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Abstract

Mesopelagic zones of the NW Atlantic Slope Water support pelagic assemblages with high biomass and high diversity. 
Species of salps (Phylum Urochordata, Class Thaliacea) are bloom-forming, filter-feeding, gelatinous zooplankton, with 
significant impacts on pelagic food webs and vertical transport of organic material. Questions remain of their diet diversity, 
prey selectivity, and timing of feeding with respect to vertical distribution and migration. This study analyzed three salp 
species, Soestia (Iasis) zonaria, Salpa aspera, and Salpa fusiformis, collected from the NW Atlantic Slope Water during 
July and August 2018 and 2019. DNA metabarcoding using V4 and V9 regions of 18S rRNA found dinoflagellates to be 
predominant prey for all three salp species in both years. Analysis of five prey groups detected by metabarcoding revealed 
differences in proportions of prey. Compound-specific stable isotope analysis of essential amino acids, which integrates 
over several months, found diatoms to be the dominant end-member source for all three species. Our findings on salp diet 
diversity broaden our understanding of trophic pathways in the mesopelagic food web, including sources of productivity 
and possible impacts of climate change.
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Introduction

Salps in the Mesopelagic Ecosystem

The mesopelagic depths of the global ocean are character-
ized by high diversity and high biomass of marine organ-
isms, from microbes to mammals (St John et al. 2016). 
Also known as the Ocean Twilight Zone (OTZ) and defined 
as depths from 200 to 1,000 m, these waters are home to 
numerous species of fish and zooplankton (Koppelmann 

and Frost 2008; Kaartvedt et al. 2019). To better understand 
trophic interactions of gelatinous organisms in these com-
munities, this study examined diets of salps in the mesope-
lagic zone of the Northwest Atlantic Slope Water, a region 
bordered by the dynamic currents of the Gulf Stream System 
and the continental shelf (Iselin 1936; McLellan et al. 1953).

Salps (Phylum Urochordata, Class Thaliacea) are impor-
tant members of the mesopelagic assemblage in terms of 
both biomass and food web interactions (Vargas and Madin 
2004). Salps are filter feeders that pump water through their 
oral siphon into a fine mucous net, which is then moved 
toward the esophagus (Sutherland et al. 2010). Salps are 
known to feed on particles ranging in size over three orders 
of magnitude (Vargas and Madin 2004), which gives them 
unusual and potentially important roles in food web dynam-
ics. Salps have important impacts on transport of carbon 
through the water column and sequestration in the sedi-
ment both by diel vertical migration (DVM) and by sink-
ing of their large fecal pellets (Wiebe et al. 1979; Harbou 
2010; Henschke et al. 2016; Stone and Steinberg 2016; 
Lüskow et al. 2020; Decima et al. 2023). Many species of 
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salps exhibit strong patterns of DVM, with daytime depths 
well below the epipelagic waters inhabited at night (Madin 
et al. 2006). Soestia (previously known as Iasis, Garic et al. 
2024) zonaria, Salpa aspera, and Salpa fusiformis are all 
known to exhibit DVM (Stone and Steinberg 2014, 2016), 
with significantly higher night vs. day biomass in the top 
150 m (Madin et al. 1996). Salpa aspera vertical migration 
ranged from 600 − 800 m or deeper during the day, with 
aggregations near the surface (~ 100 m) at night in the NW 
Atlantic Slope Water (Wiebe et al. 1979; Madin et al. 2006). 
Previous studies found abundances of S. fusiformis to be 
negatively correlated with temperature in the mesopelagic 
(300 − 600 m), suggesting that warming of waters may have 
negative impacts on populations (Steinberg et al. 2000, 
2012; Bianchi et al. 2013). Reverse migration was observed 
for S. fusiformis in the Yellow Sea, associated with patterns 
of light intensity, chlorophyll concentrations, and other envi-
ronmental parameters (Liu et al. 2012).

Salps are known to exhibit high spatiotemporal variabil-
ity, with large swarms or blooms dependent on seasonal 
and environmental conditions. Salp blooms in the North 
Atlantic have long been reported for S. aspera (Wiebe et al. 
1979; Madin et al. 1994, 2006) and S. fusiformis (Fraser 
1949, 1969; Hunt 1968; Brattstrom 1972). The potential for 
bloom formation differs among species: S. zonaria has been 
estimated to release up to 420 salps per individual under 
bloom conditions (Daponte et al. (2013). This is more than 
twice the rates measured for other salps (Morris et al. 1988), 
including S. fusiformis reported to produce 93–179 zooids 
(Braconnot et al. 1988) and Cyclosalpa bakeri reported to 
produce 170 zooids per individual (Madin and Purcell 1992).

Salps are efficient filter feeders that contribute sub-
stantially to transport of carbon through the mesopelagic, 
through consumption of prey in surface waters and vertical 
migration into deep zones (Steinberg et al. 2023). Sequestra-
tion of carbon in the sediment occurs via the sinking of the 
large fecal pellets (Henschke et al. 2016). Several studies 
have highlighted the large volumes of water filtered by salps. 
Large (75 mm) individuals of Cyclosalpa affinis are capable 
of rapidly filtering water up to 200 ml / min, compared to 
0.76 ml / min for copepods (Henschke et al. 2016). This 
capacity for rapid, high-volume filtration provides the capac-
ity for bloom formation in dilute prey conditions (Alldredge 
and Madin 1982). During bloom conditions, salps can sub-
stantially impact and alter pelagic ecosystems (Henschke 
et al. 2016).

Salp species differ in muscle organization, filter effi-
ciency, and swimming speeds, which can also depend upon 
life stages, whether solitary or aggregate (Sutherland and 
Weihs 2017). Body size, pulse frequency, and strength of 
compression are characteristics that determine the amount 
of water a salp can filter (Madin and Kremer 1995; Suther-
land et al. 2010). Salpa fusiformis and S. zonaria show 

similarities of thickness and sturdiness of their tests and 
have been reported to swim faster than other species, due 
to the overlap of zooids on the chain lying along the chain’s 
axis (Bone and Trueman 1983). Gut contents measured as 
chlorophyll concentration have been directly related to body 
size in S. fusiformis, which has been reported to consume up 
to 5% of primary production (Huskin et al. 2003). Salps feed 
on particles ranging over three orders of magnitude in size 
(Vargas and Madin 2004; Sutherland et al. 2010; Lawrence 
et al. 2018), including particles that are four to five orders 
of magnitude smaller than themselves, thereby bypassing 
several trophic levels (Fortier et al. 1994).

