
CLedger: A Secure Distributed Certificate Ledger

via Named Data

Tianyuan Yu∗, Hongcheng Xie†, Siqi Liu∗, Xinyu Ma∗, Varun Patil∗, Xiaohua Jia†, and Lixia Zhang∗

∗Computer Science Department, University of California, Los Angeles, CA, USA
†Department of Computer Science, City University of Hong Kong, Hong Kong, China

Abstract—Named-Data Networking (NDN) is a novel network
that secures network communication by fetching semantically
named and secured data. All data packets in NDN are signed by
producers and verified by data consumers. Therefore, it is vital to
have producers’ certificates available all the time. In this paper,
we describe the design of CLedger, a secure distributed certificate
ledger, to ensure certificate availability in NDN. CLedger logs
certificate records in an immutable Directed Acyclic Graph (DAG)
structure and replicates the DAG among a set of distributed
loggers. We implemented CLedger using NDN’s pub/sub API, and
evaluated our design through an emulated deployment setting. Our
initial evaluation results show that CLedger is effective, efficient,
and resilient to failures.

I. INTRODUCTION

Named-Data Networking (NDN) secures network communi-

cation by fetching semantically named and secured data [1],

[2]. NDN Data packets are cryptographically signed by their

producers’ keys, this enables data consumers to use the pro-

ducers’ certificates to authenticate all received data packets.

Thus certificate availability is a prerequisite to enabling secure

communications.

In today’s IP-based Internet, almost all web communications

run over secure HTTP, which also needs to authenticate web

servers. The availability of web servers’ certificates is assured

by IP’s always-on model: all web servers are online and

reachable all the time, so that browsers can directly obtain

the certificates from web servers. In contrast, NDN’s data-

centric design enables consumers to fetch data even when

their producers are offline, or unreachable due to temporary

failures. These features enable NDN to support disruption-

tolerant networking natively, but also raise the need for making

certificates available all the time, even when certificate owners

are offline or unreachable.

We propose CLedger, a distributed, secure, and resilient

certificate ledger, to meet the above critical need. CLedger con-

sists of a set of distributed loggers that store certificates from

authorized certificate owners. CLedger makes use of NDN’s

State Vector Sync (SVS), a distributed dataset synchronization

protocol to replicate existing certificates among all loggers;

and SVSPS, a pub/sub API built on top of SVS for secured

multiparty communications. CLedger utilizes an append-only

data structure, HashDAG, which is based on Directed Acyclic

Graph (DAG). HashDAG assures that, once a certificate is

stored in CLedger, it cannot be removed.

Our contributions can be summarized as follows.

• To address certificate availability problem, we developed

a secure distributed certificate ledger, CLedger, to run

in NDN networks. CLedger uses an append-only data

structure shared among all loggers to store certificates.

• We evaluate the performance of CLedger. The evaluation

results show that our proposed ledger network is efficient

and practical to be deployed.

The rest of this paper is organized as follows. §II discusses

basic building blocks we use in our proposed system. §III

formulates the problem and states CLedger design goals. We

present the details of our proposed system in §IV. §V gives

the performance evaluation that verifies CLedger design. We

summarize related works in §VI, discuss other potential usage

of CLedger and some of our design decisions in §VII. Finally,

we conclude our work and discuss future work in §VIII.

II. BACKGROUND

In this section, we provide an overview of the Named-Data

Networking and the two major building blocks used in the

CLedger design, Pub/Sub support over State Vector Sync and

Directed Acyclic Graph.

A. Named Data Networking

Instead of using end-host addresses, Named-Data Network-

ing (NDN) [1] uses application data names for communications.

Consumers fetch data by names carried in Interest packets, and

the network returns the named and secured Data packets.

To effectively verify the trustworthiness of received data, data

consumers use a set of rules, called trust schemas, to define trust

relations among NDN entities1. These rules defines which key

(identified by the key’s semantically meaningful name) should

be used to sign which piece of data. All the entities managed by

the same administrator form a trust domain [3], and each entity

is bootstrapped with the administrator’s self-signed certificate

as its trust anchor, together with its trust schema which defines

its trust relations with other entities in the same domain. All

certificate signing chains in this trust domain derive from the

trust anchor.

