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other important aspects that could be revealed with richer, natural stimuli. Here, we com-
bine single-cell recordings of macaque V1 and V4 responses to natural images, and deep
learning models trained on multiple computer vision tasks. We found that V4 responses
are best predicted by representations that are critical to solve semantic tasks like object
and scene classification. Moreover, our results suggest that that V4’s affinity to different
2D and 3D stimulus properties likely stems from its involvement in semantic processing.
Overall, our diverse task-driven modeling approach enriches our understanding of the
functional role of visual areas in the brain.

Introduction

What is the functional role of area V4 in primate visual information processing? One line of
evidence suggests that V4 is tuned in a high-dimensional space that facilitates the joint encod-
ing of shape and surface characteristics of object parts [1, 2] (e.g. sensitivity to luminance [3],
texture [4] and chromatic contrasts [5], blurry boundaries [6], and luminance gradients [7]).
Although very insightful, these experiments are constrained to a relatively small number of
stimulus feature directions that potentially miss other important aspects of V4 function that
could be unlocked with richer natural stimuli. Recent work used a transfer learning approach
to infer the functional role of different brain areas. The features extracted by convolutional
neural networks (CNNs) pre-trained on object classification transfer well to the task of predict-
ing V4 responses to natural stimuli [8-11]. This result has been interpreted as evidence that
object recognition is one of the major goals of V4 processing. However, a natural question
arises: Do other computational goals beyond object classification explain V4 responses equally
well or even better? Recent work using fMRI in humans has attempted to assign different func-
tional goals to different regions of interest in the brain [12-14], but it remains unclear whether
single neurons express the same patterns of selectivity as the highly aggregated, indirect {MRI
signal.

Inferring the functional role of a brain area using transfer learning is a promising avenue,
but it is complicated by the fact that transfer performance is not only determined by the pre-
training task itself, but also by the size of the dataset used for pre-training, the network archi-
tecture and other factors. A recent development in the computer vision community could be
very promising for the neuroscience community, because it mitigates some of these problems:
The taskonomy project [15] released a dataset that consists of 4.5 million images, ground truth
labels for 23 different visual tasks for each image, and pre-trained convolutional neural net-
works with the same architecture (ResNet50) on each task.

We employed the taskonomy project to investigate how well the representations learned by
training on each of these visual tasks predict single-cell responses to natural images recorded
in macaque areas V4 and V1 (Fig 1). Using this approach, we can isolate the contribution of
different pre-training tasks on how well the learned representations match those of areas V1
and V4 without the results being confounded by different network architectures or datasets
across tasks. We found that a diverse set of tasks explained V1 responses almost equally well,
while scene and object classification tasks provided better accounts for V4 responses than all
the alternative tasks tested. We further built models that jointly read from pairs of task repre-
sentations and found that 2D, 3D, and geometric types of tasks capture additional nonlineari-
ties beyond those captured by individual semantic tasks, consistent with descriptions of V4’s
heterogeneous tuning observed by electrophysiologists [1, 16]. However, combining the fea-
tures of both object and scene classification was sufficient to obtain peak V4 performance,
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Fig 1. Experimental paradigm and diverse task modeling of neural responses. A, natural images were shown in sequence to two fixating rhesus
macaques for 120ms while neural activity was recorded with a laminar silicon probe. Following careful spike-sorting, spike counts were extracted in time
windows 40-160ms (V1) and 70-160ms (V4) after image onset. The screen covered ~ 17° x 30" of visual field with a resolution of ~63px/°. For each area,
we showed approx. 10k unique images once (train set). A random set of 75 images, identical for both areas, was repeated 40-55 times (test set). B, For V1
recordings (left), the fixation spot was centered on the screen. Square, gray-scale, 420px ImageNet images (6.7°) were placed at the center of each session’s
population receptive field (size: ~ 2°, eccentricities: 2° — 3°). In the V4 recordings sessions (right), the fixation spot was accommodated to bring the
population receptive field as close to the center of the screen as possible (size: ~8°, eccentricities: 8° — 12°). All images were up-sampled and cropped to
cover the whole screen. We isolated 458 (V1) and 255 (V4) neurons from 32 sessions of each area. C, Predictive model. Cropped input images covering 2.7°
(V1) and 12° (V4) were resized and forwarded through the first [ layers of a pretrained convolutional neural network (CNN) to produce features that are
then batch-normalized and shared by all neurons. The input scale factor was a hyper-parameter, cross-validated on a held-out subset of the train set
(validation set). The point readout [22] extracts features at a single spatial location and computes a regularized linear mapping to the neural responses for
each neuron separately (see Methods). The readout and batch-normalization parameters were jointly learned to minimize the Poisson loss between
predicted and observed response rates. D, taskonomy networks used for feature extraction. We used the pretrained encoder CNNs of these tasks, which
share a Resnet50 architecture [20], to build our models and compare their predictive abilities on V1 and V4.

https://doi.org/10.1371/journal.pcbi.1012056.9001
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indicating that multiple semantic goals can induce complementary intermediate representa-
tions that are predictive of the additional nonlinearities contributed by non-semantic tasks.
Overall, our results solidify V4’s semantic functional role and explain that V4’s affinity to
other non-semantic tasks can result from semantic computational goals.

Results

We collected datasets of well-isolated single-cell responses from V4 and primary visual cortex
(V1) for comparison. We measured the spiking activity of individual neurons from two awake,
fixating rhesus macaques (M1, M2) using a 32-channel linear array spanning multiple cortical
layers [17, 18], in response to tens of thousands of grayscale natural images presented in
sequence over many trials (Fig 1A). These images were sampled uniformly from the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC-2012) dataset [19] and displayed for 120
ms each without interleaving blanks (see Methods). Most of these images were shown only
once (train-set) while a selection of 75 images was repeated multiple times (test-set). We iso-
lated 458 V1 neurons from 15 (M1) and 17 (M2) sessions at eccentricities 2-3°; and 255 V4
neurons from 11 (M1) and 21 (M2) sessions at eccentricities 8—12°. For the V1 sessions, we
centered the stimuli on the population receptive field of the neurons. For the V4 sessions, the
stimuli covered the entire screen. We obtained image-response pairs by extracting spike
counts in the windows 40-160 ms (V1) and 70-160 ms (V4) after image onset (Fig 1A, 1B and
1C), which corresponded to the typical response latency of the neurons in the respective brain
area. We computed the stimulus-driven variability of spike counts using the repeated trial pre-
sentations on the test-set (see Methods) and found that the mean [+ s.d.] fraction of explain-
able variance of these two areas was not significantly different (0.31 + 0.18 (V1) and

0.32 + 0.19 (V4); two-sided t-test, #(711) = —1.152, p = 0.2). Following previous work [18], we
excluded unreliable neurons from the performance evaluations where the fraction of explain-
able variance was lower than 0.15, yielding 202 (V4) and 342 (V1) neurons (S2(A) Fig).

Task-driven modelling of neural responses

We built upon the taskonomy project [15], a recent large-scale effort of the computer vision
community, in which CNN architectures consisting of encoder-decoder parts were trained to
solve various visual tasks. The encoder provides a low-dimensional representation of the input
images from which each task can be (nonlinearly) read-out by the decoder. We considered the
encoder network of 23 of these tasks, which have been previously categorized into semantic,
geometric, 2D, and 3D groups (listed in Fig 1D) based on hierarchical clustering of their
encoder representations [15]. We chose these networks because of two key features: 1) all of
them were trained on the same set of images, and 2) all encoder networks have the same archi-
tecture (ResNet-50 [20]). Any differences we observe across the learned representations are
thus caused by the training objective targeted to solve a specific task.

To quantify the match between the representations extracted by intermediate layers of the
taskonomy networks and V4 representations, we used these networks to built task-driven
models [18, 21] of single-neuron recordings in response to natural stimuli: We presented the
images that were shown to the monkey to each pretrained network, then extracted the result-
ing output feature maps from several intermediate layers and fed these to a regularized linear-
nonlinear (LN) readout that was specific to each recorded neuron (Fig 1C). This readout acted
on the features at a single spatial location [22], preventing any additional nonlinear spatial
integration beyond what has been computed by the task-trained network. For each taskonomy
network, we built one model for each readout layer and optimized hyperparameters (e.g. regu-
larization penalty) for each model. To ensure that the resulting correspondence between
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variances).

https://doi.org/10.1371/journal.pcbi.1012056.9002

network layers and neural data is not merely driven by the confound between growing recep-
tive field sizes and feature complexity along the network’s depth, we optimized the resolution
(scale) of the input images on held-out data from the training set (S1 Fig). This prevented us
from assigning V4 responses to a layer simply because of the matching receptive field coverage
that could result from an arbitrary input resolution, but instead allowed us to find for each
model the layer with the best aligned nonlinearities to the data.