Salps may be direct consumers of bacteria, ciliates, and 
autotrophic and heterotrophic dinoflagellates (Vargas and 
Madin 2004) and may have some of their energy demands 
met by bacterial biomass (Sutherland et al. 2010) represent-
ing the potential for diverse bioenergetic pathways. Prey 
selectivity by these filter feeders may also be common; salps 
have been shown to preferentially assimilate smaller het-
erotrophic prey under low chlorophyll conditions, including 
flagellates and microzooplankton (Pakhomov et al. 2019). 
For example, diet studies on S. fusiformis have revealed pref-
erential ingestion of eukaryotic cells over prokaryotic cells 
of similar size (~ 1 µm); calculations of cell carbon content 
showed 55% came from pico-eukaryotic algae, which com-
prised 14% of the available carbon in the pelagic community 
(Dadon‐Pilosof et al. 2019). Moreover, studies under high 
chlorophyll a conditions, when diatoms generally dominate 
the plankton assemblage, suggested non-consumption or 
dietary exclusion of diatoms by salps (Hughes 1990, 2013).

Studies have demonstrated that salps have varying rates 
of retention and assimilation of particles of different size 
and composition (Vargas and Madin 2004; von Harbou 
et al. 2011; Metfies et al. 2014; Conley et al. 2017; Dadon-
Pilosof et al. 2017; Walters et al. 2019). Studies using varied 
techniques have provided evidence of selective feeding – or 
selective assimilation – by salps relative to the available prey 
assemblage (von Harbou et al. 2011; Metfies et al. 2014; 
Conley et al. 2017; Dadon-Pilosof et al. 2017; Walters et al. 
2019; Fender et al. 2023). Tissue fatty acid signatures and 
metagenomic analysis of stomach contents of Salpa thomp-

soni and Ihlea racovitzai suggested a diet based on small 
flagellates, but not diatoms, which often pass through the 
salp stomach undigested (von Harbou et al. 2011; Metfies 
et al. 2014). Salps cannot break hard parts of protected prey 
items, such as frustules of diatoms, and are continuous feed-
ers, so food items consumed generally have a short stomach 
residence time – usually a matter of hours (Pakhomov et al. 
2006; von Harbou et al. 2011). A high degree of dietary 
variability and complexity has been observed in salps, but 
capturing the true spatial and temporal patterns of diet diver-
sity in salp gut contents is challenging due to the lack of 
diagnostic characters in the prey after digestion. Molecular 
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and chemical analyses are thus particularly useful in resolv-
ing salp trophodynamics and understanding their relevance 
in the mesopelagic zone.

DNA Metabarcoding of Diets

DNA metabarcoding is the identification of multiple taxo-
nomic groups or species based on high-throughput sequenc-
ing (HTS) of short barcode gene regions from environmental 
samples (Taberlet et al. 2012). Multi-gene metabarcoding 
has yielded new understanding of marine biodiversity using 
hypervariable regions of ribosomal RNA (rRNA) genes 
(Quast et al. 2013; Amaral-Zettler et al. 2014) and several 
mitochondrial gene regions, including cytochrome oxidase I 
(COI) (Bucklin et al. 2011, 2021; Questel et al. 2021). DNA 
metabarcoding of marine organisms has been used to under-
stand sources of productivity of ocean food webs (Zamora‐
Terol et al. 2020; D’Alessandro and Mariani 2021; Käse 
et al. 2021; Huggett et al. 2022; Russo et al. 2023). Identi-
fication of prey based on metabarcoding of DNA extracted 
from gut contents has provided more detailed, complete, 
and accurate characterization of diets of marine organisms 
(Novotny et al. 2021, 2023; Coker et al. 2023). Gelatinous 
plankton have been detected by metabarcoding as both pred-
ators (Damian-Serrano et al. 2022) and prey (Cavallo et al. 
2018). Metabarcoding has been used to examine diets of the 
salps, Salpa thompsoni and Ihlea racovitzai; in combination 
with tissue fatty acid signatures, metabarcoding of stomach 
contents suggested diets were largely composed of small 
flagellates, while diatoms were found to pass through salps 
undigested (von Harbou et al. 2011; Metfies et al. 2014).

The growing availability of reference sequence databases 
for the various gene regions used as molecular markers is 
allowing more complete understanding of ocean food webs 
(Bucklin et al. 2021; O’Brien et al. 2024). Hypervariable 
regions of the 18S ribosomal RNA (rRNA) gene have been 
widely used for molecular detection and identification of 
marine organisms, from microbes to mammals (Amaral-
Zetler et al. 2009; Metfies et al. 2014; Hu et al. 2015; Govin-
darajan et al. 2021, 2023).

Compound‑Specific Stable Isotope Analysis

Stable isotopes of carbon (13C) have been used to identify 
dietary sources and examine food web linkages in mesope-
lagic ecosystems (Post 2002; Richoux and Froneman 2009; 
Annasawmy et al. 2020; Richards et al. 2020; Shea et al. 
2023; Wojtal et al. 2023). By using specific biochemical 
compounds such as amino acids (AAs), compound-specific 
stable isotope analysis (CSIA) allows for greater resolution 
in diet analysis when compared to bulk isotope analysis 
(Larsen et al. 2015; Close 2019; Whiteman et al. 2019). 
AAs that are synthesized de novo at the base of the food 

web by primary producers and bacteria are called essential 
AAs, including Isoleucine, Leucine, Valine, Threonine, and 
Phenylalanine. These AAs are propagated through the food 
web with little to no fractionation, resulting in the retention 
of an isotopic signature from basal end members by species 
at higher trophic levels (Scott et al. 2006; Larsen et al. 2009; 
Bond and Diamond 2011; Arthur et al. 2014).

CSIA values provide insights into organismal diets based 
on the turnover rates of the cells in the tissues being ana-
lyzed. In the case of muscle tissue, the values typically 
represent diet averages on the order of a weeks to months 
(Martínez del Rio and Carleton 2012; Whiteman et al. 2019). 
While this means recent small scale physical changes may 
not be represented, CSIA allows examination of diets reflect-
ing the more important and consistent prey items, with less 
impact of rare or unique prey items.

Previous studies have used CSIA techniques to examine 
questions of prey choice and selectivity by pelagic preda-
tors and to determine sources of productivity of marine 
food webs based on relative contributions of end members 
to higher trophic level diets (Budge et al. 2008; McMahon 
et al. 2016). CSIA has proven useful for tracing sources of 
productivity for gelatinous organisms, which may rely upon 
tiny and/or dissolved organic material (Bănaru et al. 2014; 
Decima et al. 2019; Hetherington et al. 2024). Using these 
techniques, salp gut contents have been found to contain rep-
resentatives of diatoms, dinoflagellates, haptophyte flagel-
lates (Prymnesiales and Coccolithophorales), and copepods 
(Ahmad Ishak et al. 2017).

This study used integrative analysis to provide a more 
complete view of the roles of salps in the mesopelagic food 
web. We used a multi-gene DNA metabarcoding approach 
in conjunction with CSIA to characterize diet diversity and 
determine trophic relationships of three salp species (S. 

aspera, S. fusiformis, and S. zonaria) from the Northwest 
Atlantic Slope Water during the Ocean Twilight Zone (OTZ) 
program.

