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ABSTRACT
We study semiclassical perturbations of single-degree-of-freedomHamiltonian systems possessing hyperbolic saddles with homoclinic orbits,
and provide a sufficient condition for the separatrices to split, using aMelnikov-type approach. The semiclassical systems give approximations
of the expectation values of the positions and momenta to the semiclassical Schrödinger equations with Gaussian wave packets as the initial
conditions. The occurrence of separatrix splitting explains a mechanism for the existence of trajectories to cross the separatrices on the
classical phase plane in the expectation value dynamics. Such separatrix splitting does not occur in standard systems of Hagedorn and Heller
for the semiclassical Gaussian wave packet dynamics as well as in the classical systems. We illustrate our theory for the potential of a simple
pendulum and give numerical computations for the stable and unstable manifolds in the semiclassical system as well as solutions crossing the
separatrices.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0198420

I. INTRODUCTION
Consider the initial value problem of the Schrödinger equation,

i ε
∂

∂t
ψ(t, x) = Ĥψ(t, x) with Ĥ ∶= 1

2
p̂ 2 +V(x),

ψ(0, x) = ϕ0(q(0), p(0),Q(0),P(0), S(0); x),
(1.1)

where (t, x) ∈ R ×R; ε is the semiclassical parameter such that 0 < ε≪ 1; V(x) is a scalar function; p̂ ∶= −iε∂/∂x is the momentum operator;
and ϕ0 is the Gaussian wave function

ϕ0(q, p,Q,P, S; x) ∶=
Q−1/2

(πε)1/4
exp{ i

ε
(1
2
PQ−1(x − q)2 + p(x − q) + S)}. (1.2)

In addition, we assume the following on the potential V(x):

(A1). V(x) is C4 and bounded from below and its second derivative V′′(x) is bounded.
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FIG. 1. Assumption (A2).

The parameters (q, p) live in the cotangent bundle T∗R ≅ R ×R. We note in passing that both x and q denote positions. The variable x
and the position operator x̂ are associated with the spatial variable for the Schrödinger equation (1.1), whereas q denotes the (time-dependent)
position in the classical sense. The parameter S ∈ R is a phase factor, whereas Q = Q1 + iQ2,P = P1 + iP2 ∈ C satisfy

Q∗P − P∗Q = 2i ⇐⇒ [Q1 Q2

P1 P2
] ∈ Sp(2,R) = SL(2,R), (1.3)

which also ensures that PQ−1 is in the upper-half space of C, i.e., Im(PQ−1) = ∣Q∣−2 > 0 so that ϕ0 ∈ L2(R) . See, e.g., [Ref. 17, lemma V.1.1].
Exact solutions to the initial value problem of (1.1) can be obtained only for special cases of V(x) (see, e.g., Ref. 2).

The corresponding classical Hamiltonian system is written as

q̇ = p, ṗ = −V′(q), (q, p) ∈ R ×R, (1.4)

where the dot represents differentiation with respect to t and the Hamiltonian is given by

H0(q, p) ∶=
1
2
p2 +V(q).

It is a well-known fact that such a single-degree-of-freedom Hamiltonian system (1.4) is generally integrable:3,21 Its solutions can be obtained
by quadrature, in contrast to (1.1). We assume the following on (1.4):

(A2). There exists a hyperbolic saddle at (q, p) = (q0, 0) to which there exists a homoclinic orbit (qh(t), ph(t)) (see Fig. 1).

Assumption (A2) means that the saddle (q0, 0) has one-dimensional stable and unstable manifolds that coincide along the homoclinic
orbit acting as a separatrix. Henceforth we assume that ph(0) ≠ 0 without loss of generality. Indeed, we only have to shift the variable t
otherwise. Our special attention is paid to the potential

V(q) = − cos q, (1.5)

for which Eq. (1.4) represents the classical dynamics of a simple pendulum.
Let x̂ be the position operator and let p̂ be the momentum operator as introduced above. We consider the trajectory of their expectation

values, i.e., (⟨x̂⟩(t), ⟨p̂⟩(t)) with
⟨x̂⟩(t) ∶= ⟨ψ(t), x̂ ψ(t)⟩, ⟨p̂⟩(t) ∶= ⟨ψ(t), p̂ ψ(t)⟩

in the classical phase space T∗R = R ×R, where we have used the shorthand ψ(t) ∶= ψ(t, ⋅) ∈ L2(R) for the exact solution to the initial value
problem (1.1). Note that (⟨x̂⟩(0), ⟨p̂⟩(0)) = (q(0), p(0)) because we assume the Gaussian (1.2) at t = 0. We want to see how the trajectory
(⟨x̂⟩(t), ⟨p̂⟩(t)) deviates from the classical solution (q(t), p(t)) to (1.4) in the semiclassical regime.

In the formal classical limit ε→ 0, the above expectation value dynamics (EVD) coincides with the dynamics of the classical Hamil-
tonian system (1.4) in the sense that (⟨x̂⟩(t), ⟨p̂⟩(t)) = (q(t), p(t)). In particular, none of the trajectories in (1.4) crosses the separatrix
Γ = {(qh(t), ph(t)) ∣ t ∈ R} ∪ {(q0, 0)}. We note that, even when ε > 0, if the potential V is quadratic, then we have (⟨x̂⟩(t), ⟨p̂⟩(t))
= (q(t), p(t)) again. See Refs. 11, 12, and 14 for the details. When ε > 0 and the potential V is not quadratic, the EVD is no longer expected
to be governed by the classical Hamiltonian system (1.4).

