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Abstract

The rapid growth in population, climate variability, and decreasing water resources necessitate innovative
agricultural practices to ensure food security and resource conservation. This study investigates the effectiveness
of various multispectral imagery from remote sensing (RS) platforms, Unmanned Aerial Systems (UAS),
PlanetDove microsatellites, Sentinel-2, Landsat 8/9, and proximal MSR-5 in assessing crop biophysical
characteristics (CBPCs) and actual crop evapotranspiration (ETa) for maize fields in northeastern Colorado. The
research aims to evaluate the accuracy of vegetation indices (VIs) derived from these platforms in estimating key
CBPCs, including leaf area index (LAI), crop height (Hc), and fractional vegetation cover (Fc), as well as ETa.
Field experiments were conducted during 2022 at the USDA-ARS Limited Irrigation Research Farm in Greeley,
Colorado, U.S.A., using different irrigation strategies. Surface reflectance data collected using a handled sensor
and observed LAI, Hc, and Fc values, served as ground truth for validating RS estimates. The study applied
various statistical analyses to compare the performance of different RS platforms and models. Results indicate
that higher-resolution platforms, particularly UAS, provided higher accuracy in estimating VIs and CBPCs than
satellite platforms. The study also highlights the influence of environmental conditions on the accuracy of RS
models, with locally calibrated models outperforming those developed in dissimilar conditions. The findings
underscore the potential of advanced RS technologies in enhancing precision agriculture practices and
optimizing water resource management.
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1. Introduction

The urgency of rapid population growth, climate variability, and dwindling water resources necessitates
immediate and innovative approaches to enhance agricultural productivity while conserving natural resources.
These pressing challenges underscore the critical need for sustainable farming practices that optimize resource
use efficiency, mitigate environmental impact, and ensure food security for present and future generations (FAO,
2017). As the primary consumer of water among all water uses, irrigated agriculture, utilizing about 70% of the
world’s available water resources (Galan-Martin et al., 2017), is at the forefront of these challenges.

Improved irrigation water management is essential in ensuring water and irrigation sustainability (Sishodia et al.,
2020; Ozdogan et al., 2010). Optimizing water use efficiency through drip irrigation or precision irrigation
conserves water resources and minimizes water loss (Evans & Sadler, 2008). These techniques enhance crop
productivity, support environmental conservation by reducing soil erosion and groundwater depletion, and help
farmers adapt to changing climate conditions (Kumar et al., 2022; Atzberger, 2013). Additionally, efficient
irrigation practices lead to economic savings and contribute to the long-term sustainability of agricultural
systems, benefiting both present and future generations (Shanmugapriya et al., 2019).

Remote Sensing (RS) has emerged as a crucial tool in contemporary agricultural research, particularly in
addressing water resource challenges (Karthikeyan et al., 2020). Its practical applications, such as facilitating the
estimation of crop biophysical characteristics (CBPC) and actual crop evapotranspiration (ETa), enable more
efficient irrigation water management and promise advancements in accuracy (Shanmugapriya et al., 2019;
Moran et al., 1997). These advancements are critical to effectively addressing water resource challenges across
diverse locations worldwide that vary in climate or topography. The accuracy of RS-based algorithms in
estimating CBPCs is crucial, with key variables such as Leaf Area Index (LAI), Crop Height (Hc), and
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Fractional Vegetation Cover (Fc) playing an important role in providing a quantitative measure of the vegetation
health, structure, and distribution (Thenkabail et al., 2018; Wardlow & Egbert, 2008). These variables are
fundamental in understanding the sophisticated dynamics of water use by crops, and their understanding enables
informed decisions regarding water use applications by farmers, researchers, and policymakers (Sishodia et al.,
2020).

In agricultural research, the study of CBPCs using RS has gained significance due to its implications for
sustainable farming and natural resource management (Kingra et al., 2016). RS plays a pivotal role in estimating
CBPCs and ETa, as it allows multispectral image data collection while providing frequent updates on changing
crop conditions, offering high spatial and temporal resolutions for more detailed monitoring of these variables
spatial variabilities (Bégué et al., 2018; Atzberger, 2013). Accurate estimation of ETa and CBPCs is crucial in
appropriately estimating the water budget and provides a better understanding of water management in irrigated
and rainfed crop fields (Olivera-Guerra et al., 2018; Facchi et al., 2013). RS-based products could indicate crop
health, development, and growth, aiding in assessing crop development stages, predicting yields, and identifying
stress factors (Karthikeyan et al., 2020). Proper spatially distributed ETa estimates can be used to better manage
irrigation decisions, prevent water wastage, and sustainably use water resources, making the proper ET estimates
a valuable tool in regions prone to drought or facing water scarcity challenges (Moran et al., 1997).

RS technologies offer numerous advantages when studying CBPCs and ETa (Calera et al., 2017). Firstly, they
allow for large-scale and near real-time monitoring of agricultural areas, providing comprehensive spatial and
temporal data, detecting changes over time, and assessing crop conditions in time and space. Secondly, RS
techniques provide a non-invasive means of multispectral data collection, reducing the need for extensive
fieldwork and physical measurements and resulting in a cost-effective tool (Kasampalis et al., 2018). The RS
techniques save time and resources and enhance the accuracy and frequency of data collection, leading to more
reliable insights and predictions (Wardlow et al., 2007). Moreover, RS facilitates the integration of multispectral
and multitemporal images, enabling complex analyses and modeling of crop behavior and water dynamics,
which enhances the understanding of ecosystem processes (Aeberli et al., 2021). RS data can also be used to
assess the effectiveness of precision agriculture techniques and monitor changes in land cover, supporting
informed strategies for sustainable farming and water resource management (Sishodia et al., 2020).

Many RS platforms are used to estimate CBPCs and ETa. The importance of choosing the proper platforms
emerged dramatically to enhance the estimations of CBPCs, ETa, and other important factors related to crop
growth and management (Jafarbiglu & Pourreza, 2022). Over the past two decades, there has been a substantial
surge in the utilization of RS technologies, with a predominant focus on satellite platforms such as Landsat and
Sentinel-2. Additionally, Unmanned Aerial System (UAS) technologies have significantly contributed to
agricultural monitoring studies (Khanal et al., 2020), including ETa mapping (Chavez et al., 2020). In the context
of irrigation water management (IWM), the utilization of RS, VIs, CBPCs, and ETa can substantially enhance
operational efficiency and resource conservation. For instance, studies by Kamble et al. (2013) demonstrate the
effectiveness of using satellite-based RS data to optimize irrigation scheduling. By integrating RS-derived VIs
and surface temperature measurements, more accurate crop growth monitoring and water requirements lead to
informed irrigation decisions (Chéavez et al., 2024). In parallel, the analysis of ETa through RS-based methods
offers real-time insights into crop water use dynamics (Saadi et al., 2018). Researchers can quantify ETa at field
scales by analyzing RS multispectral image data, allowing for adaptive irrigation strategies that conserve water.
Baret and Guyot (1991) emphasized that the accuracy of VlIs is influenced by sensor calibration. They included
the importance of accurate sensor calibration to ensure consistent and reliable VI values across RS platforms.

Many studies have developed VI-based models to estimate the CBPCs and ETa. Anderson et al. (2004)
developed a VI-based model to estimate LAI and Hc, highlighting that the different RS platforms provide
different VI values for the same observed crops and showing the importance of developing different calibration
equations for estimating CBPCs. Also, Payero et al. (2004) compared eleven Vs for estimating the alfalfa and
grass Hc, and the results showed the importance of selecting a suitable VI for a particular crop type and Hc.

Yang et al. (2015) used VI-based functions to estimate LAI, He, and Fc, Mourad et al. (2020) used various Vs to
estimate LAI in semi-arid landscapes. Both studies highlighted the importance of different calibration equations
for accurate CBPCs estimation, considering factors like sensor spatial resolution, spectral bands, and VI choices.