METHODS

Hydrography and Sample Collection in NW Atlantic

The mesopelagic ecosystem of the NW Atlantic Slope Water 
region was surveyed during August 12–19, 2018 and July 
27—August 5, 2019 aboard the NOAA research vessel 
(R/V) Henry B. Bigelow. At each station, six conductivity-
temperature-depth (CTD) profiles were made with a Seabird 
911plus CTD mounted on a small rosette frame with eight 
5-L Niskin bottles for collection of water for analysis of 
chlorophyll, nutrients, and oxygen isotope concentrations. 
Sample collections were carried out during day and night 
using a modified Marinovich midwater trawl (MWT; De 
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Robertis et al. 2017; Jech and Lavery 2018) and 1-m2 Mul-
tiple Opening and Closing Net and Environmental Sensing 
System (MOCNESS; Wiebe et al. 1985b) (Table 1). For both 
MWT and MOCNESS tows, individual salp zooids were 
removed from the samples immediately upon collection to 
minimize accumulation of gut contents during collection, 
sometimes referred to as “net feeding”. Salps were rinsed 
in seawater to remove material or organisms attached to the 
salp test. Despite rapid handling of samples, the possibil-
ity remains that some non-prey species will be detected by 
metabarcoding of DNA extracted from gut contents. After 
tentative identification and cleaning, samples were immedi-
ately flash-frozen in liquid nitrogen to preserve the integrity 
of tunic tissue and gut content DNA. Samples were stored 
at -80 °C until the time of analysis. In the laboratory, speci-
mens were partially thawed to allow visual taxonomic identi-
fication of the salp species, designation of the life stage (soli-
tary or aggregate), excision of tunic muscle tissue, dissection 
of the guts, and removal of the gut contents. The tunic mus-
cle tissue was used for analysis of compound-specific stable 
isotopes and species identification by DNA barcoding of the 
mitochondrial COI gene. DNA was extracted from entire 
gut contents for multi-gene metabarcoding of diet diversity.

Salps used for analysis were the most abundant species in 
the samples collected during 2018 and 2019. Soestia zonaria 
was the most abundant species, with 80% in solitary stage; 
S. fusiformis collected were all in aggregate stage; for S. 

aspera collected, 62% were solitary individuals (Table 2; 
Suppl. Table 1).

DNA Extraction, Amplicon Generation 
and Sequencing

Gut contents were placed in elution buffer with Tris–HCl 
(10 mM), EDTA (100 mM, pH 8), NaCl (200 mM), sodium 
dodecyl sulfate (SDS, 1%), and Milli-Q water. After homog-
enization for 15 s, lysates were incubated in a water bath at 
55 ºC for 4 h. DNA was extracted from digested samples 
using phenol:chloroform:isoamyl alcohol (25:24:1); poten-
tial PCR inhibitors were removed using a DNEasy Power-
Clean Pro Kit (Qiagen) according to manufacturer instruc-
tions. Fluorometric quantification of DNA was performed 
with a Qubit 3.0 fluorometer (Thermo Fisher Scientific, 
Waltham, MA).

Purified DNA extracted from gut contents was used to 
amplify two hypervariable regions of 18S rRNA using primers 
and protocols designed for eukaryotic organisms: V4 (Metfies 
et al. 2014) and V9 (Amaral-Zetter et al. 2009). PCR primers 
and protocols for both 18S r RNA hypervariable regions were 
not designed for detection of prokaryotic organisms; results 
presented here include only eukaryotic groups. Forward and 
reverse PCR primers were altered for multiplexed sequencing 
by adding 5’ adapters (Illumina, Inc., San Diego, CA). PCR 

amplification of a 450 base-pair (bp) region of V4 used the 
primers: 528F (Medlin et al. 2006) and 690R (Metfies and 
Medlin 2008). The PCR reaction used 10 ng of DNA, with 
KAPA HiFi reagents, 5 µL buffer, 1 µL dNTPs, 0.5 µL HiFi 
Taq Polymerase, and 1 µL of each primer (10 µM), with the 
following PCR protocol: one denaturation cycle at 98 °C for 
30 s; 10 cycles of 98 °C for 20 s, 57 °C for 30 s, and 72 °C 
for 15 s; and 15 cycles of 98 °C for 10 s, 66 °C for 30 s, and 
72 °C for 15 s; with one extension cycle of 72 °C for 7 min; 
and hold at 4 °C.

The V9 PCR amplification used primers 1380F and 1510R 
(Amaral-Zetter et al. 2009). The reaction used 4 µL of DNA 
template (10 ng), with KAPA HiFi reagents (KAPA Biosys-
tems, Massachusetts, USA): 5 µL buffer containing MgCl, 1 
µL dNTPs, 0.5 µL HiFi Taq Polymerase, and 1 µL of each 
primer (10 µM). PCR protocol included one denaturation cycle 
at 98 °C for 30 s; 10 cycles of 98 °C for 20 s, 56 °C for 30 s, 
and 72 °C for 15 s; and 15 cycles of 98 °C for 10 s, 66 °C for 
30 s, and 72 °C for 15 s; with one extension cycle of 72 °C 
for 7 min; and hold at 4 °C. Both V4 and V9 18S rRNA were 
checked for successful amplification by electrophoresis in a 
2% agarose gel with a 50 bp marker.

Library preparation involved adding index and adapter 
sequences in a second PCR amplification of the purified ampli-
cons using a master mix composed of (per sample): 5.0 µL 
purified PCR product; 5 µL Nextera XT Index 1 Primer; 5 µL 
Nextera XT Index 2 Primer; 25 µL 2 × KAPA HiFi HotStart 
ReadyMix; 10 µL PCR-grade water; for a total volume of 50 
µL. The PCR protocol was 95 °C for 3 min; 8 cycles of: 95 °C 
for 30 s, 55 °C for 30 s, 72 °C for 30 s; and 1 cycle of 72 °C for 
5 min. The indexed PCR product was purified using AMPure 
XP beads, with a final elution volume of 25 µL. Libraries were 
validated for length and adapter dimer removal using the Agi-
lent TapeStation 4200 D1000 High Sensitivity assay (Agilent 
Technologies, Santa Clara, CA, USA), then quantified and nor-
malized using the dsDNA High Sensitivity Assay for Qubit 3.0 
fluorometer (Life Technologies, Carlsbad, CA, USA). Sample 
libraries were prepared for Illumina sequencing by denaturing 
and diluting the libraries per manufacturer’s protocol (Illu-
mina, San Diego, CA, USA). Samples were pooled separately 
for each hypervariable region, equally normalized, and run on 
the Illumina MiSeq sequencer using MiSeq reagent Nano Kit 
v2 (500 cycles for V4 and 300 cycles for V9; 1 million clus-
ters) spiked with 20% PhiX control library at a final loading 
concentration of 4 pM. Paired end sequencing was carried out 
at the University of Connecticut, Center for Genome Innova-
tion (CGI; https://​cgi.​uconn.​edu/).