We consider (1.5) as an example of non-quadratic potentials, and take S1 = R/2πZ as the configuration space, so that the two orbits acting
as the separatrices become homoclinic orbits. Figure 2 shows a numerically computed EVD for ε = 0.1 and (q(0), p(0),Q(0),P(0), S(0))
= (0, 1.95,−1.396 42 + i, 1, 0). Here we used Egorov’s method 6,15,16 or the Initial Value Representation (IVR) method,18–20,28 which is known
to give an O(ε2) approximation to the exact EVD t ↦ (⟨x̂⟩(t), ⟨p̂⟩(t)) [see, e.g., Refs. 4 and 9 and (Ref. 31, Chap. 11)], with 106 sample
initial values. We observe that the trajectory passes through the separatrix outward. This suggests that the separatrix is breaking up in the
semiclassical regime due to quantum effects. We want to quantify the effect of the semiclassical parameter ε to the breakup.
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FIG. 2. Approximate EVD t ↦ (⟨x̂⟩(t), ⟨p̂⟩(t)) for −5 ≤ t ≤ 5 computed by Egorov’s method for the initial value problem of the Schrödinger equation (1.1) with the potential
(1.5) for ε = 0.1 and (q(0), p(0), Q(0), P(0), S(0)) = (0, 1.95,−1.396 42 + i,−1, 0). The green curve represents the numerical result. The purple curve represents the
(q, p)-components of a numerical solution to the semiclassical system (1.6) with the same initial condition. The dashed curves represent the separatrices in the classical
system (1.4).

To this end, we employ an approximate approach proposed in Refs. 25 and 26 for the EVD. Specifically, consider the semiclassical
dynamics

q̇ = p, ṗ = −V′(q) − 1
4
ε(Q2

1 +Q2
2)V′′′(q),

Q̇j = Pj , Ṗj = −V′′(q)Qj , j = 1, 2.
(1.6)

with the same initial (q(0), p(0),Q(0),P(0)) as in (1.1). It was shown in Ref. 25 under assumption (A1) that the (q, p)-components of the
solution to (1.6) approximate the exact expectation value (⟨x̂⟩(t), ⟨p̂⟩(t)) of the initial value problem (1.1) in the sense that q(t) − ⟨x̂⟩(t) and
p(t) − ⟨p̂⟩(t) are both O(ε3/2).

We note that the O(ε) correction term in (1.6) is the only difference from the equations of Hagedorn11,12 and Heller,14

q̇ = p, ṗ = −V′(q), Q̇j = Pj , Ṗj = −V′′(q)Qj , j = 1, 2, (1.7)

which give an O(ε) approximation to the exact EVD as opposed to O(ε3/2) under assumption (A1). See Ref. 25 for the details. We refer to
(1.7) as the unperturbed system below. In addition, the correction term renders the system (1.6) a Hamiltonian system on T∗R ×C2 with the
symplectic form

Ωε ∶= dq ∧ dp + 1
2
ε

2

∑
j=1
(dQj ∧ dPj)

and the Hamiltonian
Hε(q, p,Q,P) ∶= H0(q, p) + εH1(q, p,Q,P),

where
H1(q, p,Q,P) ∶=

1
4
(P2

1 + P2
2 + (Q2

1 +Q2
2)V′′(q)).

We remark that Eq. (1.7) consists of the classical Hamiltonian system (1.4) and its variational equation, hence having no semiclassical
corrections. However, Hagedorn11,12 used the time-dependent Gaussian ϕ(t) ∶= ϕ0(q(t), p(t),Q(t),P(t), S(t); x) along the solution of (1.7)
and proved that ϕ(t) gives an O(ε1/2) approximation in L2-norm to the exact solution ψ(t) of (1.1). Moreover, it was shown in Refs. 5, 7, and
24 that the variational equations of the classical systems and their fundamental matrices, which are often referred to as the Jacobi equations and
matrices, respectively, can play an important role in computation of the semiclassical propagators by the Feynman path integral technique.10
Some interesting results in a new direction related to this approach based on the Feynman integrals have recently been reported in Refs. 1 and
22. See also Remark 2.3.

The (q, p)-components of a numerical solution to (1.6) with (1.5) for ε = 0.1 under the initial condition

(q(0), p(0),Q1(0),Q2(0),P1(0),P2(0)) = (0, 1.95,−1.396 42, 1,−1, 0)

on the time interval [−5, 5] is displayed in Fig. 2. The value for Q1(0) was chosen so that the Hamiltonian becomes Hε = 1 given the other
initial values. We observe that they pass through the separatrix like the approximate EVD, although not only outward but also inward. Thus,
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the semiclassical system (1.6) can capture the separatrix crossing in the EVD for (1.1). Our objective of this paper is to explain the mechanism
for separatrix crossing in (1.6), which never occurs in the classical system (1.4) and the unperturbed system (1.7) since H0(q, p) is conserved.