High accuracy for He estimation was achieved in a study by Costa-Filho et al. (2021) and Arslan et al. (2022),
for instance. In those studies, the authors used empirical models based on LAI and the Normalized Difference
Vegetation Index (NDVI) and found different calibrations for the Hc estimation. These results indicate how
different site conditions and maize varieties can affect the Hc estimation results. Khaliq et al. (2018) and Jeong
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and Park (2021) emphasized local-scale studies for accurate Hc estimation using VIs. Other studies, such as
Bastiaanssen et al. (1998) and Vina et al. (2011), focused on LAI estimation incorporating multiple VIs to
improve accuracy. Studies by Liu et al. (2011), Chavez et al. (2009), and Jayasree et al. (2013) demonstrated the
advantages of higher-resolution multispectral data for more accurate LAI estimation. For Fc estimation, Johnson
and Trout (2012) and Gitelson (2013) used NDVI-based models resulting with high coefficients of determination
or R? values. Studies by Neale et al. (1989), Bausch (1993), and Gonzalez-Piqueras et al. (2004) developed
models for estimating the basal crop coefficient (Kcb) using various VIs. Singh and Irmak (2009) and Trout and
DelJonge (2018) also focused on Kcb estimation, showing the importance of accurate VI-based models for crop
water use estimation.

While numerous studies have developed and validated VI-based models for estimating CBPCs and ETa, there
remains a need to evaluate the performance of these models across different RS platforms, especially with
varying spatial and spectral resolutions. This research often focuses on specific environmental conditions,
leaving a gap in understanding how these models perform in diverse settings, particularly semi-arid regions with
different irrigation practices. Additionally, the impact of higher resolution on the accuracy of these estimates
compared to lower satellite platforms has not been fully explored. This study aims to fill these gaps by
evaluating the accuracy of VIs derived from various RS platforms in estimating CBPCs and ETa for maize in
northeastern Colorado. By testing the hypotheses that higher-resolution RS multispectral data will yield more
accurate estimates and that models developed under similar site conditions will perform better. Further, this
research will contribute valuable insights into the optimal use of RS technologies for agricultural water
management. The outcomes are expected to enhance precision agriculture practices and water resource
management strategies, providing critical information for regions with similar environmental conditions.

2. Method
2.1 Site Description

The experiment was conducted in 2022 at the United States Department of Agriculture, Agricultural Research
Service (USDA-ARS), Limited Irrigation Research Farm (LIRF) located in Greeley, Colorado, U.S.A. The study
utilized two drip irrigated maize fields. In the eastern field, a deficit irrigation approach was implemented,
subjecting the field to water stress conditions during the growth stages of the maize. Conversely, the western
field was managed with a fully irrigated practice to maintain optimal soil water content levels throughout the
growing season. This served as a comparative reference to evaluate the performance of maize under favorable
irrigation conditions. The fields were situated at approximately Latitude 40.4470° N and Longitude -104.3696°
W, with an elevation of around 1425 meters above mean sea level. Each of these fields has a rectangular shape of
190 x 110 m. Figure 1 below illustrates the precise location of the study area and provides a top view of the two
studied fields.

2.2 Field Data Collection and Used Instruments

Proximal surface reflectance measurements were obtained using a portable multispectral radiometer (MSRS
CropScan, Inc., Rochester, MN, U.S.A.) at various stations throughout the maize growth season. The MSRS5
radiometer is a compact handheld device that was mounted on a telescopic pole for nadir-looking measurements
above the canopy. For each MSRS5 radiometer measurement, the footprint was equivalent to a 1-meter-diameter
circle over a ground sampling area. This passive sensor relies on natural sunlight and replicates Landsat-5
spectral bandwidths across the visible, near-infrared, and mid-infrared light spectrum. During this study, the
MSRS unit was used to take surface reflectance readings over 44 different stations within the study fields.

The LAI-2200C plant canopy analyzer, (Li-Cor, Inc., NE, U.S.A.) was used to measure maize LAI values. It
accomplishes this by measuring radiation above and below the plant canopy and applying a theoretical
relationship between leaf area and canopy transmittance. The optical sensor of this device consists of five
detectors arranged in concentric rings, each detecting radiation below 490 nm from different portions of the sky.
Canopy transmittance is calculated by comparing readings below the canopy to those above it for each detector
ring. The leaf area estimate assumes that foliage elements are randomly distributed within the canopy.

The crop height was measured in situ, directly within the field where the crops were growing at the 44 sites. A
tape measure was used to assess the height of the crops within their natural environment. These in-situ
measurements ensured accurate and real-time data collection, reflecting the actual conditions of the crop at the
time of measurement.

Weather conditions for the site area, as well as daily and hourly alfalfa reference evapotranspiration (ETr) data,
were obtained from the COAGMET weather station Greeley 04 (GLY04), which was situated at the LIRF site
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over well irrigated clipped grass. The station is positioned at a latitude of 40.449° N and longitude of -104.6380°
W, northwest of the two study fields. Daily in-situ maize ETa data were obtained using an atmometer (Model E,
ETgage, Loveland, Colorado, U.S.A.). The atmometer used in this study was composed of a Polyvinyl chloride
(PVC) pipe placed around one meter above the ground. The PVC pipe is filled with distilled water, and
information on the water used can be read by measuring the water drop daily. Atmometers consist of a porous,
wet, ceramic cup placed on top of a cylindrical water reservoir. The ceramic cup is covered with a green canvas,
simulating the canopy of maize (resistance). Distilled water is poured into the cylindrical reservoir, which
evaporates from the ceramic cup and is pulled through a suction tube extending to the bottom of the reservoir. A
special membrane underneath the fabric keeps rainwater from seeping into the cup. This atmometer (ETgage)
was placed in the fully irrigated field only.

As for the Fc observations, the data were collected using the shadow sampling method, or as known, the
meter-stick method. This method uses a meter stick that is placed on the land surface perpendicular to the crop
rows. The length of the shadow on the stick is measured, and the ratio of the shadow length to the total length of
the stick is the Fc, as indicated by (Adams & Arkin, 1997).

Fort Collins

Greeley

Full Irrigation field Deficit Irrigation Field

100 Meters
J

Figure 1. Location map of the study area near Greeley, Colorado, U.S.A.

2.3 Remote Sensing Data

As the main goal of this study was to compare and evaluate the performance of different RS platforms in
estimating VIs, CBPCs, and ETa, this section introduces each of these platforms and provides some of their
properties. Table 1. shows the general properties of each of these platforms.
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2.3.1 The Unmanned Aerial System (UAS)

The UAS in this study was composed of a MicaSense RedEdge-MX multispectral camera (MicaSense Inc.,
Seattle, WA, U.S.A.), with five bands, including the visible and NIR bands. The UAS in this study acquired
images over four separate flights at an elevation of 120 meters above field level.

2.3.2 PlanetDove Satellite

Planet Dove mini satellites are operated by Planet Labs (Planet Labs, Inc., San Fransisco, CA, U.S.A.). Planet is
a low-cost commercial satellite constellation (150+) designed for frequent and global Earth imaging. The Dove
satellites capture multispectral imagery at a resolution suitable for monitoring agricultural landscapes. The
advantage of Planet Dove imagery lies in its high revisit rate and ability to provide consistent and up-to-date
information on crop changes. The Planet surface reflectance images are pre-processed and calibrated with a
factor of 10,000. Atmospheric corrections use MODIS data and the 6SV2.1 radiative transfer model (Planet team,
2017) to remove the effect of gases and aerosol concentrations and their changes in the altitude between the
camera sensor in the space and the landscape. However, they exclude effects like stray light and haze from the
correction process. Geometric corrections use sensor telemetry, ground control points, and digital elevation
models to have a harmonized imagery version that meets the Sentinel-2 standards.

Table 1. Remote Sensing Platforms Characteristics

RS Platform  Spatial Resolution = Temporal Resolution Used Bands Central Wavelength (nm) Band Width (nm)

Red 668 14
UAS 0.03 meter -

NIR 842 57

Red 666 80
Planet 3 meters 1 day

NIR 867 80

. Red 665 31

Sentinel-2 10-60 meters 10 days

NIR 833 106

Red 655 30
Landsat8/9  30-100 meters 16 days NIR 870 30

SWIR-2 2200 30

Red 660 60
MSR-5 1 meter -

NIR 830 140

2.3.3 Sentinel-2 Satellite

Sentinel satellites are part of the European Space Agency (ESA) Copernicus program, offering a series of Earth
observation missions. Sentinel-2 has 2 satellites (Sentinel-2A and Sentnel-2B), and both provide multispectral
images of the Earth’s landscape. The radiometric resolution of the Sentinel-2 image is 16 bits after
post-processing the images by the ESA from 12 bits. To provide surface reflectance images, the sentinel-2
images are pre-processed and calibrated through a calibration factor of 10,000; the ESA (Sen2Cor) developed an
algorithm to process the atmospheric corrections.

