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Abstract—The escalating global trend of Internet censorship
has necessitated an increased adoption of proxy tools, especially
obfuscated circumvention proxies. These proxies serve a fun-
damental need for access and connectivity among millions in
heavily censored regions. However, as the use of proxies expands,
so do censors’ dedicated efforts to detect and disrupt such
circumvention traffic to enforce their information control policies.

In this paper, we bring out the presence of an inherent
fingerprint for detecting obfuscated proxy traffic. The fingerprint
is created by the misalignment of transport- and application-layer
sessions in proxy routing, which is reflected in the discrepancy in
Round Trip Times (RTTs) across network layers. Importantly,
being protocol-agnostic, the fingerprint enables an adversary to
effectively target multiple proxy protocols simultaneously. We
conduct an extensive evaluation using both controlled testbeds
and real-world traffic, collected from a partner ISP, to assess the
fingerprint’s potential for exploitation by censors. In addition
to being of interest on its own, our timing-based fingerprinting
vulnerability highlights the deficiencies in existing obfuscation
approaches. We hope our study brings the attention of the circum-
vention community to packet timing as an area of concern and
leads to the development of more sustainable countermeasures.

I. INTRODUCTION

On May 30, 2024, Myanmar imposed a blocking on user
traffic to VPN and proxy servers, affecting citizens who had re-
lied on these services to circumvent censorship put in place af-
ter the military coup [28]. On April 25, 2024, Russia launched
a new method to fingerprint and block proxy-enabled circum-
vention traffic, reinforcing the government’s hold on informa-
tion flow and further isolating its citizens from the global Inter-
net [49]. In November 2021, China deployed its latest finger-
printing attack against traffic of fully encrypted proxies, show-
casing both its advancement in censorship capabilities and its
persistent commitment to suppress circumvention efforts [74].

These are not isolated events. They are part of a global
trend where escalating Internet censorship motivates a growing
reliance on circumvention tools, leading to an ongoing arms
race [65]: on one side, developers and users of circumvention
tools aim to bypass restrictions on information; on the other,
censors deploy increasingly sophisticated fingerprinting attacks
to detect and block circumvention traffic. Censors used deep
packet inspection (DPI) to detect circumvention traffic, driving
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developers to obfuscate it to resemble popular protocols like
TLS [48], [81]. As censors blocked circumvention traffic based
on their distinctive ciphersuites, developers adopted cipher-
suites from mainstream browsers [19], [25]. When censors
deployed active probing to identify circumvention servers,
developers in response implemented probe-resistant protec-
tions [14], [24]. The incidents in Myanmar, Russia, and China
mark the latest developments in this circumvention arms race.

Obfuscated proxies remain one of the most popular meth-
ods for circumventing censorship, providing flexible, general-
purpose access to information with good usability for average
users. Similar to standard proxies, an obfuscated proxy setup
involves a user in a censored region connecting to a proxy
outside that jurisdiction in order to access an application server
that is otherwise blocked. The proxy, upon receiving payloads
from the user, establishes a new connection with the applica-
tion server and forwards the traffic as received. Obfuscated
proxies differ from standard proxies by including an extra
obfuscation layer to avoid being detected by censors. Over
the past decade, the circumvention community has developed
various obfuscation schemes, such as by mimicking allowed
protocols [13], [45], [68] or by randomizing proxy’s payloads
so they cannot be statically identified [4], [62], [66].

The main focus of this paper is to bring out the presence of
a fingerprint for detecting traffic from obfuscated proxies and
to empirically evaluate its potential for practical fingerprinting
attacks by nation-state censors. At a high level, the fingerprint
is created by the inherent misalignment of sessions across OSI
layers that results from the use of a proxy. Transport-layer
sessions break into two parts at the proxy — client to proxy,
and proxy to server — while the application-layer maintains an
end-to-end session that extends directly from client to server.
This architecture enables the proxy to relay communication
between client and server while also preserving end-to-end
features of higher layers like TLS. However, because transport-
and application-layer sessions terminate at different endpoints,
their round-trip times (RTTs) may show significant discrep-
ancies, as the paths they traverse span different distances.
Throughout this paper, we focus on this discrepancy in cross-
layer RTTs, RTTy;;¢, and demonstrate the distinguishing
power it holds in fingerprinting proxy traffic.

We emphasize that this fingerprint represents more than
just another potential way to detect proxy traffic. Up until
now, the vast majority of fingerprinting attacks against ob-
fuscated proxies, whether deployed by censors or envisioned
by researchers, focused on specific protocols — censors exploit
the obfuscation flaws of individual protocols, while developers
patch these issues and introduce new protocols in an attempt to



outpace a resource-limited censor. Both sides find themselves
locked in this ongoing arms race, where each side must
constantly balance between efficacy and expenditure [65]. The
fingerprinting vulnerability discussed in this paper, however,
belongs to a class of fingerprints that are inherent to all
proxy protocols. Not only does this protocol-agnostic approach
complement existing protocol-specific attacks; it also enables
censors to efficiently target multiple protocols at once with
little manual effort. Such a development could shift the balance
in the ongoing circumvention arms race.

Assuming the role of a censor, we empirically evaluate the
practicality of exploiting the RTTy; ¢y fingerprint with only
passive monitoring capabilities. We detail our construction of
the exploit: first, from features visible to an on-path censor,
we estimate the RTTs at the transport and application layers
through cross-correlation and derive their discrepancy. Next,
we frame a sequential hypothesis testing (SHT) problem to
determine whether the observed discrepancy in delays sug-
gest a direct or proxied connection. Using eight geographic
locations, we conducted extensive evaluation of the exploit
using a mixture of controlled proxy traffic and real user traffic
collected from an Internet provider, to assess the sensitivity
and specificity of RTTy; ;s as a standalone fingerprint.

We found that the efficacy of the exploit is largely in-
dependent of the client’s location or the censor’s position
relative to the client; nor is it affected by the specific proxy
protocol tested, whether obfuscated or otherwise. For a client
visiting the top 5K domains via an obfuscated proxy, we found
that about 80% of the domains visited would generate at
least one traffic flow characterized by the RTT discrepancy
detectable by our fingerprint, with half of these detections
made within the first 60 packets of a flow, all while maintaining
a False Positive Rate (FPR) on par with those of deployed
attacks. While we demonstrate the general feasibility of this
fingerprint, we also discuss practical factors — such as the
handling of DNS resolution, the presence of CDNs, and the
potential for categorical collateral damage — that would affect
the fingerprint’s efficacy and compel a potential adversary to
weigh the costs and implications of deployment.

Our evaluation on this timing-based fingerprint highlights
the deficiencies in existing obfuscation schemes. Over the
years, researchers have long recognized that distributions of
packet sizes hold significant classification power for detecting
circumvention traffic [41], [68], and censors have indeed
exploited packet sizes in practice [49], [74]. As such, many ob-
fuscated proxy protocols have incorporated (random) padding
schemes directly into their designs [66], [75]. While padding
provides a straightforward defense to obfuscate patterns over
packet sizes, it leave packet timings unprotected, a source
of information often overlooked by designers of obfuscation
schemes. What this paper showcases, however, is one example
of what a censor can accomplish in fingerprinting proxy traffic
using only features derived from packet timings.

While we demonstrate several potential short-term mitiga-
tions, such as configuring TCP delayed ACK on the proxy
server or enabling connection multiplexing, we caution that
these strategies result in atypical behaviors that might them-
selves be fingerprintable. In particular, we showcase how
existing delay-based timing obfuscation schemes, such as
obfs4/scramblesuit, are fundamentally limited in their ability to

mitigate the proposed fingerprint and, paradoxically, may even
worsen the issue. Additionally, while our focus is on transport-
layer obfuscated proxies, we also explore how the underlying
principles of our timing-based fingerprint extend to network-
layer VPNs. We hope this study highlights packet timing as
an area that warrants further attention from the circumvention
community and leads to the development of more principled,
sustainable countermeasures.

II. BACKGROUND
A. Internet Censorship

News reports, personal anecdotes, and measurement studies
collectively suggest an increasing trend in nation-state Internet
censorship on a global scale, as governments exert control over
the flow of information deemed undesirable within and across
their borders [38], [43], [56], [59]. For over two decades,
researchers and Internet freedom activists have studied gov-
ernment censorship policies and their enforcement through
technical means. Building upon seminal works from the early
2000s [10], [52], [84], censorship research has advanced
our understanding of how nation-state firewalls interfere with
users’ traffic [31], [32], [55], their technical capabilities [6],
[42], [70], and their architecture and geographical distribu-
tion [15], [78], [80]. This body of research not only exposes
the otherwise covert practice of censorship but also assists
in developing a realistic threat model. In general, censorship
involves a two-step process: Detect and Disrupt. The first
phase classifies traffic as either allowed or prohibited using
a range of techniques from simple keyword matching to more
sophisticated traffic analysis. Traffic considered undesirable is
then actively interfered with by dropping packets or RST-ing
connections [65], [67]. Note that while Disrupt often requires
active engagement, Defect can operate passively, remaining
completely invisible to the communicating parties. Our inves-
tigation into proxy fingerprinting falls under the detection step.

B. Circumvention Arms Race

As censorship measures intensify, users in affected regions
increasingly seek methods to circumvent these restrictions.
The most common and flexible circumvention mechanisms
follow a channel-based approach — users establish channels
to forwarders located outside the censor’s jurisdiction, which
in turn forward their traffic to its final destinations [65]. This
setup commonly involves proxying protocols (both network-
layer and transport-layer). However, standard proxying proto-
cols such as OpenVPN and SOCKS feature plaintext headers
that can be easily detected and blocked, which necessitates
the use of obfuscation techniques, or more specifically, the
indistinguishability provided by such obfuscation, across all
channel-based systems.