First, we easily see that both (1.6) and (1.7) have a hyperbolic saddle

(q, p,Q,P) = (q0, 0, 0, 0) ∈ R ×R ×R2 ×R2 (1.8)

which has three-dimensional stable and unstable manifolds, where we have identifiedCwithR2. LetWs
ε andWu

ε denote its three-dimensional
stable and unstable manifolds in (1.6). So Ws

0 and Wu
0 represent its three-dimensional stable and unstable manifolds in (1.7). The manifolds

Ws
0 and Wu

0 coincide along a three-dimensional manifold M intersecting the (q, p)-plane in Γ, as shown below (see Proposition 2.2). This
also implies that the system (1.7) has no trajectory of which the (q, p)-components cross the separatrix Γ.

We now state our main result as follows.

Theorem 1.1. Suppose that assumptions (A1) and (A2) hold and

∫
∞

−∞
ph(t)2ṗh(t)V′′′(qh(t))dt ≠ 0. (1.9)

Then for ε > 0 sufficiently small, the stable and unstable manifolds, Ws
ε and Wu

ε , of the hyperbolic saddle (1.8) split and their distance is O(ε)
outside of the (q, p)-plane. Moreover, their distance is O(ε) in the directions

(q, p,Q1,Q2,P1,P2) = (0, 0, ṗh(t0), 0,−ph(t0), 0) (1.10)

and
(q, p,Q1,Q2,P1,P2) = (0, 0, 0, ṗh(t0), 0,−ph(t0)) (1.11)

while it is at most O(ε2) in the direction

(q, p,Q1,Q2,P1,P2) = (V′(qh(t0)), ph(t0), 0, 0, 0, 0), (1.12)

near the point

(q, p,Q1,Q2,P1,P2)
= (qh(t0), ph(t0),β1ph(t0),β2ph(t0),β1ṗh(t0),β2ṗh(t0)) (1.13)

for any t0 ∈ R and β = (β1,β2) ∈ R2/{0}.
A proof of Theorem 1.1 is given in Sec. III. It is essential in the proof to use modifications of the arguments, including a Melnikov-type

approach, in the proof of Theorem 4.1 of Ref. 29.

Remark 1.2.

(i) The stable and unstable manifolds, Ws
ε and Wu

ε , intersect the (q, p)-plane in Γ /{(q0, 0)}, i.e., they coincide on the (q, p)-plane, even for
ε > 0.

(ii) The point (1.13) lies on the three-dimensional manifold M and the directions (1.10)–(1.12) are normal to M there.

Thus, when ε > 0 is sufficiently small but positive, if condition (1.9) holds, thenWs
ε andWu

ε split so that the system (1.6) has trajectories
of which the (q, p)-components cross the separatrix Γ as in Fig. 2, in contrast to (1.7). This result suggests the system (1.6) is not integrable if
condition (1.9) holds. This topic will be discussed in the companion paper.30

The outline of this paper is as follows. We describe the phase space structure of (1.7) in Sec. II and give a proof of Theorem 1.1 in Sec. III.
Finally, we illustrate the main result for the semiclassical system (1.6) with the potential (1.5) in Sec. IV.

II. UNPERTURBED PHASE SPACE
In this section, we describe the phase space structure of the unperturbed system (1.7). We begin with an auxiliary result.
The (Qj,Pj)-components of (1.7) become

Q̇j = Pj , Ṗj = −V′′(qh(t))Qj (2.1)

on M for j = 1, 2. We have the following on (2.1).
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Lemma 2.1. Two linearly independent solutions of (2.1) are given by

(Qj ,Pj) = (ph(t), ṗh(t)), (χ(t), χ̇(t)),

where
χ(t) ∶= ph(t)∫

t

0

dτ
ph(τ)2

. (2.2)

Proof. It is easy to see that (Q j ,P j) = (ph(t), ṗh(t)) is a solution to (2.1). Indeed, since by the second equation of (1.4) ṗh(t)
= −V′(qh(t)) , we compute

Ṗj = p̈h(t) = − d
dt
V′(qh(t)) = −V′′(qh(t))q̇h(t)

= −V′′(qh(t))ph(t) = −V′′(qh(t))Qj ,

while Q̇ j = ṗh(t) = P j .
On the other hand, Qj = ph(t) is also a solution to the second-order differential equation

Q̈j +V′′(qh(t))Qj = 0, (2.3)

and another linearly independent solution can easily be obtained by variation of constants as follows. Substituting Qj = y(t)ph(t) into the
above equation and using p̈h(t) = −V′′(qh(t))ph(t) again, we have

ÿph(t) + 2ẏṗh(t) = 0,

which is rewritten as
ÿ
ẏ
= −2ṗ

h(t)
ph(t)

if ẏ ≠ 0. Integrating the above equation, we compute

log ∣ẏ∣ = −2 log ∣ph(t)∣ + const.,

which yields

ẏ = C
ph(t)2

,

where C is any nonzero constant. Thus we have Qj = χ(t) as a particular solution to (2.3). Noting the first equation of (2.1), we obtain the
desired result. ◻

We easily see that χ(t) is unbounded since ph(t), ṗh(t) tend to zero as t → ±∞ and by L’Hôpital’s rule

lim
t→±∞

χ(t) = lim
t→±∞

∫ t
0

dτ
ph(τ)2

1
ph(t)

= − lim
t→±∞

1
ph(t)2

ṗ h
(t)

ph(t)2

= − lim
t→±∞

1
ṗh(t)

= ±∞.

