. MAIHDA does not, on its own, call out and disrupt 
structural inequities in education. In our presentation of MAIHDA, we 
use a CritQuant perspective to center the responsibility of educational 
inequities on oppressive power structures (Garcia et al., 2018). Quan-
titative researchers’ responsibility lies in using tools to understand and 
improve inequitable systems instead of placing the onus for those inequities 
on the individuals marginalized by those systems. We align our approach to 
MAIHDA with the tenets of Quantitative Critical Race Theory (Gillborn 
et al., 2018) and Critical Race Quantitative Intersectionality (Covarru-
bias et al., 2017). Our CritQuant perspective combines and expands on 
these tenets to include other forms of oppression beyond racism: 1) the 
centrality of oppression, 2) data and methods are not neutral, 3) data 
cannot speak for itself, 4) groups are neither natural nor inherent, and 
5) the importance of intersectionality. 

1. The Centrality of Oppression
We take as a fact that structural racism and sexism plague the U.S. eco-
nomic, political, and educational systems. Inequities in student perfor-
mance result from systems-wide policies and approaches that implicitly 
and explicitly disadvantage broad groups of students (Solorzano et al., 
2000). Society’s power structures oppress learners across a myriad of social 
identities beyond gender and race, including ableness, religious affiliation, 
and socioeconomic status. We commit to designing and interpreting an-
ti-racist, anti-sexist quantitative research approaches to disrupt narratives 
and oppressive systems that frame minoritized students as deficient. 

When discussing the inequities we find using MAIHDA, we can name 
them as racist and sexist outcomes. By a priori stating that oppressive 
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power structures create inequities in outcomes, we can focus our discussion 
on identifying the mechanisms and impacts of these oppressive systems. 

2. Data and Methods Are Not Neutral
Researchers often fail to adequately discuss the biases introduced in data 
collection and analytical methods. This leads many researchers and read-
ers to interpret quantitative findings as objective facts (Wyly, 2009) and 
obscures the reality of culturally-contextualized understandings of quality 
and ethical research (Chilisa et al., 2016). We acknowledge that all data 
and analyses introduce biases and strive to minimize and acknowledge 
these biases. 

We strive to avoid biasing findings by critically examining commonly 
used methods. For example, it is problematic in equity research to use 
p-values as go/no-go tests to identify group differences (Wasserstein et 
al., 2019). p-values depend on sample size. As many minoritized groups 
are underrepresented in STEM disciplines, collecting sufficiently large 
sample sizes to find statistically significant differences between them and 
another group is prohibitive for many research projects. This challenge 
compounds as research projects consider further disaggregating socially 
defined groups (e.g., racial groups) to account for intersectional experi-
ences (e.g., Black men). The lack of data from minoritized learners has 
led many research projects to find that racism’s impacts are not statisti-
cally significant and conclude that equity was achieved. Instead of using 
p-values to represent uncertainty, we use point estimates and standard 
errors to distinguish between the meaningfulness and uncertainty of a 
measurement (Wasserstein et al., 2019; Amrhein et al., 2019).

3. Data Cannot Speak for Itself
When researchers present data or findings without an explicit perspective, 
readers will likely interpret the data and findings through the dominant 
perspective, which often leads to racist and sexist interpretations (see 
Tenet 1; Zuberi, 2008). Such interpretations can reinforce existing deficit 
narratives about minoritized groups. Researchers must actively speak for 
their data to counter the default deficit narrative (Covarrubias & Vélez, 
2013). The importance of speaking for data increases as the complexity 
of the statistical model increases, thereby creating more opportunities 
for misinterpretation. 

One way we speak for our data is that, when discussing differences 
between social identity groups, we don’t refer to differences in outcomes 
as gender or racial gaps. Instead, we draw on Ladson-Billings’ (2006) idea 
of educational debts to frame the inequities as debts that society owes 
marginalized groups. This framing places the onus of repaying debts on 
the inequitable social systems that created those debts rather than the 
marginalized individuals.
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When interpreting our model findings, we go beyond looking at 
the coefficients. We combine coefficients to create full predictions for 
groups and then visualize these outcomes. The coefficients describe how 
groups differ from a normative group that is often the privileged group. 
Combining coefficients, we can create descriptions of groups that do not 
rely on a normative group. We visualize group outcomes to facilitate the 
examination and discussion of heterogeneity within the learning context. 

4. Groups Are Neither Natural Nor Inherent
In U.S. society, people often take an individual’s racial and gender iden-
tity as immutable. We instead acknowledge these identity categories to 
be socially constructed and fluid. Statistical analysis requires aggregation 
of data to support claims about group outcomes. However, we strive 
to create models that respect learners’ identities, judiciously aggregate 
data, represent diversity in learner outcomes, and be transparent in our 
decisions regarding social identity groups. For example, in this analysis, 
we did not aggregate groups beyond how they self-identified on the 
demographic questions. 

Taken with Tenet 3, we see that these categories do not define individ-
uals as much as they help to understand the shared oppressive experiences 
that individuals experience due to assignment to these socially-constructed 
identity groups. In the work we describe, we therefore draw from the 
presumption of immutability to use these socially constructed groups as 
tools to make sense of the centrality of oppression (see Tenet 1).

5. The Importance of Intersectionality
Addressing student experiences and outcomes from an intersectional 
perspective is critical to understanding the complex interactions between 
social identity groups and power structures. While the models we examine 
predict outcomes across social identity groups, the coefficients do not 
describe the groups but the ways that oppressive power structures impact 
them. For more details, see the discussion of intersectionality above. 