2.3.4 Landsat 8/9 Satellite

It is a spaceborne RS platform operated by NASA and the USGS, providing the longest continuous global record
of Earth’s surface imagery. Landsat satellites take images of the land surface using the Operational Land Imager
(OLI), which provides short-wave multispectral data, and the Thermal Infrared Sensors (TISS), which uses a
camera to measure the long-wave infrared thermal radiation images. The radiometric resolution of Landsat
imagery is 16 bits, converted from 12 bits after USGS/NASA post-process data. Linear calibration coefficients
are used to convert the digital number (DN) to surface reflectance data.

2.4 Determination of Vegetation Indices

Four different RS-based VIs were calculated throughout the maize growth stages. These VIs include the NDVI,
the Soil Adjusted Vegetation Index (SAVI), and the Optimized Soil Adjusted Vegetation Index (OSAVI),
estimated based on surface Red and NIR reflectance data. The Normalized Difference Water Index (NDWI) was
estimated but only for the MSR-5 and Landsat 8/9 platforms VIs. These VIs can be estimated using the following
Equations 1 to 4:
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o 0
SAVI= (1+L1)— =22 2
OSAVI = (1+12) 22 3)

NDWI = % 4)

Where, NIR represents the target or surface reflectance in the near-infrared band, RED is the surface reflectance
in the red band, and SWIR 2 is the Short-wave surface infrared reflectance. The L factor in Equation 2 and
Equation 3 is the adjustment factor that has been used to minimize the interference caused by the soil
background reflectance to the reflectance values from vegetated surfaces. The estimation of the L factor is based
on crop densities. For SAVI, L1 was set to 0.5, and for OSAVI, L2 was set to 0.16.

The reflectance of the light for the maize surface was obtained using RED, NIR, and the Mid-Infrared (MIR)
bands over 44 different stations, 22 stations in the fully irrigated field and 22 stations in the deficit irrigation
field. Using ArcGIS Pro (ESRI, Redlands, CA, U.S.A.), circles or polygons representing Areas of Interest (AOI)
were determined with a specific diameter of influence for each station. For the UAS and Planet images, an AOI
diameter of 3 meters was used; for Sentinel-2, a 10-meter AOI diameter was used; and for Landsat images, a
30-meter AOI diameter was used. Each AOI was centered at the MSR-5 site coordinates. These different AOI
diameters were set to capture the surface reflectance from the area of the pixel of interest. After a comprehensive
collection of the reflectance data for each RS platform and each station throughout the dates mentioned, these
reflectance data were used to estimate the VIs. These VIs were compared to the MSR-5 surface reflectance-based
VIs data to evaluate the performance of each RS platform throughout the entire maize growth season.

2.4 Estimation of Crop Biophysical Characteristics

The LAI, Hc, and Fc were estimated using different functions based on different VIs. The CBPCs were estimated
for each of the 44 stations. Several VI-based functions/models were tested for this study to estimate CBPCs. The
selection criteria of CBPC calculation functions were based on using models that incorporated different site
conditions, different RS platforms for measuring reflectance data, and various VI-based models. Firstly, site
conditions variability may significantly impact the performance of VIs and RS platforms in estimating CBPCs.
Secondly, different RS platforms (satellites, airborne, or proximal sensors) have varying spatial and spectral
resolutions, which may influence the sensitivity and accuracy of VIs in estimating CBPCs. Additionally,
different VIs respond differently to variations in CBPCs. Therefore, selecting different functions that align with
the sensitivity and formulation of different VIs allows for a comprehensive evaluation of how these indices
estimate CBPCs across diverse conditions and sensor types. Tables 2 to 4 show the selected models used to
estimate the LAIL, Fc, and He, respectively.
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Table 2. Selected models for LAI estimation

Model-VI Function Reference

NDVI (VI+1.1)(1+0.01-¢>7>VT) Mourad et al. (2020)

NDVI 0.2092:¢3-3534*VI Jayasree et al. (2013)

NDVI log, ([ (0.943 - VD)/0.731]

| Nguy-Robertson et al. (2012)
SAVI -[(1.49-In VI)+2.71]/In VI
1

NDVI [In —i550 1/0.6159 Vina et al. (2011)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, UG

NDVI _[In 1.007-(1 - (1.036-VI))]

0.7 Liu et al. (2012)

OSAVI _[In1.123%(1 - (1.155-VD)]
Ol

NDVI 6.32-VI! Yang et al. (2015)
""""""""""""""""" Leeevi

SAVI - 009519 Bastiaanssen (1998)
osavi 0263633V Chavezetal. 2009)

NDWI (2.88-VI+1.14) x (1+0.104-¢*1'1)

Anderson et al. (2004)
OSAVI (4'VI - 0.8) x (1+0.00000473-15-64V1)

Table 3. Selected models for Fc estimation

VI-Based Function Reference
NDVI 1.26-VI-0.18 Johnson and Trout (2012)
0.696
DVI 082 - VI Y 1. (201
o ) T meetal QI
NDVI IIn(l %) 13 Gitelson (2013)
Table 4. Selected models for He estimation
Model-Based Function Reference
LAI LAI ;;)43919
' Arslan et al. (2022)
VI-0.0285
NDVI o
‘NDVI 0283VI-00277  leongandPark 2021)
NDVI 3.4086-V1'643 Yang et al. (2015)
LAI (0'697.e0-236'LA1) - (3.42:¢3177LAL Costa-Filho et al. (2021)
OSAVI (1.86-VI-0.8) x (1+0.000000482-¢!76VT)
Anderson et al. (2004)
NDWI (1.2:VI+0.6) x (1 +0.04-¢>3V1)
NDVI V(I)'gfs Khaliq et al. (2018)

2.5 Estimation of Crop Coelfficients and ETa

Multiple linear models based on Fc and VIs were used to estimate basal crop coefficients (Kcb). Table 5 shows
the selected models used to estimate Kcb. The estimated coefficients were then used to estimate the daily maize
actual evapotranspiration (ETa) using Equation 5.

ETa = Kebx-ETr
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Where, Kcbx is the reflectance-based crop coefficient estimated by the x function shown in Table 5, and E7r is
the daily alfalfa reference evapotranspiration calculated from observed COAGMET weather station data. The
estimated daily ETa was compared to the daily ETgage estimated using in-situ measurements for the full
irrigation field, shown in detail in section 2.2.

Table 5. Selected models for basal crop coefficient (Kcb) estimation

Model-Based Function (Kcbx) Reference

Fc (1.1-Fc) +0.17 Trout and DeJonge (2018)
NDVI (1.181-NDVI) - 0.026 Neale et al. (1989)

SAVI (1.416:SAVI) +0.017 Bausch (1993)

NDVI (1.2358:NDVI) + 0.0245 Gonzalez-Piqueras et al. (2004)
NDVI (1.308:NDVI) + 0.027 Singh and Irmak (2009)

2.6 Balanced Analysis

To ensure a balanced analysis, a new comparative study of the different RS platforms was carried out by
selecting a subset of data acquired with the various platforms coinciding as closely as possible in overpass time.
Given that there were only four UAS flights, the other platforms were matched with the dates of data acquisition
of those of the UAS flights. The UAS-based data acquisition dates were July 21, July 25, August 18, and
September 7. Table 6 presents the specific dates selected for each platform to ensure temporal alignment. The
selected dates in Table 6 were used for the analysis to provide a clearer comparison of the results across different
RS platforms. By focusing on these dates, we minimized the temporal discrepancies that could affect the
accuracy of the comparative analysis.