Moreover,
(q, p,Q1,Q2,P1,P2) = (qh(t), ph(t),β1ph(t),β2ph(t),β1ṗh(t),β2ṗh(t)) (2.4)

is a two-parameter family of homoclinic orbits to the hyperbolic saddle (1.8). Thus, we have the following.

Proposition 2.2. The hyperbolic saddle (1.8) has a three-dimensional homoclinic manifold,

M = {(q, p,Q1,Q2,P1,P2)
= (qh(t), ph(t),β1ph(t),β2ph(t),β1ṗh(t),β2ṗh(t)) ∣ t ∈ R, (β1,β2) ∈ R2 }
∪ {(q0, 0, 0, 0, 0, 0)},

on which any trajectory converges to it as t → ±∞, in the six-dimensional phase space of (1.7).
Note that the manifold M intersects the (q, p)-plane in Γ.
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Remark 2.3. When a solution to the (q, p)-components of (1.7) is given, the (Qj,Pj)-components of (1.7) are the same as a linear system
called the variational equation of its (q, p)-components along the solution for j = 1, 2. Morales-Ruiz and Ramis23 showed that if a (meromorphic)
Hamiltonian system is integrable in the Liouville sense,3,21 then its variational equation along any particular solution can be solved by quadrature.
See also Ref. 21. This result provides a reason why the (Qj,Pj)-components of (1.7) are solved by quadrature, as in Lemma 2.1, since single-
degree-of-freedom Hamiltonian systems such as (1.4) are necessarily Liouville-integrable. Morales-Ruiz and his coworkers1,22 also used this fact
and analyzed semiclassical models derived by the WKB approximation5,7,24 based on the Feynman path integrals10 for Hamiltonian systems.

III. PROOF OF THEOREM 1.1
We turn to (1.6) with ε > 0. Using arguments given in the proof of Theorem 4.1 of Ref. 29, especially a Melnikov-type approach, we

estimate the distance between its stable and unstable manifolds,Ws
ε andWu

ε , and prove Theorem 1.1. Hamiltonian characters of (1.6) are not
used in the proof.

Let

(q, p,Q1,Q2,P1,P2)
= (qh(t), ph(t),β1ph(t),β2ph(t),β1ṗh(t),β2ṗh(t))
+ ε(q̃ s(t;β, ε), p̃ s(t;β, ε), Q̃s

1(t;β, ε), Q̃s
2(t;β, ε), P̃s

1(t;β, ε), P̃s
2(t;β, ε)) (3.1)

and

(q, p,Q1,Q2,P1,P2)
= (qh(t), ph(t),β1ph(t),β2ph(t),β1ṗh(t),β2ṗh(t))
+ ε(q̃u(t;β, ε), p̃u(t;β, ε), Q̃u

1(t;β, ε), Q̃u
2(t;β, ε), P̃u

1(t;β, ε), P̃u
2(t;β, ε)) (3.2)

denote orbits onWs
ε andWu

ε for t ∈ [0,∞) and (−∞, 0], respectively, for any β = (β1,β2) ∈ R2/{0}. Take t = t0 ∈ R arbitrarily. We compute
the distances betweenWs

ε andWu
ε near the point (1.13) in the directions (1.10)–(1.12). The distances are represented as

d0(t0,β, ε)

= ε(V
′(qh(t0)), ph(t0))

∣(V′(qh(t0), ph(t0))∣
⋅ (q̃u(t0;β, ε) − q̃ s(t0;β, ε), p̃u(t0;β, ε) − p̃ s(t0;β, ε))

for (1.12) and

dj(t0,β, ε)

= ε (ṗ
h(t0),−ph(t0))

∣(ṗh(t0),−ph(t0))∣
⋅ (Q̃u

j(t0; ε) − Q̃s
j(t0; ε), P̃u

j(t0;β, ε) − P̃s
j(t0;β, ε)), j = 1, 2.

for (1.10) and (1.11), where “⋅” represents the dot product. See Fig. 3 for the definitions of dj(t0,β, ε), j = 1, 2. The definition of d0(t0,β, ε) is
similar. Substituting (3.1) and (3.2) into (1.6), we obtain

˙̃q s,u(t;β, ε) = p̃ s,u(t;β, ε),

˙̃p s,u(t;β, ε) = −V′′(qh(t))q̃ s,u(t;β, ε) − 1
4
(β21 + β22)ph(t)2V′′′(qh(t)) +O(ε),

˙̃Qs,u
j (t;β, ε) = P̃s,u

j (t;β, ε),
˙̃Ps,u
j (t;β, ε) = −V′′(qh(t))Q̃s,u

j (t;β, ε) − βjV′′′(qh(t))ph(t)q̃ s,u(t;β, ε) +O(ε)

(3.3)

for j = 1, 2, where the superscript “s” or “u” is taken simultaneously.
From Lemma 2.1 we see that