Empirical Example
Van Dusen et al. (2024) found that MAIHDA performs better than 
fixed-effects models when examining outcomes for multiply marginalized 
identities. However, because it is a novel method, it is understandable 
for researchers to want to continue using the methods they are familiar 
with unless a new method provides clear and compelling reasons to begin 
using it. In this empirical example, we outline how to create a MAIHDA 
model and the potential benefits of doing so. Our subsequent practical 
guidance section provides further advice on engaging in high-quality 
MAIHDA modeling. 
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Mahendran et al. (2022a; 2022b) found that MAIHDA models pro-
vided robust estimate accuracy with average group sample sizes as low 
as N=10.4. Van Dusen et al. (2024) found that MAIHDA models could 
generate more accurate estimates of outcomes for groups with a minimum 
sample size of 10 than fixed-effect models could do with a minimum 
sample size of 20. In this empirical example, we explore the practical 
value of this difference by addressing two questions:

1) How does the shift from a minimum sample size of 20 to 10 
students a!ect the number of groups represented in the model?

2) How does MAIHDA, compare to "xed-e!ect models in the de-
gree of uncertainty in predicted student outcomes, particularly 
for small-N groups?

Methods
Data Collection, Cleaning, and Imputation
Data for this analysis came from the LASSO platform’s research data-
base (Van Dusen, 2018; Van Dusen et al., 2021). LASSO is an online 
assessment platform that hosts, administers, and analyzes research-based 
assessments for STEM instructors and students. Data in the LASSO re-
search database is anonymized and only includes students and instructors 
who consented to share their data. 

We analyzed pretest (i.e., first week of class) and posttest (i.e., last week 
of class) scores on the Force Concept Inventory (FCI; Hestenes et al., 
1992) from 9,672 students in 310 college calculus-based physics courses 
across 40 institutions. All of the instructors in this sample self-report 
engaging students in collaborative learning. The Force Concept Inven-
tory is a commonly used research-based assessment (Henderson, 2002) 
designed to assess student’s conceptual knowledge of kinematics and 
forces. The FCI has undergone significant validation work (e.g., Wang 
& Bao, 2010; Eaton & Willoughby, 2018), including examinations of 
differential item function (Traxler et al., 2018; Buncher et al., 2021) and 
construct invariance (Morley et al., 2023). 

The FCI typically takes students 15–30 minutes to complete. To 
clean the data, we removed any scores from students who completed the 
assessment in under five minutes, indicating a student was not attempting 
to answer the questions correctly.

Each assessment was administered twice, once as a pretest at the start 
and once as a posttest at the end of the term. Of the students who com-
pleted at least one of the administrations, 84% completed the pretest, 
61% completed the posttest, and 45% completed both the pretest and 
the posttest. To minimize the bias created by this missing data and to 
maximize the sample’s power, we created ten imputed datasets using a 
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3-level hierarchical multiple imputation model in the mice package (Van 
Buuren & Groothuis-Oudshoorn, 2011). Our imputation model nested 
tests in students and students in courses. Visual examination of trace 
plots is a commonly used technique for checking convergence. Other 
methods for checking for convergence, such as R-hat scores, could be 
overly conservative for our application.

Data Analysis
To identify the unique social identity groups in our sample, we combined 
each of the race and gender options that a student selected or wrote in 
when completing their LASSO assessment. Our data had 546 unique 
social identity groups in it. Fifty-three of the social identity groups had 
ten or more students in them. 

In our fixed-effect model, we included all fixed and interaction co-
efficients required to fully model pretest and posttest scores for the 53 
social identity groups with at least ten students. For example, 13 students 
identified as American Indian or Alaskan Native (AIAN) Hispanic men. 
To ensure that the fixed-effect model could predict the group’s scores, 
we included the primary coefficients AIAN, Hispanic, men, posttest, their 
six two-way interaction coefficients, four three-way interaction coeffi-
cients, and one four-way interaction term. Including the intercept and 
a coefficient to account for whether they had previously enrolled in the 
course, the fixed-effect model had 196 coefficients. The complete set of 
coefficients for both models can be seen in Supplemental Table 1. We 
visually examined the trace plots to ensure that the model converged. 

To construct the MAIHDA model, we created unique numbers for 
each of the 546 social identity groups during each administration to 
serve as strata terms. By generating a set of unique numbers to serve as 
strata for each social identity group on the pretest and another set for 
the posttest, we created a total of 1092 strata that allowed the model 
to predict the pretest and posttest scores for each group independently. 
We then ran the model with all of the primary coefficients present in 
our 53 social identity groups with at least ten students. For example, to 
ensure that the MAIHDA model could predict scores for American In-
dian or Alaskan Native (AIAN) Hispanic men, we included the primary 
coefficients AIAN, Hispanic, men, posttest, and their strata. Including a 
coefficient to account for whether they had previously enrolled in the 
course, the MAIHDA model had 27 coefficients. 

We ran the models using Bayesian functions in the brms package 
(Bürkner, 2017b). We used uninformed priors to simplify the example. 
Additionally, we are unsure how to create equivalent priors across the two 
types of models. The fixed-effect model (Figure 2) was a three-level model 
nesting tests (level 1) within students (level 2) within courses (level 3). The 
MAIHDA model (Figure 3) was a three-level cross-classified multi-level 
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model nesting tests (level 1) within students (level 2) within courses (level 
3a) and strata (level 3b). The models took between 2 hours (MAIHDA) 
to 48 hours (fixed-effects) to run on a Mac Studio with 32GB of RAM 
and an M1 Max processor (See Table 1). We visually examined the trace 
plots to ensure that the model converged.

