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The computation and memory costs for both mechanisms are

signi�cant. In an Eulerian setting, a reverse advection step is re-

quired for every grid node to construct its long-range trajectory,

necessitating $ (=) velocity bu�ers and evolution steps for the =-th

time step. Compressing such storage into implicit representations,

such as training a neural network [Deng et al. 2023], can reduce the

memory cost to $ (1), but it incurs signi�cant computational and

training overhead, as the training must be performed at every time

step. On the Lagrangian side, particles are used to represent the �ow

map [Zhou et al. 2024], allowing trajectories to start from arbitrary

points rather than grid nodes. This approach achieves$ (1) memory

per particle without requiring velocity bu�ers. However, as a typi-

cal particle-grid method, particle �ow maps demand 8–16 particles

per grid cell in 3D, leading to substantial memory consumption

and a less coherent memory layout due to the use of particles. To

date, there is no perfect solution that enables a �ow-map method to

retain its vorticity-preserving capability while maintaining compu-

tational and memory costs comparable to standard grid-based (e.g.,

advection-projection) or particle-grid (PIC/FLIP) �uid solvers.

This paper aims to explore a third pathway to reduce the compu-

tational cost of �ow-map methods, moving beyond stacking velocity

bu�ers or utilizing dynamic particles. The key idea is to construct

an "imperfect" �ow map, rather than a "perfect" one, by reverting to

a semi-Lagrangian-style one-step advection scheme to eliminate the

velocity bu�er and employing Hermite interpolation to enhance ad-

vection accuracy. At �rst glance, this seemingly old-fashioned idea

appears unworkable, as the distortion of �ow maps could rapidly de-

grade the interpolated values and gradients from grid nodes, causing

the �ow-map trajectory to quickly deviate from the ground truth.

One potential avenue for this scheme to succeed lies in the ability

to accurately compute up-to-third-order gradients of the �ow map,

which are required by Hermite interpolation, a task that is compu-

tationally challenging or even impractical on a grid discretization.

We explored two strategies existing in the literature of compu-

tational physics and computer graphics to address this challenge:

(1) Gradient Evolution (GE) [Li et al. 2023], which evolves gradi-

ents along the �ow map instead of relying on �nite-di�erence or

�nite-element stencils on grid nodes. While e�ective for �rst-order

derivatives, higher-order derivatives are still computed using �nite

di�erences due to the lack of explicit evolution equations, limiting

the method’s accuracy. (2) Epsilon Di�erence (ED) [Chidyagwai

et al. 2011; Seibold et al. 2011], which calculates high-order deriva-

tives by placing eight sample points to form an n-sized cubic element

around each target point. However, the accuracy of the n-di�erence

method is constrained by n , which is limited by machine precision,

and the e�ciency of storing eight sample points per grid node is

also a concern, making the balance between stability, accuracy, and

e�ciency a persistent challenge.

We propose a new �ow-map advection method that combines

the merits of both Gradient Evolution and Epsilon Di�erence while

addressing their inherent weaknesses in stability and accuracy. The

key idea is to use Gradient Evolution to maintain accurate �rst-

order derivatives and then apply the Epsilon Di�erence method on

top of these �rst-order derivatives to compute higher-order mixed

derivatives, enabling a balance between precision and stability for

n . To further reduce memory consumption and computational cost,

we introduce a four-point tetrahedron Epsilon Di�erence method,

which requires fewer sample points compared to the standard cubic

element approach. We demonstrate the e�cacy of our methods

across a variety of vortical �ow simulation scenarios, achieving up to

a 90% reduction in backward map memory consumption compared

to previous bu�er-based �ow-map methods, while still producing

vortical structures comparable to the traditional �ow map methods.

As our method integrates elements from both Epsilon Di�erence

and Gradient Evolution, we name it Epsilon Di�erence Gradient

Evolution (EDGE).

We summarize our key contributions as follows:

(1) We propose a bu�er-free �owmapmethodwith$ (1)memory

consumption, independent of the �ow map length, while

preserving vortices comparable to bu�er-based methods.

(2) We develop a novel high-order advection scheme by evolv-

ing �rst-order derivatives and computing high-order mixed

derivatives using the epsilon di�erence method, addressing

the weaknesses of both approaches in �ow map settings.