Table 6. Dates of images chose for the balanced analysis

RS Platform Dates

UAS Jul/21, Jul/25, Aug/18, Sep/07
PlanetDove Jul/17, Jul/27, Aug/18, Sep/07
Landsat Jul/17, Jul/25, Aug/18, Sep/11
Sentinel-2 Jul/20, Jul/30, Aug/19, Sep/08
MSR-5 Jul/20, Jul27, Aug/18, Sep/07

To further balance the study and provide a comprehensive analysis, the data were separated into two distinct
subsets representing early and late crop growth stages. This separation allows for the evaluation of the
performance of the RS platforms and models across different developmental phases of the maize crop. The early
growth stage was defined as the period from the beginning of the season until the end of July, while the late
growth stage was defined as the period from the beginning of August until the end of the season. This approach
ensures that the analysis covers different growth cycles of the maize crop and provides insights into how each
RS platform performs at different stages.

2.6 Statistical Analysis, Models Performances, and Sensitivity Analysis

A One-way sensitivity analysis was done for all CBPCs and Kcb functions to assess the impacts of uncertainties
of independent variables (VIs) on the output results of CBPCs and ETa estimates. The sensitivity analysis varied
the value of the variable (i.e., VIs, Fc, and LAI) in 2.5% (2.5% increase and 2.5 decrease) and 5% (5% increase
and 5% decrease) increments. Any increase in VI values should yield a value less than or equal to one; since the
values of the indices range between -1 and 1, any VI values larger than one were excluded. Also, an increase in
Fc values should obtain an Fc value less than the expected maximum maize Fc of 85% (or 0.85), and any change
in Fc values that results in an Fc value higher than 85% were excluded. As for the LAI changes, the values
should not exceed 5.5 m*/m’, and any values exceeding 5.5 m*/m’ were excluded.

To evaluate the performance of the VIs and the selected CBPCs and ETa models, we utilized the Mean Bias
Error (MBE), the Normalized MBE (MBE%), the Root Mean Square Error (RMSE), and the RMSE%. The
MBE, MBE%, RMSE, and RMSE% are shown in Equations 6 to 9, respectively.
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MBE = 22 (6)

MBE% = % x 100% (7)
2spi-o)

RMSE = E— ®)

RMSE% = “2= x 100% )

Where, Pi is the predicted value provided by the models, Oi is observed value, n is the number of observations
(sample size), and O is the average value of the observed data.

The MBE helps assess prediction bias, where positive MBE values indicate overestimation and negative MBE
values indicate an underestimation of the models compared to the observed data. The RMSE provides a measure
of the overall prediction error. Lower values suggest better predictive accuracy relative to the scale of the actual
values, while high RMSE values show that the model has high error. These metrics are commonly used in
evaluating the performance of predictive models and are frequently employed to assess the effectiveness of
predictive models. Jamieson et al. (1991) proposed the following categories based on RMSE% to evaluate the
performance of the models (RMSE% < 10%; Excellent performance, 10% < RMSE% < 20%; Good performance,
20% < RMSE% < 30%, Fair performance, RMSE% > 30%; Poor performance).

Before testing the function results, the data were subjected to a Median Absolute Deviation Analysis (MADA) to
detect and remove outliers from the error analysis (Leys et al., 2013). The MADA was used in this study to
replace the method used to remove the outliers based on using the mean and standard deviation. The MAD was
calculated using the following equation:

MAD = b x Mi(lxi — Mj(x))|) (10)
B { 1.4826, normally distributed data

11
1/Q(0.75), non-normally distributed data (D

Where, b is a constant linked to the normality of the data, Mi is the median of the new series that will be resulted
by applying in between the brackets, xi is each individual value of the series, Mj(x/) is the median of the original
series. The process of this analysis is by subtracting each of the values of the original series with the median
value of the original series, then find the median value of the new series, which resulted from the subtracting,
and then multiplying the new median value with the constant b, finding the MAD value. After having the MAD
value, the outliers can be detected by M -3-MAD <xi <M + 3-MAD, All values greater than M + 3-MAD and
smaller than M-3-MAD were excluded from the analysis. The use of (3-MAD) is suggested to be very
conservative by Miller (1991) instead of using (2.5-MAD) or (2-MAD).

3. Results
3.1 Determination and Evaluation of Vegetation Indices

The VIs values from the satellite data were compared to the MSR-5 data-based VIs to evaluate the performance
of each RS platform data quality. The performance of these indices was tested using Equation 6 to Equation 9.
Table 7 shows the error analysis and performance of VI estimations.

As shown in the table below, the estimated VIs’ performance using the UAS platform was excellent and higher
than that of all other RS platforms. The better performance is likely due to the UAS’s higher spatial resolution
and the fact that the system acquired RS data closer to the land surface, thus minimizing atmospheric
interference and capturing more detailed canopy information. The other RS platforms showed a relatively high
performance in estimating VIs; they showed comparable trends in estimating VIs but with generally lower
accuracies (higher MBE% and RMSE%) than the UAS, suggesting that they might be less sensitive to finer
canopy details.
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Table 7. Performance of VI estimations for each RS platform

RS platform VI MBE MBE% RMSE RMSE%
NDVI 0.020 2.8 0.069 9.5
UAS OSAVI -0.0002 -0.03 0.044 6.8
SAVI -0.026 -4.8 0.054 9.9
""""""""""""""" NDVI 0009 14 0084 128
PlanetDove OSAVI 0.034 6.0 0.078 13.5
SAVI 0.004 0.8 0.067 13.7
”””””””””””””” NDVI 0004 06 0081 120
Sentinel-2 OSAVI -0.064 -11.0 0.102 17.3
SAVI -0.031 -6.3 0.081 16.4
""""""""""""""" NDVI 0021 31 0081 115
Landsat OSAVI 0.018 3.0 0.073 12.0
SAVI -0.007 -1.4 0.068 13.5
NDWI 0.070 19.1 0.080 21.6
3.2 Estimation of CBPCs

3.2.1 Leaf Area Index Estimation Analysis

Based on Table 2, twelve models were selected to estimate the LAI; those models were based on different VIs.
Table 8 shows the statistical analysis for each LAI function resulting from each RS platform studied.

The error analysis, conducted across a diverse range of functions and VIs for LAI estimation using different RS
datasets, provides a comprehensive understanding of the performance and reliability of these models. The
selected VIs, each with its unique characteristics, demonstrate varying degrees of performance across different
studies and datasets. The NDVI was the most utilized index; however, SAVI and OSAVI demonstrated similar
performance compared to NDVI. The performance of LAI estimation models was slightly influenced by the type
of RS reflectance data used or the high spatial resolution; a slight better performance was noticed for the
higher-resolution RS platforms. For instance, LAI results from models applied to PlanetDove, MSR-5, and UAS
reflectance data showed relatively better performance compared to those applied to Landsat and Sentinel-2 data,
which may provide evidence of how higher resolution RS platform can yield better estimations of LAI. The
MBE values, which provide insights into the overall bias of the LAI estimation models, were predominantly
negative, suggesting an underestimation of LAI and VIs estimations. The RMSE values reflect the accuracy of
LAI estimation models throughout all the used models within all used RS platforms only. Mourad et al. (2022),
Chavez et al. (2009), and Nguy-Robertson et al. (2012) models had a consistently high performance; these
models were conducted in dry areas similar to weather conditions encountered in Greeley, CO, which shows the
importance of selecting and applying LAI-functions developed for arid or semi-arid areas. On the other hand,
LAI models by Liu et al. (2012), Bastiaanssen (1998), and Anderson et al. (2004) showed lower performance
throughout all RS platforms. In Bastiaanssen’s (1998) study, an overall function used to estimate the LAI for
multiple crop types and in multiple countries was used, which resulted in poor performance across all RS
platforms. This highlights the need for more specific and localized LAI estimation models. Also, Both Liu et al.
(2012) study, conducted in Ottawa, Ontario, and Anderson et al. (2004), conducted in Walnut Creek Watershed,
Iowa, had a humid site condition, significantly impacting the LAI results in this study. This emphasizes the
importance of considering site conditions in future LAI estimation research.