For each model, we combined the coefficients and strata (for the MAI-
HDA model) to create two predicted scores (pretest and posttest) with 
standard errors for each of the 53 social identity groups with at least ten 
students. This produced 106 sets of predicted scores and standard errors 
for each model. Supplemental Table 1 shows the coefficient estimates and 
standard errors for each model. Supplemental Table 2 shows both models’ 
predicted group scores and standard errors for the pretest and posttest. 

Figure 2. Level 2 (students) and 3 (courses) of the fixed-effect model. For simplicity, level 
1 (tests) is not included in the figure.

Figure 3. Level 2 (students), 3a (courses), and 3b (social identity groups) of the MAIHDA 
model. For simplicity, level 1 (tests) is not included in the figure.

Table 1. Data, coefficients, and model run times. 

Model
Tests  

(level 1)
Students  
(level 2)

Courses  
(level 

3a)

Strata  
(level 
3b)

Soc. 
Iden. 

Group  
(N ≥ 10)

Coeffi-
cients

Run 
time

Fixed 
Effect 12928 9403 310 - 53 197 48 hours

MAIH-
DA 12928 9672 310 1092 53 28 2 hrs
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Findings
How does the shift from a minimum sample size of 20 to 10 students impact 
the number of groups represented?

In our sample, 35 social identity groups had at least 20 students 
(Supplemental Table 2). Fifty-three social identity groups had at least 
ten students in them. Shifting the minimum sample size from 20 to 
10 students resulted in a 54% increase in the number of social identity 
groups included. 
How does using MAIHDA vs. fixed-effect models impact the uncertainty in 
student outcomes, particularly for small-N groups?

The MAIHDA model produced a smaller standard error in social 
identity groups’ predicted scores for 95 of the 106 predicted groups com-
pared to the fixed-effect model (Supplemental Table 2). The fixed-effect 
model produced mean standard errors in students’ predicted scores that 
were 4.94 percentage points compared to 3.82 percentage points (23% 
smaller) for the MAIHDA model (Table 2). When using a MAIHDA 
model, the smaller sample size groups have the largest reduction in the 
mean standard errors (Figure 4). For the 18 social identity groups with 
sample sizes that ranged from 10 to 19 students, MAIHDA reduced the 
mean standard error from 6.32 percentage points to 4.41 percentage 
points (30% smaller).

Figure 4. The difference in standard error terms for the 53 social identity groups predict-
ed pretest and post-test scores across the two models. Values were calculated as S.E.MAIHDA 
- S.E.fixed-effect, so negative values indicate smaller standard errors for predicted scores from 
the MAIHDA model.
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Table 2. The mean standard errors for the 53 social identity groups predicted pretest and 
post-test scores. 

 Total n≥20 20>n≥10

Model
Mean S.E. (perc. 

points)
Mean S.E. (perc. 

points)
Mean S.E. (perc. 

points)

Fixed Effect 4.94 4.17 6.32

MAIHDA 3.82 3.49 4.41

Difference -23% -16% -30%

The reduced standard error terms, particularly for small-N groups, 
enable differentiating outcomes across groups that quantitative research 
seldom includes. For example, this dataset had three groups of AIAN men 
reach our minimum sample size requirement of 10 (AIAN, Hispanic or 
Latino, man (n=13); AIAN, man (n=11); AIAN, White, man (n=18)). 
The MAIHDA model created predictions with small enough uncertainty 
that the differences in outcomes are distinguishable (i.e., the confidence 
intervals across the groups have little overlap; see Figure 5). This degree 
of uncertainty allowed us to not only represent these commonly ignored 
groups, but also to disaggregate them to see intersectional impacts across 
multi-racial AIAN student groups. 

Figure 5. Predicted pretest and posttest scores for AIAN students from the MAIHDA 
model.

Discussion
We found MAIHDA to create a model with fewer fixed-effect terms that 
computed more quickly than fixed-effect models and produced more 
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precise predictions. While researchers should be vigilant to guard against 
artificially small error terms, Van Dusen et al. (2024) demonstrated that 
MAIHDA’s smaller error terms were warranted. The smaller error terms 
for the MAIHDA model than the fixed-effect model follow from the 
decrease in the number of primary coefficients by 84% (from 196 to 27) 
when using MAIHDA. 

MAIHDA models conserve statistical power by using fewer coefficients 
while leveraging Bayesian shrinkage to use information about related 
groups to produce more accurate estimates, even for small N-groups 
(Evans, 2024). One of MAIHDA’s strengths lies in its ability to share 
information across related groups, allowing social identity groups to 
proliferate instead of being aggregated. By supporting researchers in 
moving beyond highly aggregated models, MAIHDA has the potential 
to improve our understanding of outcomes for communities that have 
been historically ignored and to identify interventions that create a more 
just and equitable society. For these reasons, we recommend MAIHDA 
over fixed-effect models for intersectional models that include 20 or 
more groups.

Practical Guidance
We have argued how MAIHDA can advance quantitative methodologies 
using critical theories such as intersectionality (Collins, 2015). We also 
provided an empirical example utilizing national data of physics students 
to illustrate the benefits of using MAIHDA over fixed-effects models, 
particularly for predicting outcomes for small-n social identity groups. 
We now offer guidance for employing MAIHDA in ways grounded in 
the tenets noted above–particularly being mindful of MAIHDA’s oppor-
tunities to acknowledge multi-faceted identities. Some steps we share 
below are required for MAIHDA, while others will likely strengthen a 
MAIHDA analysis. 

For each step, we refer the reader to resources that elaborate on the 
ideas that we present here. We intend our outline to be a foundation 
that researchers can start with as they consider using MAIHDA in ways 
aligned with Critical quantitative theory and encourage readers to consult 
these recommended resources for deeper explorations. 