V1 is better predicted by task representations than V4

We evaluated the predictive performance of our fitted task-driven models with the correlation
between model predictions and the average response across trials. When accounting for input
scale (S1 Fig), we found that performance on V4 peaks at a higher layer than V1 (Fig 2A and
2B, and S3 Fig), a signature of hierarchical correspondence and increased complexity of V4
over V1 found in anatomical and latency studies [23]. This functional hierarchy was present in
most cases, but could not be explained by the architecture alone: V1 and V4 were assigned to
the same layer for networks trained on 2D edges, jigsaw, vanishing points, and the untrained
baseline (a network with matching architecture and random weights). However, for several 2D
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tasks, the hierarchical assignment was not so strict as higher layers in the network retained the
high predictive power from lower layers(S3 Fig).

After determining the optimal layer, scale, and regularization parameters for each brain
area and task network on a validation set, we found that V1 responses were better predicted
than V4’s (Fig 2C). The top taskonomy-based model performances (test correlation to average
over trails [+ standard error of the mean across seeds]) were 0.690 + 0.0003 (V1) and
0.412 + 0.0014 (V4). Equivalent results in terms of fraction of explainable variance explained
(Methods, [18]) were 0.496 + 0.0005 (V1) and 0.125 + 0.0016 (V4) (S5 Fig). This performance
discrepancy between V1 and V4 could be explained only partly by differences in selectivity—
measured with the selectivity index (SI) [24] —between V1 and V4 responses (mean SI + s.d. of
V1:0.40 +0.23, and V4: 0.56 + 0.26; two-sided t-test: #(542) = —6.728, p =4 - 10~"'; S2(B) and
S2(C) Fig), because the SI of individual neurons was negatively correlated with the perfor-
mance yielded by our top model (p = —0.35, p < 10™® on V4 neurons; S2(E) Fig).

Pre-training was very effective: Most models widely outperformed the untrained model
baseline with random weights—unlike earlier work in the mouse visual cortex [25]. The two
exceptions on V4 were 2D edges and 2D keypoints (Fig 2C), which did not improve over the
untrained baseline. These results are in line with previous work [26] where models using pre-
trained representations significantly outperformed untrained representations fitted to human
fMRI responses in inferior temporal cortex (IT).

Semantic classification tasks predict V4 best, while V1 is well-predicted by
diverse tasks

The best predictive task-models on V4 were the two semantic classification tasks: scene classi-
fication (0.4117 £ 0.0013), and—consistent with prior work [8, 9]—object classification
(0.4089 + 0.0010). In contrast, we found that in V1 the top models with comparable perfor-
mance were diverse and not specifically tied to semantic-related tasks—they came from
semantic, 3D, and 2D task groups: semantic segmentation (0.6900 + 0.0003), 2D segmentation
(0.6886 + 0.0010), euclidean depth (0.6898 + 0.0007) (Fig 2C, left). Interestingly, the perfor-
mance of semantic segmentation in V4 (a pixel-to-pixel task), did not yield a high performance
in comparison (0.3739 + 0.0008), while it was among the best-performing tasks on V1 (see
Discussion).

To unveil trends that apply beyond individual tasks, but that are consistent for functionally
related task-groups (i.e. semantic, geometric, 3D, and 2D task clusters), we compared the aver-
age performances of each task cluster. Consistent with our previous results at the individual
task level, we found evidence at this coarser level for the specialized role of V4 towards seman-
tic tasks: there were significant differences between all pairs of clusters with the semantic
group on top. In contrast to observations at the individual task level, and in line with previous
work [18, 27], we found that semantic representations were significantly better at predicting
V1 responses than other groups (Fig 2D) and identified significant differences between all
pairs of groups (except between 2D and geometric). Nevertheless, when looking at the group
median performances, we found that the group type was less critical in V1 than V4: all groups
in V1 were above 74% of the gap between the untrained baseline and top median group
(semantic), while the lowest group median in V4 (2D) reached only 16% of that gap (Fig 2D
and 2E).

V4 is more specialized than V1

How important is the specific task objective over the untrained baseline to obtain better pre-
dictive performances? We found that the choice of task (and task cluster as shown before) did
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not affect performance as much in V1 as it did in V4 (Fig 2D, 2E and 2F). We quantified this
functional specialization by computing the variance of the performance of all task-models nor-
malized to their mean (excluding the untrained network). The variance for V4 was higher than
for V1 (p < 0.01, n = 23, Bartlett’s test after Fisher’s z-transformation; Fig 2F), rendering it
more specialized. These results support the traditional notion of generality in the features
extracted by V1, as they support multiple downstream tasks, while they also highlight the more
specialized role of V4 in visual processing.

Building models that jointly read out from pairs of tasks

Our comparisons at the individual and cluster levels suggest that semantic tasks drive repre-
sentations that best match ventral visual areas in the brain, especially area V4. However,
semantic tasks outperformed the next-best predictive tasks only by a relatively small margin
(Fig 2C, right), making it difficult to dismiss these other tasks altogether as computational
goals of V4 function.

Moreover, the task-models that directly followed object classification—reaching 81% of the
gap between the untrained and scene classification model—extract features relevant for 3D
understanding (3D keypoints, 2.5D segmentation, and surface normals estimation) which
could be aligned with V4 functions—as recent studies suggest that many cells in V4 are tuned
to solid-shape (3D) properties [16]. For example, the 3D keypoints task aims to find points of
interest that could be reliably detected even if an object in the scene is observed from different
perspectives, and then to extract local surface features at these points. Detecting 3D borders is
essential to solve this task because these keypoints tend to be around object corners [28], likely
capturing useful information for downstream invariant object recognition.

Do computational goals (like these 3D-related objectives) provide representations that
explain aspects of V4 computation beyond those explained by semantic tasks alone? We
addressed this question by comparing the individual task-model performances to the perfor-
mance of a single model that jointly reads out from pairs of pretrained feature spaces (Fig 3A).
If we find that a larger response variance is explained by adding a second set of features
extracted by a different task-network to the first one, we could claim that the nonlinearities of
second network are likely not implemented by the first one.

In practice, however, it is generally harder to find global optima with an increased set of
input features when the amount of training data is kept the same. Naively training the joint
readout of a pair of tasks from scratch could lead to worse performance than the individual
task-model performances. Therefore, we validated different training strategies together with
an L, regularization penalty (Fig 3B): (1) The readout weights were initialized randomly, and
we learned them from scratch, (2) The readout weights corresponding to the first core were
initialized with the optimal ones found previously (as per validation set), while those corre-
sponding to the second core were initialized with zeroes. Then we fine-tuned the readout
weights of the second core only. This is approach was repeated by swapping the order of the
cores. (3) We repeated the second approach, but instead of fine-tuning only the second core
readout weights, we fine-tuned all.

We built and trained models for pairs of tasks following these strategies. In addition to
scene and object classification, we considered the top three tasks on V4 of each group (Fig 2C,
right), and the untrained baseline; and built models with all possible pairwise combinations
(Fig 3C and 3D). This means 12 individual tasks and 78 pair task-models per brain area (Fig
3D).

We observed that initializing a portion of the readouts with the already optimized ones con-
sistently outperformed training from scratch, as illustrated in an example involving object
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Fig 3. Jointly reading from pairs of tasks. a, Modeling approach. We modified the methods described in Fig 1 to simultaneously read out neural
responses from two feature spaces. We forwarded the same input image, at the same scale, to two pretrained taskonomy networks, extracted the features at
the same layer and concatenated them. We then learned a point readout [22] for each neuron and always keep the cores’ weights frozen during training. b,
Comparison of training strategies when jointly reading from object classification (core 1) and 3D keypoints (core 2). The resulting increased
dimensionality makes it harder to find global optima, so we compared—under several regularization strengths (L, penalty) —five strategies that leverage
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the individual task-models’ optimum readout weights as per validation set from the models we trained earlier. We trained from scratch (i.e. initialized the
readout weights at random), initialized the readout of core 1 (2) and finetuned the readout of core 2 (1), and initialized the readout of core 1 (2) and
finetuned all readout weights. The individual task-model performances are in dotted lines for comparison. ¢ Comparison of pair task models in V1 (top)
and V4 (bottom). Pairs are grouped based on the task-group identities of pair members. In dark (middle-dark) color saturation, we show the worse (best)
individual task model from the pair. In lightest color saturation, we show the performance of the pair model. The highest performing pair model is shown
as a red dotted line to facilitate comparisons. Performances are shown in terms of correlation between model predictions and average over trials. Baseline
on all bar plots is the performance of the untrained network. d Heat map representation of pair task models’ performances in V1 (let) and V4 (right).
Here, in addition to the pairs in c, the pair models with identical members (diagonal), and pairs built between tasks and the untrained network (bottom
row) are included.

https://doi.org/10.1371/journal.pcbi.1012056.g003

classification and 3D keypoints (Fig 3B). Moreover, in most cases, fine-tuning all readout
weights yielded better results than updating only some of them.

