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Abstract. We establish conditions for shear flows on the d-dimensional torus Td, d→2, that give
enhanced dissipation for the associated linear advection-di!usion equation for well-prepared data. The
di!usion operator can be of fractional or high order and does not need to have constant coe”cients.
We then construct flows that satisfy these assumptions and obtain a quantitative estimate on the
dissipation enhancement. Our examples generalize known examples in two space dimensions to the high-
dimensional setting, which is relevant in applications to sampling a distribution and in optimization.

Keywords. generalized di!usion; advection; dissipation enhancement; shear flow; high-
dimensional flows

AMS subject classifications. 35K25; 35K58; 76E06; 76F25

1. Introduction
This work concerns enhanced dissipation in arbitrarily high dimension for the

(scalar) linear advection-di!usion equation, where the di!usion operator is a generaliza-
tion of the standard Laplace operator to allow for fractional and higher-order operators
and variable coe”cients. The flow will be assumed incompressible, that is, the advecting
velocity v is divergence free. For the case of the Laplace operator, the advection-di!usion
equation can be written as a Fokker-Planck equation for a drift-di!usion process. The
Fokker-Planck equation models the evolution of the probability density function associ-
ated to the process. High-dimensional drift-di!usion processes have been used in many
applications, such as in di!usion approximation of Stochastic Gradient Descent methods
for non-convex optimization [27]. As customary in fluid mechanics, we call the velocity
v also the flow.

By enhanced dissipation, we mean in this context that the linear advection-di!usion
operator acts on characteristic timescales that are faster than those of the di!usion alone.
The characteristic timescale is defined as the smallest time it takes for the solution
operator to reduce the size of the solution by a fixed fraction. We will measure the
size of the solution in terms of its L2 norm, which is well adapted to the use of Fourier
analytic techniques. Because we work with linear parabolic equations, the characteristic
timescale is determined also by the rate of decay in time of the solution operator as a
function of the di!usion coe”cient or di!usivity ω>0. Equivalently, one can fix ω=1
and obtain the decay in terms of the flow amplitude A>0.

We let Td=[0,2ε]d, d→2, denote the standard d-dimensional torus. In the case of
other periods L, there will be a dependence of constants and rates on L. We work with
shear flows, which without loss of generality can be defined as follows. We denote a
point x in Td as x=(x1,x2, . . . ,xd↑1,y)=: (x↓,y), then a shear flow is an incompressible
flow with velocity given by v(x)=(u(y),0). We restrict to considering smooth flows. A
special case is given by a unidirectional shear, where u(y)=(u(y),0, . . . ,0). The scalar
function u is called the shear profile, e.g., u(y)=sin(y), which gives the Kolmogorov
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2 High dimensional flows

flow in two dimensions. We will give specific examples later in the paper. It is an
important question whether more general flows can be considered. Indeed, enhanced
dissipation holds for certain steady flows in any dimension [9], for certain circularly
symmetric flows in two space dimensions and pipe flows in three dimensions [10,12,19],
and certain cellular flows in two dimensions [6,28] (see also [20]). Hence, a natural
generalization of our results is to consider a flow of the form v(x)=(u(y),0), where
now x=(x1,x2, . . . ,xd↑2,y1,y2)=: (x↓,y) . However, it is not clear that the methods
used in this work extend to this case, in particular it is not clear what the analog
of Assumption 1.1 is in this context (cf. [14]). Our focus here is on generalizing the
di!usion operator rather than the convective term.

We then consider the following advection-di!usion equation:

ϑtϖ(x
↓,y)=↑

d↑1∑

ω=1

uω(y)ϑxωϖ(x
↓,y)↑ω

d↑1∑

ω=1

ϱωD
2ε
xω
ϖ(x↓,y)↑ωDε

y
(a(y)Dε

y
)ϖ(x↓,y) (1.1)

=:↑L̃ϑ ϖ(x
↓,y), (1.2)

where ϱω↓{0,1} for ς↓{1, · · · ,d↑1}, φ↓ ( 12 ,+↔), the function a is smooth, positive and
bounded away from zero. In particular, there exist positive constants ci>0, i=1,2, such
that

a(y)→ c1>0, a.e. y↓T, ↗a↗
L→ <c2. (1.3)