Sequence Quality Assessment, Bioinformatics, 
and Statistical Analysis

Demultiplexed reads for hypervariable regions V4 and V9 
18S rRNA were processed using a custom script for the 
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Mothur pipeline (Ver. 1.44.3; Schloss et al. 2009) modified 
from Questel et al. (2021) and run on the Xanadu computing 
cluster of the UConn Computational Biology Core (CBC; 
https://​bioin​forma​tics.​uconn.​edu/). Contiguous sequences 
(contigs) were assembled from forward and reverse Illu-
mina MiSeq reads and trimmed; quality Phred scores < 30. 
Contigs with lengths shorter than 350 bp for V4 and 120 bp 
for V9 were removed from analysis. For both V4 and V9 
unique sequences were aligned against the reference data-
base, SILVA Release 132 (Quast et al. 2013; https://​www.​
arb-​silva.​de/​docum​entat​ion/​relea​se-​132/). Any sequences 
that did not span the entire V4 or V9 region were removed, 
decreasing the presence of erroneous operational taxonomic 
units (OTUs) created during clustering. Before clustering of 
OTUs, the UNOISE method (Edgar 2016) within Mothur 
(Ver. 1.44.3) was used to remove potential PCR bias that 
may contribute to errors in biodiversity assessment (Kelly 
et al. 2019) limiting to 2 bp difference between sequences. 
These filtering and trimming steps are analogous to the 
generation of Amplicon Sequence Variants (ASVs) via the 
DADA2 pipeline (Callahan et al. 2017). Chimeras were 
detected using VSEARCH command (Rognes et al. 2016); 
the found chimeras were eliminated for downstream analysis.

Taxonomic identification of OTUs was carried out using 
a tailored database developed from the SSU 18S SILVA, 
132 release (Blanco-Bercial 2020). The modified database 
includes 18S rRNA sequences for eukaryotic marine organ-
isms acquired from the NCBI GenBank sequence reposi-
tory available after the release of SILVA 132 (Quast et al. 
2013). Taxonomic assignments were determined using a 
naïve Bayesian classifier algorithm (Wang et al. 2007), based 
on the highest probability that a given sequence contains 
kmers specific to a sequence of a known taxonomic identity; 
default kmer size (ksize) = 8 was used. Taxonomic assign-
ments with identification bootstrap values ≥ 80% after 100 
iterations were accepted.

Sequence numbers for both gene regions were listed in 
taxonomy summary files (Wang et al. 2007) generated by 
Mothur (Ver. 1.44.3; Edgar 2016). Results for both V4 and 
V9 were analyzed for five taxonomic groups (Dinoflagellata, 
Syndiniales, Diatomea, Rhizaria, and Copepoda) previously 
reported as prey of salps (Madin and Purcell 1992; Harbou 

et al. 2011; Ahmad Ishak et al. 2017). Sequences classified 
as salps or fish (Teleostei) in gut contents were not included 
in analysis of diet diversity, to remove predator and unlikely 
prey. Gut contents of some salp species yielded only V9 
sequences identified as salp; these samples were removed 
from downstream analysis, reducing sample sizes in some 
cases. One 2018 sample was excluded from the V4 metabar-
coding dataset due to failed amplicon generation.

Diet diversity was analyzed within and among the three 
salp species by multivariate statistical analysis of V4 and V9 
sequence numbers (log10 + 1 values) using MatLab (Ver. 
2020B; 9.9.0.1467703). Variation in proportions of the five 
prey groups between salp species and years was tested using 
3-way Analysis of Variance (ANOVA). One distance meas-
ure used was the Bray–Curtis dissimilarity coefficient (Bray 
and Curtis 1957; McCune et al. 2002), with results displayed 
as cluster diagrams for both years for each species. Differen-
tiation among the three species was analyzed and visualized 
by Non-Metric Multidimensional Scaling (NMDS) using the 
FATHOM Toolbox for MatLab (Jones 2017; https://​www.​
usf.​edu/​marine-​scien​ce/​resea​rch/​matlab-​resou​rces/​index.​
aspx/).

Analysis of Compound Specific Stable Isotopes 

Tissue samples were excised from a total of 33 salp speci-
mens of the three species collected in 2019 used for metabar-
coding of gut contents; no samples collected in 2018 were 
analyzed for CSIA (Table 2). Muscle tissue was freeze-dried 
prior to hydrolysis in 6 M hydrochloric acid, at 110o C, over-
night. The hydrolysates were then dried at 60o C, under a 
stream of nitrogen gas (N2), then re-suspended in 0.01 M 
hydrochloric acid before being dried again at 60o C, under a 
stream of N2 prior to derivatization with methyl chlorofor-
mate. Samples were re-suspended in chloroform and injected 
onto a gas chromatography (GC) column in split-less mode, 
using a ramped temperature program from 80o C to 255o C 
with an injector temperature of 250o C. Amino acids were 
separated on a VF-23 ms GC column (30 m length, 0.25 mm 
inner diameter, and 0.25 µm film thickness,) using an Agi-
lent 6890N gas chromatograph (Agilent Technologies, Santa 
Clara, CA) at Woods Hole Oceanographic Institution. A gas 

Table 2   Salp samples collected in 2018 (HB-1805) and 2019 (HB-1907) and analyzed by metabarcoding gut contents for two gene regions (V4 
and V9) and by compound species stable isotope analysis (CSIA) of dissected muscle tissue from the same specimen

HB-1805 HB-1907

Salp species V4 V9 CSIA V4 V9 CSIA

Soestia zonaria 4 5 N/A 17(2) 17 (2) 17

Salpa aspera 3 3 N/A 5(1) 5(1) 8

Salpa fusiformis 3 3 N/A 7(3) 7(3) 6

Totals 10 11 N/A 29 29 31

https://bioinformatics.uconn.edu/
https://www.arb-silva.de/documentation/release-132/
https://www.arb-silva.de/documentation/release-132/
https://www.usf.edu/marine-science/research/matlab-resources/index.aspx/
https://www.usf.edu/marine-science/research/matlab-resources/index.aspx/
https://www.usf.edu/marine-science/research/matlab-resources/index.aspx/
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chromatography-combustion continuous flow interface was 
used to combust the separated amino acid (AA) peaks at 
1030o C before a CO2 measurement was made on an iso-
tope ratio monitoring mass spectrometer (Thermo Finnigan 
Mat 253). CO2 reference gas was pulsed intermittently for 
standardization. Samples were analyzed in duplicate along 
with chemical and cod standards with known AA isotopic 
composition. These standards account for kinetic fractiona-
tion and introduction of carbon often paired with derivatiza-
tion (Silfer et al. 1991). CSIA methods are further described 
in Walsh et al. (2014). This protocol produced peaks for 
five essential amino acids: threonine (Thr), isoleucine 
(Ileu), valine (Val), phenylalanine (Phe), and leucine (Leu), 
plus five non-essential amino acids: alanine (Ala), glycine 
(Gly), proline (Pro), aspartic acid (Asp), and glutamic acid 
(Glu). Mean reproducibility for all individual amino acids 
from a long-term lab fish muscle standard was maintained 
at ± 0.5%.