B. State Vector Sync (SVS) and SVSPS

State Vector Sync (SVS) [4] is a distributed dataset synchro-

nization protocol running over NDN networks. Utilizing SVS,

1An NDN entity is an application process or network communication
participant in an NDN network.

Authorized licensed use limited to: Tennessee Technological University. Downloaded on November 20,2025 at 16:04:53 UTC from IEEE Xplore. Restrictions apply.

R1

R3

R4R2

R5

Immutable Record

Pending Record

Fig. 2: A DAG example where � = 3 and each record is

published by an unique Logger.

the CertOwner is informed the submission process has been

completed.

When submitting certificates, a CertOwner signs the sub-

mission with its certificate private key, so Loggers are able to

authenticate the CertOwner and validate whether the CertOwner

is authorized by the trust schema to use CLedger. Upon

receiving a validated submission, a Logger produces a record

to log the submission.

Loggers securely synchronize records via SVSPS (§II-B),

where Loggers join the same Publish/Subscribe group and

subscribe to new records produced by other Loggers.

Design Question 2: How does CLedger ensure a record is

immutable?

Since CLedger defines record immutability as at having

replications in least � Loggers, a natural answer to this question

is having � Loggers’ signatures on the record, claiming they

have replicated it.

CLedger realizes this idea by introducing a new data struc-

ture HashDAG inspired by IOTA Tangle [5]. In HashDAG,

each vertex is a record, and each directed edge refers to a

previous record, which is implemented by storing the hash

of the previous record in the current record. HashDAG edges

represent replication relations. For instance, �5 in Figure 2

refers to �3 and �4 directly, and refers to �1 and �2 indirectly.

This reference relation indicates the Logger who produces �5

claims it has seen and replicated �3 and �4 and all their

dependencies (i.e., �1 and �2) and replicated them into its local

copy of HashDAG. Therefore, if a record has been referred by

more than � unique Loggers, that record becomes immutable;

otherwise, we refer to its status as pending. For example, �1

and �2 in Figure 2 are immutable since their parents are

produced by three unique Loggers, while �3, �4, and �5 are

still pending.

Obviously, the latency for a pending record to become

immutable is up to how often Loggers are publishing. However,

Logger publication rate further depends on how many nearby

CertOwners are submitting certificates. If only a few Loggers

are publishing records, the immutability latency increases, or

even becomes infinite when there is no new Logger contribute

references by producing record and refer to the existing tail.

In order to address this problem, we design the dummy record

mechanism for CLedger. Each Logger maintains a timer and

refreshes it whenever the Logger receives a new record from

SVSPS. If no records are received in a given amount of time,

the Logger publishes a dummy record that does not contain a

certificate but only refers to all tail records.

We made two decisions to prevent CLedger keeping publish-

ing dummy records when there is no new certificate submission.

First, a Logger will not refresh its timer when receiving a

dummy record. Second, a dummy record can only refer to

the records that contain certificates. Therefore when HashDAG

growth stalls, more Loggers can participate to help pending

records to be immutable.

CLedger In Operation Now we use an example shown in

Figure 3 to further demonstrate CLedger operations.

We consider a case where Alice is a CertOwner and Bob is a

CertFetcher. At the beginning, Alice submits her certificate to

CLedger using the submission protocol. Alice’s nearest Logger

receives the submission, validates it with trust schema, and

publishes a record �5 that includes Alice’s certificate and

references to all HashDAG tail records �3 and �4.

As all Loggers are in the Publish/Subscribe group, other

Loggers receive this �5 from record subscription, and append

it into their HashDAG. Because �5 has become the tail record,

when other Loggers publish new records, their records will

refer to �5. When there are at least � Loggers have directly

or indirectly referred to �5 in their record publications, �5

becomes immutable.

We assume that Bob starts fetching Alice’s certificate af-

ter Alice’s certificate submission finishes. Bob expresses an

Interest with Alice’s certificate name2. Bob’s nearest Logger

receives the Interest and looks up its local copy of HashDAG

for the record that contains Alice’s certificate.

If such a record exists in HashDAG, the Logger extracts

Alice’s certificate from it and replies to the Interest with the

certificate found. Otherwise, the Logger replies to the Interest

with a Data packet that shares the same name prefix with Bob’s

Interest but has an empty content. Logger signs the reply to

inform Bob that CLedger has no record for which certificate3.