Overall, higher-resolution RS platforms generally provide better performance, indicating that higher spatial
resolution improves the accuracy of LAI estimation. Also, models developed in similar environmental conditions
performed better, emphasizing the importance of site-specific calibration and the impact of differing site
conditions on model accuracy. Moreover, the predominance of negative MBE values suggests a tendency for
underestimation in LAI estimates across most models, which shows the need for further model calibration. In
addition, model development localization is important, including the development of models with a specific crop
type, crop variety, and sites. These key findings highlight the need for further research and development in the
LAI estimation field, particularly in model calibration and site-specific considerations.
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Table 8. Error analysis for LAI estimation models

. Landsat Sentinel-2 Planet UAS MSR-5
Function MBE% RMSE% MBE% RMSE% MBE% RMSE% MBE% RMSE% MBE% RMSE%
Mourad et al. (2022) 2.9 20.8 35 18.6 0.2 193 8.5 19.6 7.2 22.8
Jayasree et al. (2013) -20.5 285 -438  46.0 -17.7 251 -3 199 -154 248
Nguy-Robertson et al. (2012) (NDVI) -17.0  26.9 -9.6 22.0 -141 240 -4.5 22.5 -9.6 26.2
Nguy-Robertson et al. (2012) (SAVI) -7.6 20.0 -6.0 17.0 -1.5 19.7 10.6 27.1 -0.3 26.2
Vina et al. (2011) -293 357 2224 297 =272 337 -154 261 216 298
Liu et al. (2012) (NDVI) 2385 427 =347 383 2369 410 -302 337 2345 386
Liu et al. (2012) (OSAVI) -340 382 313 345 -294 346 -163 256 -25.8 333
Yang et al. (2015) 17.2 26.5 21.0 270 20.6 28.2 253 29.6 213 29.5
Bastiaanssen (1998) -17.1 338 -20.8 323 -139 320 -185 318 <233 417
Chavez et al. (2009) -8.2 21.5 -6.5 17.6 =35 19.5 59 20.7 -1.9 24.6
Anderson et al. (2004) (NDWTI) 243 27.8 - - - - - - -3.6 19.2
Anderson et al. (2004) (OSAVI) -36.0 420 -344 380 -335 389 -l6.1 323 277 370

A new analysis was done to estimate the LAI using each RS platform with closely coinciding overpass dates.
This new study was done to balance the comparison between each RS platform by having similar/close dates,
number of data points (days in time) compared. Table 9 shows the MBE% and RMSE% for the RS platforms
used in this study.

The performance of different RS platforms in estimating the LAI varied considerably, as indicated by the MBE%
and RMSE% metrics. The Landsat platform exhibited a wide range of performance across various models,
suggesting that while Landsat can occasionally provide accurate LAI estimates, it has some limitations in
accurately estimating the LAI for some models. Sentinel-2, on the other hand, demonstrated a slightly better
overall performance than Landsat, indicating moderate reliability. Sentinel’s ability to produce good performance
metrics in certain models highlights its potential for more accurate LAl estimation under specific conditions. The
Planet platform generally produced a fair performance, suggesting a slightly higher accuracy level. However,
like Landsat and Sentinel, Planet’s data showed variability, with many models exhibiting poor performance.
UAS data consistently showed better performance across various models compared to other platforms. The
best-performing models using UAS data achieved good performance levels with RMSE% values below 20%,
and even the less accurate models generally fell within the fair range. This consistent performance underscores
the higher accuracy and reliability of UAS for LAI estimation, likely due to its higher spatial resolution,
flexibility in data acquisition, and proximity. The MSR-5 platform displayed mixed results, depending on the
model used, suggesting that while MSR-5 can be useful, its performance is less consistent and generally lower
than that of UAS for some models. Attention should be given to the type of RS data used in the development of
given CBPC models. The UAS data provided the most reliable LAI estimates across different models,
outperforming other RS platforms. Sentinel and Planet data showed moderate reliability, with potential for good
performance in specific scenarios. Landsat generally exhibited higher variability and less reliability. MSR-5
demonstrated less consistent performance. These findings highlight the importance of choosing the appropriate
RS platform based on the specific requirements and conditions of the study to ensure accurate LAI estimation.

The analysis of early and late crop growth stages reveals significant variations in the performance of the RS
platforms in estimating LAI. By comparing the MBE% and RMSE% for each platform, this will allow showing
the trends and identify which stages and platforms provide more accurate and stable results. During the early
growth stages, the performance of RS platforms varied significantly. Generally, slightly higher RMSE% and
MBE% values were observed, indicating less accuracy and greater bias in LAI estimates. For many RS platforms,
the early-stage results exhibited considerable errors, reflecting the challenges associated with capturing accurate
data during the initial phases of crop growth when the canopy is less developed and spectral signals are less
accurate. Platforms like UAS, Planet, and MSR-5 demonstrated relatively better performance during the early
stages compared to others. This suggests that in the early stages, with less dense canopies, the performance of
higher spatial resolution RS platforms is higher since they capture the less dense vegetation more accurately
without including the soil background, which will impact the results. In the late growth stages, the RS platforms
generally exhibited improved performance compared to the early stages. This trend of improved performance in
the late stages was consistent, especially for the lower spatial resolution RS platforms. The improved
performance during the late stages can be attributed to the more stable and developed canopy structure, which
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provides clearer spectral signals for the RS platforms to capture. The late growth stages generally provided better
results across all RS platforms due to more stable canopy conditions. The UAS platform proved to be the most
stable and dependable for LAI estimation, consistently showing moderate to good performance across both early
and late stages. Sentinel also showed reasonable stability, particularly in the late stages, while platforms like
Landsat and Planet exhibited higher variability and less consistent performance.

Table 9. Error analysis for LAI estimation models using balanced analysis

Functi Landsat Sentinel-2 Planet UAS MSR-5
unction
MBE% RMSE% MBE% RMSE% MBE% RMSE% MBE% RMSE% MBE% RMSE%
Mourad et al. (2022) -0.3 19.6 11.4 249 8.8 22.1 8.5 19.6 14.0 235
Jayasree et al. (2013) -19.7 272 -39.1 419 -11.7 220 -11.3 199 -9.7 20.0
70 267 -3.7 26.7 -6.8 234 -4.5 22.5 -2.1 22.8
Nguy-Robertson et al. (2012)
-8.6 20.4 -6.6 17.5 6.7 20.6 10.6 271 9.6 26.2
Vina et al. (2011) -28.7 344 -145 293 -195 286 -154  26.1 -15.6 246
. -37.3  41.1 -28.0  33.6 -309  36.1 -30.2 337 -29.7 335
Liu et al. (2012)
-34.1  38.0 -26.5 320 224 282 -16.3  25.6 -19.0 274
Yang et al. (2015) 21.1 27.7 26.0 30.1 28.9 339 253 29.6 30.1 354
Bastiaanssen (1998) -164 325 -202 347 4.7 33.1 -185 318 -152 407
Chavez et al. (2009) -9.9 20.6 24 22.5 4.8 19.3 59 20.7 8.5 24.6
6.8 29.5 - - - - - - 1.5 16.7
Anderson et al. (2004)
=395 427 -292 375 -26.0 328 -16.1 323 -20.2 318

3.2.2 Crop Height Estimation Analysis

Based on Table 3, eight models were selected to estimate Hc. Those models were based on different VIs and
observed LAI values. Figure 2 shows the statistical analysis for each Hc function resulting from RS platforms
used in this study. The findings of estimating He reveal that despite the variability of RS platform reflectance
data, the relative performance of the used models to estimate Hc remained consistent. This consistency suggests
that choosing a suitable function and VI- or LAl-based model is more critical than selecting a specific RS
platform. As shown in the Figures below, better performance functions were based on OSAVI, NDWI, and
observed LAI, which are crucial factors to consider. Furthermore, these high-performance LAI models have the
same site conditions as LIRF, emphasizing the importance of choosing functions developed based on similar site
conditions, including weather conditions, irrigation treatment, agricultural timing, and maize type. This
understanding can significantly enhance the accuracy of canopy height estimations.