This has led to an ongoing arms race between developers of
obfuscated proxies, who obfuscate the traffic of their protocols
to evade detection, and censors, who aim to see through such
obfuscation. The dynamics of this conflict are best illustrated
by the interactions between the Great Firewall of China
(GFW) and various circumvention tools: The GFW was able
to detect and block Tor traffic using manually-crafted signa-
tures that exploited the unique ciphersuites of Tor’s custom
TLS implementation [19]. In response, developers introduced
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Fig. 1: Threat model: A censor positioned on-path relative to the
client and proxy, receiving a copy of traffic. Figure inspired by [16].

dedicated obfuscators mimicking TLS implementations from
mainstream browsers [25], [58]. The GFW blocked servers
hosting Tor, VPN, and other circumvention services by sending
specially crafted probes to suspected endpoints and checking
if the responses matched the expected protocol behaviors [3],
[14], [72]. Circumvention developers countered by deploying
“probe-resistant” proxies that remain silent until the client au-
thenticates itself [24]. The GFW fingerprinted traffic from fully
encrypted proxies based on their atypically high entropy [74],
and developers in response changed the byte patterns of
their traffic to show lower entropy [27], [S1]. This back-and-
forth characterizes the current state of the circumvention arms
race, where each side continually adjusts their approaches in
reaction to the advancements in fingerprinting and obfuscation.

The specific fingerprint evaluated in this paper represents
a potential furthering of this arms-race: unlike aforemen-
tioned attacks that targeted specific circumvention protocols
by exploiting vulnerabilities in their obfuscation designs, this
timing-based fingerprint stems from an inherent character-
istic shared by all proxying and tunneling protocols — the
misalignment between layers. This protocol-agnostic approach
could overcome the trade-off between efficacy and cost in the
circumvention arms-race by enabling censors to target multiple
protocols at once. The work most closely related to ours
is by Xue et al., which proposed fingerprinting the protocol
encapsulations using packet size and direction [79].

C. Timing-based Fingerprinting Attacks

In previous traffic fingerprinting attacks, particularly those
on website fingerprinting, the focus has traditionally been on
features derived from packet sizes rather than those based on
packet timings. Several early work discussed that timing fea-
tures, specifically packet inter-arrival times, are unreliable due
to their dependency on network conditions like jitters [5], [40],
[82]. Jaber et al., however, demonstrated that the distribution of
packet timings holds discriminative power for classifying net-
work traffic [35]. Feghhi et al. proposed a website fingerprint-
ing attack that leverages only timing information, bypassing
defenses based on packet padding [16]. More recently, Rah-
man et al. studied the utility of packet timing and found that
timing indeed provides meaningful classification power [54].

There is limited prior work on detecting proxy traffic with
timing features. Webb et al. proposed an approach for detecting
proxy usage at the server side by measuring the RTT for
each known IP and identifying anomalies in their distribu-
tions, requiring separate training for each IP address [71].
Ramesh et al. developed a proxy detection method using
RTTs, but their approach requires access to an endpoint of a
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Fig. 2: Protocol layerings in Direct vs. Proxied Connections.
In proxied connections, transport sessions terminate at the proxy,
whereas the application layer connection remains end-to-end. ¢

connection (e.g., at the server) and active measurements [57].
In contrast, the fingerprinting vulnerability evaluated in this
paper requires only passive monitoring capability with no
server-side deployment and, in principle, can be exploited at
any network location between the client and proxy server.

III. THREAT MODEL AND SCOPE

Previous measurement studies have shown that nation-state
censors possess the capability for both passive monitoring and
active interference [14], [65], with some demonstrating even
more intrusive behaviors such as injecting malicious traffic or
intercepting end-to-end encryption [42], [63]. For the purpose
of this study, we adopt a conservatively weak but practical
adversary model as defined in previous work [65]. We assume
that the censor is limited to passive monitoring capabilities,
examining but not injecting, removing, or otherwise altering
the traffic. The censor is positioned on-path relative to the
client and the proxy (e.g., deployed at chokepoints or border
ASes), as shown in Figure 1. We also assume the censor to
be stateful, allowing it to accumulate information about each
connection it observes. However, computational constraints
limit the censor’s real-time, per-flow analysis to basic statistical
methods; more complex methods like deep learning have not
yet been observed in real-world deployments. Finally, for our
discussion, the censor makes use only of features derived from
packet timestamps and sizes, ignoring other potentially iden-
tifiable information such as IP addresses, ports, or payloads.

While powerful, real-world censors operate within certain
constraints, chief among them being the cost — whether as
economic losses or civil discontent — caused by accidentally
blocking traffic that should have been allowed (i.e., false
positives). The cost of false positives, known as “collateral
damage”, is the only reason preventing censors from sim-
ply shutting down the entire Internet and trivially blocking
all circumvention traffic with perfect recall [20]. Evaluating
the practicality of a potential fingerprint, therefore, involves
assessing both the reliability of the fingerprint as an indicator
of circumvention traffic, as well as the rarity of finding the
same fingerprint in legitimate traffic.

A. Scope

The focus of this work is transport-layer obfuscated prox-
ies, such as shadowsocks, Trojan, VMess, efc. These proxy
protocols function similarly to traditional SOCKS proxies by
forwarding traffic between clients and servers without modifi-
cation (preserving application-layer end-to-end features), but
incorporate additional encryption and obfuscation to evade
detection.
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Fig. 3: Sequence timing diagram for (a) direct HTTPS session
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We do not consider TLS-terminating proxies in this work
(i.e., MITM proxy). Although there has been some discussion
about their use for censorship circumvention, they have not
been adopted by mainstream circumvention tools due to the
security risks they pose by breaking the PKI model [8], [18],
[50]. Additionally, while our focus is on transport-layer prox-
ies, we recognize that the underlying principles of our timing-
based exploit may have implications for network-layer VPNs
as well, and we explore this potential extension in § VII-B.

IV. CROSS-LAYER RTT DIFFERENCE

We begin by describing the different connection segments
and their corresponding RTTs for a proxy connection and
the intuition of how these differences can be exploited as a
fingerprint. At a high level, the idea is that using a proxy
inevitably affects the layering of the OSI model, leading to a
situation where the sessions at the transport layer and the appli-
cation layer terminate at different endpoints. Especially when
the application layer session extends significantly beyond the
transport layer — i.e., when there is a substantial geographical
distance — we demonstrate that the difference in RTT becomes
noticeable and can then be exploited by an on-path adversary to
infer the presence of the proxy. Table IV in Appendix compiles
a list of all symbols we use throughout this paper.

A. Proxy Architecture and Round-Trip-Time

A typical proxied connection involves three parties: a
client who wants to access a service that is blocked (due to
censorship, geoblocking, etc.); an application server offering
the desired service; and a proxy that relays (and optionally ob-
fuscates/encrypts) the client’s traffic to the application server.

Figure 2 describes the layering of protocol stacks for direct
and proxied connections. In direct connections, sessions at the
network (e.g., IP), transport (e.g., TCP), and application (e.g.,

HTTPS) layers often have a one-to-one correspondence: a
higher-layer session is fully encapsulated within the one below,
and their notions of endpoints (client and server) are aligned
across layers, spanning the same distance. Proxied connections,
however, introduce segmentation at one or more layers of
the stack. For single-hop proxies, sessions at the transport
layers could be split into two segments: client-to-proxy and
proxy-to-server, while the application layer remains end-to-
end (client-to-server). Such architecture enables the proxy to
forward communication between the client and server, while
preserving end-to-end features of higher layers, like TLS.

The way that proxies change the layering of protocol
stacks also affects the Round-Trip-Times (RTTs) observed
across different layers. In direct connections, the RTTs at
the application and transport layers are aligned, since they
share the same endpoints and path distances. For proxied
connections, however, sessions at lower layers terminate at the
proxy. An observer located between the client and the proxy
would perceive shorter transport-layer RTTs that only account
for the distance to the proxy. The proxy’s acknowledgement
of data receipt appears to complete the round trip from the
observer’s standpoint. In contrast, the end-to-end application-
layer RTT additionally encompasses the time the proxy takes to
forward the request/response to/from the server. This additional
segment results in noticeable differences in cross-layer RTTs,
which can be consistently observed when there is sufficient
distance between the proxy and the application-layer server.
This discrepancy forms the basis of the timing-based finger-
print that we discuss in this paper.

B. Example: HTTPS vs. VLESS-TLS

Figure 3 compares the difference in cross-layer RTTs
between a direct HTTPS session and a proxied HTTPS
session using a transport-layer TLS-based proxy, e.g., vless,
trojan [64], [66], efc. In both scenarios, a client attempts to
visit the same web server while an on-path adversary monitors
traffic close to the client. Note that after the initial handshake
(with either the web server or proxy), the adversary only sees
TCP control packets (e.g., ACKs) and the encrypted streams.

Following the initial handshake, in the direct scenario, the
client sends a request to the server. The server acknowledges
the reception of the request, which returns to the client exactly
one transport-layer RTT after the request was sent. Depending
on the type of request and load, the server might take some
time to process the request and prepare a response, resulting
in a typically small difference (A g;rect) between the transport-
layer RTT (TRTT) and application-layer RTT (ARTT). On
the other hand, in the proxied case, the first packet after
the proxy handshake (in this case, TLS) typically contains
both the SOCKS address (indicating where to forward the
traffic, e.g., blocked.com) and the first data packet (e.g., a
clienthello for blocked.com) !. Upon receiving this packet, the
proxy initiates a 3-way TCP handshake with the application
server, taking one TRTT between the proxy and the application
server (I'RTTpw ). The proxy then forwards the clienthello,
receives the serverhello, and returns it to the client after another
TRTTpy . Subsequent requests/responses follow the same

!Unlike standard SOCKS protocol that sends address and the first payload
packet separately, most transport-layer circumvention tools (Outline, shadow-
socks, v2ray, efc.), merge them for performance and obfuscation purposes [36].
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pattern. If the client opts to resolve hostnames via the proxy, an
extra initial round trip to the proxy’s DNS server is required.