Essential AA δ13C values were then analyzed using prin-
cipal component analysis of essential amino acids and visu-
alized using ggplot in R (Wickham 2016). Data were nor-
malized for comparison to essential δ13C data for bacteria, 
diatoms, and dinoflagellates. End member data from Stahl 
et al. (2023) included analysis of nine genera of bacteria (20 
samples), three species of diatoms (9 samples), and three 
species of dinoflagellates (9 samples). Confidence intervals 
(90%) were calculated for end member data.

RESULTS

Hydrography of the collection area in NW Atlantic 
Slope Water

Temperatures and salinities at the sample collection loca-
tions in HB-1805 Station #2 and HB-1907 Stations #2 and 
#3 were similar below 600 m; near the surface, temperatures 
were cooler and salinities were lower in 2018 than 2019 at 
Station 2; above 50 m, temperatures were warmer at all three 
stations, while salinities showed wide variation at Station 
2 in 2018 and 2019, with high, but less variable, values in 
2019 (Fig. 1). Based on the hydrographic data, Station #2 
was in the Slope Water during collections in both years, 
while higher and more variable temperatures and salinities 
at Station #3 in 2019 (Fig. 1) indicated it was likely affected 
by a Gulf Steam meander or warm core ring (Wiebe et al. 
1985a).

Metabarcoding analysis of prey diversity

The hypervariable regions of V4 and V9 18S rRNA were 
sequenced for gut contents of three salp species: Soestia 

zonaria, Salpa aspera and S. fusiformis collected during 

HB-1805 and HB-1907 cruises (Tables 1, 2). V4 sequence 
numbers (Log10 + 1) showed the predominance of five prey 
groups: Dinoflagellata, Syndiniales, Diatomea, Rhizaria, 
and Copepoda (Fig. 2, Table 3). The Syndiniales (also 
known as Alveolates) are an early-branching sub-group of 
parasitic Dinoflagellata; the two groups were analyzed sepa-
rately here. Based on V4 identifications of dinoflagellate 
species, the diets of the three salp species was dominated 
by Gonyaulax polygramma in 2018; in 2019, Scrippsiella 

trochoidea was the most abundant species, followed by 
Gymonxanthella radiolarae and Pelagodinium bei for all 
three salp species (Table 4).  

Diatoms were abundant prey for S. zonaria based on V4, 
with higher numbers in 2019 than 2018; diatoms were also 
important diet components for S. aspera in both years and 
for S. fusiformis in 2018 (Table 3). Thalassiosira sp. was 
the predominant diatom species in the diet of S. zonaria in 
2018, while Mindiscus trioculatus predominated in S. fusi-

formis and S. aspera in 2018; in 2019, S. zonaria samples 
had similar average proportions of sequences of three diatom 
species: Thaliassiosira sp., M. trioculatus, and Minutocellus 

polymorphus (Table 4). The gut contents of S. fusiformis 
included high numbers of V4 sequences for two diatom spe-
cies: Meuniera membranacea (50%) and Chaetoceros sp. 
(Table 4).

Copepoda was one of most abundant groups detected by 
V4 in 2019 (Table 3). There were notable similarities and 
differences in the species of copepods found in gut contents 
of the salp species, with additional differences between years 
(Table 5). In 2018, the copepods, Mecynocera clausi and 
Paracalanus parvus, were found in all three salp species, 
with the addition of Metridia pacifica, Neocalanus cristatus, 
and Pleuromamma abdominalis in S. aspera and S. fusi-

formis, and Rhincalanus nasutus in S. aspera (Table 5). In 
2019, Calanus finmarchicus and P. parvus were found in 
abundance in all salp species; additional copepod species 
detected in at least one salp species included: Candacia sp., 
Gaetanus variabilis, Temora discaudata, and Undinula vul-

garis (Table 5).
Based on 3-way ANOVA of V4 sequence numbers 

(Log10 + 1), prey composition (F = 4.98, p < 0.008) and 
relative proportions of prey groups (F = 40.58, p < 0.001) 
differed significantly between the salp species, but these pat-
terns did not differ significantly between years (F = 1.34, 
p < 0.249). The Bray–Curtis cluster plot based on V4 for 
prey groups showed one distinct cluster including samples 
of S. zonaria from both years, a second cluster intermixing 
with S. aspera and S. fusiformis, albeit with a sub-cluster 
of S. fusiformis from 2019 (Fig. 3). NMDS showed separa-
tion of prey groups detected by V4 for S. fusiformis and S. 

zonaria in 2018, with more intermixing of the two species 
in 2019; prey groups of S. aspera were not clearly resolved 
in either year (Fig. 4).
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Fig. 1   A) Station locations and bathymetry during R/V Henry Bigelow cruises in 2018 and 2019. B) Hydrography based on CTD profiles taken 
at the stations shown each year. Figures prepared by P.H. Wiebe (Woods Hole Oceanographic Institution)
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V9 sequence numbers were analyzed for the same five 
prey groups as for V4: Dinoflagellata, Syndiniales, Diato-
mea, Rhizaria, and Copepoda. For all three salp species, 
Dinoflagellata and Syndiniales were the most abundant prey 
groups in both 2018 and 2019; diatoms were also detected in 
all three salp species for both years, but with relatively fewer 
sequences than for V4. Copepod prey were found abundantly 
in all three species in 2019 (Table 6, Fig. 5). Two additional 
prey groups were detected in abundance by V9 in 2019, 
including Gastropoda and Siphonophora in all three salp 
species; Siphonophora were also found in abundance in S. 

fusiformis in 2018 (Table 6).
Based on 3-way ANOVA of V9 sequence numbers 

(Log 10 + 1), prey composition did not differ between the 
salp species (F = 1.87, p < 0.157), but proportions of prey 
were different (F = 26.37, p < 0.001) and patterns differed 
between years (F = 26.46, p < 0.001). The Bray–Curtis 
diagram based on V9 showed differences between prey 
groups of S. zonaria and S. fusiformis in 2018 and 2019, 
while S. zonaria and S. aspera showed intermixing and 
lack of separation (Fig. 6). Clear discrimination of diet 
composition of S. fusiformis and S. zonaria was observed 
based on NMDS analysis of prey groups detected by V9 
sequence numbers for 2018, with no evidence of separa-
tion in 2019 (Fig. 7).