To support readers in following our recommended steps, we have an-
notated the R code from our analysis and made it and the data available 
at https://github.com/benvandusen/MAIHDA_Example .

Data Preparation
When engaging in intersectional modeling–regardless of the methodology–
the size and diversity of the dataset and the quality of its social identity 
data lay the foundation for rigorous analytical approaches. MAIHDA 

C*%,u-0+%1 I%0e.(e-0+*%&/ Qu&%0+0&0+2e A%&/)(+( 3+04 MAIHDA 57



lends itself to analyzing large datasets that include 20 or more social 
identity groups (Evans, 2019). Those social identifiers, however, are 
social constructs that are neither natural nor inherent. Researchers can 
apply a critical framework to design their social identity data collection 
or to work with extant datasets that may have limited or problematic 
social identity data.

No single “best practice” for collecting social identity information 
exists. The context of the data collection and how it will be used should 
inform the methods used. Creating an inclusive set of social identity 
options and allowing students to select multiple choices or write their 
answers may gather more authentic responses (Abboud et al., 2019). In 
other contexts, however, these choices may lead to less authentic responses 
due to eliciting protest responses (Jaroszewski et al., 2018). Similarly, 
queries that ask for self-identification versus ethnic ancestry yield differ-
ent response groupings and interpretations (Walter & Andersen, 2013). 
Researchers should consider research goals and their contexts when de-
signing social identity questions.

Secondary data analysis limits researchers’ control over how the data 
was collected. Yet, it is essential to consider how and what social iden-
tity data was collected and how these choices might bias findings. For 
example, institutional research datasets can be large but often constrain 
student’s gender and racial identification. Researchers should contextualize 
the data collection and its limitations when interpreting their findings 
in these cases.

Find additional guidance in An ethics and social-justice approach to 
collecting and using demographic data for psychological researchers (Call et 
al., 2023) More comprehensive and inclusive approaches to demographic data 
collection (Fernandez et al., 2016), and Indigenous Statistics: A Quantitative 
Research Methodology (Walter & Andersen, 2013).

Data Preparation Step 2: Address Missing Data
Almost all datasets will have missing data. Improper handling of missing 
data can lead to biased and misleading results (Arellano, 2022). Most 
researchers use complete case analysis to handle missing data; this is not 
a neutral decision and can hide or bias differences or relationships across 
groups (Shafer, 1999). Unless very little data is missing and the researcher 
can argue that it is missing completely at random, the missingness will 
bias the findings (Baraldi & Enders, 2010). In educational research, the 
institutional injustices that contribute to inequities in student outcomes 
may also contribute to factors that influence participation in a study. For 
example, a student experiencing housing insecurity may miss more classes 
and be more likely to miss a day of data collection. In this case, using 
complete case analysis could obscure the outcomes of students experienc-
ing housing insecurity. To mitigate bias in findings and retain statistical 
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power, researchers should address missing data using a principled method, 
such as multiple imputation (Rubin, 1996). Figure 6 shows the workflow 
for generating and analyzing multiply imputed datasets.

In our analysis for this publication, we performed hierarchical multiple 
imputation using the mice (Van Buuren & Groothuis-Oudshoorn, 2011) 
package in R. However, many other R packages and statistical programs 
can perform multiple imputations (e.g., blimp, SPSS, and SAS). Multiple 
imputation takes the dataset and uses statistical models and an element of 
randomness to impute the missing data. That imputation occurs several 
times, ten in the present study, to allow the modeling process to account 
for the uncertainty introduced by the missing data. Pooling the analyses 
from each imputed data set produces more accurate and often more 
statistically powerful results than complete case analysis (Shafer, 1999). 
Including all of the informative variables available in a missing data model 
tends to improve those models (Shafer, 1999). Hierarchical data requires 
hierarchical multiple imputation models. Woods and colleagues (2021) 
offer a decision tree for when and how to perform multiple imputations. 

Figure 6. Multiple imputation involves imputing missing data to create a complete data 
set several times, analyzing those datasets independently, and then pooling the results to 
develop more accurate models.

When performing multiple imputation on social identity groups for a 
MAIHDA model, the imputation can create a social identity group/strata 
that exists in one imputation but not another. In our example, the data 
included race, gender, and first-generation college status. Some groups had 
an N of 1 and were missing the first-generation data. Some imputations 
categorized that strata as first-generation, others as continuing-generation 
college students. When this happened, an imputed dataset could have 
a strata that was not present in all of the other imputed datasets. This 
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prevented pooling the results across the imputed datasets. To address this 
issue, we removed any strata that do not exist in each imputed dataset. 
This strategy worked for our analysis but may not work for every case, 
and additional research can better inform how to handle missing data 
for MAIHDA models. 

Find additional guidance in Missing data and multiple imputation 
decision tree (Woods et al., 2024), What is the difference between missing 
completely at random and missing at random? (Bhaskaran & Smeeth, 2014), 
and Missing data and bias in physics education research: A case for using 
multiple imputation (Nissen et al., 2019).

Data Preparation Step 3: Determine the Social Identity Groups to 
Model and Present in the Findings
Building intersectional models requires collecting and manipulating social 
identity data. Researchers have extensive degrees of freedom over what 
data they collect, what data they include in their models, and how they 
interpret those models. None of those decisions are neutral nor an inher-
ent characteristic of the data. The social identity groups to include in a 
model should follow from the theory, research questions, and study design. 

Research questions should motivate the social identity groups to 
include in a model. MAIHDA allows modeling students with all of the 
available social identity data combinations. In large data sets, this MAI-
HDA feature can prevent the need for creating aggregated groups, such 
as ‘underrepresented minorities (URM)’. Despite this feature, researchers 
must make many decisions about handling social identity data.