(3) We introduce a tetrahedron-based epsilon element scheme to

further reduce computational cost for �ow map methods.

2 Related Work

Advection Schemes. The advection term plays a pivotal role in

�uid dynamics [Stam 1999]. However, high di�usion errors caused

by repeated interpolations need to be addressed. A range of solu-

tions has been extensively explored within both the computational

physics and graphics communities to address this challenge. No-

table methods include RK4 [Jameson et al. 1981], HJ-WENO [Losasso

et al. 2006], Hermite Interpolation [McGregor and Nave 2019; Nave

et al. 2010; Ni et al. 2020], Jet Scheme [Seibold et al. 2011], energy

conservative semi-lagrangian method [Lentine et al. 2011b], the

MacCormack method [Selle et al. 2008], and the Back and Forth

Error Compensation and Correction (BFECC) method [Kim et al.

2006], among others. These improved advection schemes have led to

remarkable advancements in simulating various phenomena, with

smoke simulation [Fedkiw et al. 2001; Kim et al. 2006; Lentine et al.

2011a; Mullen et al. 2009] standing out as a particularly signi�-

cant application, requiring exacting accuracy to capture its intricate

vortical behavior.

Recently, advection techniques utilizing �owmap methods [Deng

et al. 2023; Nabizadeh et al. 2022; Taylor and Nave 2023] have

achieved state-of-the-art results in simulating incompressible �ows.

The progress and development of these techniques will be further

reviewed in a subsequent section.

Impulse and Vortex Methods. Flow map methods are highly re-

lated to the impulse model. Initially introduced by [Buttke 1992], this

concept provides an alternative formulation of the incompressible

Navier-Stokes equations using a gauge variable and gauge trans-

formation [Buttke and Chorin 1993; Oseledets 1989; Roberts 1972].

Following research explored its application to surface turbulence

[Buttke 1993; Buttke and Chorin 1993], �uid-structure interactions

[Cortez 1996; Summers 2000], and numerical stability [Weinan and

Liu 2003]. More recently, Saye [2016, 2017] utilized gauge freedom

to handle interfacial discontinuities in density and viscosity for free

surface �ows and �uid-structure coupling. In computer graphics,
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this concept of gauge freedom was revised in recent works [Deng

et al. 2023; Feng et al. 2022; Li et al. 2024a; Nabizadeh et al. 2022].

Vortex methods, on the other hand, use a di�erent way to re-

formulate the incompressible Navier-Stokes equations by treating

vorticity as a gauge variable for velocity. Because vorticity is explic-

itly advected in this approach, �uid circulation is preserved naturally.

To represent vorticity, some chose to use Lagrangian methods, in-

cluding particles [Angelidis 2017; Cottet et al. 2000; Park and Kim

2005; Zhang and Bridson 2014], �laments [Angelidis and Neyret

2005; Padilla et al. 2019; Weißmann and Pinkall 2010], segments

[Xiong et al. 2021], sheets [Brochu et al. 2012; Pfa� et al. 2012],

and Clebsch level sets [Chern et al. 2016; Xiong et al. 2022; Yang

et al. 2021]. While these representations improve the preservation of

vortex structures, they are less straightforward to implement com-

pared to the Eulerian vortex method, especially when dealing with

solid boundaries. Others [Ando et al. 2015; Yin et al. 2023] adopted

vorticity-streamfunction formulations to handle boundaries and

solved a potential equation. Wang et al. [2024] proposed a new

scheme based on �ow maps for vorticity-to-velocity reconstruction

that is both e�cient and able to accurately handle boundaries.

Flow Map Methods. The origins of �ow map methods can be

traced back to the characteristic map approach in computational

�uid dynamics (CFD). Wiggert and Wylie [1976] �rst applied this

method to �uid simulation tomitigate numerical dissipation through

velocity �eld-advected long-range mapping. Subsequently, the tech-

nique was adopted in computer graphics by Hachisuka [2005] and

Tessendorf and Pelfrey [2011]. Later research [Sato et al. 2018, 2017;

Tessendorf 2015] commonly relied on computationally intensive

virtual particle methods to track �ow maps. Inspired by Kim et al.