Φ(t) = (p
h(t) χ(t)

ṗh(t) χ̇(t)
)

is a fundamental matrix to the (q̃ s,u, p̃ s,u)-components of (3.3) having a coefficient matrix whose trace is zero. Since χ(0) = 0 and χ̇(0) =
1/ph(0) by

χ̇(t) = ṗh(t)∫
t

0

dτ
ph(τ)2

+ 1
ph(t)

,
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FIG. 3. Distances dj(t0, β, ε), j = 1, 2, between the stable and unstable manifolds W s
ε and Wu

ε . The red disk and arrow, respectively, represent the point (1.13) and vector
(1.10) or (1.11).

we have
detΦ(t) = detΦ(0) = 1,

so that

Φ(t)−1 = ( χ̇(t) −χ(t)
−ṗh(t) ph(t)

).

We have simple expressions for q̃ s(t;β, ε) and q̃u(t;β, ε) as follows.

Lemma 3.1. We have
q̃ s(t;β, ε) = 1

4
(β21 + β22)ṗh(t) +O(ε), q̃u(t;β, ε) = 1

4
(β21 + β22)ṗh(t) +O(ε). (3.4)

Proof. Noting that
lim
t→∞
(q̃ s(t;β, ε), p̃ s(t;β, ε)), lim

t→−∞
(q̃u(t;β, ε), p̃u(t;β, ε)) = (0, 0),

we solve the (q̃ s,u, p̃ s,u)-components of (3.3) to obtain

(q̃
s(t;β, ε)

p̃ s(t;β, ε))

= −1
4
(β21 + β22)Φ(t)(∫

∞

t
(χ(τ)p

h(τ)2V′′′(qh(τ))
−ph(τ)3V′′′(qh(τ))

)dτ + (q̃
s
0

0
)),

(q̃
u(t;β, ε)

p̃u(t;β, ε))

= 1
4
(β21 + β22)Φ(t)(∫

t

−∞
(χ(τ)p

h(τ)2V′′′(qh(τ))
−ph(τ)3V′′′(qh(τ))

)dτ + (q̃
u
0

0
))

(3.5)

up to O(1), where q̃s,u0 are arbitrary constants. Since

p̈h(t) = −V′′(qh(t))q̇h(t) = −V′′(qh(t))ph(t) (3.6)

and ph(t), ṗh(t) tend to zero as t → ±∞, we have

d
dt
(ph(t)2V′′(qh(t)) + ṗh(t)2)

= ph(t)3V′′′(qh(t)) + 2ph(t)ṗh(t)V′′(qh(t)) + 2ṗh(t)p̈h(t)
= ph(t)3V′′′(qh(t)), (3.7)

so that

−∫
∞

t
ph(τ)3V′′′(qh(τ))dt = ∫

t

−∞
ph(τ)3V′′′(qh(τ))dτ

= ph(t)2V′′(qh(t)) + ṗh(t)2. (3.8)
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On the other hand, by (2.2) we have

χ(t)ph(t)2V′′′(qh(t)) = ph(t)3V′′′(qh(t))∫
t

0

dτ
ph(τ)2

,

which yields

∫ χ(τ)ph(τ)2V′′′(qh(τ))dτ

= (ph(t)2V′′(qh(t)) + ṗh(t)2)∫
t

0

dτ
ph(τ)2

− ∫ (V′′(qh(τ)) +
ṗh(τ)2

ph(τ)2
)dτ

= (ph(t)V′′(qh(t)) + ṗh(t)2

ph(t)
)χ(t) + ṗh(t)

ph(t)

via integration by parts, where we have used (3.7) and the equality

d
dt
( ṗ

h(t)
ph(t)

) = p̈h(t)ph(t) − ṗh(t)2

ph(t)2
= −V′′(qh(t)) − ṗh(t)2

ph(t)2
.

Let

γ± = −
V′′(q0)
2σ±

+ σ3±
2V′′(q0)

+ σ±,

where

σ± = lim
t→±∞

ṗh(t)
ph(t)

.

Note that the limits σ± exist since ph(t) tends to zero exponentially as t → ±∞. Since

lim
t±∞
((ph(t)V′′(qh(t)) + ṗh(t)2

ph(t)
)χ(t) + ṗh(t)

ph(t)
) = γ± (3.9)

as shown in Appendix, we obtain

− ∫
∞

t
χ(τ)ph(τ)2V′′′(qh(τ))dτ + γ+

= ∫
t

−∞
χ(τ)ph(τ)2V′′′(qh(τ))dτ + γ−

= (ph(t)V′′(qh(t)) + ṗh(t)2

ph(t)
)χ(t) + ṗh(t)

ph(t)
. (3.10)

Substituting (3.8) and (3.10) into the first equation of (3.5), we compute

q̃ s(t;β, ε)

= 1
4
(β21 + β22)(ph(t)((ph(t)V′′(qh(t)) +

ṗh(t)2

ph(t)
)χ(t) + ṗh(t)

ph(t)
− γ+ − q̃s0)

− χ(t)(ph(t)2V
′′

(qh(t)) + ṗh(t)2))

= 1
4
(β21 + β22)(ṗh(t) − (q̃s0 + γ+)ph(t)),

where the O(ε)-terms are ignored. Similarly, ignoring the O(ε)-terms and using the second equation of (3.5), we obtain

q̃u(t;β, ε) = 1
4
(β21 + β22)(ṗh(t) + (q̃u0 − γ−)ph(t)).