When determining the minimum sample size for a group’s predicted 
outcome to be included in the findings, researchers must balance the 
desire to represent marginalized groups with the model’s statistical pow-
er. We have followed the guidance of a minimum size of 20 students 
in a strata when performing fixed-effect models (Simmons et al. 2011). 
MAIHDA models with a minimum size of 10 students in a strata can 
perform similarly well to fixed-effects models with a minimum size of 
20 students in a strata (Van Dusen et al., 2024). So, we have used ten as 
our minimum group sample size. This is not a universal minimum group 
sample size. Every research project should establish its own cutoff value 
and articulate its rationale. 

Find additional guidance in On over-fitting in model selection and 
subsequent selection bias in performance evaluation (Cawley et al., 2010), 
Model selection in ecology and evolution (Johnson & Omland, 2004); 
Impact of broad categorization on statistical results: How underrepresented 
minority designation can mask the struggles of both Asian American and 
African American students (Shafer et al., 2021), and How statistical model 
development can obscure inequities in STEM student outcomes (Van Dusen 
& Nissen, 2022). 
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Data Preparation Step 4: Defining the Strata for the MAIHDA Model
As noted in the example, using strata distinguishes MAIHDA from 
fixed-effects models. While MAIHDA requires creating strata, the prior 
three data preparation steps set the research up to include ones reflecting 
the four tenets.

Strata are a unique number for each social identity group. For example, 
Asian men’s strata could be 1, Asian women’s strata could be 2, and so 
forth until all the unique strata are represented. A versatile method for 
creating strata uses a series of 1s and 0s to represent all indicator variables 
for a student’s social identity. For example, if the first variable is Asian, 
the second variable is women, and the third variable is men, then Asian 
men’s strata would be “101” and Asian women’s strata would be “110”. 
Variables that interact with social identity groups must be integrated into 
the strata. For example, in our student pretest and post-scores model, we 
included an indicator term as the end of the strata for the pretest (0) and 
post-test (1). This allowed the model to predict each group’s pretest and 
posttest scores without modeling each group as gaining the same amount 
from pretest to posttest. 

Find additional guidance in A tutorial for conducting intersectional 
multilevel analysis of individual heterogeneity and discriminatory accuracy 
(MAIHDA) (Evans et al., 2024) and Math versus meaning in MAIHDA: A 
commentary on multilevel statistical models for quantitative intersectionality 
(Lizotte et al., 2020).

Modeling 
Modeling Step 1: Select Coefficients for the Model
Researchers should include coefficients based on their research questions 
and the predicted group outcomes they will include in their findings. 
Including covariates is not a neutral decision as they change the meaning 
of the model coefficients. Including variables that control for prior edu-
cational debts (e.g., high school GPA, pretest scores, or SAT scores) can 
clarify relationships and differences or obscure the impact of oppressive 
power structures on students (Stewart, 2008). 

We focus on social identity and contextual coefficients. The research 
question will determine the contextual coefficients (e.g., assessment 
administration, whether a student has previously taken the course, and 
intervention status) included in the model. The social identity coefficients 
(e.g., race, gender, and socio-economic status) should be the primary 
terms for the groups that will have predicted outcomes. For example, 
if the findings included Black women, Black men, Asian women, and 
Asian men, then the primary coefficients would include Black, Asian, 
men, and women. The model would not, however, include any of the 
interaction coefficients between race and gender. If the model measures a 
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relationship that varies across social identity coefficients, it will include it 
as both a primary term and an indicator term in the strata. For example, 
we modeled the pretest and the posttest scores by including a primary 
term for administration timing in the model and an indicator for it in 
our strata. Excluding the indicator in the strata would have created a 
model that assumed all groups had the same gain in scores from the 
pretest to the posttest.

Find additional guidance in Critical issues in statistical causal infer-
ence for observational physics education research (Adlakha & Ko, 2023), 
Causation and race (Holland et al., 2008), and How statistical model 
development can obscure inequities in STEM student outcomes (Van Dusen 
& Nissen, 2022).

Optional Modeling Step 2: Set Priors
In Bayesian modeling, priors allow researchers to account for their initial 
assumptions and knowledge about the study. For example, an analysis of 
the effectiveness of an intervention in repaying educational debts could use 
results from a meta-analysis of those debts as priors. These priors would 
allow the model to account for the findings from prior investigations and 
the researcher’s assumption that those investigations applied to the current 
study. Using priors forces researchers to make explicit assumptions about 
an investigation and speak for their data. 

Use prior publications or related datasets to generate estimates of what 
the coefficients should be and how confident you are in those values. 
Input the estimates into the Bayesian model. Running the model with 
and without priors can provide a sensitivity analysis on the impact of the 
priors on the model’s coefficients. 

Find additional guidance in The use of Bayesian priors in ecology: The 
good, the bad and the not great (Banner et al., 2020) and Prior specification 
in Bayesian statistics: Three cautionary tales (Van Dongen, 2006).

Modeling Step 3: Run the Model
MAIHDA models can use Bayesian or frequentist methods. Several aspects 
of Bayesian modeling can align with a critical quantitative perspective 
(Frisby, 2024). For example, Bayesian models provide a means of inte-
grating a critical epistemology into models by including priors that reflect 
the impact of oppressive systems on student outcomes. Bayesian models 
also offer more accurate uncertainties when combining coefficients and 
error terms to create predicted outcomes (Evans et al., 2024). R packages 
(e.g., Bürkner, 2017b) have functions that can create Bayesian models 
from non-imputed data (e.g., brm) or imputed data (e.g., brms). The 
functions for creating models from imputed data often automate the 
process by pooling the model results. 