[2006], Qu et al. [2019] introduced a Semi-Lagrangian-like scheme

for bidirectional �ow map advection, signi�cantly reducing compu-

tational cost while enhancing mapping accuracy.

Recently, Nabizadeh et al. [2022] extended this framework to the

impulse �uid model [Cortez 1996]. Additionally, Neural Flow Maps

(NFM) [Deng et al. 2023] presented a novel backward �ow map

advection scheme and leveraged neural networks to e�ciently com-

press velocity bu�ers during �ow map reconstruction. Wang et al.

[2024] integrated the �ow map concept with the vortex method to

enhance numerical stability and physical interpretability. Further-

more, Zhou et al. [2024] introduced long-short �ow maps, enabling

the transport of impulses on Lagrangian particles using the APIC

scheme [Jiang et al. 2015], achieving state-of-the-art results.

3 Mathematical Foundation

3.1 Flow Map Method

Flow maps are used to describe the correspondence between spatial

points in the domain of a �owing �uid at di�erent times. For any two

domains UC1 and UC2 at times C1, C2 ≥ B of a �uid �owing according

to the velocity �eld u(x, C) from initial time B , the forward �ow map

ΦC1→C2 : UC1 → UC2 and the backward �ow map ΨC2→C1 : UC2 →

UC1 are de�ned as mappings that satisfy ΦC1→C2 (x? (C1)) = x? (C2)

and ΨC2→C1 (x? (C2)) = x? (C1) for any particle ? moving with the

�uid as
3x? (C )

3C
= u(x? (C), C), with position x? (C) at time C . Forward

and backward �ow maps satisfy the evolution equations:

mΦB→C (x)

mC
= u(ΦB→C (x), C), ΦB→B (x) = x,

�ΨC→B (x)

�C
= 0, ΨB→B (x) = x.

(1)

The Jacobians of forward and backward �ow maps are de�ned as

FC1→C2 (x) =

mΦC1→C2
(x)

mx , x ∈ UC1 and TC2→C1 (x) =

mΨC2→C1
(x)

mx , x ∈

UC2 respectively, which can be proved to satisfy the evolution equa-

tions [Deng et al. 2023]:

mFB→C (x)

mC
= ∇u(ΦB→C (x), C)FB→C (x), FB→B (x) = I,

�TC→B (x)

�C
= −TC→B (x)∇u(x, C), TB→B (x) = I,

(2)

where I is the identity matrix.

For incompressible �uids that satisfy the Euler equations,
(

m

mC
+ u · ∇

)

u = −
1

d
∇? + f,

∇ · u = 0,

(3)

where d , ? , and f denote the �uid’s density, pressure, and �uid forces,

like viscous force fE = aΔu with viscosity a . Flow maps can be used

to describe their solutions as [Li et al. 2024b]:

u(x, C) = T⊤
C→B (x)u(ΨC→B (x), B) + T⊤

C→B (x)Γ
u
B→C (ΨC→B (x)),

Γ
u
B→C (x) =

∫ C

B
F⊤
B→g (x)

(

−
1

d
∇? +

1

2
∇|u|2 + f

)

(ΦB→g (x), g)3g,

(4)

where the �rst term u
"
C (x) = TC→B (x)

⊤
u(ΨC→B (x), B) of u(x, C)

is referred to as the long-term mapped velocity since it is directly

mapped from the initial velocity uB using long-term �ow maps

ΨC→B , and Γ
u
B→C is called the path integrator because it accumulates

integration along the trajectory Sx0 (C) = ΦB→C (x0) for any material

point x0 ∈ UB on the �ow map. Furthermore, for the vorticity-form

Euler equations
(

m

mC
+ u · ∇

)

8 = (8 · ∇)u + ∇ × f,

∇ × u = 8,

(5)

�ow maps can also be used to describe their solutions as

8 (x, C) = T −1
C→B (x)8 (ΨC→B (x), B) + T −1

C→B (x)Γ
8

B→C (ΨC→B (x)),

Γ
8

B→C (x) =

∫ C

B
F −1
B→g (x) (∇ × f) (ΦB→g (x), g)3g,

(6)

where the �rst term, 8"
C (x) = T −1

C→B (x)8 (ΨC→B (x), B), is similarly

referred to as the long-term mapped vorticity, and Γ
8

B→C is the path

integrator for vorticity.