Comparing the cross-layer RTTs in the two scenarios
reveals that for direct connections, the difference (ARTT-TRTT)
is just the server processing delay Agirect. However, for
proxied connections, the first cross-layer difference Apy oz
includes a DNSRTT and two T'RTTpy (additional path de-
lay), while subsequent A,y contains one T'RTTpy and
additionally the server processing delay Agj et On top of
that. The task of fingerprinting proxy traffic is thus reduced to
determining whether an observed cross-layer RTT difference
ARTT-TRTT is an instance of Agirect OF Aprogy-

C. Efficacy and Assumptions

We note that this timing-based fingerprint does not depend
on the client’s location or the distance between the client and
the proxy. As long as the adversary is positioned between
the client and the proxy, RTT measurements can simply be
redefined from client-server to adversary-server. Thus, the
client’s relative location to the adversary or its distance to the
proxy becomes irrelevant, as illustrated in Figure 4.

What matters, however, is the proxy’s position relative to
the application server: the proxy must not be geographically
co-located or near the server to ensure that the transmission
delay introduced by the distance between them is not neg-
ligible, an assumption that may not always hold due to the
prevalence of CDNs. Moreover, exploiting the fingerprint relies
on the adversary’s ability to distinguish Ap,ozy from Agirect
by consistently observing the effect of T"RTT'py on the cross-
layer RTT difference. In other words, the delay introduced
by transmission (T RTTpyw ) must be more pronounced than
the variance introduced by the processing time at the server
(Agirect)- We also assume that the proxy does not intentionally
delay the transmission of TCP acknowledgments. Finally, and
perhaps most importantly, the exploit depends on the adver-
sary’s ability to observe the cross-layer RTT differences. While
transport-layer RTT is straightforward to measure, determining
application-layer RTT is more challenging due to encryption.

In the following sections, we will examine each of these
assumptions to evaluate the fingerprint’s potential for exploita-
tion and assess the susceptibility of proxy traffic to the exploit.
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Fig. 5: Cross-correlation for application-layer RTT Estimation.
(a) Bi-directional packet flow, packets ordered by SEQ/ACK; (b)
Cross-correlating outgoing against a weighted distribution centered
around incoming packets; (c) Correlation scores at different shifts.
Shift corresponding the highest correlation is the estimated ARTT.

V. CONSTRUCTING A CROSS-LAYER RTT EXPLOIT

This section outlines a practical instantiation of a possible
fingerprinting attack based on the previously laid conceptual
groundwork. At its core, the exploit leverages RTT discrep-
ancies to identify mismatches in session alignments across
network layers, which are indicative of proxy use. However,
adversaries aiming to apply the cross-layer RTT fingerprint in
the real world need to consider factors such as the limited
visibility into encrypted streams and the variances introduced
by network jitter or server load. Our approach to implementing
this exploit involves two primary phases: 1) From the traffic
visible to an on-path adversary, estimating the RTTs at both
the transport and application layers and calculating the cross-
layer differences; 2) Determining whether the observed RTT
differences align more closely with those expected from a
direct connection or a proxy setup.

A. Estimating Cross-layer RTT Differences

The initial step of the exploit involves measuring the cross-
layer RTT differences R1TTy;¢¢ in a potential proxy connec-
tion. This measurement is achieved by subtracting transport-
layer RTT from application-layer RTT. To obtain the former,
we use SEQ/ACK analysis to identify each ACK-eliciting
packet sent by the client and its corresponding ACK. If
multiple such packet pairs exist within an observation window,
we use the median as the transport-layer RTT for that interval.

However, estimating application-layer RTTs poses signifi-
cant challenges, especially for our threat model where an on-
path network adversary performs passive monitoring and does
not have visibility into the encrypted streams. The problem
lies in the fact that the logical sequence of operations at
the application layer does not directly map to the observable
sequence of packet exchanges at the transport layer.

Consider the example of a client interacting with a web ser-
vice through an encrypted proxy. HTTP pipelining allows mul-
tiple transactions to reuse the same connection, and the client
may send several requests back-to-back without waiting for
each response. Figure 5 (a) shows a TCP flow of incoming and
outgoing data-carrying packets observed by an on-path censor
located between the client and the proxy. While the transport-
layer sequence and acknowledgement might suggest an order-



ing of [reql,req2,respl,resp2], the actual application-layer
logical dependencies are [reql, respl], [req2, resp2]. Without
visibility into the encrypted streams, the adversary cannot eas-
ily determine the true application-layer dependencies. Attempt-
ing to estimate ARTT as T (respl)—T (req2) would be incor-
rect, as respl and req2 are not a pair at the application layer.

Previous work on traffic analysis based on RTTs often
relies on having access to one end of the application-layer con-
nection. For example, Ramesh et al. estimates the application-
layer RTT by actively sending WebSocket PINGs from the
server side [57]. Such approaches benefit from directly ob-
serving and interacting with application-layer transactions.
However, such techniques are not applicable in our threat
model, where we assume the adversary is on-path, not on either
endpoint, and limited to passive monitoring only.

Approach: Cross-correlation for RTT Estimation We
propose a cross-correlation-based approach to estimate the
application-layer RTT in the presence of encryption. This ap-
proach is based on the assumption that a temporal relationship
exists between the request and response traffic patterns. In
typical client-server communication, a client sends a request
to the server, and the client receives a corresponding server
response, with the delay between these actions reflecting the
RTT at the application layer. Cross-correlation is a statistical
technique that measures the similarity between two time series
as a function of relative displacement or delay. By measuring
the similarity between sequences of incoming and outgoing
packets as a function of delays, cross-correlation could iden-
tify the delay interval at which the similarity is maximized,
indicating the most probable RTT.

Specifically, to apply cross-correlation for RTT estimation,
we first (1) extract the timing information of TCP data-carrying
packets in both directions. Next, (2) we initiate a moving
window of size W, where W represents the number of poten-
tial request-response pairs. A potential request-response pair is
defined as one or more consecutive outgoing packets followed
by one or more consecutive incoming packet. For example, in a
packet sequence of [out, in, in, out], there is only one potential
request-response pair, while in a sequence of [out, in, out, in),
there are two such pairs. This window slides through the packet
sequence, ensuring it always contains W pairs, although the
total number of packets within each window can vary. This
step is needed as cross-correlation requires multiple instances
to accurately determine the most likely delay. Next, (3) we cat-
egorize packets by direction, creating separate time series for
outgoing and incoming packets, as illustrated in Figure 5 (b).
We then apply a shift/delay of S milliseconds (where S > 0) to
the outgoing series and compute the cross-correlation function
between the shifted outgoing series and the incoming series.
We continue this for each incremental delay (+1ms) up to a
maximum (e.g., 1000 ms). Finally, (4) we identify the delay at
which the correlation is highest, as shown in Figure 5 (c). This
peak correlation represents the most common delay between
requests and responses within the current window, which is
our estimate for application-layer RTT.

Impact of Correlation Window: The choice of window size
W in our approach affects the accuracy and reliability of the
cross-correlation results. Setting W to 1, the method analyzes
just one outgoing-incoming pair at a time, essentially reducing

cross-correlation to a simple analysis similar to transport-layer
SEQ/ACK. With a larger window size that spans much of
or the entirety of a persistent connection, cross-correlation
will attempt to find a common delay across all request-
response pairs within that window. However, the presence of
transient network issues or congestion fluctuations can lead to
a broad delay distribution within a large window, in which
case our approach may not provide an ARTT estimate that is
representative across the span of the entire window. In practice,
the optimal window size should be adapted and tuned based
on the observed network conditions. It should be sufficiently
large to cover multiple request-response pairs, allowing cross-
correlation to estimate RTT from common delays. Yet, it
should not be so large that it covers significant variations in
network conditions within the same window. See § VI-A for
evaluation of correlation accuracy across different W values.

Impact of Network Jitter: We note that in the real-world,
propagation delay can fluctuate even within a short obser-
vation window. To address this, instead of relying on exact
matches between outgoing and incoming timestamps, our
cross-correlation incorporates a weighted distribution centered
around each incoming packet’s timestamp (as shown in Fig-
ure 5 (b)), assigning higher weights to packet matches closer in
time while allowing for small deviations in delays. Consistent
with previous work [33], [46], [47], we model network delays
as i.i.d. exponential, which implies that network jitter, defined
as the difference of two delays, follows a zero-mean Laplace
distribution denoted by Lap(0,bs). The variance of this dis-
tribution should be adapted based on the observed network
conditions and expected variability in RTTs. With this, the
cross-correlation approach becomes more resilient to slight
variations in RTT across a given window.

Constraints: We impose constraints when cross-
correlating packet series, ensuring that outgoing packets
are only matched with incoming packets that arrive after
them to accurately reflect RTTs. Additionally, we restrict
peak selection from cross-correlation results to the range
[TRTT, max_shift] as the application-layer RTT should be
at least as large as the transport-layer RTT. Our method
assumes a RESTful request-response pattern, which applies
to many protocols like HTTP(S) and FTP but may not hold
for all proxy traffic, and relies on consistent RTTs across
request-response pairs within a time window.

B. Distinguishing Agirect vS. Dproxy

From the previous discussions, we explained that a key
characteristic of proxy traffic is that it typically shows greater
discrepancies between RTTs at different layers compared to
direct traffic. Having measured transport-layer RTTs and esti-
mated application-layer RTTs, the next step is to determine
whether the observed RTT differences RTT45; are more
likely to be caused solely by the inherent server processing
delays (~ Agirect), or are dictated instead by the additional
path delays T'RTTpy, introduced by the distance between the
proxy and the application server (~ Ap,ozy). In this section,
we formulate a detection problem that provides the basis for
a practical algorithm to detect proxy traffic on-the-fly, while
also striving for high precision and coverage.