Non-semantic tasks contribute useful nonlinearities beyond those provided
by individual semantic classification tasks

We found that the performance of pair task-models was always better than any of their indi-
vidual constituents (Fig 3C). The average performance improvements over the highest-per-
forming individual task in each pair were 3.9% (V4) and 2.2% (V1). The largest increase in
performance in V4 came from a pair comprising 3D keypoints and 2D segmentation, which
resulted in a 8.5% improvement over 3D keypoints alone. Similarly, the largest boost in V1
was obtained from a pair consisting of 2D keypoints and 3D keypoints, leading to a 4.0%
increase over 2D keypoints alone.

We conducted two control experiments. First, to determine whether the observed perfor-
mance gains may simply be due to the additional nonlinear capacity of the models, we trained
a set of pair task-models by pairing each individual task with an untrained model. In every
instance, the performance was found to be superior when pairing with another task instead of
the untrained baseline (Fig 3D; last row). Second, training models with higher-dimensional
feature spaces required adapting the hyperparameters of the non-convex optimization proce-
dure (regularization, number of iterations, etc.). To ensure that these changes did not trivially
lead to a better model, we trained pair task-models consisting of one task’s features simply
duplicated (Fig 3D; diagonals). We found that incorporating the nonlinearities of a different
task always resulted in better performance than a pair of duplicate task features (Fig 3D).
These results suggest that the improved performance observed in V1 and V4 is attributed to
the additional nonlinear computations provided by the supplementary tasks rather than just
the enhanced flexibility resulting from a greater feature dimensionality.

Semantic features are critical to explain the largest fraction of variance in
V4

We found that 2D tasks—in particular 2D keypoints—were consistently among the highest
performing pairs in V1: 2D keypoints + scene classification (0.711), room layout + 2D key-
points (0.710), object classification + 2D keypoints (0.710), 3D keypoints + 2D keypoints
(0.709), surface normals + 2D keypoints (0.709), scene classification + 2D segmentation
(0.708). Interestingly, the individual 2D keypoints model was not among the top ten tasks in
V1, but pairing it with members of other task groups yields the best performing models, sug-
gesting that 2D keypoints is the most non-redundant task with other top-performing V1 tasks.

On the other hand, we found that the semantic classification tasks were consistently among
the top pairs in V4 (Fig 3C): scene classification + object classification (0.432), scene classifica-
tion + 2D segmentation (0.433), scene classification + fixed camera pose (0.432), scene
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classification + inpainting (0.431), object classification + 2D segmentation (0.432), scene classi-
fication + 3D keypoints (0.431).

To investigate whether the nonlinearities captured by scene and object classification are
equivalent to those captured by other pairs of tasks exhibiting similar performance, we
extended our previous methods (Fig 3A) to jointly read from triplets of tasks. Following our
previous approach, we fine-tuned all readout weights after initializing the readouts corre-
sponding to two task cores with the optimal weights obtained from pair task models (Fig 3)
and the weights corresponding to the third core with zeroes. We focused on studying improve-
ments provided by the features of a third task core over the object + scene classification pair.
We observed only minimal improvements over this pair (0.4 + 0.1%) ranging from 0 to 1.1%.
Controls involving an untrained, scene, and object classification tasks as a third core yielded
no improvements. These improvements are within the variability range obtained across seeds
and are much smaller than than improvements provided by pairs of tasks over individual ones.
Therefore, most nonlinearities captured by non-semantic tasks that are helpful to predict V4
responses can emerge from purely semantic training objectives.

Data-rich and robust models predict V1 and V4 better

Taskonomy networks helped us addressed a prevalent issue in most goal-driven system identi-
fication studies where multiple sources of variability across models are simultaneously at play
(e.g. architecture, training dataset, training strategies, computational goal). By sharing archi-
tecture, training dataset, and optimization methods, these networks facilitated a fair compari-
son of the computational objective. To make progress in understanding the effects of other
sources of variation, we built V1 and V4 models that use the representations of widely used,
state-of-the-art networks that were largely trained on ImageNet [19] and had varying architec-
tures and different training strategies (Fig 4): AlexNet [29], VGG19 [30], Cornet-S [31],
Resnet50 [20], SImCLR [32], Resent50 with adversarial training (Robust L,, € = 0.1) [33], and
Resnet50 trained on ImageNet and Stylized ImageNet (StylelmNet) [34].

We found that—beyond the semantic computational objective—the training dataset is criti-
cal in driving representations that best match V4 responses: all ImageNet models yielded
higher performance than the top semantic taskonomy networks (Fig 4; right). Our results also
suggests that a Resnet50 architecture is generally better than others (VGG19, AlexNet, Cornet-
S). Interestingly, a shape-biased network (StylelmNet) does not lead to better predictions than
a texture-biased counterpart (Resnet50), even though, at the object recognition behavioural
level, the visual system exhibits bias to shapes [34]. Furthermore, in line with previous work
[35], we found that self-supervised representations from SimCLR had comparable perfor-
mance to the supervised-trained Resnet50. Although not explicitly trained on object classifica-
tion, SimCLR provides useful features for this task: a shallow multi-linear-perceptron readout
with little supervision achieves competitive accuracy on ImageNet [32]. Finally, we obtained
the highest V4 performance (0.4786 + 0.0011) with the adversarially robust Resnet50 that was
trained to produce stable classification outputs under small perturbations of at most 0.1 L,
size. We observed that increasing the size of this robustness ball led to poorer performance in
V4—as it also negatively affects ImageNet top1 accuracy [33]. Overall, these results indicate
that the match to V4 neural data can be strongly influenced by the training dataset, architec-
ture, training objective, and adversarial robustness.

Our V1 results revealed trends that partially differ from those observed in V4. First, we
found that some ImageNet-trained models (AlexNet and Cornet-S) yielded comparable per-
formance to the top semantic taskonomy-based models. However, when using the same
Resnet50 architecture, we obtained better performance with ImageNet models. As in V4, self-
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Fig 4. Comparisons with ImageNet-trained networks. We considered CNNs trained on the ImageNet dataset with
varying architectures, data augmentation strategies, and losses (supervised vs. self-supervised) and compared them
with the taskonomy semantic classification networks on V1 (left) and V4 (right). Red dotted line indicates the
performance of the best model on each visual area. We found that ImageNet networks were better than taskonomy on
V4 for any architecture. Self-supervised (SimCLRx1, [32]) and shape-biased (StylelmNet Resnet50, [34]) networks
yielded comparable performance in V4 to the supervised, texture-biased Resnet50. The highest performing network on
V4 was the adversarially robust Resnet50 [33]. In V1, our top taskonomy networks were comparable to AlexNet and
Cornet-S but performed worse than the ImageNet counterpart with matching architecture (Resnet50). VGG19 [30]
and the robust Resnet50 were the best match to V1.

https://doi.org/10.1371/journal.pcbi.1012056.9004

supervised learning and shape-biased networks performed similarly to their supervised, tex-
ture-biased counterpart. However, our best V1 models came from VGG19 (0.7199 + 0.0008)—
in line with [18] -, and the robust Resnet50 (0.7184 + 0.0027), which is consistent with find-
ings reported in [27] and [36]. In a similar way to V4, increasing the robustness size of the
ResNet50 model led to poorer performance. Overall, our results suggest that data-rich and
robust models are more effective in capturing V1 and V4 representations.