Compound Specific Stable Isotope Analysis

Salp samples used for CSIA were collected during the 
2019 cruise and were the same specimens used for meta-
barcoding of gut contents for all three salp species, S. 

zonaria, S. aspera, and S. fusiformis (Table 2). Principal 

Component Analysis (PCA) showed no clear differen-
tiation among the three salps and very little separation 
among samples of each species collected at different sta-
tions (Fig. 8). Based on PCA, PC1 explained 64% of the 
variance and PC2 explained 22% of the variance. Samples 
for all three salp species grouped close to or within the 
diatom 90% confidence interval. Some salp samples were 
outside the dinoflagellate ellipse, but there was no overlap 
between any salp sample and the end-member clusters for 
dinoflagellates or bacteria.

DISCUSSION

NW Atlantic Slope Water

The NW Atlantic Slope Water is a well-defined band 
between coastal waters and Gulf Stream, comprising waters 
from the surface layers of the Gulf Stream, surface coastal 
waters, Labrador waters and deep Atlantic waters which have 
upwelled (Iselin 1936; McLellan et al. 1953). This study is 
based on collections of samples and data at two stations in 
the NW Atlantic (Fig. 1). Based on hydrographic data col-
lected, one of the locations (Station #2) was in characteristic 
Slope Water in both 2018 and 2019; a second location (Sta-
tion #3) was sampled only in 2019 and showed higher and 
more variable temperatures and salinities, indicating it was 
likely affected by impingement of an offshore feature such 
as a Gulf Steam meander or warm core ring (Wiebe et al. 
1985a).

The design of the field program, including use of 
samples collected using different net systems, MWT 

Fig. 2   Stacked bar graph showing average percentages of V4 sequence numbers (Log10 + 1) for five primary prey groups for the three salp spe-
cies for samples collected during 2018 and 2019
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and MOCNESS, did not allow evaluation of impacts of 
depth or time of collection on the diet diversity of the 
salp species. No consistent differences in prey compo-
sition were observed between salps collected by MWT 
versus MOCNESS or between those collected at differ-
ent depths during vertically stratified tows of the MOC-
NESS. The conclusions from this study are intended to 
allow identification of primary sources of productivity 
for the salp species based on comparative analysis of gut 
contents of salps collected in the same net samples, with 
full recognition of the importance of additional variables, 

including differences between salp species in vertical dis-
tribution, DVM behavior, swimming speed, and possible 
prey selectivity.

DNA Metabarcoding of Salp Diets

The two gene regions used, V4 and V9 hypervariable 
regions of 18S rRNA, allow similar analytical approaches 
for metabarcoding of biodiversity. The highly conserved 
V9 region allows detection of prey groups across a broad 
spectrum of eukaryotes (Amaral-Zettler et al. 2009). The 

Table 3   Average percentage 
of V4 sequence numbers 
(Log10 + 1) for prey groups 
for the three salp species for 
samples collected during A) 
HB-2018 and B) HB-2019. Five 
prey groups selected for analysis 
are shown in yellow highlight

A)

B)

2018

Prey groups Soestia zonaria Salpa aspera Salpa fusiformis

Eucarida 0.00 3.73 0.62

Amphipoda 0.00 0.00 0.00

Copepoda 2.79 8.51 9.48

Salpida 29.11 28.19 25.73

Teleostei 2.55 0.74 5.09

Gastropoda 0.70 0.00 0.62

Siphonophorae 0.00 2.73 9.74

Ciliophora 0.00 0.00 0.00

Dinoflagellata 25.13 19.68 18.00

Syndiniales 20.75 17.47 15.98

Rhizaria 8.52 7.74 5.13

Diatomea 10.45 11.21 9.61

Salp Species

2019

Prey groups Soestia zonaria Salpa aspera Salpa fusiformis

Eucarida 1.59 1.24 1.47

Amphipoda 0.00 0.00 0.00

Copepoda 11.22 14.37 11.59

Salpida 21.84 22.03 30.06

Teleostei 2.15 1.86 0.59

Gastropoda 4.57 8.69 4.13

Siphonophorae 8.71 8.70 11.23

Ciliophora 0.00 0.00 0.00

Dinoflagellata 16.89 15.64 17.47

Syndiniales 16.58 15.68 17.37

Rhizaria 8.69 7.11 3.62

Diatomea 7.76 4.68 2.46

Salp Species
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Table 4   Average proportion of V4 18S rRNA sequence numbers (Log10 + 1 values) for dinoflagellate and diatom species detected in gut con-
tents of salps collected in 2018 and 2019. Sequence numbers (Log10 + 1) values > 10 are highlighted in yellow

S. zonaria S. aspera S. fusiformis S. zonaria S. aspera S. fusiformis

N=4 N=3 N=3 N=17 N=5 N=7

Dinoflagellate species

Alexandrium affine 0.6 0.0 5.2 1.6 3.5 2.0

Alexandrium tamiyavanichi 9.8 1.8 9.5 2.7 4.5 1.2

Amphidoma languida 1.3 3.9 1.4 4.1 1.0 0.4

Goniodoma polyedricum 5.5 0.0 4.3 7.5 6.0 4.8

Gonyaulax polygramma 34.2 32.6 27.8 13.7 13.3 8.3

Gonyaulax spinifera 0.0 0.0 0.0 3.2 1.0 1.0

Gymnodinium microreticulatum 0.0 0.0 0.0 2.8 1.1 1.1

Gymnoxanthella radiolariae 4.9 1.8 4.1 9.8 13.8 15.2

Heterocapsa niei 0.0 0.0 4.5 6.9 6.6 9.8

Pelagodinium beii 12.7 12.3 16.7 7.0 15.3 14.5

Protoperidinium bipes 12.8 17.0 5.6 8.8 3.3 0.9

Protoperidinium divergens 3.3 0.0 0.0 3.8 2.3 2.3

Protoperidinium elegans 0.0 7.3 0.0 0.2 1.8 1.8

Protoperidinium pellucidum 0.6 4.7 1.6 1.8 2.0 2.0

Scrippsiella trochoidea 12.7 18.7 19.4 20.8 18.6 23.0

Thoracosphaera heimii 1.5 0.0 0.0 5.2 5.9 11.8

Diatom species

Chaetoceros sp. 0.0 2.5 2.5 8.1 18.0 37.5

Cyclotella sp. 0.0 2.5 3.4 4.2 3.5 0.0

Fragilariopsis sp. 0.0 0.0 0.0 2.2 0.0 0.0

Meuniera membranacea 0.0 12.1 2.5 6.3 0.0 50.0

Minidiscus trioculatus 11.4 41.4 42.0 24.1 25.4 12.5

Minutocellus polymorphus 14.8 13.8 7.5 28.1 3.7 0.0

Psammodictyon constrictum 0.0 2.2 6.9 2.4 0.0 0.0

Pseudonitzschia sp. 0.0 0.0 0.0 2.8 4.9 0.0

Thalassiosira sp. 73.7 25.5 35.2 21.9 44.4 0.0

2018 2019

Table 5   Average proportions of V4 18S rRNA sequence numbers (Log10 + 1 values) for copepod species detected in gut contents of salp species 
for 2018 and 2019. Sequence numbers (Log10 + 1) values > 10 are highlighted in yellow