Framework: Sequential Hypothesis Testing Ultimately,
we aim to determine whether the observed RTTy; ¢ is primar-
ily caused by the additional transport delays incurred when
a proxy forwards data to/from the application server. This
scenario can be represented as a statistical detection problem,
where the goal is to identify the presence or absence of a
specific prior condition (i.e., the spatial separation between
the transport and the application endpoints), based on the sep-
aration of the distributions under different priors. We adopt the
Sequential Hypothesis Testing (SHT) framework, which lever-
ages repeated trials/observations and known outcome proba-
bilities to distinguish between multiple hypotheses. Previous
work has used SHT for intrusion detection and censorship
detection [37], [53]. SHT aligns well with our problem, where
RTT measurements can be streamed continuously into one
decision making process.

We begin our construction of SHT by defining an obser-
vation to be made when the monitor has observed enough
individual packets to form W request-response pairs, where
W is the size of the correlation window. We classify the
RITg45r = ARTT — TRTT of an observation as either
“inflated” or “matched” by comparing the RTTzs to a
predefined threshold T'. For each flow (as defined by its four-
tuple), let Y; be a random variable for the ith observation of
the flow, such that:

0 if RTTy5y < T (matched) 0
" |1 if RTTu; > T (inflated)

Threshold T is selected as a lower bound of the expected
delay introduced by the proxy’s additional network path rel-
ative to the application server (I'RTTpy ). For example, if
the proxy server is located in New York and the application
server in Detroit, the physical distance between these two
locations would introduce a minimum RTT of roughly 15
ms. In this case, RTT4; should consistently exceed 15
ms, as the transport delay inherent in proxy routing (i.e., the
extra distance the data must travel) cannot be eliminated, and
additional delays due to application-layer processing might be
added on top of the baseline transport delay.

We consider two hypotheses for our problem: the Null
Hypothesis (H), which suggests that the connection is direct,
i.e., RT Ty ~ Adirect, and the Alternative Hypothesis (H1),
which suggests that the apparent transport-layer server is ac-
tually a proxy, i.e., RTTg;5f ~ Aprogy. For now, let’s assume
that RTTjy;;p observations are independent and identically
distributed (i.i.d). Then, to implement SHT, we need to identify
the prior conditional probabilities for each hypothesis:

PT[Y;‘:O|H0]:90 PT[Y;‘:HH()]:l—GO
PT[K:0|H1]:91 PT[K:1|H1]:1—91 (2)

These probabilities reflect the initial beliefs about the
likelihood of each scenario before observing any RTT; ¢y
measurements. From § IV, with a reasonably chosen threshold
T, we expect that an inflated RTT;55 is more likely to occur
in a proxied connection than a direct one: 1 — 6; > 1 — 6.
In an ideal scenario, with perfect network conditions and no
processing delays, we can expect 6y to approach 1, as the
RTTs are expected to be closely matched across layers. On

the other hand, with a perfect choice of threshold T, #; would
be close to 0, as the additional path delay (T'RTTpyw ) should
consistently result in larger RTT differences. In practice,
however, variability in network condition and server load, as
well as the uncertainty around the location of the application
server (especially those served by CDNs), make it challenging
to maintain a static threshold 7T that is consistently reliable.

From the construction, we define a likelihood ratio test
(A(Y)) as each RTTy; ;s observation is made, such that:

Pr[Yi,...,Yy | Hi] % Pr[Y,|H]
= = _ >
AMY) = 5 v | Ho) L prpy, [, = 3

where Y represents the set of available R1TTy;;; observations
at any point. Upon receiving each new observation, the algo-
rithm updates the cumulative metric A(Y") based on the proba-
bility priors and compares the current probability ratio with an
upper threshold 7, where 7 is a scalar value that quantifies how
much more likely the observations are under H; compared
to Hy. The product form of (3) is derived from our earlier
assumption that the RTT,;;; observations are independent
(they are, in fact, not independent, and we need to account
for their dependence, which we expand in Appendix C). If
A(Y) > n, we accept Hy, i.e., presence of a proxy. An optional
lower bound could be implemented to conclusively accept Hy.
But here we follow a conservative approach where we do not
explicitly separate Hy and Undetermined.

Estimating Priors: A critical step of our SHT construction
is to empirically measure the probability priors for the two
hypotheses regarding direct and proxy connections. However,
directly measuring the priors, particularly for the proxy class
H,, is exceedingly challenging. The timing of proxy connec-
tions can vary significantly based on factors such as proxy
configuration and the relative distance between the proxy
and the web server, making it infeasible to directly collect
measurements representative of every possible proxy scenario.

Instead, we adopt an indirect approach to approximate the
priors for the proxy class using measurements from non-proxy
connections. Specifically, from three geographically distributed
vantage points — Atlanta, Singapore, and Amsterdam — we
visit the top 5K websites as ranked by Chrome CrUX [29],
[61] while capturing traffic traces and TLS keys. Next, from
the decrypted PCAP traces, we identify pairs of application-
layer request-response interactions, such as Clienthello >
Serverhello or HTTP GET and the corresponding 200 OK
responses. For each pair, we record three timestamps: 7} as the
timestamp of the outgoing request; 7} as the timestamp of the
first packet with an ACK number greater than the sequence
number of the request; and 75 as the timestamp of the first
packet carrying the corresponding response.

Ty —Ty is the transport delay and T — T is the application
delay. To estimate the priors for the direct class (Hj), we
analyze the distribution of (7% — Ty) — (T4 — Tp), which is the
interval between when the server acknowledges the request and
when it responds. This directly measures the typical processing
delays inherent in direct connections (i.e., RTTy; ¢y for Hy).
For the proxy scenario (/{;), we instead consider the distribu-
tion of the complete application-layer round-trip time 75 — Tj.
The rationale is that the apparent processing delay at the proxy
would resemble the full path latency between the proxy and the
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Fig. 6: Distributions of RTT differences for prior estimation.
T1-TO is TRTT, T2-TO is ARTT and T2-T1 is RTTdiff. Shaded area
represents the separation of the distributions under different priors. ¢

application server, plus the processing delay at the server. In
other words, T> — T\, measured at the proxy server would be
equal to 75 — T} measured at the proxy client. This approach
essentially simulates the distribution of RT7Tg; ;s for connec-
tions routed through proxies located in these three locations.

Figure 6 presents the CDFs of the measured prior proba-
bilities, comparing 75 — T (for Hy) against 1o — T}y (for Hy).
These distributions match our initial assumptions: the propaga-
tion delay introduced by additional transmission paths in proxy
scenarios are markedly more pronounced than the variations in
processing delays, and an inflated RTTy;s¢ is more likely to
result from a proxy connection than a direct connection. For
example, at T = 15, we observe 6y ~ 0.95 and 6; =~ 0.50.
Furthermore, Figure 6 also highlights the distributions of RTT
differences across the three vantage points, located in three
continents. While there are some variability among their dis-
tributions, the overall separation between classes is generally
consistent. This consistency suggests that 1) the observation —
inflated RTTy;r; are more commonly associated with proxy
connections — holds true across different geographical regions;
and that 2) the same estimated priors are likely to be applicable
regardless of the specific location of the proxy server.

C. Implementation

The RT'Ty; ¢ exploit begins when the traffic monitor iden-
tifies a new connection flow. The monitor accumulates packets,
recording relevant fields such as timestamps, SEQ/ACK, eftc.,
until a sufficient number of packets have been collected to
form a correlation window. Every time a correlation window
is complete, the monitor performs cross-correlation, as detailed
in § V-A, to estimate the RTT; s for that window.

If the flow’s cumulative probability ratio (A(Y")) has been
previously initialized, the monitor updates the ratio follow-
ing the process described in § V-B. If A(Y) has not been
initialized and the current RTTgy;;; exceeds the threshold
T, the monitor initializes A(Y") for the flow. Otherwise, the
monitor discards the current window and awaits the next set
of observations. This step is designed to accommodate proxy
protocols with varying handshake lengths, during which the
packet exchange is strictly between the client and the proxy,
resulting in RTT ;75 similar to those of a direct connection.
The monitor repeats this step until A(Y") is either initialized

or at least three request-response pairs have been observed 2.
The monitor compares A(Y") with 7 after each update to the
cumulative ratio, and logs the flow as proxy if the threshold
is exceeded. Otherwise, the monitoring continues until the
connection terminates (refer Figure 12 in Appendix for the
workflow).

We have implemented a PoC exploit using Zeek, an open-
source network monitoring and analysis framework [83]. This
implementation takes the form of a plugin that accepts a
sequence of packet metadata (timestamps, size, SEQ/ACK) and
estimates a sequence of RTTy;sy.

We emphasize that our instantiation of the fingerprint-
ing concept is not meant to be the most optimized or effec-
tive form of exploitation possible. Other approaches might
exploit the same fingerprint more efficiently. Our intention is
to demonstrate the fingerprint’s potential for exploitation and
to highlight the necessity for proactive countermeasures.

VI. EVALUATION

We evaluate the practicality of exploiting RTT discrepancy
across layers to detect (obfuscated) proxy traffic. Inspired from
prior work on traffic fingerprintability [79], [81], our goal is
to conduct evaluation under realistic conditions, mirroring the
operational constraints typically faced by censors.

Before evaluating RTTy; s as a standalone fingerprint, we
start by focusing on individual components of our exploit. In
§ VI-A and § VI-B, we evaluate the effectiveness of cross-
correlation in estimating the application-layer RTT, as well as
exploring how the size of the correlation window W and the
threshold 7' affect the efficacy of the exploit. Next, in § VI-C,
we thoroughly evaluate the RTTy;r; using a combination of
controlled proxy traffic and real user traffic collected from
an Internet provider. Throughout this evaluation, we aim to
understand both the sensitivity of the fingerprint — the extent
to which proxy traffic is vulnerable and factors that can impact
this vulnerability — and its specificity — the uniqueness of the
fingerprint to reliably distinguish proxy from regular traffic.