Discussion

A common challenge when comparing models in task-driven system identification studies is
that multiple axes of variability get confounded, making it difficult to draw conclusions about
individual factors like architecture or training objectives. We explored multiple normative
accounts beyond object classification of V4 and V1 single neuron responses to natural stimuli
using the representations of taskonomy networks as they have matching architectures and
were trained on the same dataset but different computer vision tasks. Beyond solidifying exist-
ing evidence suggesting that semantic goals (e.g. object classification) drive representations
that best match ventral stream responses [8, 18, 21, 37, 38], our results revealed a high task spe-
cialization of V4 function towards semantic tasks in contrast to the more general representa-
tions in V1 that can support multiple downstream tasks. Moreover, when predicting V4
responses from pairs of different tasks features, we found that non-semantic tasks contribute
useful nonlinearities over individual semantic ones. However, a model that jointly reads from
a pair of semantic-driven features alone was among the best of our taskonomy-based models of
V4, suggesting that semantic objectives can sufficiently capture the nonlinearities explained by
other models.
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V4 functional role and 3D processing

Opver the last decades, the functional role of V4 has been characterized by identifying neuronal
tuning directions using creatively synthesized, parametric stimuli (see [1] for a review). This
powerful approach has led to multiple insights about V4’s preferences, but does require gener-
ating hypotheses of stimulus features (e.g. tuning for blurry vs. hard edges) and painstaking
experiments to test each of them. Based on the patterns of predictive performance across tasks
(and task-pairs) our systems identification approach provides another lens on how we can bet-
ter understand V4 function. Importantly, our results suggest that these two approaches can
inform each other. Specifically, our work predicts a strong relationship between 3D visual pro-
cessing and V4 function, shifting the long-standing focus of V4’s functional role in flat shape
processing: 3D representations ranked high after semantic ones (Fig 2), and they captured
novel nonlinearities over those of individual semantic tasks (Fig 3). This supports recent dis-
coveries showing that some V4 cells encode solid shape (3D) features [16]. A promising future
research direction is to explore the relationship between normative accounts of V4 at the pop-
ulation level and individual cell properties, specially now that we can first probe multiple stim-
ulus features in-silico using our best CNNs before moving to the expensive in-vivo alternatives.

V1’s affinity to 2D representations

Our results revealed the affinity of V1 to 2D processing, consistent with classical views of V1
function [39]. We found that 2D segmentation was among the top taskonomy networks (Fig
2), while it also maintained high predictive performance on the deepest layers that explicitly
solve the task (S3 Fig). Moreover, we found that the 2D keypoints tasks was consistently
among the highest performing pairs (Fig 3). This task approximates the output of a classical
computer vision algorithm (SURF [40]) that was engineered to identify points of interests in
an image (using an approximation of multi-scale difference-of-Gaussians [DoG]) and to
extract features around them (e.g. orientation tuning) that facilitate matching these points
across affine transformations of the image (rotation, translation, scaling, shear mapping). This
sequence of operations (multi-scale DoGs, and identifying orientation preference with rotated
wavelets) bears similarities with classical descriptions of V1 function [39]. Finally, we found
that ImageNet-trained CNNs (Fig 4) yielded our best performing V1 models. This observation
is consistent with recent observations [18, 27] claiming that object classification goals induce
useful V1 nonlinearities beyond energy models using multi-scale Gabor features [41], and that
these CNNs can learn known nonlinear phenomena like cross-orientation inhibition [42] that
those models miss [43].

Low performance of semantic segmentation

We found that in contrast to object and scene classification tasks, semantic segmentation was
not as effective at predicting V4 responses, while it was among the best in V1 (Fig 2). One
likely explanation has to do with the architecture of the taskonomy semantic segmentation net-
work: unlike modern networks like U-Net [44] or Mask R-CNN (with an FPN backbone [45])
[46] that include lateral connections between encoding and decoding streams at different
scales, the decoder of the taskonomy network has only access to the high-level output of the
encoder to infer a segmentation mask. To keep the architecture of the core consistent across
tasks, we considered the encoder’s representations. While the early encoder layers capture rich
enough representations to predict V1, the later layers underperform on V4, possibly because
1) they miss task-relevant nonlinearities that are only implemented by the decoder network,
and 2) they must maintain details about object boundaries at the pixel level in their representa-
tions due to the lack of multi-scale lateral connections provided to the decoder. This is
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particularly relevant because it contrasts with V4 units, which have been shown to exhibit a
degree of translation invariance [9, 47].

Low V4 performance compared to V1

We found that V1 was better predicted by task representations than V4 (Fig 2 and S5 Fig),
even though the stimulus-driven variability was comparable between these two areas. We do
not believe that the seemingly low explained variance by our V4 models lessens the conclu-
sions drawn in this paper: How well a model performs in absolute terms depends on many
experimental factors including the amount of data available to fit the model, the signal-to-
noise ratio of the model, the nature of the pre-training dataset etc. In our work, we believe that
the reasons for the comparably low values in V4 are two-fold. First, these results are likely due
to our experimental design that maintained the sequence of images (without interleaving
blanks) on the repeated test-trials. Although this choice makes history effects in V4 visible so
future (dynamic) models can account for them, it prevents averaging out the variability intro-
duced by the previous image, because the static image-based models cannot account for it. The
dynamic effects are likely stronger in V4 than in V1 because the latter—an earlier visual area—
has lower response latency and the image display times (120 ms) may be sufficient to reach sta-
ble dynamics (see Fig 2B from [18]). In contrast, display times of 120 ms in V4 have been used
to model “core object recognition”—a term coined for the first feed-forward wave of visual
processing [8]. Second, the models we compare were trained on the taskonomy dataset, whose
image statistics deviate from those of the ImageNet images shown in the experiments. Hence,
it is expected that these models do not perform on par with a model that was trained in-
domain. We do not think that this weakens our conclusions because all taskonomy models
have the same systematic disadvantage of having to generalize somewhat beyond their training
set in terms of image statistics. Because we do not have diverse task labels for ImageNet, we
make the assumption that the variable of interest (training objective) does not interact with the
image statistics. To verify that the lower performance of our models is indeed caused by those
two factors discussed above and not related to highly suboptimal modeling (e.g. readouts,
hyperparameter optimization, etc.), we conducted additional control experiments. When
using the same data-rich cores as current state-of-the-art models, we found that our models
perform similarly to those displayed on the BrainScore leaderboard [37]. We used ImageNet-
trained models (Fig 4) and found that our best V4 model was a Resnet50 trained to be robust
to small adversarial perturbations [33]. The performance of this model in V4 in terms of corre-
lation coefficient was ~ 0.48, which is in the same ballpark as the top models on the Sanghavi,
et al. (2021) [48] benchmark on BrainScore to date.

Apparent small performance differences across tasks

We found significant differences between task groups (Fig 2D and 2E), but the absolute value
of performance differences across tasks are seemingly small (test correlation values range from
0.3 to 0.48 in V4), which could potentially raise concerns about our claims. We think these
concerns can be partially alleviated for three reasons. First, we found a structured pattern of
tasks performances that is largely consistent with expectations based on existing work and far
from random. As discussed before, our results predict V4’s affinity to semantic and 3D tasks,
and highlight the important role of semantic and 2D representations in V1. Second, we found
that substantial fractions of neurons were better explained by one task group vs. another across
group comparisons (S7 Fig). This means that the overall population differences were not
driven by the better explanation of a few neurons, but instead likely represent a systematic
effect across the population. Third, we argue that small differences in test performance may
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carry meaningful implications about the ability of models to capture neural phenomena. For
example, in a previous study [43], we found that the difference between an energy model using
a Gabor filter bank (GFB) and a one-layer CNN with a divisive normalization nonlinearity
(CNN+DN) was seemingly small (~ 0.05 of FEVE) in favour of the latter. However, when
running in-silico experiments, it was found that CNN+DN was able to capture cross-orienta-
tion inhibition—a known nonlinear phenomenon in V1—while the GFB model was not.
Thus, the difference we find between task performances—although small—can be consequen-
tial and should not be quickly dismissed. Although we have not yet a similar (concise) descrip-
tion of V4 tuning that semantic models capture while others do not, we consider this an
important question to tackle. A promising idea is to leverage in-silico experiments to find sti-
muli that bring to light the differences between models, for example via controversial stimuli
[49, 50] that drive one model’s predictions while not the other(s).