S. zonaria S. aspera S. fusiformis S. zonaria S. aspera S. fusiformis

n=2 n=3 n=3 n=15 n=5 n=6

Copepoda

Calanus finmarchicus 0.0 2.6 0.0 34.7 30.4 19.2

Candacia sp. 0.0 0.0 0.0 0.0 3.1 20.1

Centropages typicus 0.0 0.0 0.0 6.9 1.1 0.0

Gaetanus variabilis 0.0 2.6 0.0 3.3 3.2 11.0

Heterorhabdus tanneri 0.0 0.0 0.0 0.0 2.2 0.0

Mecynocera clausi 50.0 6.6 16.7 0.5 0.0 0.0

Metridia curticauda 0.0 0.0 0.0 0.0 2.6 0.0

Metridia pacifica 0.0 12.0 16.7 10.4 3.2 0.0

Neocalanus cristatus 0.0 27.6 11.1 14.6 1.9 1.3

Paracalanus parvus 50.0 11.9 16.7 15.3 22.5 10.4

Pleuromamma abdominalis 0.0 14.1 38.9 2.9 0.0 0.0

Rhincalanus nasutus 0.0 22.4 0.0 0.3 9.6 0.0

Subeucalanus pileatus 0.0 0.0 0.0 5.2 2.5 0.0

Temora discaudata 0.0 0.0 0.0 6.0 4.5 16.7

Undinula vulgaris 0.0 0.0 0.0 0.0 13.1 21.3

2018 2019
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more variable V4 region allows identification of species 
within some – but not all – taxonomic groups. In this study, 
V4 and V9 detected the same set of five prey groups with 
highest sequence numbers: Dinoflagellata and the sub-group 
Syndinales, Diatomea, Rhizaria, and Copepoda. The higher 
taxonomic resolution possible with V4 allowed accurate 
identification of dinoflagellate species. Comparison of V4 
and V9 sequence numbers provides useful insights into prey 
diversity and can be used for semi-quantitative analysis of 
relative prey importance (Figs. 2, 5). These findings should 
be interpreted cautiously, due to exceptionally high and 
variable copy numbers of 18S rRNA genes for these groups 
(deVargas et al. 2015).

Patterns of variation in prey groups among salp sam-
ples, species, and years were similar based on the two gene 
regions. Proportional sequence numbers for dinoflagellates 
and diatoms showed similar patterns of variation between 
salp species and years for both gene regions (Tables 3, 6). 
Notably, metabarcoding revealed differences in prey group 
proportions in gut contents of S. zonaria and S. fusiformis 
collected at Station #2 in both 2018 and 2019, although it is 
not clear whether the differences are due to prey availability 
or prey choice and how these may be affected by morpho-
logical characteristics, including test thickness and muscle 
band arrangement. Comparison of phytoplankton counts 
from water samples with relative prey abundances in salp 

gut contents is a goal for future analysis with larger sample 
sizes and ancillary data sets.

The finding of Copepoda in salp gut contents raises sev-
eral questions, including whether salps consume copepods 
as prey. Alternative possibilities might include the consump-
tion of freely-spawned eggs, suspended cells, tissue frag-
ments from molting, and marine snow. Numerous factors 
may underly the marked variation in prevalence of copepod 
prey between years, including the abundance of species that 
freely spawn eggs (e.g., Calanus finmarchicus, Paracalanus 

parvus; Table 5) and variable egg production rates (Kang 
and Kim 2023).

Compound Specific Stable Isotope Analysis of Salps

Analysis of salp tunic tissue by CSIA provides a useful view 
of the species’ trophic relationships within the mesopelagic 
food web averaged over timescales of weeks to months, in 
contrast to the temporal snapshot from metabarcoding of 
gut contents. The lack of separation between salp species 
indicates that salp species were occupying similar niches to 
one another over the few months before the sampling period. 
Based on the comparison with end members (Fig. 8), the 
diets of all three salps consisted primarily of diatoms or spe-
cies that were feeding primarily on diatoms. In contrast to 
metabarcoding results, CSIA showed little to no separation 
between samples collected from different stations in 2019.

Fig. 3   Bray Curtis similarity cluster plots of V4 sequence numbers (Log10 + 1) for prey groups of three salp species Soestia zonaria, Salpa 

aspera, and Salpa fusiformis from 2018 (red font, upper case) and 2019 (green font, lower case)
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The most likely reason for the differences between 
CSIA and metabarcoding results is the timescale differ-
ence between the methods. The predominance of diatoms 
in CSIA analyses may be an indicator of local phytoplankton 
community structure, reflecting the presence of a diatom 
bloom in the months preceding sample collection in the NW 
Atlantic Ocean. Seasonal patterns of phytoplankton diversity 
and biomass are well-studied in the region (e.g., Bolanos 
et al. 2020), and baseline information supports the likeli-
hood of diatoms as a primary food resource, although no 
field samples are available for the months prior to sample 

collection for this study. Despite reports that salps cannot 
digest diatoms efficiently due to the outer test, the CSIA 
findings confirm that salps can process and incorporate dia-
tom material into their tissues. The predominance of diatoms 
as end-member sources may result from assimilation from 
suspended organic matter, marine snow, and fecal pellets.

Previous studies have determined marine prokaryotic 
organisms (e.g., bacteria, Prochlorococcus) to be sources 
of food for salps and other pelagic tunicates (Sutherland 
and Thompson 2022). These organisms are more quickly 
digestible due to higher surface-area-to-volume ratios; 
despite being smaller than the salp mesh size (1.4 μm), and 
can satisfy salp energetic needs (Sutherland et al. 2010). 
This study did not evaluate the possible role of prokaryotes 
in salp diets or the mesopelagic food web, since metabar-
coding protocols were not designed to detect prokaryotic 
prey groups and CSIA results were not compared with 
microbial end-members.

In the case of salps, no significant differences have been 
observed between stable isotope values of the whole body 
compared to only the tunic (stomach removed) or only 
the stomach (Pakhomov et al. 2019). Salps naturally do 
not store high amounts of lipids (< 1%; Hagen 1988), and 
this is reflected in the stable isotope values of defatted and 
non-defatted salps. Hence, they do not generally require 
any prior treatment (e.g., lipid removal), or usage of par-
ticular body parts/organs for the stable isotope analyses.