Find additional guidance in A tutorial for conducting intersectional 
multilevel analysis of individual heterogeneity and discriminatory accuracy 
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(MAIHDA) (Evans et al., 2024), brms: An R package for Bayesian multilevel 
models using Stan (Bürkner, 2017b) and An introduction to Bayesian mul-
tilevel models using brms: A case study of gender effects on vowel variability 
in standard Indonesian (Nalborczyk et al., 2019).

Optional Modeling Step 4: Predict Outcomes
Researchers often use model coefficients as their primary findings. While 
the model coefficients can answer many research questions, they are 
typically insufficient for determining the confidence intervals for groups 
or the inequities between them. MAIHDA and similar complex models 
require the combination of multiple terms to predict a group outcome. 
While a typical coefficient table has the information necessary to com-
bine coefficients to get a point estimate, it does not have the error terms 
required for MAIHDA models or the necessary information to calculate 
the confidence interval for that estimate. Statistical packages, however, 
can provide accurate point estimates with error terms. 

Predicting each group’s outcome begins by producing the posterior 
predictions for each coefficient in the Bayesian model. This creates a set 
of possible values for each coefficient. The next step adds the coefficients 
for each group together. For example, Black women’s predicted outcomes 
might be: intercept + Black + women + errorBlack women strata. In the case of the 
brms package, it will generate the group outcomes and their uncertainties.

Modeling Step 5: Interpret Outcomes
Model interpretation often relies on p-values exceeding a cutoff, such as 
p < 0.05. Researchers, however, should not “...conclude anything about 
scientific or practical importance based on statistical significance (or lack 
thereof )” (Wasserstein et al., 2019, p. 1). 

Instead, researchers should interpret effect sizes and uncertainties in 
those effect sizes. These interpretations should rely on something other 
than common rules of thumb for effect sizes (Kraft, 2020). Amrhein et al. 
(2019) recommend interpreting the practical significance of the estimated 
value and both confidence limits to assess the meaningfulness of the model 
outcomes and the uncertainty in those outcomes. For example, a model 
may estimate the Cohen’s d effect size for an educational debt to be 0.4 
(a meaningful difference in most circumstances) with confidence intervals 
that range from 0 (unimportant) to 0.8 (very important). Researchers 
may then incorrectly dismiss this as insignificant because the lower un-
certainty limit is zero and the p-value is above 0.05. This educational 
debt is likely to be meaningful despite having a large uncertainty ranging 
from unimportant to very important. Groups with small samples, such 
as those historically marginalized in education systems, will have larger 
uncertainties in their estimates. Dismissing differences as insignificant 
due to uncertainty when they may be meaningful and harmful is bad 
science and furthers student marginalization and injustice.
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Find additional guidance in Critical race quantitative intersectionality: 
A toiling movement-building paradigm that refuses to “let the numbers speak 
for themselves” (Covarrubias et al., 2021) and Moving to a world beyond 
“p< 0.05” (Wasserstein et al., 2019).

Discussion and Implications 
Our example illustrates that using MAIHDA to model intersectional out-
comes is simpler and more accurate than fixed-effect models. Using the 
example of a small-n group (i.e., AIAN Hispanic men), we demonstrate 
how MAIHDA can allow researchers to disaggregate their data further, 
representing outcomes for commonly overlooked social identity groups. 
We present this example to show how disaggregation can be driven by 
the need for research to understand intersectional forces of oppression 
rather than by methodological limits. However, we do not suggest that 
researchers must always disaggregate to the smallest n size possible. The-
ory and research questions should determine the groups of interest and 
minimum group sample sizes. MAIHDA enables researchers to make more 
of these decisions driven by the inequities of interest and the capacity of 
their data rather than the limitations of their methods.

In providing practical guidance for using MAIHDA, we outline 
approaches researchers can take to account for the interactions between 
multi-faceted identities and power structures in their modeling. This 
outline mirrors approaches we have taken in analyzing the physics student 
data presented in the case study. Using MAIHDA, we integrate five tenets 
grounded in Quantitative Critical Race Theory (Gillborn et al., 2018) and 
Critical Race Quantitative Intersectionality (Covarrubias et al., 2017) to 
inform our decisions. For instance, we considered social identity groups 
to include in the model (Data Preparation Stage 3) in light of tenets that 
acknowledge the social construction of “groups” and that defining and 
drawing conclusions about social groups in quantitative research should 
acknowledge the researcher agency–and responsibility–in understanding 
these groups as historical and social constructions. This is where theo-
retical and conceptual frameworks (such as intersectionality) can aid the 
researcher in interpreting outcomes and understanding contexts yielding 
those results. However, we acknowledge that conducting analyses using 
MAIHDA without this critical lens is mechanically possible. 

We further believe that the tenets we use in this paper describe a 
mindset that guides decision-making about quantitative research–not a 
checklist of what should be done to achieve equity-minded work. For 
readers familiar with science education standards in the Next Generation 
Science Standards, this can be likened to how many lessons touch on 
various competencies. Still, single lessons rarely address one indicator in 
isolation and in full. In this way, we encourage readers to take our outline 

66 Be% V&% Du(e%, J&)(*% N+((e%, He+,+ C+&%, &%, Lu-) A.e//&%*



and the connections we drew to CritQuant as an example rather than an 
exemplar. By referring to the tenets that organized our work, we mean 
to express how these tenets can guide an equity-oriented mindset using 
methods that support drawing conclusions that involve multi-faceted 
identities. We do not believe there is a singular “how-to” for carrying out 
critical quantitative research.
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Supplemental Material
Supplemental Table 1. Model coefficient estimates and estimated errors.

 MAIHDA Fixed Effect

 Estimate Est. 
Error Estimate Est. 