The highest performance of Hc estimation resulted from Costa-Filho et al. (2021) and Anderson et al. (2004)
functions. Costa-Filho et al. (2021) model performed consistently well across all RS platforms with good
performance and low RMSE%; this model appears to be the most reliable for estimating Hc in dry areas in
Colorado or areas with similar weather conditions. The high performance in this study is interpreted by noting
that the study was conducted at LIRF, showing the same weather conditions as this study. Anderson et al. (2004)
functions that were based on using OSAVI- and NDWI to estimate the Hc showed higher performance across all
RS platforms. On the other hand, the Hc estimation function by Khaliq et al. (2018), Arslan et al. (2022), and
Yang et al. (2015) showed poor performance with an RMSE% exceeding 50%. The reason for the high error in
these studies might be the type of RS sensor used and the maize genetic varieties that were different from the one
used in this research. Different types of maize have different average canopy heights and structures. In the Arslan
et al. (2022) study, silage maize was planted, and the function in this study was built on the Hc observed data,
which exceeded 2.5 m height. As for Khaliq et al. (2018), the Hc function was based on ground observed data,
which averaged 2.46 m.

Overall, estimating Hc using different RS platforms and models demonstrates the critical importance of model
selection and calibration. The Costa-Filho et al. (2021) model provided reliable estimates, making it a preferred
choice for He estimation in conditions similar to those encountered in Greeley. Conversely, models by Arslan et
al. (2022) and Khaliq et al. (2018) showed poor performance, highlighting the need for site-specific models
suitable to local conditions. This underscores the importance of considering environmental conditions and the
specific characteristics of the RS platforms and models used in agricultural monitoring.
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Figure 2. Error analysis for the Hc estimation

A new analysis was done to estimate the Hc using each RS platform with close dates. This was done to make the
comparison between each RS platform more balanced by having similar/close dates and the same number of
dates. Figure 3 shows the MBE% and RMSE% for the RS platforms used to estimate the Hc. The evaluation of
various RS platforms for estimating He reveals distinct differences in performance and reliability. In this analysis,
UAS showed a slightly better performance than the other platforms, with a generally lower RMSE%. However,
the Landsat and Sentinel-2 platforms showed higher performances than the Planet and MSR-5 in estimating Hc.
The evaluation of various RS platforms for estimating Hc reveals distinct differences in performance and
reliability. The UAS showed a slightly better performance than the other platforms, with generally lower
RMSE% values, indicating that UAS data is more accurate and reliable for Hc estimation. This higher
performance can be attributed to the higher spatial resolution and its proximity, which allows for more detailed
and precise measurements. On the other hand, and despite having a lower spatial resolution, Landsat and
Sentinel-2 platforms showed higher performances than the Planet and MSR-5 in estimating He. The lower
performance of the Planet and MSR-5 can be interpreted by noting that the tested models were developed using
lower spatial resolution, such as ASTER images (15-meter spatial resolution) and Sentinel-2 (10-meter spatial
resolution).
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The analysis of early and late crop growth stages reveals significant variations in the performance of the RS
platforms in estimating the Hc. During the early stages of crop growth, all the RS platforms had a similar trend,
and their performance had a slight difference. In the late stages, the performance of the RS platforms did not
significantly change except for the UAS, which demonstrated a significantly higher performance in estimating
Hc during the late stages. Also, a slightly better performance for most utilized RS platforms was noticed.
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Figure 3. Error analysis for Hc estimation using balanced analysis

3.2.3 Fractional Vegetation Cover Estimation Analysis

Based on Table 4, three models were selected to estimate the Fc. Figure 4 shows the statistical analysis for each
Fc function resulting from UAS, PlanetDove, Landsat, Sentinel-2, and MSR-5 RS platforms.

Consistent results and performance were noticed for all functions used to estimate Fc across all RS platforms.
The UAS, which has the higher spatial resolution, showed a relatively higher performance in estimating Fc.
However, Sentinel-2, which has a lower spatial resolution, did not show the lowest performance estimating Fc.
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This suggests that factors other than spatial resolution, such as specific characteristics of the Fc models and their
calibration, may play a significant role in the accuracy of Fc estimation. Across all platforms, the Gitelson (2013)
model consistently demonstrated the lowest error values, indicating that it has more reliable results for
estimating Fc. The model by Yang et al. (2015) showed relatively lower performance in estimating Fc than the
other models, reflecting the importance of using models that developed in similar site areas, such as weather
conditions, irrigation treatment, and maize type.
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Figure 4. Error analysis for the Fc estimation

A new analysis was done to estimate Fc using each RS platform with acquisition dates close to each other. This
was done to make the comparison between each RS platform more balanced by having similar/close data
acquisition dates. Figure 5 shows the MBE% and RMSE% for the RS platforms used to estimate the Fc.

The UAS platform exhibited the highest performance in Fc estimation, characterized by consistently low MBE
and RMSE values across different models, underscoring the reliability of UAS data, likely attributed to its high
spatial resolution enabling detailed vegetation monitoring. Landsat data showed moderate to good performance
in Fc estimation, suggesting that Landsat is a reliable option for Fc estimation for the crop growth stage covered.
Sentinel-2 results also demonstrated strong performance, highlighting Sentinel-2’s capability to provide
consistent and accurate Fc estimates. In contrast, Planet and MSR-5 results showed more variability in Fc
estimation. The higher RMSE values and greater variability in MBE% suggest that both Planet and MSR-5
results are less reliable for Fc estimation using the suggested models, potentially due to the models being
developed using data from different RS platforms, leading to potential mismatches in sensor characteristics and
data quality.

The analysis of early and late crop growth stages reveals significant variations in the performance of the RS
platforms in estimating Fc. By comparing the MBE% and RMSE% for each platform, this will allow showing
the trends and identify which stages and platforms provide more accurate and stable results. Table 27 shows the
performance of UAS, Planet, Landsat, Sentinel-2, and MSR-5 platforms in estimating the Fc during the early and
late stages of maize development. During the early growth stages, the higher spatial resolution platforms
exhibited higher performance than the Landsat and Sentinel-2. However, all RS platforms showed higher error
resulted during the early growth stages compared to the late stages. Platforms like UAS, Planet, and MSR-5
demonstrated relatively better performance during the early stages, suggesting that in early stages, the
performance of higher spatial resolution RS platforms is better when the canopy cover is less dense, since they
capture the less dense vegetation more accurately without including the soil background that will impact the
results. In the late growth stages, all RS platforms exhibited better performance compared to the early stages.
The improved performance during the late stages can be attributed to the more stable and developed canopy,
which provides clearer spectral signals for the RS platforms to capture. The UAS platform proved to be the most
stable and reliable for Fc estimation, which consistently showed higher performance across both stages. The Fc

25



jas.ccsenet.org Journal of Agricultural Science Vol. 16, No. 10; 2024

models using Sentinel-2 and Landsat platforms showed a high improvement in the late stages, and slightly better
performance using Planet and MSR-5 platforms.
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Figure 5. Error analysis for the Fc estimation using balanced analysis
3.3 Estimation of ETa

Based on Table 5, five RS-based ETa models were selected to estimate Kcb. Those models were based on
different VIs or the fractional vegetation cover values estimated by Johnson and Trout (2012). After estimating
the Kcb, the ETa was estimated using Equation 5. Figure 6 shows the statistical analysis (MBE and RMSE
depicted by white and black bars respectively) for each ETa function resulting from each RS platform, compared

to the ETgage ‘measured’” ETa values for the full irrigation field only. Just the fully irrigated field was
instrumented with an ETgage atmometer.

All models performed well in estimating the ETa across all RS platforms. ETa estimations using the UAS and
MSR-5 RS platforms showed the lowest RMSE%, showing that RS platforms with higher spatial resolution, and
obtaining surface reflectance data closer to the ground, can perform better in estimating ETa. However, the
results of PlanetDove functions failed to perform better than those of Landsat and Sentinel-2 platforms in
estimating ETa despite its higher spatial resolution, which indicates that other factors, such as imagery
atmospheric calibration and ET model calibration and site conditions, are also essential to be considered. The
performance of models using inputs of VIs did not reveal a significant difference in estimating ETa. However,
the model proposed by Trout and DelJonge, which utilized Fc as an input variable for ETa estimation,
demonstrated a notably higher performance than other models, indicating a potential area for further research on
the relationship between the Fc and ETa. The analysis also revealed that most models underestimated the ETa
with negative MBE values. This shows the importance of continuous calibration of the models.
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Figure 6. Error analysis for the ETa estimation

A new analysis was done to estimate the ETa using each RS platform with close dates. This was done to make
the comparison between each RS platform more balanced by having similar/close dates. Figure 7 shows the
MBE% and RMSE% for the RS platforms used to estimate the ETa.