Future Challenges and Opportunities

Mesopelagic zones will continue to present challenges for 
researchers and managers seeking to understand the key pat-
terns and processes, including biodiversity from microbes 
to mammals and the complex array of biotic interactions, of 
these under-studied communities (St John et al. 2016; Sut-
ton et al. 2017; Kaartvedt et al. 2019). Time-series observa-
tions of taxonomic composition and relative abundances of 
organisms at all trophic levels, from primary producers to top 
predators, are necessary to understand dynamics of deep-sea 
ecosystems. Increased attention is needed for gelatinous forms, 
including salps, which have significant impacts on pelagic food 
webs and transport of organic material (Hereu et al. 2010; 
Sutton 2013; Henschke et al. 2016; Stukel et al. 2021; Luo 
et al. 2022; Decima et al. 2023; Orlov and Pakhomov 2024). 
More complete understanding of pelagic community structure, 
trophic dynamics, and predator–prey relationships will require 
observations over various time scales, from snapshots of who-
eats-whom to integrative analyses of sources of productivity 
(Ohkouchi et al. 2017). Important questions remain regarding 
whether salp species exhibit prey choice and selectivity over 

Fig. 4   Non-Metric Multi-Dimensional Scaling (NMDS) for V4 
sequence numbers (Log10 + 1) for five prey groups for salp species 
Soestia zonaria (blue squares), Salpa aspera (green triangles) and 
Salpa fusiformis (red circles) collected in 2018 and 2019
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Table 6   Average percentage 
of V9 sequence numbers 
(Log10 + 1) for prey groups 
for the three salp species for 
samples collected during A) 
HB-2018 and B) HB-2019. Five 
prey groups selected for analysis 
are shown in yellow highlights

A)

B)

2018

Prey groups Soestia zonaria Salpa aspera Salpa fusiformis

Eucarida 1.61 0.75 3.47

Amphipoda 3.71 0.48 3.00

Copepoda 2.36 8.81 9.49

Salpida 26.98 31.09 25.26

Teleostei 4.08 2.41 7.09

Gastropoda 1.80 0.78 2.15

Siphonophorae 0.37 4.01 7.79

Ciliophora 5.11 0.68 1.47

Dinoflagellata 22.48 17.52 15.61

Syndiniales 16.81 15.32 12.18

Rhizaria 6.61 8.53 4.71

Diatomea 8.07 9.61 7.78

Salp Species

2019

Prey groups Soestia zonaria Salpa aspera Salpa fusiformis

Eucarida 2.81 2.67 2.71

Amphipoda 1.36 1.99 1.57

Copepoda 10.67 12.37 11.93

Salpida 20.30 19.29 25.17

Teleostei 4.00 2.91 2.58

Gastropoda 6.96 9.27 5.62

Siphonophorae 7.37 7.57 9.16

Ciliophora 3.79 3.56 0.89

Dinoflagellata 14.38 13.32 14.55

Syndiniales 13.12 12.17 13.14

Rhizaria 7.71 8.02 5.42

Diatomea 7.52 6.89 7.26

Salp Species
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both the short term detected by metabarcoding and the longer 
term inferred from CSIA. The samples analyzed for this study 
did not allow evaluation of the impacts of sampling time (day 
versus night) and depth of collection on salp diet diversity, 
since in many cases the three salp species analyzed were col-
lected in different net tows (Suppl. Table 1). Future oceano-
graphic cruises should provide opportunities to design more 
intensive sampling, including replicate tows taken during both 
day and night, with the goal of capturing larger sample sizes 
of the salp species of interest, with associated hydrographic 
data and analysis of pelagic diversity, microbes to mammals.

Assessment and monitoring of mesopelagic ecosystems 
and food webs should take full advantage of emerging 

technologies, including molecular, biogeochemical, optical, 
and acoustic methodologies (Alberdi et al. 2017; Thorrold 
et al. 2021; Ohkouchi 2023; Grassian et al. 2024). These 
investigations will provide essential information to design 
successful responses to numerous challenges (Levin et al. 
2020; Kourantidou and Jin 2022; Morzaria-Luna et  al. 
2022), understand impacts of environmental variation 
and climate change (Robison 2009; Gamfeldt et al. 2015; 
Hallegraeff et  al. 2021), and ensure the protection and 

Fig. 5   Stacked bar graph showing average percentages of V9 sequence numbers (Log10 + 1) for five primary prey groups for three salp species 
collected in 2018 and 2019

Fig. 6   Bray Curtis cluster plot based on V9 sequence numbers (Log10 + 1) for five prey groups of three salp species Soestia zonaria (Sz), Salpa 

aspera (Sa) and Salpa fusiformis (Sf). for 2018 (red font; upper case) and 2019 (green font; lower case)
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Fig. 7   Non-Metric Multi-
Dimensional Scaling (NMDS) 
for V9 sequence numbers 
(Log10 + 1) for five prey group 
for salp species Soestia zonaria 
(blue squares), Salpa aspera 
(green triangles) and Salpa 

fusiformis (red circles) collected 
in 2018 and 2019
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preservation of mesopelagic communities and ecosystem 
services of the deep-sea.

Conclusions

DNA metabarcoding of gut contents and compound spe-
cific stable isotope analysis (CSIA) was carried out for 
three salp species, Soestia zonaria, Salpa aspera, and S. 

fusiformis, collected from the NW Atlantic Slope Water 
during July and August 2018 and 2019. Metabarcoding 
results for V4 and V9 18S rRNA were analyzed for five 
primary prey groups: Dinoflagellata, Syndiniales, Dia-
tomea, Rhizaria, and Copepoda. The two gene mark-
ers, which differ in levels of variation and taxonomic 
resolution, both revealed significant differences between 

salp species in proportions of prey groups; differences 
between years were observed for V9, but not V4. CSIA 
provides a longer-term view of food web interactions, 
typically weeks to several months. Based on analysis of 
the same samples, CSIA indicated diatoms as the primary 
source of carbon for all three salp species, which did not 
separate by species or station in the end member space. 
The complementary analyses were designed to provide 
new insights into the role of salps in the mesopelagic 
food web. Metabarcoding provides a snapshot of the prey 
groups present in salp guts at time of collection, includ-
ing detection of prey across a variety of pelagic plank-
tonic taxa, for which microscopic identification is nearly 
impossible. CSIA results average the consumed plankton 
over longer periods of time. The differing results most 
likely represent a shift in local community structure of 

Fig. 8   Principal Component Analysis (PCA) plots of normalized 
δ (13C) values from Compound-Specific Stable Isotope Analysis 
(CSIA) of salp species. Salp species are shown in star plots, where 
the center represents the average of the PCA data for each species: 
Soestia zonaria (red circles), Salpa fusiformis (blue squares), and 
Salpa aspera (green triangles). Unfilled symbols represent samples 

collected at HB1907 Station 2; filled circles represent samples col-
lected at HB1907 Station 3. Normalized δ (13C) values of end mem-
bers with 90% confidence intervals (data from Stahl et al. 2023) are 
shown in colored symbols bacteria (teal circles), diatoms (yellow tri-
angles), and dinoflagellates (pink squares)
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the plankton community of the NW Atlantic Slope Water. 
Future studies are needed to characterize diversity and 
structure of mesopelagic communities, including collec-
tion of hydrographic data and samples in time-series pro-
grams covering deep-sea ecosystems of the global ocean.
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