Error

Intercept 43.8 8.6 - -

americanindianoralaskannative 0.7 2.3 1.3 6.2

anasianracenotlisted 3.5 2.7 33.5 19.1

asian 2.5 1.9 42.7 16

asianindian 4.6 2.3 -19.2 28.8

black -4.8 2.4 17.3 10.1

chinese 4.3 2.1 -30.4 22.6

colombian -0.5 5 -1327.5 8814

cuban -2.3 4.7 -842.2 7147.6

filipino -1.9 2.4 24.4 11.8

genderqueergendernonconforming -3.3 2.9 18.2 6.1

hispanicorlatino -4.8 1.4 17.5 8.5

japanese 1.6 2.8 -9.3 9.1

korean 2.8 2.9 2198.4 8326.6

man -3.2 2.4 44.3 3.2

mexicanmexicanamericanchicanochicana -2.8 1.5 30.5 19.1

middleeasternornorthafrican 1.2 2.6 9.2 19.4

nativehawaiianorotherpacificislander -1 3 45.5 22.3

other -2.1 3.9 61.9 18.7

other_1 -6 3.1 80.8 26.8

othermiddleeastern -7 5.4 -6.3 23.2

puertorican -3.4 2.7 11.8 8

test 20.1 1.4 54 5.3

vietnamese 3.2 2.6 1153.8 7768.9

white 4.9 1.9 52.1 3

woman -11.1 2.3 32.4 2.5

retake 1.7 1.7 1.9 1.8

americanindianoralaskannative:hispanicorlatino - - -3.5 11.8
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 MAIHDA Fixed Effect

 Estimate Est. 
Error Estimate Est. 

Error

americanindianoralaskannative:man - - 0.2 7.6

hispanicorlatino:man - - -22.4 9

americanindianoralaskannative:white - - 0.3 9.1

man:white - - -48 4.1

man:anasianracenotlisted - - -31.7 19.2

anasianracenotlisted:woman - - -26.9 19.5

man:asian - - -43.4 15.8

woman:asian - - -40.8 16.2

man:asianindian - - 23 29.1

woman:asianindian - - 23.7 28.6

hispanicorlatino:black - - -6.4 9.3

man:black - - -25.2 11

white:black - - -3.2 6.9

woman:black - - -21.6 10.1

man:chinese - - 35.6 23

white:chinese - - 0.3 8

woman:chinese - - 37.7 22

man:colombian - - 1320.4 8813.8

white:colombian - - 1328.7 8818.5

man:cuban - - 866.7 7147.5

white:cuban - - 846.6 7147.3

man:filipino - - -27.9 12.6

white:filipino - - -3.6 11.3

woman:filipino - - -26 11.8

white:genderqueergendernonconforming - - -21 6.6

hispanicorlatino:mexicanmexicanamericanchi-
canochicana - - 7.6 12

man:mexicanmexicanamericanchicanochicana - - -36.9 19.3

hispanicorlatino:other - - -89.6 6253.6

man:other - - -67.5 19.3

hispanicorlatino:white - - -24.4 15.6
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 MAIHDA Fixed Effect

 Estimate Est. 
Error Estimate Est. 

Error

hispanicorlatino:woman - - -22.5 9.1

woman:other - - -67.2 21.1

white:woman - - -49.9 3.8

man:japanese - - 19.2 9.7

white:japanese - - 14.9 11.9

man:korean - - -2198.5 8326

woman:korean - - -2193 8326.1

white:mexicanmexicanamericanchicanochicana - - -45.6 21.1

man:middleeasternornorthafrican - - -13 20.6

white:middleeasternornorthafrican - - 1.2 13.7

man:nativehawaiianorotherpacificislander - - -52 22.6

man:other_1 - - -88.2 26

white:other_1 - - -73.7 45.6

man:othermiddleeastern - - -4 26.2

man:puertorican - - -8.8 11.7

white:puertorican - - -17 11.9

man:vietnamese - - -1154.9 7769.3

woman:mexicanmexicanamericanchicanochi-
cana - - -32.1 19

woman:middleeasternornorthafrican - - -7.1 17.2

woman:nativehawaiianorotherpacificislander - - -44.5 22.7

woman:other_1 - - -87.7 24.9

woman:vietnamese - - -1147.9 7769.1

test:americanindianoralaskannative - - -7.2 9.6

test:hispanicorlatino - - -7.6 13.4

test:man - - -37.8 9.5

test:white - - -37 7.6

test:anasianracenotlisted - - -23.5 29.4

test:woman - - -31 6.6

test:asian - - -33.6 19.3

test:asianindian - - 54.8 37.2

C*%,u-0+%1 I%0e.(e-0+*%&/ Qu&%0+0&0+2e A%&/)(+( 3+04 MAIHDA 7=



 MAIHDA Fixed Effect

 Estimate Est. 
Error Estimate Est. 