We define the fractional derivative Dε

z
as a Riesz-type derivative of order φ↓R+, i.e.,

as a Fourier multiplier. Let f ↓L2(T), then

Dε

z
f =

∑

k↔Z
|k|ε f̂(k)eikz , (1.4)

where f̂ is the Fourier Transform of f and k is the wavenumber. We remark that Dε

z
is

a positive operator and D2
z
=↑ϑ2

z
. By Plancherel’s Theorem, it holds that

↗Dε

z
f↗2

L2 =
∑

k↔Z
|k|2ε |f̂(k)|2=↗f↗2

Ḣε(T) ,

where Ḣε is a homogeneous Sobolev space. In particular, Dε

z
is a self-adjoint, un-

bounded operator on L2(T) with (maximal) domain D(Dε)=Hε(T). The di!usion

operator ω
(∑

d↑1
ω=1 ϱωD2ε

xω
+Dε

y
(a(y)Dε

y
)
)
in (1.1) is then strongly elliptic, self-adjoint

and positive with (maximal) domain H2ε(Td). The global well-posedness of (1.1)
can be established, for instance, by semigroup methods (see e.g. [35]) for any initial
data ϖ0↓L2(Td), yielding a unique solution ϖ↓C([0,↔);L2(Td))↘C((0,↔);H2ε(Td))↘
C1(0,+↔);L2(Td)). In fact, well-posedness can be proved under much weaker assump-
tions on a and u, but we do not seek the optimal regularity in this work.

Informally, enhanced dissipation is the result of the transfer of energy by the advec-
tion operator to small scales, where it is damped more e”ciently by di!usion, as it can
be seen by taking the Fourier Transform. This phenomenon has been well studied in
the mathematics literature, especially for reaction-di!usion equations and quenching in
combustion (see e.g. [16,31] and references therein). The flow of v will be called dissi-
pation enhancing (relaxation enhancing for the steady case) if the associated advection-
di!usion operator exhibits dissipation enhancement. For steady Lipschitz-continuous
flows and Laplace’s operator, Constantin et Al. [9] give a spectral characterization of
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relaxation-enhancing flows, namely, the advection operator cannot have any eigenfunc-
tions in H1(M), where M is a smooth compact Riemannian manifold. For unsteady
flows, it is known that su”ciently regular mixing flows are dissipation enhancing (we
refer the reader to [17] and references therein for the definition of mixing flows and a
more in-depth discussion). In the case of shear flows, the advection operator v ·≃ has a
large kernel, so enhanced dissipation occurs only on the L2-orthogonal complement to
this kernel and it depends on the shear profile, in particular on its critical points and
their order (cf. [21,28] for the case of cellular flows). Then, dissipation enhancement has
been established by using di!erent tools, from hypocoercivity estimates (we mention in
particular [1,2,14]) to probabilistic methods [13] to resolvent estimates [11,23,37] (see
also [19] for shear flows in a circular geometry). The study of enhanced dissipation is
more challenging in the case of unbounded domains or domains with boundaries. In
both cases, the spectral properties of the advection operator are quite di!erent from the
periodic case. Therefore, we work only in the torus Td.

There are related phenomena to dissipation enhancement in fluid flows. We mention
Taylor dispersion, which is an enhancement of the rate of spreading of a species in the
direction of the shear flow (see again [14] and references therein), and the stability of
linearized viscous and inviscid flows around shear flows with the associated mechanism
of inviscid damping (among the several recent results, see [5,7,22,29,33]). In non-linear
systems, enhanced dissipation can have important e!ects, such as delaying or prevent-
ing blow-up, as in aggregation models, for instance the Platak-Keller-Segel model for
which addition of advection by a su”ciently strong flow prevents blow-up of solutions
irrespective of the total mass [3,20,24–26,36]. Similarly, addition of a strong enough
background flow leads to global existence for the Kuramoto-Sivashinsky equation, a
model of front propagation in combustion [11,18,20]. There is also a close connection
between enhanced dissipation and accelerated sampling in Langevin dynamics. In [8],
the first author of this paper and her collaborators constructed an exponentially mixing
drift to the overdamped Langevin equation on the d-dimensional torus and obtained a
signicantly smaller mixing time for the modified Langevin dynamics.

While some of the above works have considered fractional dissipation and the higher-
dimensional setting (e.g. [26], where mixing flows are used), to our knowledge, our paper
is the first to address both variable-coe”cient fractional operators and steady shear flows
with a rather general shear profile in arbitrarily high dimensions. Proving enhanced
dissipation for shear flow is significantly more di”cult than for mixing flows, because
the shear only acts in certain directions. This is why we cannot treat general variable
coe”cients operators.