Choosing q̃s0 = −γ+ and q̃u0 = γ−, we obtain the desired result. ◻

J. Math. Phys. 65, 102706 (2024); doi: 10.1063/5.0198420 65, 102706-8

Published under an exclusive license by AIP Publishing

 16 O
ctober 2024 18:17:52

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

Using Lemma 3.1 and applying arguments in Sec. IV of Ref. 29 to (3.3), we prove the following.

Lemma 3.2. We have

d0(t0,β, ε) =
εM0

∣(V′(q(t0), p(t0))∣
+O(ε2),

dj(t0,β, ε) =
εMj

∣(ṗh(t0), ph(t0))∣
+O(ε2), j = 1, 2,

where

M0 = −
1
4
(β21 + β22)∫

−∞

−∞
ph(t)3V′′′(qh(t))dt,

Mj =
1
4
βj(β21 + β22)∫

∞

−∞
ph(t)2ṗh(t)V′′′(qh(t))dt, j = 1, 2.

Proof. Let
Δs,u
0 (t;β, ε) = (V

′(qh(t)), ph(t)) ⋅ (qh(t) + εq̃ s,u(t;β, ε), ph(t) + εp̃ s,u(t;β, ε))

and

Δs,u
j (t;β, ε)

= (ṗh(t),−ph(t)) ⋅ (βjph(t) + εQ̃s,u
j (t;β, ε), βjṗh(t) + εP̃s,u

j (t;β, ε)), j = 1, 2.

We have
d0(t0,β, ε) =

Δu
0(t0;β, ε) − Δs

0(t0;β, ε)
∣(V′(qh(t0)), ph(t0))∣

and

dj(t0,β, ε) =
Δu

j(t0;β, ε) − Δs
j(t0;β, ε)

∣(ṗh(t0),−ph(t0))∣
, j = 1, 2.

We see that
∂

∂t
Δs,u
0 (t;β, ε) = −

1
4
ε(β21 + β22)ph(t)3V′′′(qh(t)) +O(ε2)

and
∂

∂t
Δs,u

j (t;β, ε) =
1
4
εβj(β21 + β22)ph(t)2ṗh(t)V′′′(qh(t)) +O(ε2),

where we have used (3.3) and (3.4). Integrating the above equations from t = t0 to∞ or from t = −∞ to t0, we obtain

Δs
0(∞;β, ε) − Δs

0(t0;β, ε) = −
1
4
ε(β21 + β22)∫

∞

t0
ph(t)3V′′′(qh(t))dt +O(ε2),

Δu
0(t0;β, ε) − Δu

0(−∞;β, ε) = −1
4
ε(β21 + β22)∫

t0

−∞
ph(t)3V′′′(qh(t))dt +O(ε2)

and

Δs
j(∞;β, ε) − Δs

j(t0;β, ε)

= 1
4
ε(β21 + β22)∫

∞

t0
ph(t)2ṗh(t)V′′′(qh(t))dt +O(ε2),

Δu
j(t0;β, ε) − Δu

j(−∞;β, ε)

= 1
4
ε(β21 + β22)∫

t0

−∞
ph(t)2ṗh(t)V′′′(qh(t))dt +O(ε2), j = 1, 2,

so that
Δu

j(t0;β, ε) − Δs
j(t0;β, ε) = εMj +O(ε2), j = 0, 1, 2,

since limt→−∞Δu
j(t;β, ε), limt→∞Δs

j(t;β, ε) = 0 for j = 0, 1, 2. Thus, we obtain the desired result. ◻
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We immediately obtain Theorem 1.1 from the following proposition.

Proposition 3.3. Suppose that the integral (1.9) is not zero. Then the stable and unstable manifolds of the hyperbolic saddle (1.8) split outside
of the (q, p)-plane, and their distance is O(ε) in the directions (1.10) and (1.11), while it is at most O(ε2) in the direction (1.12).

Proof. We first note that β ≠ 0 in the expressions (3.1) and (3.2) for the orbits on Ws
ε and Wu

ε outside of the (q, p)-plane. Using the
relation (3.7), we compute

M0 = −
1
4
(β21 + β22)[ph(t)2V′′(qh(t)) + ṗh(t)2]

∞

−∞
= 0,

since both ph(t) and ṗh(t) tend to zero as t → ±∞. We notice by condition (1.9) that Mj ≠ 0, j = 1, 2, and use Lemma 3.2 to complete the
proof. ◻

IV. EXAMPLE
In this section we illustrate our main result for the semiclassical system (1.6) with the potential (1.5), for which the classical system (1.4)

is the simple pendulum. We also give some numerical results to demonstrate the theoretical result.