Error

test:black - - -24.6 14

test:chinese - - 30.4 28.4

test:colombian - - 327.4 6663.1

test:cuban - - -3259 6528.9

test:filipino - - -23.8 16.3

test:genderqueergendernonconforming - - -19.7 8

test:mexicanmexicanamericanchicanochicana - - -46.8 23.8

test:other - - -32.5 22.8

test:japanese - - 15.6 10.4

test:korean - - -1010.1 4887.4

test:middleeasternornorthafrican - - 8.8 21.8

test:nativehawaiianorotherpacificislander - - -19.9 25.7

test:other_1 - - -77.3 49.5

test:othermiddleeastern - - 24.2 26.7

test:puertorican - - -2.7 9.7

test:vietnamese - - 1822.4 8485.6

americanindianoralaskannative:hispanicorlati-
no:man - - -0.9 14.3

americanindianoralaskannative:man:white - - 1.3 11.2

hispanicorlatino:man:black - - 13.3 11.5

man:white:black - - 9.5 9.7

man:white:chinese - - -1.7 10.3

man:white:colombian - - -1328.1 8817.5

man:white:cuban - - -878 7146.5

man:white:filipino - - 9.2 13.4

hispanicorlatino:man:mexicanmexicanameri-
canchicanochicana - - -5.4 13.3

hispanicorlatino:man:other - - 90.5 6253.9

hispanicorlatino:man:white - - 22.2 16.1

hispanicorlatino:woman:other - - 91.8 6254.1

hispanicorlatino:white:woman - - 27.1 15.8

man:white:japanese - - -22.1 13.5
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 MAIHDA Fixed Effect

 Estimate Est. 
Error Estimate Est. 

Error

man:white:mexicanmexicanamericanchicano-
chicana - - 46 21.5

man:white:middleeasternornorthafrican - - 4.8 15.6

man:white:other_1 - - 68.3 45.1

man:white:puertorican - - 4.4 15.6

white:woman:mexicanmexicanamericanchi-
canochicana - - 44.3 21.1

white:woman:other_1 - - 73.8 45.4

test:americanindianoralaskannative:hispanicor-
latino - - -0.5 15.4

test:americanindianoralaskannative:man - - 8.5 11.3

test:hispanicorlatino:man - - 9.2 14.3

test:americanindianoralaskannative:white - - -0.1 13.2

test:man:white - - 41.2 10.2

test:man:anasianracenotlisted - - 23.6 29.6

test:anasianracenotlisted:woman - - 15 30.4

test:man:asian - - 35.6 19.2

test:woman:asian - - 33.9 19.4

test:man:asianindian - - -56.4 38.2

test:woman:asianindian - - -57.5 36.2

test:hispanicorlatino:black - - -2.6 11.9

test:man:black - - 26.5 19.2

test:white:black - - 9 9.9

test:woman:black - - 24 15.6

test:man:chinese - - -32.4 29.4

test:white:chinese - - 2.2 11.1

test:woman:chinese - - -34 27.3

test:man:colombian - - -319.6 6664.1

test:white:colombian - - -324.3 6665.7

test:man:cuban - - 3237.7 6525.8

test:white:cuban - - 3241.6 6532.4

test:man:filipino - - 23.2 17.2
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 MAIHDA Fixed Effect

 Estimate Est. 
Error Estimate Est. 

Error

test:white:filipino - - 14.1 15.4

test:woman:filipino - - 23.2 16.6

test:white:genderqueergendernonconforming - - 20.5 9.6

test:hispanicorlatino:mexicanmexicanamerican-
chicanochicana - - 18.3 14.3

test:man:mexicanmexicanamericanchicanoch-
icana - - 51 24.3

test:hispanicorlatino:other - - 860 9238.8

test:man:other - - 36.9 23.4

test:hispanicorlatino:white - - 13.7 22

test:hispanicorlatino:woman - - 6.8 14.6

test:woman:other - - 36.4 27.1

test:white:woman - - 38.8 8.9

test:man:japanese - - -34.3 13.5

test:white:japanese - - -12.9 13.7

test:man:korean - - 1012.6 4886.2

test:woman:korean - - 1009.6 4887.5

test:white:mexicanmexicanamericanchicano-
chicana - - 56.7 27.1

test:man:middleeasternornorthafrican - - -3.2 22.7

test:white:middleeasternornorthafrican - - -16.3 16.5

test:man:nativehawaiianorotherpacificislander - - 26.7 26.2

test:man:other_1 - - 87 48.2

test:white:other_1 - - 76 71.1

test:man:othermiddleeastern - - -23.9 30.1

test:man:puertorican - - -4.5 15.2

test:white:puertorican - - -0.9 14.9

test:man:vietnamese - - -1818.9 8485.4

test:woman:mexicanmexicanamericanchicano-
chicana - - 42.9 24.2

test:woman:middleeasternornorthafrican - - -4 21.3

test:woman:nativehawaiianorotherpacificis-
lander - - 19.4 26.9

test:woman:other_1 - - 85.8 43
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 MAIHDA Fixed Effect

 Estimate Est. 
Error Estimate Est. 

Error

test:woman:vietnamese - - -1822.2 8485.9

test:americanindianoralaskannative:hispanicor-
latino:man - - -3.8 18.4

test:americanindianoralaskannative:man:white - - 5.8 16

test:hispanicorlatino:man:black - - -4 16.4

test:man:white:black - - -18 20.7

test:man:white:chinese - - -1.9 13.8

test:man:white:colombian - - 327.4 6666.3

test:man:white:cuban - - -3217.7 6529.3

test:man:white:filipino - - -21 18.5

test:hispanicorlatino:man:mexicanmexicana-
mericanchicanochicana

- - -18.4 15.8

test:hispanicorlatino:man:other - - -862.1 9238.4

test:hispanicorlatino:man:white - - -13.4 22.5

test:hispanicorlatino:woman:other - - -865.7 9238.5

test:hispanicorlatino:white:woman - - -16.7 23.2

test:man:white:japanese - - 30.1 19.4

test:man:white:mexicanmexicanamericanchi-
canochicana - - -58.9 27.4

test:man:white:middleeasternornorthafrican - - 12.1 19.5

test:man:white:other_1 - - -83.7 70.2

test:man:white:puertorican - - 9.4 20.7

test:white:woman:mexicanmexicanamerican-
chicanochicana - - -50.6 27.1

test:white:woman:other_1 - - -87.2 64.9
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