A. Evaluating Cross-correlation Method for ARTT Estimation

We evaluate the reliability of our cross-correlation-based
method for estimating application-layer RTTs (ARTTs), as
the success of subsequent exploit phases depends on these
estimations being accurate. As mentioned before, for W > 1,
there’s a possibility that request-response may exhibit a broad
range of delays even within the same window. For this, we
first analyze the inherent variability of ARTTs within the same
correlation windows. Using the dataset collected in § V-B,
we quantify the ARTT in-window variances across different
window sizes WW. As shown in Figure 7, the variance of ARTTs
within each window tends to increase with larger window sizes,
which is expected as more request-response pairs can introduce
more variability due to differing network conditions and server
response times. For example, the median variance increases
from 4.5 for W = 2 to 168 for W = 10.

2Some proxy protocols like Shadowsocks support 0-RTT mode, combining
the proxy’s handshake packets with the first application payload. For others,
the handshake procedure typically completes with less than three round trips.
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Fig. 7: Left: Distributions of normalized correlation errors. Right:
ARTT variance with different window sizes (median in red).

Accounting for this inherent variance, we use normalized
squared errors as a measure to evaluate the accuracy of

our ARTT estimation: (“timmwﬁ}f};ﬂ;ﬁzdm”-‘qRTT)2. This
measure compares the difference between the estimated and
the median ARTT of a window to the baseline variance of
the window. As shown in Figure 7, the distribution of the
normalized errors suggests that the majority of our estimations
yield relatively low errors. Balancing between need for multi-
ple request-response pairs for effective correlation against the
increased variance with larger window sizes, we use W = 3
for subsequent evaluations. With W = 3, over 60% of our
estimations have a normalized error less than 1, implying that
our estimates typically fall within the distribution of actual
ARTTs. Additionally, about 80% of estimations have errors
less than 2, in which case estimates are within 1.4 standard
deviations of actual median ARTT.

B. Evaluating the Susceptibility of Proxy Traffic and the
selection of threshold T

We evaluate the extent to which proxy traffic is susceptible
to the exploit and how threshold T affects this susceptibility.
While the concept of cross-layer RTT differences is inherent
to all proxy activity, an adversary’s ability to reliably detect
such differences depends significantly on the proximity of the
proxy to the application server. As such, the selection of 7T is
crucial as it determines what constitutes a “significant” RTT
discrepancy indicative of proxy use. As mentioned before, the
threshold 7' should exceed the transport delay between the
proxy and the server, which is an unavoidable baseline delay
that is reflected in the cross-layer RTT discrepancy.

We measure the distribution of transport-layer delays from
three proxy locations while visiting the top 5K domains to
assess this susceptibility and to inform the selection of T'. The
results are shown in Figure 8. The blue curves represent the
distribution of transport delays for individual flows between
the proxy and the website server (i.e., per-flow exposure).
Surprisingly, more than half of these flows exhibit minimal
transport delays, which means that the difference in RTT
caused by proxy routing would also be minimal. Apart from
the fact that our proxies are located in data centers with
potentially better connectivity than average hosts, we note that
most of these low-delay flows are to CDNs like Cloudflare,
Google, and Fastly (refer to Table V in Appendix). The
prevalence of CDNs, to some extent, lessens the visibility
of additional delays caused by proxy routing. Despite this,
the proposed exploit still poses a realistic threat: because a
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Fig. 8: Left: Distribution of transport-layer delay from proxy loca-
tions. Blue lines represent the delay of all the flows generated and the
red lines represent the delay of selected flows that had the maximum
delay for each website visit. Right: Number of packets observed
before detection for 7' = 15ms and T' = 50ms, fixing FPR=.01.

Protocol Type Cl Timing
Plain SOCKS Plaintext No
VMess Obfuscated (fully encrypted)  No
Shadowsocks Obfuscated (fully encrypted)  No
VLESS over TLS Obfuscated (TLS-based) No
Trojan Obfuscated (TLS-based) No
VMess over Websocket Obfuscated (HTTP) No
Shadowsocks over WS/TLS ~ Obfuscated (TLS-based) No
VLESS over WS/TLS Obfuscated (TLS-based) No
XTLS-Vision Obfuscated (TLS-based) No

SOCKS over obfs4 Obfuscated (fully encrypted)  Yes

TABLE I: List of proxy protocols tested in evaluation. ¢

single website visit typically generates dozens of individual
flows, a proxy server could still be exposed even if only
some of these flows exhibit significant delays. To understand
the possibility of observing inflated RT7T; s during a user
session, we extracted out the flows with maximum transport
delays for each website visit. The red curves in the same figure
illustrate this distribution, indicating that nearly every visit
likely includes at least one flow with a significant RTTy;r
indicative of proxying (i.e., per-website exposure).

The choice of T also affects the speed of detection. A
lower T leads to a smaller ratio of Pr(T|H;) over Pr(T|Hy),
thereby requiring more observations to maintain a similar level
of specificity (False Positive Rate) as a higher 7. Figure 8
shows the number of packets required to achieve the same
level of detection confidence (FPR=.01) for "= 15 and T =
50. We use T' = 15 for the following evaluation. Using the
conversion factor of gc from prior work [39], a 15ms network
delay roughly translates to a physical distance of 600 miles,
approximately the distance between New York and Detroit, or
San Francisco and San Diego. In other words, as long as the
proxy and the application server are separated by at least this
distance, a threshold of 7" = 15 should consistently observe
inflated RTT4;75 caused by proxy routing.

C. Evaluating RTTy;r; as a Standalone Fingerprint

We perform an in-depth evaluation of the RTTy; ¢y finger-
print using both controlled proxy traffic from our testbed and
real user network traffic sourced from an Internet provider.

1) Evaluation Setup: Since subtle differences in traffic
timing create the fingerprint, our evaluation aims for diversity
among proxy clients, servers, and application servers to cover



a wide range of proxy scenarios. We set up five geographically
distributed hosts to act as proxy clients. These include locations
in Hong Kong, China (HKG) and Chelyabinsk, Russia (CEK),
reflecting the typical user base of censorship circumvention
tools. Notably, Hong Kong, as a special administrative region,
is not subject to the same GFW restrictions as mainland
China [55]. Similarly, our Russian site is located in a data
center, which is exempted from the typical residential cen-
sorship restrictions [80]. We confirmed the absence of filter-
ing behaviors commonly associated with GFW and Russia’s
TSPU [6], [32], [55], [80], and as such our proxy flows are not
to be affected by any local censorship measures. Nonetheless,
we deployed additional clients in nearby Tokyo (TYO) and
Stockholm (ARN). We set up the fifth client in Detroit, USA.

The proxy servers routing this traffic were placed in Singa-
pore (SIN), Amsterdam (AMS), and Atlanta (ATL). Like the
clients, these servers are single-tenant bare metal machines that
are well-provisioned with processing and network resources.
This minimizes any impact on packet timings from processing
or bandwidth constraints, as each proxy client/server handles
only one website visit at a time. Using a script with Selenium,
we had each client use each of the proxy servers to visit the
top 5K domains as ranked by the CrUX report [29] (either
ranked globally or region-specific).

We selected and tested a range of popular proxy protocols
in our evaluation. Our selection is informed by discussions
in censorship forums [1], [2], targeted attacks by nation-
state censors [3], [23], [49], [74], and protocols selected for
evaluation by prior work [12], [22], [79]. These include fully
encrypted protocols like shadowsocks and VMess, and TLS-
based obfuscated proxies like VLESS and Trojan. A complete
list of the proxy protocols tested is provided in Table I.

To evaluate the specificity of the RTT,; s fingerprint and
estimate potential false positives should the fingerprint be
deployed, we partnered with a regional Internet provider, Merit
Network. Real-user traffic was mirrored from a major Point-
of-Presence of the ISP to our monitoring server, with traffic
volumes reaching up to 50Gbps. Such volume necessitates
sampling, as we perform all feature extraction and analysis
directly on Merit Network’s server due to ethics and privacy
concerns (see § A for ethical considerations regarding our
handling of user traffic). We applied a conservative sampling
rate of 1/8, based on connection 4-tuple, to minimize the effect
of packet loss and accommodate traffic spikes. On this server,
we deployed a Zeek cluster loaded with our plugin. Several
sanity checks were performed on each new flow, including
verifying a complete TCP handshake and the presence of a
PSH flag. The number of flows that passed these checks was
used as the baseline (denominator) for calculating the False
Positive Rate (FPR). This approach is consistent with prior
study [74], such that FPR metrics are directly comparable. Our
evaluation on ISP traffic extended over a 10-day period, during
which we analyzed over 102 million TCP flows after sanity
checks. We applied our exploit to both the controlled proxy
traffic and the ISP traffic using the exact same configuration
and parameters.