The �ow map method utilizes long-term mapped velocity u
"
C (x)

[Deng et al. 2023] and vorticity 8
"
C (x) [Wang et al. 2024] instead

of computing short-term advected velocity u
�
C (x) = uC ′ (ΨC→C ′ (x)),

which is calculated repeatly from the previous substep time C ′ in

semi-Lagrangian methods when solving the advection terms in

Equation 3. By avoiding repeated interpolations inherent in semi-

Lagrangian approaches, the �ow map method prevents cumulative

numerical dissipation, ensuring more accurate advection calcula-

tions and demonstrating superior vorticity preservation capabilities.
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Table 1. Detailed resource profiling for flow map methods.

Name Resolution
Flow-map

Length
Method

Backward Map

Mem (GB)

Overall Sim

Mem (GB)1
Total

Mem (GB)

Advection Time

(sec/substep)2
Avg. Time

(sec/substep)

Leapfrogging

Vortices
384×128×128 20

EFM 1.839 2.694 4.094 0.123 0.243

GE 1.268 2.123 3.521 0.0455 0.163

ED8 1.549 2.404 3.767 0.0588 0.175

ED4 0.563 1.417 2.763 0.0856 0.201

EDGE 0.984 1.839 3.207 0.0803 0.196

PFM 3.799 7.791 11.992 0.432 0.568

NFM 6.916 7.771 9.122 4.737 4.872

Four Vortices

Collision
128×128×256 20

EFM 1.227 1.797 2.896 0.0907 0.191

ED4 0.375 0.945 2.052 0.0589 0.153

EDGE 0.656 1.226 2.330 0.0583 0.155

Dye Drift 256×512×256 80

EFM3 32.355 37.894 42.737 4.766 4.935

ED4 3.000 8.539 13.365 0.541 0.712

EDGE 5.250 10.789 15.610 0.496 0.666
1
Overall Sim Mem refers to the necessary memory required for the simulation, excluding auxiliary bu�ers, visualization data, and Taichi runtime overhead.

2
Advection Time refers to the time excluding Poisson equation solving, primarily spent on advection.

3 The velocity bu�er exceeds the available GPU memory and is therefore stored in CPU memory (30.098 GB), with data transferred between CPU and GPU on demand.

and EDGE methods reduce this memory cost to 24 and 42 units,

respectively. Given that our examples use �ow maps of length up

to 80, our methods achieve up to a 90% reduction in backward map

memory usage.

5.2 Experimental Results

In this subsection, we begin by conducting experiments and pro�ling

memory and timing data to validate our proposed methods. We

then present several examples to demonstrate the generality and

e�ectiveness of the EDGE method.

Validation. To validate our analysis, we conducted simulations

to evaluate the resource consumption and performance of various

�ow map methods, including 3D leapfrogging vortex scenes [Deng

et al. 2023] within an extended domain. The resource usage statistics

are summarized in Table 1. Without caching velocity bu�ers, our

method, based on Hermite interpolation, signi�cantly reduces mem-

ory usage. Although Hermite interpolation introduces additional

computational overhead, our one-step evolution outperforms EFM

in terms of speed, as EFM relies on multi-step backtraces. The visual

results of the leapfrogging vortices simulation are shown in Figure 7.

While our GE and ED methods achieve performance comparable to

the original EFM, the EDGE method outperforms EFM by nearly

one leap. In the dye drift example shown in Figure 1, ED4 and EDGE

e�ectively capture �ne-scale �uid structures on par with EFM. These

results highlight the superior vorticity conservation of our methods,

matching or even exceeding the performance of the original EFM.

Flow-Map Length Experiment. Since the EDGE method and EFM

di�er inmemory complexity—$ (1) vs.$ (=)—our approach becomes

more advantageous for longer �ow maps. In this experiment, we

simulate a rotating propeller to validate the importance of extended

�ow maps. As illustrated in Figure 9, turbulence intensity increases

with the number of �ow map reinitializations due to interactions

between incoming �ow and solid boundaries, enhancing simulation

detail. Since our method maintains a constant computational cost

for extending �ow map length, it enables improvements without

additional computational overhead.