Other taskonomy approaches to brain representations

In contrast to similar efforts applied to measurements of aggregated neural activity (i.e. fMRI
data) from multiple visual areas [12, 51], we evaluated the intermediate representations of task-
onomy networks—not just their final layers—to evaluate their affinities to single-cell responses.
We indeed found that intermediate layers provided the best match to the data—regardless of
the task—(54 and S6 Figs) and that diverse tasks offered comparable top performances in V1
and mostly semantic tasks were optimal in V4. [12] considered large, separate regions of inter-
est (OPA, PPA, LOC, EarlyVis, and RSC) in human fMRI and found that object and scene
classification were best across areas and subjects. V1 and V4 would likely fall into the same
“EarlyVis” ROL, preventing separate conclusions of each of these areas. Dwivedi et al. (2021)
[51] did consider more granular areas of the ventral stream including V1 and V4, and found
that 2D tasks best explain V1 (consistent with our results) and—in contrast to our findings—
also V4. This could be attributed the nature of fMRI where the nonlinear properties of individ-
ual cells can be averaged out, and last-layer 2D representations are more linear than other
tasks (see similarity across layers in [15]). Overall, our work complements these studies nicely
by distilling more insights about V1 and V4 function at the individual cell level than these
other data modalities.

Effect of architecture choice

An important limitation of our work and other related studies is that the conclusions hinge on
the particular choice of encoder architecture used in the original taskonomy work [15]:
ResNet50. One may ask whether our results will generalize to other architectures. We believe
that our results are likely to generalize if the candidate architectures do not unevenly harm per-
formance across the 23 target tasks. If they were, resulting changes in the neural response pre-
dictivity that may come out of their representations could be attributed to sub-optimal task
features. For example, a much shallower CNN could change the ratio between semantic and
2D task performance as semantic tasks requires sufficiently nonlinear computations while 2D
tasks rely rather on low-level features. Similarly, a deep CNN without skip connections may
yield good performance on semantic tasks but perform worse on 2D tasks (compared to
ResNet50) because skip connections facilitate low-level features to reach the final layers. For
novel architecture choices that share key attributes with our tested architecture (e.g. convolu-
tional nature, sufficient depth, skip connections) it is likely that our our results will hold: Korn-
blith and colleagues [52] show that architectures from the same class of models with varying
depth trained on the same task exhibit high similarity (> 0.9 CKA) between layers found in
corresponding fractions of network depth (see their Fig 5). This result suggests that we can
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find layers in alternative networks with equivalent brain predictivity because of their represen-
tational similarity.

Effect of initialization

Although we account for architecture, training dataset, and optimization methods to be equiv-
alent across core representations, a potential concern not addressed in our study is that there is
evidence for variability in intermediate representations of identical networks trained on the
same task but initialized differently [53]. This is a challenge faced by most goal-driven system
identification studies and it is constrained by the unavailability of multiple instances of a task-
network—as it is the case for taskonomy encoder networks. That said, we remark that the rep-
resentational consistency across instances is high for early to mid layers, decreasing with net-
work depth [53]. V1 and V4 were best explained by early to mid levels. Thus, the effects of
initialization are not expected to be as strong as if later layers were used. For example, in the
concrete case of AlexNet [29], an ImageNet-trained network considered in our work and in
the study by [53], we found that the best predictive layer of V4 was Layer 3, which had a repre-
sentational consistency above 0.95 (on a scale of 0-1), similar to that of the earliest layers (see
Fig 6 from [53]). Moreover, we did consider multiple tasks for each of the task groups (seman-
tic, 3D, geometric, and 2D), which serves as an implicit control for the variability induced by
different network initializations. We found significant differences at the group level (Fig 2 and
S7 Fig) that support our main claim favouring the semantic specialization of V4. We make our
data and code available to facilitate further progress identifying the effects of network
initialization.

Data richness driving better V1 and V4 representations

Are semantic training objectives critical to drive good representations of V1 and V4?2 We
found that a self-supervised network (SimCLR) worked just as well as Resnet50 in line with
[35]. Although these self-supervised methods contain no explicit semantic training objective,
their inherent data augmentation strategies enforce similar invariances as required for object
recognition [54] and their learned representations predict semantic labels well [32]. Moreover,
we found that additional data augmentations, particularly those provided by adversarial train-
ing, were very effective at improving our models’ performance in both areas. These results are
aligned with what has been found in V1 [27, 36] that suggested that robustness to perturba-
tions explain V1 responses better. Similar work that goes in the other direction, has shown that
making a CNN more brain-like by co-training on object classification and to predict neural
responses, makes CNNs more robust to small perturbations [55-57].

Conclusion

Taken together, our results provide evidence for semantic tasks as a normative account of area
V4 and predict that particular tasks (e.g. 3D) have strong affinities to V4 representations.
Although we are yet to explain most variance, our findings suggest that promising directions
to improve the predictive power of V4 responses require using data-rich, robust models (also
shown to be useful to match behavioural phenomena [58]), and architectural changes (e.g.
recurrence, top-down processing streams) that account for dynamical processing in the brain
[59]. Moreover, our multi-task modeling approach, together with in-silico experimentation,
promises to facilitate the generation of hypotheses about tuning directions via maximally excit-
ing inputs (MEIs) [10, 11, 60, 61], diverse exciting inputs (DEIs) [62, 63], or controversial sti-
muli [49].
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Materials and methods
Ethics statement

All behavioral and electrophysiological data were obtained from two healthy, male rhesus
macaque (Macaca mulatta) monkeys aged 15 and 16 years and weighing 16.4 and 9.5 kg,
respectively, during the time of study. All experimental procedures complied with guidelines
of the NIH and were approved by the Baylor College of Medicine Institutional Animal Care
and Use Commiittee (permit number: AN-4367). Animals were housed individually in a large
room located adjacent to the training facility, along with around ten other monkeys permitting
rich visual, olfactory and auditory interactions, on a 12h light/dark cycle. Regular veterinary
care and monitoring, balanced nutrition and environmental enrichment were provided by the
Center for Comparative Medicine of Baylor College of Medicine. Surgical procedures on mon-
keys were conducted under general anesthesia following standard aseptic techniques. To ame-
liorate pain after surgery, analgesics were given for seven days.

Electrophysiological recordings

We performed non-chronic recordings using a 32-channel linear silicon probe (NeuroNexus
V1x32-Edge-10mm-60-177). The surgical methods and recording protocol were described
previously [17]. Briefly, form-specific titanium recording chambers and headposts were
implanted under full anesthesia and aseptic conditions. The bone was originally left intact and
only prior to recordings, small trephinations (2 mm) were made over medial primary visual
cortex at eccentricities ranging from 1.4 to 3.0 degrees of visual angle. Recordings were done
within two weeks of each trephination. Probes were lowered using a Narishige Microdrive
(MO-97) and a guide tube to penetrate the dura. Care was taken to lower the probe slowly, not
to penetrate the cortex with the guide tube and to minimize tissue compression).

Data acquisition and spike sorting

Electrophysiological data were collected continuously as broadband signal (0.5Hz-16kHz) dig-
itized at 24 bits. Our spike sorting methods mirror those in [17, 18]. We split the linear array
of 32 channels into 14 groups of 6 adjacent channels (with a stride of two), which we treated as
virtual electrodes for spike detection and sorting. Spikes were detected when channel signals
crossed a threshold of five times the standard deviation of the noise. After spike alignment, we
extracted the first three principal components of each channel, resulting in an 18-dimensional
feature space used for spike sorting. We fitted a Kalman filter mixture model to track wave-
form drift typical for non-chronic recordings [64, 65]. The shape of each cluster was modeled
with a multivariate t-distribution (df = 5) with a ridge-regularized covariance matrix. The
number of clusters was determined based on a penalized average likelihood with a constant
cost per additional cluster [66]. Subsequently, we used a custom graphical user interface to
manually verify single-unit isolation by assessing the stability of the units (based on drifts and
health of the cells throughout the session), identifying a refractory period, and inspecting the
scatter plots of the pairs of channel principal components.

Visual stimulation and eye tracking

Visual stimuli were rendered by a dedicated graphics workstation and displayed on a 16:9 HD
widescreen LCD monitor (23.8”) with a refresh rate of 100 Hz at a resolution of 1920 x 1080
pixels and a viewing distance of 100 cm (resulting in ~ 63px/°). The monitors were gamma-
corrected to have a linear luminance response profile. A camera-based, custom-built eye track-
ing system verified that monkeys maintained fixation within ~0.95° around a ~ 0.15°-sized

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012056 May 23, 2024 16/29


https://doi.org/10.1371/journal.pcbi.1012056

PLOS COMPUTATIONAL BIOLOGY Task-driven models of V4 reveal semantic specialization

red fixation target. Offline analysis showed that monkeys typically fixated much more accu-
rately. After monkeys maintained fixation for 300 ms, a visual stimulus appeared. If the mon-
keys fixated throughout the entire stimulus period, they received a drop of juice at the end of
the trial.