Using the new balanced analysis, the UAS performance was slightly better than the other RS platforms in
estimating ETa, highlighting the UAS’s accuracy and higher spatial resolution. The Landsat and MSR-5
platforms also showed a high performance compared to the Sentinel-2 and Planet platforms, which showed
lower performance in estimating ETa. The variations in performance among different RS platforms in estimating
ETa can be attributed to differences in spatial resolution, sensor calibration, and the sensors used to develop the
tested models. The UAS and MSR-5 were the most reliable platforms due to their high spatial resolution and

proximity. Landsat showed higher performance due to the development of the models that were done using low
spatial resolution sensors such as Landsat 5 and Landsat 7.

The analysis of early and late crop growth stages showed significant variations in the performance of the RS
platforms in estimating ETa when comparing the MBE% and RMSE% for each platform in different stages.
During the early growth stages, the performance of RS platforms varied significantly. Higher spatial resolution
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platforms showed higher performance in the early stages, highlighting the importance of capturing accurate data
during the initial phases of crop growth when the canopy is less developed and spectral signals are less accurate,
with less dense canopies, the performance of higher spatial resolution RS platforms are higher, since they capture
the less dense vegetation more accurately without including the soil background that will impact the results. In
the late growth stages, the Landsat and Sentinel-2 RS platforms exhibited improved performance compared to
the early stages, while other RS platforms did not show a significant change in performance. The higher
performance during the late stages compared to the early stages can be attributed to the more stable and
developed canopy, which provides clearer spectral signals for the RS platforms to capture. The UAS and Planet
platforms had more stability in estimating ETa, showing moderate to good performance across both early and
late stages. Sentinel-2 and Landsat showed lower stability.
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Figure 7. Error analysis for the ETa estimation using balanced analysis
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3.4 Sensitivity Analysis
3.4.1 Leaf Area Index Estimation Analysis

A sensitivity analysis for the estimation of LAI, He, Fc, and ETa was done using four different scenarios,
including +2.5%, +5%, -2.5%, -5% variation of the values of the independent variables. The analysis was done
for all RS platforms to indicate how different VI values will impact the dependent LAI value. Figure 8 and
Figures Al to A4 in Appendix A show the RMSE% for the base models and how changes in VI values impact the
RMSE% of the models for the UAS, PlanetDove, Landsat, Sentinel-2, and MSR-5 platforms, respectively.

The sensitivity analysis for the UAS platform in estimating LAI shows that the models are relatively stable, with
RMSE% ranging from 15.95% to 39.62%. The slight increase in RMSE% under positive scenarios indicates that
the model tends to overestimate LAI slightly when VIs increase. Conversely, the models show less deviation in
RMSE% under negative scenarios, suggesting better performance in estimating lower LAI values. The
PlanetDove platform, however, exhibits a broader range of RMSE%, indicating a higher sensitivity to changes in
VI values, particularly under negative scenarios, where the RMSE% increases significantly. The results suggest
that while PlanetDove can effectively estimate LAI it is more susceptible to inaccuracies when there is a
decrease in VI values. The sensitivity analysis for Landsat shows RMSE% variations similar to those of the UAS
platform, exhibiting moderate sensitivity to VI changes, with slightly higher RMSE% under positive scenarios.
Sentinel-2, on the other hand, demonstrates a more comprehensive RMSE% range, indicating higher sensitivity
than the UAS and the Landsat platforms. The analysis shows significant variations under both positive and
negative scenarios, suggesting that Sentinel-2 is sensitive to both increases and decreases in VI values, impacting
the accuracy of LAI estimates. The MSR-5 platform shows the highest sensitivity; the significant variation in
RMSE% indicates that MSR-5 is highly sensitive to changes in VI values, particularly under negative scenarios,
where the RMSE% increases drastically.
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Figure 8. RMSE% for all scenarios used in sensitivity analysis estimating LAI using the UAS platform

3.4.2 Crop Height Estimation Analysis

The RMSE% change for Hc estimation using all RS platforms, as shown in Figure 9 and Figures B1 to B4, has a
high sensitivity for most of the models, excluding the models by Costa-Filho et al. (2021) and Anderson et al.
(2004). The relatively same changes in RMSE% (same sensitivity) were noticed in all RS platforms, where the
trend of the changes suggested a better performance when the independent variables were decreased and lower
performance when the independent variables were increased. This indicates that the independent variables (VIs
and LAI) were overestimated.

The RMSE% for He estimation using the UAS platform models showed a higher sensitivity to positive changes,
suggesting a tendency to overestimate Hc when VIs increase. The analysis indicates that UAS-based Hc models
are more accurate under negative scenarios. Other platforms, like the UAS, showed a broad range of RMSE%.
The results highlight significant sensitivity to both positive and negative changes, with models showing
increased errors, particularly under positive scenarios.
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Figure 9. RMSE% for all scenarios used in sensitivity analysis estimating Hc using the UAS platform

3.4.3 Crop Fractional Cover Estimation Analysis

Figure 10 shows the change in RMSE% during each scenario in estimating the Fc for the UAS platform, and
Figures C1 to C4 in Appendix C show the RMSE% during each scenario in estimating the Fc for the Planet,
Landsat, Sentinel-2, and MSR-5 platforms. The models used with the UAS platform show moderate sensitivity
with RMSE%, showing slight increases in RMSE% under both positive and negative scenarios, indicating stable
performance but a tendency to overestimate Fc when NDVI increases. PlanetDove exhibits higher sensitivity
with RMSE%, indicating a significant sensitivity to changes in NDVI values, particularly under positive
scenarios. This suggests that PlanetDove’s Fc estimation models are less robust compared to UAS. Landsat
shows a wide range of RMSE%, indicating higher sensitivity to changes in NDVI values. The results suggest
that Landsat’s Fc models are highly sensitive, particularly under negative scenarios, where RMSE% increases
significantly. Sentinel-2 demonstrates moderate sensitivity with RMSE%, indicating more stable performance
but a tendency to overestimate Fc under positive scenarios. The results suggest that Sentinel-2 provides
relatively accurate Fc estimates but requires careful calibration. MSR-5, on the other hand, shows the highest
sensitivity with RMSE%. The large variation in RMSE% indicates that MSR-5 models estimating the Fc are
highly sensitive to changes in NDVI values, particularly under negative scenarios, suggesting the need for
further calibration.
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Figure 10. RMSE% for all scenarios used in sensitivity analysis estimating Fc using the UAS platform

3.4.4 Actual Evapotranspiration Estimation Analysis

As shown in Figure 11 and Figures D1 to D4 in Appendix D, most models showed relatively low sensitivity
when either increasing or decreasing the independent variable values throughout all RS platforms. The general
trend of the performance indicated by the RMSE% varies depending on the model and the RS platform used to
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estimate the ETa. Models by Trout and DeJonge (2018) and Neale et al. (1989) showed lower sensitivity
compared to other models.

The models used in the UAS platform show low sensitivity, indicating a slight increase in RMSE% under both
positive and negative scenarios, indicating stable performance and accurate ETa estimates. PlanetDove exhibited
higher sensitivity compared to the UAS, and the results indicate significant sensitivity to changes in VI values,
particularly under positive scenarios, suggesting that PlanetDove’s ETa imagery needs further calibration to be
effectively used in ETa models based on surface reflectance. Landsat showed moderate sensitivity, and the
results suggest stable ETa estimates from Landsat, but careful calibration is required under positive scenarios to
avoid overestimation. Sentinel-2 demonstrates high sensitivity, indicating that Sentinel-2’s ETa models are
highly sensitive to changes in VI values, particularly under positive scenarios, suggesting the need for further
calibration. MSR-5 shows moderate sensitivity, and the results indicate that MSR-5’s ETa estimation models are
highly sensitive to changes in VI values, particularly under negative scenarios. The sensitivity analysis across
different RS platforms underscores the varying degrees of robustness and accuracy in estimating LAI, Hc, Fc,
and ETa. It is important to note that high-resolution platforms like UAS generally demonstrate more stable and
accurate estimates, while lower-resolution platforms like PlanetDove and Landsat show higher sensitivity to
changes in VI values. This analysis underscores the importance of selecting appropriate RS platforms and
calibrating models carefully to ensure accurate agricultural monitoring and water management.
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Figure 11. RMSE% for all scenarios used in sensitivity analysis estimating ETa using the UAS platform

4. Conclusions and Recommendations

This study comprehensively analyzed various RS platforms for estimating CBPCs and ETa for maize fields in
northeastern Colorado, U.S.A. Its findings highlight several key points. Firstly, the accuracy of VIs estimation
varied significantly among the evaluated RS platforms. The RS data from the UAS platform showed the highest
accuracy in estimating VIs such as NDVI, OSAVI, and SAVI. The high spatial resolution of UAS and the fact
that surface reflectance values were acquired closer to the ground surface allowed for a more detailed canopy
assessments, contributing to its high performance. Other satellite platforms, including PlanetDove, Sentinel-2,
and Landsat showed slightly less accuracy, although still providing valuable insights with relatively high
performance. These platforms offer broader coverage and frequent revisit times, making them practical for
regional-scale monitoring and long-term agricultural assessments.