A. Separatrix splitting
We first apply Theorem 1.1 to show that separatrix splitting occurs in (1.6) with (1.5). Clearly, assumption (A1) holds for the potential

(1.5). As in Fig. 2, we take S1 instead of R as the configuration space for the classical system (1.4) with (1.5), so that its phase space becomes
S1 ×R. See Fig. 4 for its phase portraits. In particular, there exists a hyperbolic saddle at (q, p) = (π, 0) which has a pair of homoclinic orbits

(qh±(t), ph±(t)) = (±2 arcsin (tanh t),±2 sech t). (4.1)

Thus, assumption (A2) holds as well. Noting that V′′′(qh(t)) = − sin qh(t) = ṗh(t) , we compute the integral (1.9) as

∫
∞

−∞
ph±(t)2ṗh±(t)2dt = 16∫

∞

−∞
sech4 t tanh2 t dt = 64

15
.

Applying Theorem 1.1, we show that the three-dimensional stable and unstable manifolds of the hyperbolic saddle at

(q, p,Q,P) = (π, 0, 0, 0) ∈ S1 ×R ×R2 ×R2

split in the semiclassical system (1.6) and the distance between them is O(ε) outside of the (q, p)-plane in the six-dimensional phase space.
Moreover, their distance is O(ε) in the directions

(q, p,Q1,Q2,P1,P2) = (0, 0,±sech t0 tanh t0, 0,∓sech t0, 0)

and
(0, 0, 0,±sech t0 tanh t0, 0,∓sech t0),

while it is at most O(ε2) in the direction
(sech t0 tanh t0,−sech t0, 0, 0, 0, 0)

near

(q, p,Q1,Q2,P1,P2) = (±2 arcsin (tanh t0),±2sech t0,±2β1sech t0,
± 2β2sech t0,∓2β1sech t0 tanh t0,∓2β2sech t0 tanh t0)

for any t0 ∈ R and β ∈ R2/{0}.
To demonstrate this theoretical result, we numerically computed the stable and unstable manifolds of the saddle (q, p,Q,P) =

(π, 0, 0, 0) ∈ S1 ×R ×R2 ×R2. Here we used a numerical approach explained in Refs. 13 and 27 with the assistance of the computer tool
AUTO.8 We show the numerical result for ε = 0.1 in Fig. 5. Figures 5(a) and 5(b) display the projections of their intersections with the section
{q = 0,Q2 = 1} onto the (p,Q1,P1)- and (p,Q1,P2)-spaces, respectively, and Figs. 5(c) and 5(d) display their projections onto the (P1,P2)-
and (p,Q1)-planes, respectively. Note that t = 0 when qh+(t) = 0. We observe that the stable and unstable manifolds split outside of the
(q, p)-plane in Figs. 5(a)–5(c). Moreover, they split in the P1- and P2-directions but do not visibly in the p- and Q1-directions, as shown in
Figs. 5(a)–5(d). These observations agree with our theoretical prediction. Note that by Theorem 1.1 the splitting distance between the stable
and unstable manifolds on the section {q = 0,Q2 = 1} isO(ε) in the P1- and P2-directions butO(ε2) at most in the p- andQ1-directions since
ṗh+(0) = 0.
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FIG. 4. Phase portraits of (1.4) with the potential (1.5).

FIG. 5. Numerically computed stable and unstable manifolds of the hyperbolic saddle (q, p, Q, P) = (π, 0, 0, 0) ∈ S1
×R ×R2

×R2 in the semiclassical system (1.6) with
the potential (1.5) for ε = 0.1: (a) Projections of their intersections with the section {q = 0, Q2 = 1} onto the (p, Q1, Q2)-space; (b) onto the (p, Q1, P2)-space; (c) onto the
(P1, P2)-plane; (d) onto the (p, Q1)-plane. The stable and unstable manifolds are plotted as red and blue lines, respectively. Both projections almost completely coincide in
(d).

B. Numerical solutions
Finally, we give some numerical solutions to the semiclassical system (1.6) with the potential (1.5) for ε = 0.1.
Figure 6 shows the intersection of the level set Hε = 1 with the section {q = 0,Q2 = 1,P2 = 0}. The intersections of the numerically

computed stable and unstable manifolds with the section {q = 0,Q2 = 1} onto the {p,Q1,P1}-space, which are displayed in Fig. 5, are also
plotted in Fig. 6. We numerically solved (1.6) with (1.5) for ε = 0.1 on the time interval [−5, 5] under four initial conditions at t = 0. The
initial conditions were chosen to lie on the intersection of the level set Hε = 1 with the section {(q,Q2,P2) = (0, 1, 0)} near the stable and
unstable manifolds, and to satisfy condition (1.3) (which reduces to P1 = −1 given (Q2,P2) = (1, 0)). See Table I for their values of p and Q1.
In particular, the points labeled 1 and 3 (resp. 2 and 4) have the same value of p and are near the stable (resp. unstable) manifold. The point
labeled 5 is the initial condition from Fig. 2. The five points are also labeled by the numerals 1–5 in Fig. 6.
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FIG. 6. Intersection of the level set Hε
= 1 with the section {q = 0, Q2 = 1, P2 = 0} for ε = 0.1. The intersections of the numerically computed stable and unstable manifolds

with the section {q = 0, Q2 = 1} displayed in Fig. 5 are also plotted as red and blue lines, respectively. The points labeled by the numerals 1–5 on the level set were used
as the initial conditions of the numerical solutions to (1.6) with (1.5) plotted in Figs. 7–9.

