
PythonRepo: Persistent In-Network Storage for

Named Data Networking

Tianyuan Yu∗, Zhaoning Kong†, Xinyu Ma∗, Lan Wang‡, and Lixia Zhang∗

∗UCLA
†Purdue University

‡The University of Memphis

Email: ∗{tianyuan, xinyu.ma, lixia}@cs.ucla.edu, †kong102@purdue.edu, ‡lanwang@memphis.edu,

Abstract—Named Data Networking (NDN) takes a data-centric
design approach to data delivery, which intrinsically enables
asynchronous communication. That is, communicating entities
can exchange data effectively even when they are not directly
connected or online at the same time, as long as everyone
can receive all its requested data. NDN makes data available
through persistent in-network data repository, or repo for short,
which is an integral component in the NDN architecture. In this
paper, we first articulate the important role repos play in an
NDN network, and then present the design of a simple repo
protocol, PythonRepo, which has been used in several NDN
applications. We also identify remaining work to be done to
make PythonRepofullfil the needs of future NDN applications.

I. INTRODUCTION

Today’s Internet applications, by and large, are built on

the client-server model over TCP/IP protocol stack. TCP/IP

networking provides point-to-point connectivity to support the

client-server applications through synchronous communication

(i.e., both parties are online at the same time). While clients

may come and go at any time, application servers must be

online all the time, ready to serve clients whenever needed.

Named Data Networking (NDN) takes a data-centric design

approach [1]. Its basic communication primitive is fetch-

ing named, secured data packets. This design enables asyn-

chronous communication, potentially among multiple parties.

These parties may or may not be directly connected with each

other (i.e., having working paths between them), or even all

online at the same time. They can communicate effectively as

long as each can fetch its desired data whenever needed. Given

not all data producers may be online all the time, persistent in-

network data repositories [2], or repos for short, are designed

to meet the goal of making all data available all the time,

similar to servers in a TCP/IP network being online all the

time.

Up to now, however, not enough attention has been paid

to the repo design and development. Although several repo

prototypes have been developed over the years to meet appli-

cation needs, there is little documentation on their designs, let

alone systematic examination of their design choices to gather

the lessons learned.

This paper is an effort to help fill that void. We make three

contributions. First, we clarify the fundamental differences

between NDN repos and today’s cloud storage. Second, we

describe the design and implementation of PythonRepo, one

of the existing NDN repos that provides secure in-network

storage to support NDN applications. Third, we identify the

remaining work to be done with the current PythonRepo

implementation to strengthen its resiliency and availability.

The remainder of this paper is organized as follows. §II

provides an NDN overview, and highlights the differences

between networked storage systems in NDN and today’s cloud

storage services. §III discusses the design goals of PythonRepo

and how our design achieves the goals. Afterwards, We de-

scribe our initial implementation of PythonRepoin §IV, discuss

the remaining work to be done for PythonRepo in §V, and

conclude the paper in §VI.

II. BACKGROUND

A. Named Data Networking

Instead of translating application layer names to IP ad-

dresses for packet delivery as the Internet works today, NDN

directly uses application layer data names in network commu-

nication. Data consumers request data by putting the names in

NDN Interest packets, and in response, the network returns the

requested Data packets with the matching semantic name and

cryptographic signatures, which are then used by consumers

to authenticate the received data.

To check the authenticity of received Data packets, NDN

lets each application define a set of trust rules, called trust

schema [3], written in a defined schematic language. Be-

cause today’s network security solutions are patched on top

of TCP/IP’s node-centric protocol stack which offers end-

to-end reliable data delivery connections, they authenticate

application servers b manually configured certificates to secure

the connections. Therefore, they do not support elaborated

security policies or fine-grained control over data. In contrast,

NDN’s trust schema enables applications to manage the trust

relationships among multiple entities, where each entity can

be an application process or any communication participant

that produce or consume data. Trust schema defines which

cryptographic key, which also has a semantically meaningful

name, should sign which specific named Data packets.