Secondly, the estimation of CBPCs, including LAI, He, and Fc, demonstrated that models developed using VIs
from the UAS platform provided the most accurate estimates. The high-resolution data captured by UAS proved
to be more sensitive to crop canopy structure and health variations. Other platforms followed in accuracy, with
each showing strengths depending on specific conditions and crop stages. The influence of environmental
conditions on the performance of RS models was significant. Locally calibrated models, which consider the
specific environmental conditions of the study area, performed better than those developed in different
environmental contexts. These results underscore the importance of site-specific calibration for improving model
accuracy. The MSR-5 radiometer, despite being a standard for evaluating surface reflectance and vegetation
indices, showed suboptimal performance in estimating CBPCs and ETa in this study. This result could be
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attributed to the type of models used, which were developed using different RS sensors/platforms, predominantly
space-borne and airborne satellites with different spectral and spatial resolutions.

Thirdly, the estimation of Kcb and ETa revealed that the accuracy varied among the different RS data from
platforms used, with UAS-based models again showing higher performance. However, satellite-based estimates
were also within acceptable error margins, demonstrating their utility in providing reliable data for large-scale
agricultural management. Sensitivity analysis indicated that slight variations in VIs could lead to significant
changes in CBPCs and ETa estimates. This result highlights the need for local accurate calibration and validation
of RS models to ensure their reliability and accuracy.

Fourthly, the study underscores the potential of advanced RS technologies, particularly UAS, in enhancing
agriculture practices and water use. The accurate estimation of CBPCs and ETa can inform better irrigation
scheduling, leading to optimized water use and improved crop yields. This fact has significant implications for
water resource management in agriculture, particularly in regions facing water scarcity and climatic variability.
The analysis of LAI, Hc, Fc, and ETa across various RS platforms reveals distinct performance variations. UAS
consistently provided more accurate and reliable estimates across all parameters. Sentinel-2 and Planet platforms
showed moderate reliability and potential for good performance under specific conditions. Landsat had the
highest variability and generally less reliable estimates, while MSR-5’s performance was less consistent and
lower than UAS. The results highlight the importance of selecting appropriate RS platforms based on specific
study requirements to ensure accurate estimations.

The performance of RS platforms improved significantly during the late crop growth stages compared to the
early stages for all parameters. This improvement is attributed to the more stable and developed canopy structure
in the late stages, providing clearer crop surface multispectral signals to the RS platforms. Higher spatial
resolution platforms like UAS, Planet, and MSR-5 demonstrated better performance when the canopy was less
dense during the early stages. However, all platforms showed improved accuracy in the late stages, with UAS
remaining the most reliable and stable across both growth stages.

In summary, the choice of an RS platform for agricultural monitoring depends on different characteristics of the
RS platform, including spatial, spectral, and temporal resolutions. The UAS, with its very high spatial resolution,
is ideal for detailed field-level analysis, capturing fine-scale variability in VIs. However, its limited temporal
resolution necessitates frequent flights, which may not be feasible for large-scale applications. On the other hand,
Planet provides daily revisit times, making it suitable for monitoring rapid changes in crop conditions, although
its lower spatial resolution compared to UAS might miss finer details. Sentinel-2 offers a balance between spatial
and temporal resolution, suitable for regional-scale studies, while Landsat’s longer revisit time and broader
coverage makes it ideal for large-scale environmental monitoring.

Agricultural stakeholders should consider integrating high-resolution UAS data into their monitoring systems for
more accurate and reliable results. The higher accuracy of UAS in estimating VIs and CBPCs can lead to more
accurate and timely agricultural management decisions. Despite their slightly lower accuracy compared to UAS,
other platforms are important to be used due to their broad coverage and frequent revisit times. These platforms
are particularly useful for regional-scale monitoring. Models for estimating CBPCs and ETa should be calibrated
using local data to account for specific environmental conditions. This local sensor-data calibration will enhance
the accuracy and applicability of the CBPCs and ETa models across different regions. Future studies should
focus on the comprehensive validation of RS models across different crop types and environmental conditions.
This will help in developing robust models that can be generalized to various agricultural settings.

Given the significant differences between controlled experimental conditions and real-world water management
scenarios, it is crucial to develop a practical method for estimating ETa in operational irrigation districts. This
study demonstrates the potential of using high-resolution RS platforms (e.g., unmanned aerial systems), which
have shown superior imagery reflectance/temperature accuracy and derived products for the estimation of
CBPCs and ETa. For operational water management, we recommend an approach based on the principle of
optimum data acquisition, calibration, and utilization. These high-resolution multispectral data can be used to
calibrate and validate models at key crop growth stages, while other RS platforms (i.c., satellites) can provide
continuous monitoring due to their frequent revisit times. This hybrid approach will allow water managers to
effectively monitor ETa by combining the detailed accuracy of UAS data with the broader and more frequent
coverage of satellite platforms. By implementing this method, water managers in minor and major irrigation
districts can optimize irrigation scheduling and potentially reduce water usage, contributing to more sustainable
water resource management practices.
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Appendix A

Leaf Area Index Estimation Sensitivity Analysis
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Figure A1. RMSE% for all scenarios used in sensitivity analysis estimating LAI using Planet platform
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Figure A2. RMSE% for all scenarios used in sensitivity analysis estimating LAI using Landsat platform
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Figure A3. RMSE% for all scenarios used in sensitivity analysis estimating LAI using Sentinel-2 platform
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Figure A4. RMSE% for all scenarios used in sensitivity analysis estimating LAI using MSR-5 platform

Appendix B
Crop Height Estimation Sensitivity Analysis
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Figure B1. RMSE% for all scenarios used in sensitivity analysis estimating Hc using Planet platform
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Figure B2. RMSE% for all scenarios used in sensitivity analysis estimating Hc using Landsat platform

37



jas.ccsenet.org Journal of Agricultural Science Vol. 16, No. 10; 2024

RMSE%

H Base
40 02.50%
30 5%
20 I II I "-2.50%
10 I_II
m-5%
0 N[ L

rL\\ \%\

o S N

Na
Y =

o
<
N

& &

Figure B3. RMSE% for all scenarios used in sensitivity analysis estimating Hc using Sentinel-2 platform
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Figure B4. RMSE% for all scenarios used in sensitivity analysis estimating LAI using MSR-5 platform

Appendix C

Fractional Vegetation Cover Estimation Sensitivity Analysis
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Figure C1. RMSE% for all scenarios used in sensitivity analysis estimating Fc using Planet platform
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Figure C2. RMSE% for all scenarios used in sensitivity analysis estimating Fc using Landsat platform
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Figure C4. RMSE% for all scenarios used in sensitivity analysis estimating Fc using MSR-5 platform
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Appendix D

Actual Evapotranspiration Estimation Sensitivity Analysis
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Figure D1. RMSE% for all scenarios used in sensitivity analysis estimating ETa using Planet platform
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Figure D2. RMSE% for all scenarios used in sensitivity analysis estimating ETa using Landsat platform
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Figure D3. RMSE% for all scenarios used in sensitivity analysis estimating ETa using Sentinel-2 platform
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Figure D4. RMSE% for all scenarios used in sensitivity analysis estimating ETa using MSR-5 platform
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