Receptive field mapping and stimulus placing

We mapped receptive fields relative to a fixation target at the beginning of each session with a
sparse random dot stimulus. A single dot of size 0.12° of visual angle was presented on a uni-
form gray background, changing location and color (black or white) randomly every 30 ms.
Each fixation trial lasted for two seconds. We obtained multi-unit receptive field profiles for
every channel using reverse correlation. We then estimated the population receptive field loca-
tion by fitting a 2D Gaussian to the spike-triggered average across channels at the time lag that
maximizes the signal-to-noise-ratio. During V1 recordings, we kept the fixation spot at the
center of the screen and centered our natural image stimulus at the mean of our fit on the
screen (Fig 1B). During V4 recordings, the natural image stimulus covered the entire screen.
We accommodated the fixation spot so that the mean of the population receptive field was as
close to the middle of the screen as possible. Due to the location of our recording sites in both
monkeys, this equated to locating the fixation spot close to the upper border of the screen,
shifted to the left (Fig 1C).

Natural image stimuli

We sampled a set of 24075 images from 964 categories (~ 25 images per category) from Ima-
geNet [67], converted them to gray-scale (to be consistent with similar system identification
studies and reduce complexity), and cropped them to keep the central 420 x 420px. All images
had 8 bit intensity resolution (values in [0, 255]). We then sampled 75 as our test-set. From the
remaining 24000 images, we sampled 20% as validation-set, leaving 19200 as train-set. We
used the same sets of images for V1 and V4 recordings. During a recording session, we
recorded ~ 1000 successful trials, each consisting of uninterrupted fixation for 2.4 seconds
including 300ms of gray screen (128 intensity) at the beginning and end of the trial, and 15
images shown consecutively for 120ms each with no blanks in between. Each trial contained
either train and validation, or test images. We randomly interleaved trials throughout the ses-
sion so that our test-set images were shown 40-50 times. The train and validation images were
sampled without replacement throughout the session, so each train / validation image was
effectively shown once or not at all. In V1 sessions, the images were shown at their original res-
olution and size covering 6.7° (screen resolution of 63 pixels per visual angle). The rest of the
screen was kept gray (128 intensity). In V4 sessions, the images were upscaled preserving their
aspect ratio with bicubic interpolation to match the width of the screen (1920px). We cropped
out the upper and bottom 420px bands to cover the entire screen. As a result, we effectively
stimulated both the classical and beyond the classical receptive fields of both areas. Once the
neurons were sorted, we counted the spikes associated to each image presentation in a specific
time window following the image onset. These windows were 40-160ms (V1) and 70-160ms
(V4).

Explainable variance

A few isolated neurons were discarded if their stimulus-driven variability was too low [18].
The explainable variance in a dataset is smaller than the total variance because the observation
noise prevents even a perfect model to account for all the variance in the data. Thus, targeting
neurons that have sufficient explainable variance is necessary to train meaningful models of
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visually driven responses. For a neuron’s spike count r, the explainable variance Var,,[r] is
the difference between the the total variance of all observed responses Var[r] and the variance
of the observational noise o>

noise’

— 2
Varexp [7’] - Var[?’] ~ Opgise - (1)
We estimated the variance of the observational noise by computing the variance of a neu-
ron’s response 7, in multiple trials ¢ in which we presented the same stimulus x; and subse-
quently taking the expectation E; over all images,

Gioise = Ej[vart [rt‘xjH . (2)

Neurons for which the ratio between the explainable to total variance (Eq 3) was below 0.15
were removed. The resulting dataset includes spike count data for 202 (V1) and 342 (V4) iso-
lated neurons, with an average ratio of explainable to total variance (s.d) of 0.306(0.181) and
0.323(0.187), respectively (S2 Fig). All variances were computed using the unbiased estimator
and on the test-set responses due to the available repeated trial presentations.

Var, [7]

EV =
Var]r]

(3)

Measuring sparseness

We computed the selectivity index [24] (SI) as a measure of sparseness for every neuron on its
test-set average responses. To do this, we first plotted the fraction of images whose responses
where above a threshold, as a function of normalized thresholds. We considered 100 threshold
bins ranging from the minimum to the maximum response values. The area under this curve
(A) is close to zero for sparse neurons, and close to 0.5 for a uniform distribution of responses.
Thus, following Quiroga et. al (2007) [24], we computed the selectivity index as SI =1 — 2A. SI
approaches 0 for a uniform distribution, and 1 the sparser the neuron is. In this study, we
reported the mean and standard deviation of SI for both brain areas and found sparser
responses in V4 than in V1 (see Results).

Image preprocessing and resizing

An important step of our modeling pipeline was to adjust the size and resolution of the input
images to our computational models (S1 Fig). In V1, we effectively cropped the central 2.65°
(167px) at its original 63px/° resolution and downsampled with bicubic interpolation to differ-
ent target resolutions: 3.5, 7.0, 14, 21, 24.5, and 28px/°. For practical and legacy reasons [18],
in our codebase we first downsampled the images to a resolution of 35px/°, followed by crop-
ping and another downsampling step to obtained the target sizes and resolutions just reported.
In V4, we cropped the images up to the bottom central 12°, corresponding to 168px at the
original 14px/° resolution (63px/° x 420/1920), in accordance with the neuron’s RF positions.
These images were similarly downsampled to multiple target resolutions: 1.4, 2.8, 5.6, 8.4, and
11.2px/".

Model architecture

Our models of cell responses consisted of two main parts: A pretrained core that outputs non-
linear features of input images, and a spatial point readout [22] that maps these features to
each neuron’s responses. We built separate model instances for each visual area, input image
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resolution, task-dependent pretrained CNN, intermediate convolutional layer, regularization
strength, and random initialization. Input images x were forwarded through all layers up to
the chosen layer [, to output a tensor of feature maps /(x) € R"*"** (width, height, channels).
Importantly, the parameters of the pretrained network were always kept fixed. We then
applied batch-normalization [68] (Eq 4), with trainable parameters for scale (y) and shift (5),
and running statistics mean (y4) and standard deviation (o). These parameters were held fixed
at test time (i.e. when evaluating our model). Lastly, we rectified the resulting tensor to obtain
the final nonlinear feature space (®(x)) shared by all neurons, with same dimensions as I. The
normalization of CNN features ensured that the activations of each feature map (channel)
have zero mean and unit variance (before rectification), facilitating meaningfully regularized
readout weights for all neurons with a single penalty—having input features with different var-
iances would implicitly apply different penalties on their corresponding readout weights.

BN(x) =7- =% + 4 @)

The goal of the readout was to find a linear-nonlinear mapping from ®(x) to a single scalar
firing rate for every neuron. Previous approaches have attempted to 1) do dimensionality
reduction on this tensor and regress from this components (e.g. partial least squares) [8]; 2)
learn a dense readout with multiple regularization penalties over space and features [18]; and
3) factorize the 3D readout weights into a lower-dimensional representation consisting of a
spatial mask matrix and a vector of feature weights [69]. In this work we used the recently pro-
posed spatial point readout [22]—also called Gaussian readout by the authors—that goes a step
further and restricts the spatial mask to a single point. Per neuron, it computes a linear combi-
nation of the feature activations at a spatial position, parametrized as (x, y) relative coordinates
(the middle of the feature map being (0, 0)). Training this readout poses the challenge of main-
taining gradient flow when optimizing the objective function. In contrast to previous
approaches that tackle this challenge by recreating multiple subsampled versions of the feature
maps and learn a common relative location for all of them [70], the Gaussian readout learns
the parameters of a 2D Gaussian distribution A(p,, %, ) and samples a location during each
training step for every " neuron. Z,, is initialized large enough to ensure gradient flow, and is
then shrunken during training to have a more reliable estimate of the mean location y,,. At
inference time (i.e. when evaluating our model), the readout is deterministic and uses position
tn. Although this framework allows for rotated and elongated Gaussian functions, we found
that for our monkey data, an isotropic formulation of the covariance—parametrized by a sin-
gle scalar o>—was sufficient (i.e. offer similar performance as the fully parametrized Gaussian).
Thus, the total number of parameters per neuron of the readout were ¢ + 4 (channels, bivariate
mean, variance, and bias). Finally, the resulting dot product between the features of ®(x) at the
chosen location with an L, regularized weight vector w, € R® was then followed by £, a point-
wise nonlinear function ELU [71] offset by one (ELU + 1) to make responses positive (Eq 5).