In the case shown in Figure 3, the Logger nearest to Bob

has learned �5 from SVSPS, hence successfully looks up �5

from its local copy of HashDAG and replies to Bob’s Interest

with Alice’s certificate.

V. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the performance of CLedger with

various parameter settings, including the submission latency,

the fetching latency, the immutability latency, and the Certifi-

cate/Total record ratio.

A. Evaluation Setup

To evaluate CLedger’s performance, we implemented a pro-

totype4 based on ndn-cxx. Our prototype uses LevelDB as

loggers’ local database.

2Interest packets can carry forwarding hint that hints the routers where to
forward the packet. In our case, Bob’s certificate fetching Interest carries the
forwarding hint to the CLedger shared routing prefix.

3The Logger can use the Data FreshnessPeriod to control the timeliness of
this information, so that Bob knows when to resend the request.

4https://github.com/UCLA-IRL/cert-ledger

Authorized licensed use limited to: Tennessee Technological University. Downloaded on November 20,2025 at 16:04:53 UTC from IEEE Xplore. Restrictions apply.

and submit its certificate. The submission evaluation lasts for

120 seconds, and we evaluate the mean submission latency of

all submitted certificates. As shown in Fig. 4a, the submission

latency decreases as the number of Loggers increases, because

the larger number of Loggers, the higher probability that a

CertOwner can find a nearby Logger with small hops.

After all certificates are submitted into the system, we

evaluate the certificate fetching latency. We also assume that

fetching events have the same distribution as submission events.

For each fetching request, we randomly choose a node as

a CertFetcher and fetch a random certificate already in the

system. We assume that the fetched certificates have the Zipf

distribution. It also lasts for 120 seconds, and we evaluate the

mean latency of all fetching requests. As shown in Fig. 4a,

the fetching latency remains stable as the number of Loggers

increases, because popular certificates are fetched several times

under Zipf distribution. Due to the cache mechanism in NDN,

they are cached by the intermediate nodes so that a CertFetcher

can fetch them from the intermediate routers.

C. Immutability Latency

In this section, we measure the immutability latency to

evaluate the immutability performance provided by CLedger.

In this experiment, we picked 15 Loggers with the same node

selection process. The dummy record timer for each Logger

is set randomly from 0.1 s to 20 s. As illustrated in Fig. 4b,

we evaluate the immutability latency with different submission

speed rates and K settings, where the figure on the corner

shows the immutability latency with low submission speed. The

immutability latency in both cases � = 3 and � = 5 decrease

as the submission rate increases. The increasing number of

submitted records per second makes a newly submitted record

referenced quickly. The latency in the case � = 5 is higher

than that in the case � = 3, because a submitted record needs

more descendent records for larger � . Our evaluation results

show that our record can be immutable after a short period of

time. When the submission speed is 20 records per second and

� = 5, a record only needs 862.89 ms to be immutable.

D. Certificate/Total Record Ratio

As CLedger uses dummy records to accelerate the im-

mutability, we evaluate the proportion of certificate records in

all records. In Fig. 5, we evaluate the proportion of certificates

from CertOwners with different submission speed rates and �

settings, where the figure on the corner shows the immutability

latency with low submission speed. The number of Loggers is

set as 15, and we select them based on the same policy we

used in §V-C. We can find that the proportions in both cases

� = 3 and � = 5 increase when the submission speed rate

increases. When the submission speed rates are over 15 records

per second, the proportions of certificate records are over 95%.

VI. RELATED WORKS

A. Certificate Transparency

Today’s Internet has a decade of experience in logging

certificates in append-only data structures. Certificate Trans-

parency (CT) [12] is a solution that logs issued certificates

in Merkle Tree, an append-only data structure. The Merkle

Tree with logged certificates is stored in multiple independent

CT log servers. CT helps mitigate the misissuance problem

in Certificate Authorities (CA) through browser-end forcing.

Browsers, such as Chrome, require that a certificate must be

logged in multiple CT servers. Otherwise, it will be rejected

by the browser. Meanwhile, monitors periodically check the

latest update of CT log servers. Thus they can detect misissued

certificates in Web through analyzing CT logs.

We acknowledge that CT has made significant contributions

to today’s Internet security. But we also note that, system

consistency is a non-goal when CT was first proposed. A key

difference in CT design is that, each Logger independently

maintains its own certificate storage. The stored certificates may

differ among different Loggers, which leads to system incon-

sistency. Therefore, browser vendors control the trust policy

that decides to accept which Logger. On the contrary, CLedger

synchronizes records among Loggers via SVSPS, and secures

the system by executing trust schema that is bootstrapped to

all domain entities.