In order to perform the above functions, each NDN entity

must go through a bootstrapping process [4][5][6] first. We

consider that all entities under the control of the same adminis-

trator constitute a trust domain [7], and each entity obtains the

Authorized licensed use limited to: Tennessee Technological University. Downloaded on November 20,2025 at 16:08:12 UTC from IEEE Xplore.  Restrictions apply. 



following parameters from the bootstrapping process: (i) the

trust domain’s self-signed certificate as its trust anchor, (ii) the

trust schema, and (iii) its own identity certificate. Note that

an individual user, say Alice, can make a trust domain for

her self, DAlice, e.g. having Alice’s phone holds a self-signed

certificate as her trust anchor. If Alice possesses additional

devices, e.g. a laptop in addition to the phone, and each

device may run some apps, then DAlice will contains multiple

entities. Also note that each app is an NDN entity as it can

produce and/or consume data, therefore it must go through a

bootstrapping process as well before it can actively participate

in an NDN system.

B. Networked Storage

NDN repos are application processes themselves running on

the nodes with storage resources to provide persistent storage

for other applications. Repos accept data insertions requests,

fetch the named data objects from requesters and make data

available. Repos are transparent to data consumers, which

simply fetch desired data by names, without needing to know

where the data come from.

Various questions have been raised regarding the differences

between NDN repos and other types of in-network storage.

First, various storage systems are deployed in the cloud and

at edges in today’s TCP/IP Internet. We point out that today’s

cloud storage services are built on top of TCP/IP’s node-

centric protocol stack. Given a TCP/IP network delivers data

to IP addresses, application developers must handle the task of

figuring out where to fetch a requested dataset. Content Dis-

tribution Network (CDN) services offer location-transparent

service to end users by building application layer overlays,

and they only serve a relatively small number of paid content

providers.

In contrast, NDN integrates networking and storage, and

enables all consumer applications to request data by name,

without having to identify specific data containers or locations.

An Interest packet can find and retrieve the requested data from

the nearest location, be it from router cache, repo storage, or

data producer.

One basic reason that NDN can fetch desired data from

anywhere is its design of securing data directly. Data owners

make their data authenticable by cryptographically signing

them, and make the data confidential by encrypting them. This

design puts (i) data access control in the hands of data owners,

independently from data containers; and (ii) data authenticity

validation in the hands of data consumers, independently from

communication channels. Because security is attached to data,

data replication is also made easy. In contrast, the security of

cloud storage relies on TLS connections between user nodes

and cloud servers, and the security of data is bundled with

servers. This makes data replication complex to handle, as

one must ensure trust on all replicas.

Second, within the NDN context, the content store at each

NDN router is already a form of in-network storage. Although

both router content store and repos can store NDN Data pack-

ets, a content store caches passing-by Data packets opportunis-

tically, Data packets can be evicted due to resource constraints,

and thus does not ensure data availability. In contrast, repos

are managed in-network storage system, which ensure Data

packets availability until data are evicted upon request by their

applications. To provide resilient data availability in face of

failures, repos should also replicate all stored data in multiple

servers.

III. DESIGN OF PYTHONREPO

In this section, we first define the basic operations of

PythonRepo, then describe our design assumptions and goals.

Afterwards, we give an overview of PythonRepo workflow,

followed by the PythonRepo operations details.

PythonRepo Operations: PythonRepo runs as an applica-

tion process on nodes with storage resources. It interacts with

users, a generic term we use to refer to NDN entities that

utilize repos by inserting or deleting data objects.

An observation we make from existing NDN applications,

such as those described in [8][9][10][11], produce application

data objects of various sizes, each object may be segmented

to multiple Data packets. We refer application data object as

Application Data Unit (ADU) [12]. PythonRepo uses ADU as

the basic data unit in its operations.

Design Assumptions: We assume that both Users and

PythonRepo go through the NDN bootstrapping process before

they start operations. Therefore, they possess necessary secu-

rity parameters to secure as well as validate the data exchange

between each other. Consumers express Interests to fetch

desired data from the network. They validate received data

following the security policies defined by their applications,

independent from where the data is retrieved.

Design Goals: PythonRepohas the following two design

goals:

• User Authenticity and Authorization: PythonRepo

should accept ADU insertion and deletion requests from

authenticated and authorized Users only.