P00 = (30, W, + D) 5)

k

Beyond offering comparable performance compared to the factorized readout alternative
with far less parameters, the most important motivation to use a single point readout was to
make sure that all spatial nonlinear computations happen in the pretrained core feature extrac-
tor. We could draw mistaken claims about the nonlinear power of a feature space by comput-
ing new ones in the readout that combine rectified features computed at different spatial
positions. For example, a readout that rectifies features produced by multiple simple cells with
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similar orientation at different locations can easily approximate phase invariance (i.e. complex
cells) [39].

Model training

We trained every model to minimize the summed Poisson loss across N neurons between
observed spike counts r and our predicted spike rate 7 (Eq 6, first term) in addition to the L,
regularization of the weights (Eq 6, second term) with respect to the batch-normalization, and
readout parameters.

N
L= (#,—rlogi,)+ 1> |w,] (6)
i=1 nk

Since neurons across session from the same visual area didn’t necessarily see the same
images (they were differently drawn over sessions), during each training step, we cycled
through all sessions of the same visual area, sampling for each of them a fixed batch size of
image-response pairs without replacement and kept track of the gradients of the loss with
respect of our trainable parameters. Once a cycle was through, the gradients were added to
execute an update of the weights of the weights based on the Adam optimizer [72]—an
improved version of stochastic gradient descent. The initial learning rate was 3 - 10~* and
momentum 0.1. We continued to exhaust image-response pair batches from all sessions until
the longest session was exhausted to count a full epoch. Once all image-response pairs had
been drawn from a session, we restarted sampling batches from all available image-response
pairs.

Every epoch, we temporarily switched our model into evaluation mode (i.e. we froze the
batch-normalization running statistics), and computed the Poisson loss on the entire single
trial validation-set. We then used early stopping to decide whether to decay the learning rate:
we scaled the learning rate by a factor of 0.3 once the validation loss did not improve over five
consecutive epochs. Before decaying the learning rate, we restored the weights to the best ones
up to that point (in terms of validation loss). We ran the optimization until four early stopping
steps were completed. On average, this resulted in ~ 50 training epochs (or ~ 40 minutes on
one of our GPUs) per model instance.

Taskonomy networks

The taskonomy networks [15] are encoder-decoder CNNs trained on multiple computer vision
tasks. The original goal of the authors was to identify a taxonomy of tasks that would facilitate
efficient transfer learning based on the encoder representations of these networks. Importantly
for our study, all these networks were trained by the authors on the same set of images, which
have labels for all tasks. These images consisted of 120k indoor room scenes. In this work, we
used the encoder architecture of these networks, which was based on a slightly modified ver-
sion of Resnet50 [20] that excluded average-pooling, and replaced the last stride 2 convolution
with stride 1. However, these modifications did not change the number of output features of
the intermediate layers we considered, keeping our taskonomy-based results fairly comparable
with those of the original Resnet50.

The Resnet50 architecture—originally developed to solve ImageNet [67]—is made up of a
series of hierarchical stages that include 1) an initial strided convolutional layer (conv1) fol-
lowed by batch normalization, rectification, and max-pooling; 2) four processing layers, with
3,4,6, and 3 residual blocks, respectively; and 3) a final average pooling layer that maps features
to the number of classes. Each residual block amounts to the rectified sum of two pathways:
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one that simply projects the input to the end (i.e. skip connection), and a second that consists
of three successive convolutional layers with sizes 1, 3, and 1. In this work we trained models
on the output of the first convolutional layer (conv1), and the output of the first residual
block of each processing layer (i.e. Layerl.0, layer2.0, layer3.0, layer4.0). The
corresponding number of output feature maps (channels) for these layers was 64, 256, 512,
1024, and 2048, respectively.

We used several taskonomy encoder networks, listed in (Fig 1C). The structure of the repre-
sentations of these networks was presented by the authors via a metric of similarity across
tasks: with agglomerative clustering of the tasks based on their transferring-out behavior, they
built a hierarchical tree of tasks (see Figure 13 of their paper [15]). They found that the tasks
can be grouped into 2D, 3D, low dimensional geometric, and semantic tasks based on how
close (i.e. how similar) they are on the tree. We now briefly describe the tasks (for more details,
see Supplementary Material from [15]):

2D tasks. Autoencoding PCA finds a low-dimensional latent representation of the data.
Edge Detection responds to changes in texture. It is the output of a Canny edge detector with-
out nonmax suppression to enable differentiation. Inpainting reconstructs missing regions in
an image. Keypoint Detection(2D) both detects locally important regions in an image (key-
points), and extracts descriptive features of them that are invariant across multiple images.
The output of SURF [40] was the ground-truth output of this task. Unsupervised 2D Segmenta-
tion uses as ground-truth the output of Normalized cuts [73] which tries to segment images
into perceptually similar groups.

3D tasks. Keypoint Detection (3D) are like the 2D counterpart, but derived from 3D data,
accounting for scene geometry. The output of the NARF algorithm [28] was the ground-truth
output of this task. Unsupervised 2.5D Segmentation uses the same algorithm as 2D, but the
labels are not only computed from RGB image, but also jointly from aligned depth, and surface
normal images. It thus has access to ground-truth 3D information. Surface Normal Estimation
are trained directly on the ground-truth surface normal vectors of the 3D meshes of the scene.
Curvature Estimation extracts principal curvatures at each fix point of the mesh surface. Edge
Detection (3D) (Occlusion Edges) are the edges where an object in the foreground obscures the
background. It depends on 3D geometry and it is invariant to changes in color and lighting. In
Reshading, the label for an RGB image is the shading function that results from having a single
light point at the camera origin, multiplied by a constant albedo (amount of diffuse reflection
of light radiation). Depth Estimation, Z-Buffer. Depth Estimation, Euclidian measures the dis-
tance between each pixel to the camera’s optic center.

Geometric tasks. Relative Camera Pose Estimation, Non-Fixated predicts the relative six
degrees of freedom (yaw, pitch, roll, x, y, z) of the camera pose between two different views
with same optical centers. Relative Camera Pose Estimation, Fixated is a simpler variant of the
previous one where the center pixel of the two inputs is always the same physical 3D point—
yielding only five degrees of freedom. Relative Camera Pose Estimation, Triplets (Egomotion)
matches camera poses for input triplets with a fixed center point. Room Layout Estimation esti-
mates and aligns 3D bounding boxes around parts of the scene. Point Matching learns useful
local feature descriptors that facilitate matching scene points across images. Content Prediction
(Jigsaw) unscrambles a permuted tiling of the image. Vanishing Point Estimation predicts the
analytically computed vanishing points corresponding to an x, y, and z axis.

Semantic tasks. Object Classification uses knowledge distillation from a high-performing
network trained on ImageNet [67] where its activations serve as a supervised signal (within the
manually selected 100 object classes appearing in the taskonomy dataset). Scene Classification
follows a similar approach, but uses a network trained on MITPlaces [74] with 63 applicable
indoor workplace and home classes for supervised annotation of the dataset. Semantic
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Segmentation also follows the same supervised annotation procedure using a network trained
on COCO [75] dataset with 17 applicable classes.

Finally, we included a control with matching architecture (Resnet50) but with random
initialization.

Other network architectures

In addition to the task-models based on taskonomy pretrained networks, we also built models
with CNN feature extractors pretrained on the large image classification task ImageNet
(ILSVRC2012) [67]. This is a dataset of 1.2 million images belonging to 1000 classes. In addi-
tion to the original Resnet50 [20] described before, we also considered other popular architec-
tures (S4 Fig): AlexNet [29], VGGI19 [30], and Cornet-S [31].

AlexNet [29] consists of five convolutional layers with rectification, three max-pooling lay-
ers (between the first and second, second and third, and after the final convolutional layers),
two fully connected layers after the last convolutional layer, and a final softmax layer. We used
the output of all five convolutional layers in our study: convl 1,conv2 1,conv3 1,
conv4 1, conv5 1. Their number of output feature maps is 96, 256, 384, 384, and 256,
respectively. We used the pretrained Pytorch implementation of this network found in the
torchvision model zoo.

VGGI19 [30] consists of 16 rectified convolutional layers that can be grouped into five
groups (named convl to conv5) with 2, 2, 4, 4, and 4 convolutional layers with 64, 128 256,
512, and 512 feature maps, respectively; and a pooling layer after every group. Finally, three
fully connected and a softmax layers map the convolutional features to the 1000 predictions
for each class. We used the original weights provided by [30], and not the default Pytorch ver-
sion available in the torchvision model zoo.