Moreover, as we mentioned in §I, today’s Internet follows

an always-on model. CT aims at addressing the transparency

issue. It supposes that the browser should have the certificate

from the server, which cannot be used to address the certificate

availability problem.

B. Blockchain-based Certificate Ledger

Many Proposals [13]–[15] are built on using the blockchain

to achieve X.509 certificate transparency. Cecoin [13] uses

Merkle Patricia Tree to represent its domains and the certificates

records and accepts modification to this tree using blockchain

and its cryptographic verification methods. The proposal by

Ze et al. [14] builds the function of CT with blockchain

and builds domain ownership proof with a group of verifying

parties. The proposal by Kubilay et al [15] provides a model

of building a decentralized Byzantine fault tolerant trust on a

blockchain, with inherent support of public append-only log

property provided by the clock-chain.

However, CLedger differs from the blockchain-based designs

in the following two ways. First, based on whether require

authorization to publish and access records or not, blockchain-

based ledger can be further categorized into permissioned and

permissionless ledger. Different from IP-based permissioned

ledgers, CLedger realizes record authorization with a data-

centric design that leverages semantically meaningful names

in the network layer, which can authorize record publications

according to trust schema, without adding a map from ledger

identifier to its address.

Second, the blockchain technique requires the system achiev-

ing global consensus on record orders, which leads to extra

communication overhead. However, as certificates are stateless,

the consistency of record order is not important. DAG in

CLedger does not require a total order among all records but

still ensures the immutability for each record. It is a lightweight

design that is more suitable for certificate availability.

Authorized licensed use limited to: Tennessee Technological University. Downloaded on November 20,2025 at 16:04:53 UTC from IEEE Xplore. Restrictions apply.

VII. DISCUSSION

Revocation Availability Although CLedger aims to address

the certificate availability problem, the same solution can also

be applied to the availability of certificate revocation records.

The revocation framework CertRevoke [9] requires a ledger

that immutably stores the revocation records and guarantees

their availability. CLedger is a natural fit for that need.

Supporting Inter-domain Availability Although the current

CLedger design started from providing the certificate availabil-

ity within one trust domain, CLedger can also achieves the

same goals for multiple domains. In a multi-domain deploy-

ment, each domain contributes Loggers with trust schema that

specifies rules on how to authenticate and authorize packets

from other trust domains [16]. Therefore, federated Loggers

can provide immutable certificate storage for CertOwners and

CertFetchers from multiple domains.

Dummy Record Timer CLedger relies on a dummy record

timer to enable records to be immutable timely. However,

system operators should carefully consider the timer interval.

First, the interval of the timer should present system op-

erators’ consideration of how urgently records need to be

immutable. As shown in Figure 5, when CLedger only has

few submissions per second, the ratio between CertOwner-

submitted records and dummy records drops significantly. This

indicates CLedger immutably stores certificates with higher

communication overhead.

Second, in order to prevent multiple Loggers from publishing

dummy records simultaneously, each Logger should use a

variable length timer. In our evaluation, each Logger uses a

randomized timer whose interval is evenly distributed but with

the same mean value. This might not be the optimal choice,

since the urgency of record immutability is increasing as time

increases when no one is publishing new records. A better

randomization strategy is to have the probability distribution

function prefers shorter timers.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a secure distributed certificate

ledger, CLedger, via named data. CLedger provides certifi-

cate and revocation availability based on immutably repli-

cated records. Our evaluation results showed that our proposed

CLedger is feasible and efficient.

A lesson we learned from designing CLedger is that a trust

schema enables CLedger security design through semantically

matching data name with its signer name. Therefore, CLedger

is able to control not only who can submit certificates, but

also who can submit which certificate, without adding another

layer of indirection. Hence, CLedger does not need a separate

security design to authorize CertOwners, but relies on the trust

schema to validate their submission data and ensure every

submission is authenticated and legitimate.

We also learned SVSPS is a useful tool to build secure NDN

applications. By using SVSPS, CLedger securely synchronizes

records without dealing with low-level protocol details, but only

handles high-level data naming and security policies.