Four Vortices Collision. Figure 8 illustrates an experiment inspired

by [Matsuzawa et al. 2022], where four vortex rings, initially ar-

ranged in a square con�guration, collide within the ~I-plane. Each

ring has a major radius of 0.15 and a minor radius of 0.024. As the

rings interact, they merge to form two four-pointed star-shaped

vortices before eventually colliding with the boundaries.

Trefoil. Figure 4 uses the same con�guration from [Matsuzawa

et al. 2022] to replicate the trefoil knot. Our method is able to retain

Fig. 12. Ink drops passing through a porous obstacle.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.



10 • Zhiqi Li, Ruicheng Wang, Junlin Li, Duowen Chen, Sinan Wang, and Bo Zhu

an accurate structure of vortices, yielding two separate vortex rings

in the end.

Delta Wing. Figure 5 illustrates the "vortex lift" phenomenon

generated by a delta wing with a 75° sweep angle at a 20° angle

of attack. This behavior is in agreement with the experimental

observations reported by [Délery 2003].

Two-Way Coupled Thin Film. To demonstrate the e�ectiveness of

solid–�uid interaction in [Chen et al. 2024] using the EDGE method,

several �ag strips are subjected to an incoming �ow. The motion

of the �ags and the �ow �eld are tightly coupled, resulting in rich

�uid–structure dynamics and detailed vortex structures as shown

in Figure 10.

Ink Torus Breakup. The EDGE scheme is also applicable to particle-

laden �ow simulations [Li et al. 2024b]. Driven by viscous forces, an

ink torus breaks into multiple blobs, which then deform into smaller

tori and undergo further fragmentation, forming a cascading cycle

of continuous deformation and breakup. As the Reynolds number

increases ('4 = 3.5, 5.0, 5.5), the number of resulting blobs grows

from 4 to 8, as shown in Figure 11.

Ink Passing Porous Obstacles. Figure 12 illustrates nine ink drops

descending through the gaps between cylinders, breaking apart into

numerous smaller falling droplets.

Dye Drift. In Figure 1, a small pinch of dye is released onto the

liquid surface, allowing it to disperse freely. The image reveals rich

�ow details, demonstrating the method’s superior ability to preserve

vorticity. In this example, the combination of high resolution and

long �ow maps prevents EFM from storing velocity bu�ers on the

GPU. As a result, bu�ers are stored in CPU memory instead, and

the additional data transfer further slows down the simulation. This

highlights the limitations of EFM in handling large-scale simulation

scenarios.

Comparison to More Flow Map Methods. In the original �ow map

simulation work [Deng et al. 2023], the velocity bu�er is designed to

be compressed using neural networks. However, Zhou et al. [2024]

found that this approach introduces a signi�cant training time cost

and additional overhead from extensive data transfers. Instead of

relying on neural networks, our method adopts a di�erent strategy

by leveraging Hermite interpolation to eliminate the memory over-

head associated with the velocity bu�er, thereby improving both

time and memory e�ciency. Regarding the PFM proposed in [Zhou

et al. 2024], which also has$ (1) memory complexity, we argue that

it is less e�cient in terms of memory usage. This is because each

particle must carry �ow map information, and, on average, each

grid cell contains 8-16 particles in a 3D simulation. Our argument is

supported by detailed memory and timing data, as shown in Table 1.

6 Limitations and Future Work

We proposed the Epsilon Di�erence Gradient Evolution method to

enable bu�er-free �ow-map simulations at O(1) memory consump-

tion. One of the primary limitations of our current scheme is its re-

liance on Hermite interpolation, which requires additional memory

storage compared to other potential alternatives. Our goal is to fur-

ther reduce memory consumption and computational overhead by

investigating alternative interpolation schemes on a Cartesian grid,

with the aim of lowering the constant factor in the $ (1) complex-

ity and achieving performance comparable to standard grid-based

solvers. Furthermore, we plan to explore GPU implementations and

performance engineering techniques to optimize the EDGE scheme

for GPU architectures. Finally, we envision extending our EDGE

scheme to support adaptive grid structures, such as octrees, which

presents an open challenge in addressing interpolation across cells

with di�ering resolutions.
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