TABLE I. The initial points of the numerical solutions displayed in Figs. 7–9. The
values of Q1 and H0 are, respectively, provided to the fifth and fourth decimals
places. The other values are (q, Q2, P1, P2) = (0, 1,−1, 0). These points are also
plotted in Fig. 6.

label p Q1 H0

1 1.42 −6.137 75 0.0082
2 1.52 −5.638 44 0.1552
3 1.42 6.137 75 0.0082
4 1.52 5.638 44 0.1552
5 1.95 −1.396 42 0.9013

Figure 7 shows the (q, p)-components of the numerical solutions under the initial conditions labeled 1–5 in Fig. 6 and Table I. The
solutions are labeled by the same numerals and plotted in the same color as the initial points. We observe that the solutions labeled 2 and 4
cross the separatrix both inward and outward while the solution labeled 1 (resp. 3) crosses the separatrix only inward (resp. outward). Since
the projection of the stable (resp. unstable) manifold lies between the initial points labeled 1 and 2 (resp. 3 and 4) on the (Q1,P1)-plane, these
manifolds seem to play a role of watersheds dividing whether a trajectory remain inside the separatrices or not. However, this statement is
valid only when solutions stay near the manifolds. In fact, the (q, p)-components of the solution labeled 1 (resp. 3) were observed to eventually

FIG. 7. The (q, p)-components of numerical solutions to the semiclassical system (1.6) with (1.5) for ε = 0.1 on the time interval [−5, 5] under the initial conditions labeled
1–5 in Fig. 6 and Table I. The dashed curves are level sets of the classical Hamiltonian H0 = 0.0082, 0.1552, 1. Here H0 = 1 corresponds to the separatrices.

J. Math. Phys. 65, 102706 (2024); doi: 10.1063/5.0198420 65, 102706-12

Published under an exclusive license by AIP Publishing

 16 O
ctober 2024 18:17:52

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

FIG. 8. The (Q1, P1)-components of numerical solutions to the semiclassical system (1.6) with (1.5) for ε = 0.1 under the initial conditions labeled 1–5 in Fig. 6 and Table I.
The solutions are plotted on the time interval [0, 5] for 1 and 2, on [−5, 0] for 3 and 4, and on [−5, 5] for 5. The trajectories on the stable and unstable manifolds with the
initial points on the section {q = 0, Q2 = 1, P1 = −1} are plotted as the dashed red and blue lines, respectively.

FIG. 9. The (Q2, P2)-components of numerical solutions to the semiclassical system (1.6) with (1.5) for ε = 0.1 under the initial conditions labeled 1–5 in Fig. 6 and Table I.
The solutions are plotted on the time interval [0, 5] for 1 and 2, on [−5, 0] for 3 and 4, and on [−5, 5] for 5. The trajectories on the stable and unstable manifolds with the
initial points on the section {q = 0, Q2 = 1, P1 = −1} are plotted as the dashed red and blue lines, respectively.

cross the separatrix when t ≈ 5.69 (resp. −5.69). The solution labeled 5 stays near the separatrix on the (q, p)-plane since its (q, p)-components
are close to it at t = 0 (see Fig. 6) and the distance between them remains small on a time interval of O(1).

Figures 8 and 9, respectively, show the (Q1,P1)- and (Q2,P2)-components of the numerical solutions under the initial conditions labeled
1–5 in Fig. 6 and Table I. The trajectories on the stable and unstable manifolds with the initial points on the section {q = 0,Q2 = 1,P1 = −1}
are also plotted as the dashed red and blue lines, respectively. We observe in Fig. 8 that the (Q1,P1)-components of the solutions labeled 1
and 2 (resp. 3 and 4) are separated by the trajectory on the stable (resp. unstable) manifold on the (Q1,P1)-directions, as in Fig. 7 for their
(q, p)-components. The solution labeled 5 behaves very differently from these solutions since its initial point is very far from these manifolds
(see Fig. 6). On the other hand, in Fig. 9, the (Q2,P2)-components of the solutions labeled 1 and 2 (resp. 3 and 4) cross the separatrix
outward (resp. inward) on the (Q2,P2)-plane. However, the solutions labeled 1–4 behave very differently from the trajectories on the stable
and unstable manifolds since the initial points are distinct between the former and latter: The latter are numerically estimated to cross the
section {q = 0,Q2 = 1,P1 = −1} at

(p,Q1,P2) ≈ (1.482,−5.836, 0.1713) and (1.482, 5.836,−0.1713)

while the former cross the section at P2 = 0 with the values (p,Q1) given in Table I. The solution labeled 5 remains near the trajectories on
the stable and unstable manifolds since its initial point is close to the separatrix except for the (Q1,P1)-components, which do not appear in
the (Q2,P2)-components of (1.6).
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APPENDIX: DERIVATION OF (3.9)

Using (2.2) and L’Hôpital’s rule, we compute
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Moreover,
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by (3.6). Using (A1) and (A2), we obtain

lim
t±∞
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ph(t)
)χ(t) + ṗh(t)
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which yields (3.9).
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