2) Sensitivity: We first note that, aside from obfs4, the
results across all tested proxy protocols were highly identical,
including most widely-used obfuscated proxies such as shad-
owsocks or VLESS. The fingerprinting vulnerability is largely

10

Proxy/Client DTW HKG TYO CEK ARN
Remote DNS Resolution, CrUX Global 5K

ATL 207/ .819  .233/.828 .219/.784 201 /.802  .215/.791

SIN A77/7.738 1727727 180/ .743 199 /.732 201/ .738

AMS 201/7.775  .181/.747  201/.759  .197/.711 172 7.766

Local DNS Resolution, CrUX Global 5K

ATL 372 7 .905 340/ .876 377/ .880 443 /.927 448/ .907

SIN 455/.898 313 /.842 315/ .851 438 /.892 424/ 880

AMS 435 7.905 337/.839 328 /.856  .293/.854 339/ .877
Remote DNS Resolution, CrUX Regional 5K

ATL -/ - 186 /.712 193 /.765 410/ .879 364/ .851

SIN -/ - 147 /7.719  .133/.748 330/ .851 313/ .842

AMS -/ - 176 7 .658 190 /.722 352 /.827 221/ .808

TABLE II: Evaluation results on proxy traffic. Results are shown for
both per-flow detection rate / per-website detection rate. Threshold 7
selected for FPR = .01

protocol-agnostic, as it does not target specific obfuscations
but rather exploits an inherent characteristic of proxying. Most
proxy protocols, including those with sophisticated obfusca-
tions, do not by design alter packet timings. Even in protocols
that incorporate packet-level padding, the padding is appended
only to application-layer payloads, without sending dummy
packets when there’s no data to send. Obfs4, which was
designed to obfuscate packet inter-arrival times, is an exception
and is further discussed in § VII-A.

The decision threshold in hypothesis testing, 7, balances
sensitivity against specificity. Raising n allows us to lower
false positives to an arbitrary level, albeit at the cost of
missing detections for many proxy flows that do not reach the
decision threshold before they terminate. Selecting a threshold
comes down to maximizing the detection of proxy traffic while
maintaining a tolerable level of blocking legitimate traffic —
a censor’s operational constraint. As part of our evaluation,
we measured the fingerprint’s sensitivity on controlled proxy
traffic while fixing an upper bound FPR at .01 evaluated on ISP
traffic. We further discuss false positives in the next section.

Table II shows the results of this case study. Looking at
the results for each proxy location in the top section of the
table, we note that the detection rates across all client locations
are largely consistent. This matches our expectation, as the
RTTy ¢y fingerprint is generated by the routing between the
proxy and application server, rendering the client’s proximity
to the proxy irrelevant. The detection rates at the per-flow
level are only moderately effective, with approximately 20%
of flows correctly flagged. This can be largely attributed to
the connectivity provided by CDNs, which to some extent
offsets the additional delays caused by proxy routing. Most
of the proxy flows that we fail to detect are requests to static
content cached at CDNs or advertising and tracking, typically
occurring within 5ms of our proxy locations, as measured in
Figure 8. We highlight that our evaluation uses traffic to top
domains instead of a random sample of websites to simulate
traffic that users are most likely to route through proxies. But
since top domains are commonly served by CDNs, our findings
likely represent a lower bound of the fingerprint’s sensitivity.
Still, even for top domains, the implication from such per-flow
exposure becomes even more alarming when aggregated by
website visits: at the per-website level, detection rates exceed
70% across all client and proxy locations. This means that the



Category  Identifier Percentage of All Positives (%)
Rmt Port 443 57.88
993 33.29
80 4.47
5222 0.43
9001 0.30
SNI apple.imap.mail.*.com 14.89
imap.*.com 532
android.imap.mail.*.com 291
imap.mail.*.com 2.90
* *health.com 2.13
(empty) / Not applicable 17.47

TABLE III: Distribution of Detection Positives by Remote Port and
SNI. Note: “*’ in SNIs masks service names, not wildcards.

adversary can almost guarantee that the client and server IPs
of proxy flows will be flagged after just a few website visits.

Our results also highlight the increased susceptibility of
proxy traffic to the fingerprinting exploit under certain con-
figurations. Specifically, most obfuscated proxy tools expose
a SOCKS interface for local applications, allowing the user
to supply either a destination IP (DNS resolved locally) or
a domain name (resolving DNS at the proxy). Users who
resolve DNS locally are considerably more susceptible to the
exploit, with per-flow rates approximately doubling across all
client/proxy locations. When DNS is resolved at the proxy, it
uses nearby DNS servers to retrieve IPs that are optimally
reachable from the proxy. Local DNS resolution, however,
may direct the proxy to farther endpoints, particularly back
towards the client’s region, thus increasing the distance and
consequently the discrepancy in RTTs.

Lastly, we substituted the global site list with region-
specific lists (CrUX-China for clients in Hong Kong and
Tokyo, and CrUX-Russia for Russian and European clients).
For the Russian list, this has shown to significantly increase
the sensitivity of the fingerprint. Regional lists, more tailored
to local browsing behaviors, often include sites less likely to be
hosted on global networks (e.g., local education, government,
finance) [60] and thus may exhibit larger RTT discrepancies. In
the following mitigation section, we will discuss implications
of our results on proxy configurations, such as using routing
rules to ensure local traffic remains local.

3) Specificity: Analysis on collateral damage is crucial in
both the design of circumvention protocols and in envisioning
potential fingerprinting attacks against them. Given that Merit
Network operates in a region with minimal network censorship,
we conservatively consider all detections from the ISP traffic as
false positives, which we upper-bound at .01 for our evaluation.

We note the false positives are not evenly distributed.
Table III groups the top heavy hitters either by remote port
or by SNI. Notably, traffic to port 993, commonly used for
IMAP/SSL and comprising less than 1% of the total traffic,
accounts for nearly a third of all potential false positives.
Similarly, results aggregated by SNIs also suggest that IMAP
traffic frequently results in what we term categorical false
positives, on which we provide further analysis in Appendix F.
We note that the assumption underlying our correlation-based
ARTT estimation is a RESTful request/response communi-
cation pattern, which might not perform well on traffic that
deviates from this pattern. Implementing a pre-filter to whitelist
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Fig. 9: Per-flow detection and performance of potential mitiga-
tions. mux=N combines every N logical streams into one flow.c

IMAP traffic further reduces the FPR by one third.

This level of per-flow FPR (0.6%-0.7%) is lower than that
reported in fingerprinting attacks discussed in prior work [68],
and is on par with the estimated FPR of attacks deployed by
GFW against fully encrypted proxies [74]. Nonetheless, this
FPR still implies a non-negligible amount of collateral damage
— especially considering the generally low base-rate of circum-
vention traffic. Yet, the standalone fingerprint RTT4;¢s can
be complemented with protocol-specific fingerprinting attacks,
and can additionally be applied on a per-host basis by accumu-
lating per-flow RTTy; ¢ fingerprints over time for each desti-
nation host. Prior work has shown that, even with looser clas-
sifiers, host-based analysis can significantly reduce false pos-
itives — even to zero — by aggregating multiple flow-level ob-
servations [67]. As such, we believe that the evaluated vulner-
ability presents a realistic threat that necessitates vigilance and
proactive countermeasures from the circumvention community.

VII. DISCUSSION

Previous sections demonstrate the practicality of exploiting
cross-layer RTT discrepancies to fingerprint proxy traffic.
This poses a significant threat to the availability of proxies,
particularly obfuscated ones that are essential for facilitating
information access across the world’s most restricted networks.

Exploiting the RTTy;r; fingerprint requires only passive
monitoring and limited stateful connection tracking, simplify-
ing its deployment and making it within the reach of virtu-
ally any network operator. Unlike previous attacks targeting
specific proxy or obfuscation protocols [24]-[26], [68], this
timing-based fingerprint is an inherent characteristic of proxy
routing. The protocol-agnostic aspect of the fingerprint broad-
ens its applicability, which in turn heightens the severity of its
implications. More, the fact that the exploit makes on-the-fly
detections provides censors with more options for intervention.
In cases where proxies are hosted on shared IPs (e.g., CDN),
detecting proxy mid-flow allows flow-level actions such as
resetting or throttling the violating flow, when traditional
blanket IP blacklisting could incur a higher cost for censors.

Despite the demonstrated practicality, we advise caution in
interpreting our results: our real-world evaluation suggests a
low, but non-trivial rate of false positives, including categorical
false positives, which would compel any censor to carefully
weigh the deployment costs. We posit that a potential adversary
is more likely to use the RTT; ¢y fingerprint in combination



with existing protocol-specific attacks, which are orthogonal
and complementary to our approach, rather than as a stan-
dalone method. Also, the nature of the fingerprint — relying
on subtle patterns in packet timings — means that its efficacy
could be affected by unpredictable network changes along the
path. Yet, it would not be a sound strategy to depend solely
on the unreliability of the network as a defense against such
timing-based fingerprints. The responsibility therefore falls on
proxies to implement proactive countermeasures. Below, we
discuss a few potential mitigation approaches and, for some,
provide a preliminary evaluation on their efficacy.

A. Potential Mitigation Approaches

Proxy Configuration Our results suggest that the
RTT4 ¢y fingerprint is independent of the client’s location.
Still, certain configurations on the client side can reduce
the susceptibility to some extent. For example, domain name
resolution should be handled at the proxy to prefer IPs that are
optimally reachable from the proxy, reducing the additional
delay introduced by proxy routing. Additionally, specific rout-
ing rules should be implemented on the client to ensure that
local traffic — traffic to services located on the same side of
the firewall as the client — remains local and is not routed
through the proxy. Instances of categorical false positives
are particularly relevant not only to adversaries implementing
the attack but also to proxy users who might leverage these
false positives to their advantage. For example, proxy users
configuring obfuscated proxies with a decoy domain [34],
[76] should consider selecting a domain that naturally exhibits
inflated or unpredictable RTTy; s, such as IMAP services, to
increase the uncertainty of the fingerprinting attack.

Obfs4 The evaluated fingerprint is based on timing pat-
terns introduced by proxy routing. Obfs4/scramblesuit [4], [73]
is a well-known protocol specifically designed to obfuscate
packet lengths and inter-arrival times through pseudo-random
padding and delays. Figure 9 illustrates the effect of incor-
porating obfs4 into a proxy setup compared to the baseline.
We find incorporating obfs4 degrades the performance but
also increases the traffic’s susceptibility to the fingerprint.
This somewhat counter-intuitive outcome can be attributed
to obfs4’s method of randomizing inter-arrival timings across
packets: it injects delays following the arrival of application-
layer data at the sending buffer. As such, application-layer
transactions always appear to have a larger RTT after obfs4’s
obfuscation, widening the discrepancies in cross-layer RTTs.