In the future, we will investigate an adaptive timer for the

dummy record design to further reduce the records’ immutabil-

ity latency while remaining the HashDAG efficiency. We also

plan to deploy CLedger on NDN Testbed [17] as a solution to

Testbed certificate availability problem and support certificate

availability across multiple trust domains.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers for their

valuable comments. This work was supported in part by

US National Science Foundation under awards 2019085 and

2126148, and Research Grants Council of Hong Kong under

CityU 11213920 and R1012-21.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,” pp.
66–73, 2014.

[2] A. Afanasyev, T. Refaei, L. Wang, and L. Zhang, “A brief introduction
to Named Data Networking,” in Proc. of MILCOM, Oct. 2018.

[3] K. Nichols, V. Jacobson, and R. King, “Defined-Trust Transport
(DeftT) Protocol for Limited Domains,” Internet Engineering Task
Force, Internet-Draft draft-nichols-tsv-defined-trust-transport-00, 07 2022,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
draft-nichols-tsv-defined-trust-transport

[4] P. Moll, V. Patil, N. Sabharwal, and L. Zhang, “A brief introduction
to state vector sync,” NDN, NDN Memo, Technical Report NDN-0073,

Revision 2, 2021.
[5] Y. Li, B. Cao, M. Peng, L. Zhang, L. Zhang, D. Feng, and J. Yu,

“Direct acyclic graph-based ledger for internet of things: Performance
and security analysis,” IEEE/ACM Transactions on Networking, vol. 28,
no. 4, pp. 1643–1656, 2020.

[6] Z. Zhang, V. Vasavada, R. King, and L. Zhang, “Proof of authentication
for private distributed ledger,” in Proceedings of the NDSS Workshop on

Decentralised IoT Systems and Security (DISS), 2019.
[7] S. Liu, P. Moll, and L. Zhang, “Mnemosyne: An immutable distributed

logging framework over named data networking,” in Proceedings of the

8th ACM Conference on Information-Centric Networking, ser. ICN ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
130–132. [Online]. Available: https://doi.org/10.1145/3460417.3483375

[8] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Pro-

ceedings of the Third Symposium on Operating Systems Design and

Implementation, ser. OSDI ’99. USA: USENIX Association, 1999, p.
173–186.

[9] T. Yu, H. Xie, S. Liu, X. Ma, X. Jia, and L. Zhang, “Certrevoke: A certifi-
cate revocation framework for named data networking,” in Proceedings

of the 9th ACM Conference on Information-Centric Networking, 2022.
[10] The NDN Team, “Mini-NDN: A Mininet based NDN emulator,”

2022, accessed: 2022-11-01. [Online]. Available: https://github.com/
named-data/mini-ndn

[11] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies with
rocketfuel,” ACM SIGCOMM Computer Communication Review, vol. 32,
no. 4, pp. 133–145, 2002.

[12] B. Laurie, “Certificate transparency: Public, verifiable, append-only logs,”
Queue, vol. 12, no. 8, pp. 10–19, 2014.

[13] B. Qin, J. Huang, Q. Wang, X. Luo, B. Liang, and W. Shi, “Cecoin: A
decentralized pki mitigating mitm attacks,” Future Generation Computer

Systems, vol. 107, pp. 805–815, 2020.
[14] Z. Wang, J. Lin, Q. Cai, Q. Wang, D. Zha, and J. Jing, “Blockchain-based

certificate transparency and revocation transparency,” IEEE Transactions

on Dependable and Secure Computing, vol. 19, no. 1, pp. 681–697, 2022.
[15] M. Y. Kubilay, M. S. Kiraz, and H. A. Mantar, “Certledger: A

new pki model with certificate transparency based on blockchain,”
Computers & Security, vol. 85, pp. 333–352, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404818313014

[16] T. Yu, X. Ma, H. Xie, Y. Kocaoğullar, and L. Zhang, “Intertrust:
establishing inter-zone trust relationships,” in Proceedings of the 9th ACM

Conference on Information-Centric Networking, 2022, pp. 180–182.
[17] The NDN Team, “Ndn testbed,” Online at https://named-data.net/ndn-

testbed/, 2022.

Authorized licensed use limited to: Tennessee Technological University. Downloaded on November 20,2025 at 16:04:53 UTC from IEEE Xplore. Restrictions apply.