• ADU Availability: after a User successfully inserts an

ADU, PythonRepo should keep this ADU available per-

sistently.

A. PythonRepo Overview

PythonRepo takes ADU insertion and deletion requests

from the application and perform corresponding tasks. Since

the request must carry the necessary ADU information that

PythonRepo needs to know, it should be a piece of se-

mantically named and secured data that PythonRepo fetches

from the application. Therefore, it is the user application that

initiates the ADU insertion or deletion process by notifying

PythonRepo there is a new request to be processed.

Upon receiving the request, PythonRepo checks whether the

request is produced by an authorized User through validating

the request with the bootstrapped trust schema. If the request

is signed by an authorized User, PythonRepo proceeds to fetch

the ADU from the network with the information provided

within an insertion request, or delete the ADU from its local

storage for a deletion request. After sending an ADU Insertion

Authorized licensed use limited to: Tennessee Technological University. Downloaded on November 20,2025 at 16:08:12 UTC from IEEE Xplore.  Restrictions apply. 







[7] K. Nichols, “Trust schemas and icn: key to secure home iot,” in Proceed-

ings of the 8th ACM Conference on Information-Centric Networking,
2021, pp. 95–106.

[8] S. Dulal, N. Ali, A. R. Thieme, T. Yu, S. Liu, S. Regmi, L. Zhang,
and L. Wang, “Building a secure mhealth data sharing infrastructure
over ndn,” in Proceedings of the 9th ACM Conference on Information-

Centric Networking, 2022, pp. 114–124.
[9] J. Presley, X. Wang, T. Brandel, X. Ai, P. Podder, T. Yu, V. Patil,

L. Zhang, A. Afanasyev, F. A. Feltus et al., “Hydra–a federated data
repository over ndn,” arXiv preprint arXiv:2211.00919, 2022.

[10] J. Thompson, P. Gusev, and J. Burke, “Ndn-cnl: A hierarchical names-
pace api for named data networking,” in Proceedings of the 6th ACM

Conference on Information-Centric Networking, 2019, pp. 30–36.
[11] C. Ghasemi, H. Yousefi, and B. Zhang, “Internet-scale video streaming

over ndn,” IEEE Network, vol. 35, no. 5, pp. 174–180, 2021.
[12] D. D. Clark and D. L. Tennenhouse, “Architectural considerations for a

new generation of protocols,” ACM SIGCOMM Computer Communica-

tion Review, vol. 20, no. 4, pp. 200–208, 1990.
[13] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu,

W. Shang, Y. Huang, J. P. Abraham, S. DiBenedetto et al., “Nfd
developer’s guide,” Dept. Comput. Sci., Univ. California, Los Angeles,

Los Angeles, CA, USA, Tech. Rep. NDN-0021, vol. 29, p. 31, 2014.
[14] N. Team, https://github.com/UCLA-IRL/ndn-python-repo, 2023, ac-

cessed: 2023-5-27.
[15] Z. Zhang, T. Yu, X. Ma, Y. Guan, P. Moll, and L. Zhang, “Sovereign:

Self-contained smart home with data-centric network and security,”
IEEE Internet of Things Journal, vol. 9, no. 15, pp. 13 808–13 822,
2022.

[16] The NDN Team, “Ndn testbed,” Online at https://named-data.net/ndn-
testbed/, 2022.

[17] T. Li, Z. Kong, S. Mastorakis, and L. Zhang, “Distributed dataset syn-
chronization in disruptive networks,” in 2019 IEEE 16th International

Conference on Mobile Ad Hoc and Sensor Systems (MASS). IEEE,
2019, pp. 428–437.

[18] P. Moll, V. Patil, L. Zhang, and D. Pesavento, “Resilient brokerless
publish-subscribe over ndn,” in MILCOM 2021-2021 IEEE Military

Communications Conference (MILCOM). IEEE, 2021, pp. 438–444.

Authorized licensed use limited to: Tennessee Technological University. Downloaded on November 20,2025 at 16:08:12 UTC from IEEE Xplore.  Restrictions apply. 