Delayed ACK The RTTy; sy fingerprint can be viewed as
the result of a proxy server prematurely acknowledging data
packets that are, in fact, still being transmitted to the appli-
cation server, i.e., ACKs are being sent “too early”. One way
to reduce the RTT discrepancy is through the TCP Delayed
Acknowledgment mechanism [9], which provides a native way
to delay the transmission of ACK packets. This feature is
typically enabled by default on Linux systems with a delay
timer of 40ms, so that ACKs can ideally be sent alongside
data-carrying packets to minimize overheads. By adjusting the
delay timer to 500ms (the maximum allowed by RFC [7]),
we find a significant reduction in the number of detections
by over half compared to the baseline, as shown in Figure 9.
This method, however, does result in performance trade-offs.
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Moreover, it is unclear whether having an atypical ACK delay
timeout might itself become an exploitable fingerprint.

Multiplexing Traffic analysis attacks will always have a
range of uncertainty leading to false positives, and the goal of
obfuscation is to further increase this uncertainty [73]. One
way to introduce additional entropy into packet timings is
through connection multiplexing, which interleaves packets
from multiple coexisting logical streams into a single network
flow, obfuscating patterns in packet size, timing, and direction.
The variability in the number and type of the logical streams
(i.e., interactive or bulk transfer) introduces additional unpre-
dictability. Prior work has shown that connection multiplexing
could be an effective defense against fingerprinting over packet
sizes [79]. Similarly, we also find that even a basic form of
multiplexing — combining every two logical streams into one
network flow — lowers detections both by numbers and rates,
as shown in Figure 9.

However, multiplexing might also introduce new types of
fingerprints. For one, multiplexed flows tend to live longer
and carry more packets compared to non-multiplexed flows.
For example, the median number of request-response pairs in
multiplexed flows is higher than over 97% of all flows observed
from the ISP, which already makes them outliers and more con-
spicuous. But even in comparisons with this narrow 3%, mul-
tiplexed proxy flows could still be differentiated: since multi-
plexing interleaves packets from different streams, our estima-
tion of application-layer RTT using correlation may not con-
verge, adding a layer of variability which, paradoxically, might
itself be fingerprintable. As shown in Figure 13 in Appendix,
the sequence of estimated RT7T;¢y from multiplexed proxy
flows exhibit wider confidence intervals compared to that of
ISP traffic. We therefore advise caution in adopting multiplex-
ing as the only mitigation strategy without further research.

Traffic Splitting Similar to connection multiplexing, traf-
fic splitting provides an alternative or complementary approach
to obfuscation. Traffic splitting decouples the upstream and
downstream of a traffic flow, reducing the information exposed
to an adversary with limited network perspective [11], [69].
Specifically, in the case of the RTTgyyy fingerprint, such
decoupling distorts the timing pattern our fingerprinting attack
relies on, effectively nullifying cross-correlation as a method
for estimating application-layer RTTs. An example implemen-
tation of this strategy is the SplitHTTP transport developed
by XTLS [44]. While not a proxy protocol itself, SplitHTTP
can be integrated with existing protocols like shadowsocks
in a proxy setup. When splitting upstream and downstream
into separate network flows, the RTTy; ¢y exploit was unable
to make any detections, as no single flow contains paired
request&response that can be used for cross-correlating RTTs.
Further research is needed to understand whether a sophisti-
cated adversary could perform cross-flow correlation based on
host IP addresses [69].

Application-independent Traffic Scheduler It might
seem surprising that obfs4, a protocol designed to obscure
packet timing, only seems to exacerbate the issue rather than
mitigate it. In essence, this is because obfs4 implements
timing obfuscation by randomly delaying the transmission of
application-layer data already within the sending buffer: when
the application has data to send, obfs4 sends the data possibly
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carrying and TCP control packets of the encapsulated flow exhibit
cross-layer RTT discrepancies. ¢

with some delay; when the application is quiet — or, as in our
case, if data is still in transit — obfs4 remains quiet as well.
This observation is analogous to previous research noting the
inability of padding-based size obfuscations in mitigating de-
tection based on packet sizes that are conspicuously large [79].

The current generation of obfuscation schemes operates
under an “application-dependent” model: they pad or delay
data as it moves from the application layer to the obfuscation
layer. Their capability to obfuscate is limited to one direction
only — larger size, more delay [17], [21]. While acceptable
for certain scenarios, this limitation becomes critical when
the traffic to be obfuscated inherently involves longer RTTs
or larger sizes than what is considered “normal”, as in our
case. A more principled obfuscation framework must operate
independently of application data, centered around a traffic
scheduler that dictates the timing and volume of traffic ac-
cording to a predefined schedule, regardless of the underlying
application-layer traffic pattern. Such a framework would re-
quire an overhaul of existing obfuscation implementations. The
focus of the obfuscation layer should shift from responding
to incoming application data, to adhering to the demands of
the traffic schedule, i.e., from being triggered by input to
aligning with the required output. For example, suppose the
traffic scheduler demands a packet to be sent at the moment,
but no application data is ready. In that case, the obfuscation
layer should still send a padding-only dummy packet, thereby
capable of simulating both larger and smaller RTTs [17], [21].

VLESS is in the process of revamping their obfuscation
implementation to provide the flexibility necessary to support
an application-independent traffic scheduler [77]. A traffic
schedule that demands at least one send () operation every
transport-layer RTT seconds would fundamentally eliminate
the cross-layer RTT discrepancy pattern exploited in this
work. Such an application-independent scheduler, however,
introduces new questions — defining what constitutes a
“legitimate” shape for proxies to simulate, evaluating the
performance implication of such scheduling, and assessing
whether a widely adopted schedule might itself converge into
a pattern presenting new fingerprinting vulnerability — all
remain open questions for future research.
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B. Extending to Network-layer VPNs

Our work focuses on transport-layer obfuscated proxies
used for censorship circumvention. However, the underlying
principles of our approach — sessions spanning different dis-
tances and reflecting in cross-layer RTT discrepancies — are
applicable to network-layer VPNs as well when used without
traffic multiplexing. Figure 10 illustrates the sequence timing
diagram for a TCP-based VPN connection, showing how
RTTy;zy is defined in this scenario and how the same exploit
can be directly applied (for UDP-based VPNs, an additional
step is required to estimate the transport RTT of the tunnel).

To demonstrate the potential applicability to network-layer
VPNs, we conduct a supplementary experiment with the three
popular VPN protocols: OpenVPN (TCP), WireGuard, and
OpenConnect, which are generally used across VPN products,
either commercial or otherwise. We target the index pages
of the top 1K CrUX domains (without redirects), applying
the RTTy;r; exploit using the same parameters from § VL
(For WireGuard, which operates over UDP, the transport-layer
RTTs are estimated from the initial handshake.) Figure 11
shows the detection rates across the VPN protocols, with shad-
owsocks included for comparison. The exploit was effective
across all protocols, with detection rates approaching theoret-
ical expectations (the C-CDF of RTT), as these protocols do
not alter traffic timing. Notably, VPNs showed slightly higher
detection rates than shadowsocks, which can be attributed
to the nature of network-layer tunneling tools where not
only data-carrying (e.g., clienthello, serverhello) but also TCP
control packets (e.g., SYN, ACK) of the encapsulated end-to-
end flow can be used to identify cross-layer RTT discrepancies,
as illustrated in Figure 10.

However, extending the exploit to network-layer VPNs in
practice might not be feasible due to most VPNs configuring
themselves as the “default-gateway” on a user’s device, effec-
tively multiplexing multiple logical streams into one network
flow. As previously discussed, this complicates the cross-
correlation of application-layer RTTs and, therefore, reduces
detection rates (as highlighted in Figure 11 for OpenVPN with
two coexisting flows). Yet, it’s important to note that most
VPN protocols lack any form of obfuscation to begin with and
can be trivially detected by protocol parsers. Even VPNs that
claim to be “obfuscated” have been shown to be vulnerable to
more straightforward fingerprinting attacks that are orthogonal
to packet timing, as demonstrated by prior work [30], [81].



VIII. CONCLUSION

In this paper, we examined the potential for exploiting a

timing-based fingerprint to detect traffic from obfuscated prox-
ies. This fingerprint is created by the inherent misalignment
between transport- and application-layer sessions in proxy
routing, which is reflected in the discrepancies between trans-
port and application RTTs. We detailed a possible exploit by
an on-path censor using this fingerprint to detect proxy traffic
and demonstrated its general feasibility. We hope our study
draws the attention of the circumvention community to packet
timing as an area of concern and leads to the development of
more sustainable countermeasures.
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APPENDIX
A. Ethics

Foremost among the ethical concerns associated with this
work relates to the handling of real-user traffic, which we used
to empirically evaluate the specificity of the RTTy; sy finger-
print. While our project was reviewed by our university’s IRB
and received a “Not Regulated” determination, we still took
certain procedural measures to minimize potential risks. We
note that all the processing of live user traffic was performed
on a dedicated monitoring server managed by Merit Network,
which has well-established ethics and privacy protocols for
such projects. The monitoring server received only mirrored
copies of the traffic, so that the actual routing and service
quality of end-users remained unaffected. Furthermore, no raw
traffic data was recorded. Instead, we used Zeek with our
plugin to parse packets and extract features: server port, TLS
SNI (if applicable), and the sequence of packet timestamps,
directions, and sizes. We emphasize that no packet payload
was ever stored or manually inspected by humans.