Cornet-S [31] has a recurrent network architecture designed with known biological compu-
tations in the brain attributed to core object recognition. The network consist of a sequence of
five main modules conveniently named V1, Vv2,V4, IT, and decoder. The V1 module con-
sist of two subsequent convolutional layers with batch normalization and rectification with 64
channels in total; V2-IT are recurrent modules with an initial convolutional layer with batch
normalization, and a recurrent series of three convolutional layers with rectification and batch
normalization. The number of features are 128, 256, and 512 with 2, 4, and 2 recurrent time
steps for V2, V4, and IT, respectively. The final decoder consist of average pooling, and a
linear mapping to the 1000 output classes. The implementation of this network, including pre-
trained weights can be found here: https://github.com/dicarlolab/CORnet. We used the output
of the first four modules of this network and found that V4 was best predicted by the corre-
sponding V4 module, but our V1 data was best predicted (although only marginally better
than V1) by the V2 module (54 Fig).

Model configurations

In this study, we fitted a large set of task-models (> 10, 000) that include all viable combina-
tions of 1) brain areas (2: V1, V4); 2) input resolutions (5); 3) pretrained CNNs (23 taskonomy,
1 random); 4) intermediate convolutional layers (5), 5) L, regularization strengths (1-3 for
most models); and 6) random initialization (5 seeds). Because of the receptive field size of
higher layers in all networks, only large enough input resolutions were permitted in those
cases. We used only 1-3 regularization penalties for most model configurations because we
found that the optimal parameters from a fine-grained search of a single model where also
appropriate for the corresponding layers of the taskonomy networks—actual optimal penalties
led to negligibly differences in validation performance (within the noise of random seeds). The
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specific values we cross-validated over (after the fine-grained search) were: Acony1 = {0.33, 1, 3},
Xlayerl.O = {3}, klayerZ.O = {3, 6}, klayer3.0 =1{3,9}, xlayer4.0 = {6, 12}.

Performance evaluation

We computed the Pearson correlation between a model’s predictions with the average
response over multiple presentations of our test-set to get comparable values to published
results (e.g. [37]).
Furthermore, we also report the fraction of explainable variance explained (FEVE) (S5 Fig).
The FEVE per neuron is given by Eq 7
Var,[7]

FEVE = 1 — Yl (7)
ar r

exp

which utilizes the variance that is explainable in principle, Vare,[r] (Eq 1), and the variance of
the residuals corrected by the observation noise,

1 2
Varres [r] = NZ(”J - r]) - O-ioise ? (8)
i

2

noise

where j indexes images. This measure corrects for observation noise, which variance o2 we

estimated with Eq 2. To compute model performance we averaged the FEVE across neurons.

Computational tools and libraries

For this study, we used Pytorch [76], Numpy [77], scikit-image [78], matplotlib [79], seaborn
[80], DataJoint [81], Jupyter [82], and Docker [83]. We also used the following open source
libraries: neuralpredictors (https://github.com/sinzlab/neuralpredictors) for torch-
based functions for data loading, model implementation, model training, and evaluation.
nnfabrik (https://github.com/sinzlab/nnfabrik) for DataJoint-based pipelines, ptrnets
(https://github.com/sacadena/ptrnets) for readily available pretrained CNNs and access to
their intermediate layers.

Supporting information

S1 Fig. A case for input scale optimization. a, A single excitatory neuron from visual cortex,
recorded from a head-anchored monkey sitting at a certain distance from a screen and fixating
on a spot; extracts a nonlinear function of the input stimulus with a specific receptive field cov-
erage. b, A pretrained deep convolutional neural network (CNN) extracts several nonlinear
feature maps at each of its intermediate layers. A single output unit of a feature map computes
a nonlinear function on its analytical receptive field with a fixed size in pixels. Even if the real
neuron’s nonlinear function was exactly matched to that of a CNN unit, we would have trou-
bles finding it if we were to forward the input image at the wrong input resolution (in terms of
pixels per visual angle). It is oftentimes difficult to predict a priori the optimal resolution at
which a certain layer extracts the right nonlinearities that best match our responses, especially
when the receptive field sizes of neurons are difficult to estimate for higher visual areas, and
when recording beyond the foveal region of the visual field. We thus treated the input resolu-
tion as a hyperparameter that we cross-validate on the validation set. This facilitates removing
the confound between the degree of nonlinearity and receptive field growth when trying to
establish hierarchical correspondence between CNN layers and the biological visual system.
(TIFF)
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S2 Fig. Response properties. a, Explainable variance (Eq 3) distribution of V1 (n = 458) and
V4 (n = 255) neurons. Red line shows the threshold (0.15) we chose to filter unreliable neurons
from our test evaluations. b, Curves of the fraction of images evoking responses larger than a
threshold vs. threshold value (normalized). We selected 100 evenly spaced thresholds between
minimum and maximum value of the responses. Results for 342 neurons in V1 (left) and 202
neurons in V4 (right) show each neuron’s curve (gray). A small sample of curves were colored
for clarity. We then computed for each neuron the selectivity index (SI) [24] as 1 - 2AUC
where the AUC is the area under the curve. ¢, Density distribution of selectivity indices in V1
and V4. Two-sided t-test shows that means are different between areas. d, Density distribution
of kurtosis statistic computed for each neuron over the test images in V1 and V4. Two-sided ¢-
test shows that means are different between areas, highlighting increase sparsity in V4. e, We
evaluated how well SI correlates with the predictive performance of our best model on each
area (using features of Robust Resnet50) and found that selectivity index only weakly explains
V1 and V4 test performance.

(TIFF)

S3 Fig. Individual task-model performances on V1 (upper row) and V4 (bottom row) as a
function of network layer organized in columns by the task-clusters [15]. The task-model
labels are shared between V1 and V4, and placed to the right of each column. Each line repre-
sents the average performance over seeds of the mean performance over neurons of the best
task-model configuration in the validation set. That means that these lines represent the test
set performance after pooling over input scales, and hyper-parameters (i.e. regularization pen-
alty). Bars represent 95% confidence intervals of 1 s.e. of the mean for five seeds. We measured
performance as the average test score over single units (ny, = 458, ny,4 = 255) calculated as the
correlation between model predictions and mean responses over repetitions.

(TIFF)

$4 Fig. Single-trial correlation performance of ImageNet-based models at multiple input
resolutions on the validation set of V1 (upper row) and V4 (bottom row). We considered
four popular CNNs with different architectures, pretrained on ImageNet (columns; from left
to right: AlexNet [29], VGG-19 [30], Resnet50 [20], Cornet-S [31]). For each network, we built
neural predictive models that use features from multiple layers (x axis) that span the depth of
the network. Each dot in the plot is the average over seeds of the best model configuration
pooled over regularization parameters (see Methods). Assigning a layer to a brain area depends
on the input scale—the peak of the curves shifts across input resolutions. Moreover, optimiz-
ing the layer using the wrong input resolution may lead to sub-optimal performance (S1 Fig).
We found that all of these models reveal a hierarchical ordering of nonlinear computations in
the two areas, even when we account for input scale—V1 is predicted always by an earlier layer
than V4 (dotted vertical lines represent the most predictive layer over scales).

(TIFF)

S5 Fig. Task-model performances in terms of fraction of explainable variance explained
(FEVE). a, Individual task-model performances on V1 (upper row) and V4 (bottom row) as a
function of network layer organized in columns by the task-clusters [15]. Equivalent to S3 Fig
but performance is measured in terms of FEVE. b, Comparison of diverse task-driven models
on V1 and V4 measured in FEVE (Fig 2A and 2B). ¢, Tasks performances in terms of FEVE
after optimizing over layers and hyperparameters on the validation set ordered as in Fig 2C.
(TIFF)

S6 Fig. Optimal input scale and layers for task-models on V4. In contrast to area V1 where
the optimal layer and scale was shared among all task-models (Layer1.0 and 21px/°), there was
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variability of the optimal layer in the V4 task-models. In some models, including the untrained
network, Layer1.0 with a low input resolution was optimal. The top performing models,
including the two semantic classification, and most of 3D tasks (Fig 2C) chose an intermediate
resolution (~ 5.6px/°) at Layer3.0. Interestingly, most geometric and 2D tasks yielded optimal
performances at the same layer, but at a higher resolution.

(TIFF)

S7 Fig. Comparison of the average task-cluster performance on single-neurons in V1 (a)
and V4 (b). The dotted line in each pairwise comparison represents the identity and the panels
in the main diagonal shows the performance distribution of each task-cluster. A pairwise Wil-
coxon signed rank test reveal that the differences between task-clusters were significant (Fig
2D and 2E). Insets show the percentage of neurons better explained by one task group (row) vs
another (column).

(TIFF)
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