The potential for exploitation by real-world adversaries is
a risk inherent in any security-focused study. We have initiated
contact with developers of obfuscated proxies to disclose our
findings. Our decision to release Zeek plugin was made after
careful consideration. We recognize that withholding the code

Symbol Definition

Agirect difference between client transport-layer RTT
and application layer RTT in direct connection

Aprozy difference between client transport-layer RTT
and application layer RTT in proxy connection

TRTTaAp transport layer round trip time between A and
B

ARTTap application layer round trip time between A
and B

RTTq;p¢ for a specific observation in a flow, defined as
ARRT — TRTT

w number of request response pairs included in
correlation

S shift/delay in milliseconds applied to outgoing
series in cross-correlation

T threshold over which we consider an RTTy; ¢ ¢
inflated

Y; random variable for the ith observation of a
flow, defined as in equation (1)

Hy Null Hypothesis: the connection is direct

H, Alternative Hypothesis: the apparent transport
layer is a proxy

6o prior conditional probability for the Null Hy-
pothesis, as defined in equation (2)

01 prior conditional probability for the Alternative

Hypothesis, as defined in equation (2)

TABLE IV: List of Symbols with Definitions

would likely be futile in preventing well-resourced adversaries
like nation-state censors from replicating the attack indepen-
dently. Instead, we hope that open-sourcing the plugin could
allow protocol developers to observe the fingerprint in action
and facilitate the development and testing of countermeasures.

B. Notation & Symbols

Table IV defines the notation and symbols used in the
paper.

C. Dependence between RIT; s observations

Previously, we assumed that sequential RTT ;5 observa-
tions, conditional on whether a connection is direct or proxied,
would independently exhibit similar probabilities of being
either inflated or matched. This assumption of independence,
however, often does not align with real-world conditions.
Factors like transient network conditions, server loads, or
congestion can affect consecutive measurements under both
hypotheses. We note that in our approach, each correlation
window is determined by the number of request-response
pairs, rather than a fixed number of packets. This introduces
variability in both the timing and the number of packets
contained in each observation, potentially reducing temporal
correlations (compared to fixed sampling intervals).

However, another form of dependence arises specifically
under the proxy scenario: if the additional path latency
TRITTpw consistently exceeds the threshold 7', then an
inflated RTTy;5y is likely not a one-off occurrence but a per-
sistent feature throughout the session. In this case, dependence
results to positive correlation among consecutive observations,
which invalidates the last equality in (3). The computational
complexity and data requirements to reliably estimate the full
chain joint probability, however, are not feasible. For this, we
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awaits next!
packets

Non-proxy /
Unknown

Fig. 12: Workflow. The monitoring continues until either A(Y) > 7
or the connection terminates. ¢

ASN Percentage Organization
13335 5.94% Cloudflare
15169 4.24% Google
16509 3.20% Amazon
54113 2.04% Fastly
16625 1.03% Akamai
60068 0.97% cdn77
20940 0.90% Akamai
32934 0.83% Facebook
396982 0.64% Google
62713 0.54% PubMatic

TABLE V: Top server ASNs for flows exhibiting low transport-delay
(< 5ms) from proxy locations.o

define the dependency structure as a direct dependence on the
immediately preceding observation (i.e., a first-order Markov
chain). Then, the probability priors to be estimated are:

PrlY; =0|Y;_y = 0,Hy] Pr[Y; =1|Yi_, =0, H]

PrlY; =0|Y;_1 =1,Hy| Pr[Y;=1|Y,_1 =1,Hy| (4)

and similarly for H;. We estimate the transition probabilities
in a similar way using empirical data, but instead of indepen-
dently analyzing each application-layer request-response pairs,
we aggregate them by connections they belong to and learn the
transition probabilities from consecutive pairs within the same
connection. Then, the calculation of the cumulative likelihood
ratio is updated as follows:

Ay) = DY) PrlYy | i) ﬁ Pr(Y,, | Y, 1, Hi]
PI‘[YlHo} PI‘[Yl | Ho] foter Pr[Yn | Ynfl,Ho]

®)

D. Distribution of Transport Delay from Proxy Locations

Table V shows the top server ASNs for flows exhibiting low
(< bms) transport delay. We note that the prevalence of CDNs
mitigates the attack to some extent, as the connectivity they
provide reduces the additional delay caused by proxy routing.

E. The Effect of Multiplexing on Estimating RTT ;s

While connection multiplexing has shown to be able to
lower the detection rates, it might also introduce new types
of fingerprints. Figure 13 shows the normalized width of
confidence intervals of RTTy;ry for both the ISP traffic and
the multiplexed proxy traffic. We note that the variability
introduced by connection multiplexing could itself hold dis-
tinguishing power.
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Fig. 13: Comparing variability in RT7Ty;ss for ISP and multi-
plexed proxy flows. We use the ratio of the width of the confidence
interval (confidence level = .95) to the mean as a normalized measure
for variability.o

F. Categorical False Positives with IMAP Traffic

In our evaluation, we found that IMAP traffic could po-
tentially become categorical false positives if the RT Ty
fingerprint were to be deployed. To understand why IMAP traf-
fic disproportionately matches with the fingerprint, although
privacy constraints prevent further inspection into false positive
ISP flows, we were able to generate similar traffic from our
own devices with the same heavy-hitter SNIs to three IMAP
email service providers. We found that for all three services,
actions such as fetching mailbox updates consistently result in
delays that substantially exceed those at the transport layer,
which explains why IMAP traffic emerged as false positives
in our evaluation. See Table VI for IMAP examples.



Time (s) tRTT (ms) aRTT (ms) Decrypted & Decoded Contents Comments

Provider 1 IMAP
0.00 - - TCP SYN -
0.03 - - TCP SYN/ACK -
0.04 27 30 Client Hello (SNI=apple.imap.mail.*.com) -
0.07 - - Server Hello -
0.11 - - Response: * OK Welcome! -
0.14 51 51 Request: 1 CAPABILITY IMAP Client Capability Request
0.20 - - Response: * CAPABILITY IMAP Server Capability Response
043 - - Response: 1 OK CAPABILITY completed Completed Capability Request
043 28 378 Request: 2 AUTHENTICATE XOAUTH2 Client Authentication Request
0.81 - - Response: 2 OK [COMPRESS=DEFLATE] Authentication Response
0.91 28 48 Request: 3 ID ("name” “iPhone Mail” "version” ...) Client ID Request
0.96 - - Response: * ID (version” ”1.1.22274” "host” ...) Server ID Response
1.20 - - Response: 3 OK ID completed Completed ID Request
1.32 67 297 Request: 4 COMPRESS DEFLATE Deflate Compression Request
1.61 - - Response: 4 OK COMPRESS DEFLATE active Deflate Compression Response
1.72 28 501 Request: 5 LIST »” ”*” RETURN (SPECIAL-USE STATUS (UNSEEN))  Mailbox Request
222 - - Response: * LIST (Archive HasNoChildren) ”/” ”Archive” Mailbox Response

Provider 2 IMAP
0.00 - - TCP SYN -
0.03 - - TCP SYN/ACK -
0.08 32 32 Client Hello (SNI=imap.*.com) -
0.11 - - Server Hello -
0.15 - - Response: * OK Welcome! -
0.26 71 71 Request: 1 CAPABILITY IMAP Client Capability Request
0.33 - - Response: * CAPABILITY IMAP Server Capability Response
0.60 - - Response: 1 OK CAPABILITY completed Completed Capability Request
0.72 73 431 Request: 2 AUTHENTICATE XOAUTH2 Client Authentication Request
1.15 - - Response: 2 OK [COMPRESS=DEFLATE] Authentication Response
1.16 33 67 Request: 3 ID ("name” “iPhone Mail” "version” ...) Client ID Request
1.23 - - Response: * ID (“version” ”1.1.22274” "host” ...) Server ID Response
1.48 - - Response: 3 OK ID completed Completed ID Request
1.50 71 308 Request: 4 COMPRESS DEFLATE Deflate Compression Request
1.80 - - Response: 4 OK COMPRESS DEFLATE active Deflate Compression Response
1.82 32 626 Request: 5 LIST ”” ”*” RETURN (SPECIAL-USE STATUS (UNSEEN)) Mailbox Request
245 - - Response: * LIST (Archive HasNoChildren) /" ”Archive” Mailbox Response

Provider 3 IMAP
0.00 - - TCP SYN -
0.03 - - TCP SYN/ACK -
0.04 20 20 Client Hello (SNI=imap.*.com) -
0.06 - - Server Hello -
0.11 - - Response: * OK * ready for requests from -
0.15 23 46 Request: 1 CAPABILITY IMAP Client Capability Request
0.20 - - Response: * CAPABILITY IMAP Server Capability Response
0.21 24 480 Request: 2 AUTHENTICATE XOAUTH2 Client Authentication Request
0.69 - - Response: * OK authenticated (Success) Authentication Response
0.74 19 180 Request: 3 CAPABILITY IMAP Client Capability Request
0.92 - - Response: * CAPABILITY 3 OK Success IMAP Server Capability Response
0.95 20 182 Request: 4 ID ("name” “iPhone Mail” “version™ ...) Client ID Request
1.13 - - Response: * ID (“name” ”*” “vendor” "*” ...) Server ID Response
1.15 21 181 Request: 5 COMPRESS DEFLATE Deflate Compression Request
1.33 - - Response: 5 OK Success Deflate Compression Response
1.35 19 441 Request: 6 LIST »” *” RETURN (SPECIAL-USE STATUS (UNSEEN)) Mailbox Request
1.79 - - Response: * LIST (HasNoChildren) ”/” "Messages” Mailbox Response

TABLE VI: Interaction with IMAP servers for providers 1, 2, and 3. For all three services, actions such as fetching mailbox updates consistently
result in delays that substantially exceed those at the transport layer. Note that it is hard to know precisely why IMAP leads to such delays
without visibility into the functioning of the back-end servers. However, this behavior seems to be associated with only IMAP (see Table III)
as no other protocol flows within the ISP traffic qualified to consistently show a significant delay difference.
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