In view of the geometry of the shear flow v , we consider first a reduced form of the
operator in (1.1), where the di!usion is only in the direction orthogonal to v:

ϑtϖ=↑
d↑1∑

ω=1

uω(y)ϑxωϖ↑ωDε

y
(a(y)Dε

y
)ϖ=:↑Lϑϖ(x

↓,y) . (1.5)

We study both (1.5) and (1.1) by applying the Fourier Transform in x↓=(x1, . . . ,xd↑1).
Let k=(k1,k2, · · · ,kd↑1)↓Zd↑1 be the associated wavenumber, and let

L̃ϑ,k :=ω
d↑1∑

ω=1

ϱω|kω|2ε+ωDε

y
(a(y)Dε

y
)+ i

d↑1∑

ω=1

kωuω(y) . (1.6)
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We similarly define

Lϑ,k :=ωDε

y
(a(y)Dε

y
)+ i

d↑1∑

ω=1

kωuω(y) . (1.7)

We view both Lϑ,k and L̃ϑ,k as unbounded operators on L2(T). Given an (unbounded)
operator L on L2, we denote the semigroup generated by L with etL and the opera-
tor norm with ↗↗op. Since ↗e↑tL̃ϑ,k↗op⇐↗e↑tLϑ,k↗op, it is enough to study the latter
operator.

Generalizing the results in [11], inspired by [14], we impose the following condition
on the shear u. It can be seen as a condition on the level sets of the components uω of
u, in particular a condition of the degeneracy of the critical points.
Assumption 1.1. There exist m,N ↓N, c0>0 and ↼0↓ (0,1), with the property that
for any ↽↓R, ↼↓ (0,↼0) and k=(k1,k2, · · · ,kd↑1)↓Zd↑1 with |k| ⇒=0, there exist n⇐N
and points {y1, · · · ,yn}↓T such that

∣∣∣∣∣

d↑1∑

ω=1

kωuω(y)↑↽

∣∣∣∣∣>c0↼
m , (1.8)

for any |y↑yj |→ ↼, j↓{1, · · · ,n}.
The Kolmogorov flow satisfies the above assumption with m=2 in two space di-

mensions (see as in [11]). More generally, a unidirectional shear flow with profile
u(y)=sinmy satisfies Assumption 1.1, also in two space dimensions. We remark that,
if Assumption 1.1 holds for some ↼0<1, it also holds for any smaller ↼0. Therefore, in
what follows we will be able to choose ↼0 as small as needed without loss of generality.

Under Assumption 1.1 on the flow, we are able to prove enhanced dissipation holds
for (1.5) on the complement of the kernel of the advection operator v ·≃. This kernel
consists of functions independent of x↓. Therefore, given any function g↓L2(Td), we
denote

⇑g⇓(y)= 1

2ε

∫ 2ϖ

0
g(x1, · · · ,xd↑1,y)dx1 · · · dxd↑1 , (1.9)

and let

g ↗==g↑⇑g⇓ . (1.10)

⇑g⇓ denotes the projection onto the kernel of v ·≃ and g ↗= the component of g in the
orthogonal complement. We then state our main theorem as follows.
Theorem 1.1. Let u satisfy Assumption 1.1. Let ϖ↓C([0,↔);L2(Td))↘
C((0,↔);H2(Td))↘C1(0,+↔);L2(Td)) be the unique solution of (1.5) with initial data
ϖ0↓L2(Td). There exist a universal constant C>0, independent of ϖ0, and a number
⇀0>0 such that

↗ϖ ↗=(t)↗L2 ⇐Ce↑ϱ0ϑ
m

m+2ε | lnϑ|↑2ϖ(ε)
t↗(ϖ0) ↗=↗L2 , (1.11)

where ⇁(φ) is given by

⇁(φ)=

{
(1↑φ), 1

2 <φ<1,

0, φ→1.
(1.12)
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By interpolation and the Sobolev embedding, one can derive rates of decay in Lp

for 1⇐p<dp/(d↑φp). The bound in (1.11) is a quantitative estimate of the dissipation
enhancement, since di!usion without advection would have a characteristic time τ =
O(ω), while in our case τ =O(ω

m
m+2ε ), which is much larger for ω small, as m/(m+2φ)<

1, neglecting the logarithmic correction.
We close the Introduction with some notation and a plan of the paper. In Section

2 we prove Theorem 1.1, using certain resolvent estimates for Lϑ,k, while Section 3 is
devoted to examples of flows satisfying Assumptions 1.1.

Throughput, C or c will denote a generic constant that may change line to line.
We use standard notation to denote function spaces, e.g. Hs(Td) denote the L2-based
Sobolev space of order s↓R. We also denote the image of Hs(Td) under the Fourier
Transform with hs(Zd); that is,

hs(Zd) :={(f̂k),k↓Zd;↗f̂↗hs :=

(
∑

k

|k|2s |f̂k|2
)1/2

<↔}, s↓R. (1.13)

The homogeneous Sobolev spaces are denoted, as usual, by Ḣs(Td), and correspond-
ingly, their image under the Fourier Transform by ḣs(Zd). When no confusion can arise,
we will omit the domain and write Hs for Hs(Td), for example. Finally, we let ⇑,⇓ be
the L2-inner product.

Acknowledgments. The authors thank the anonymous referees for their insightful
comments. Y. Feng was partially supported by the National Key Research and De-
velopment Program of China (2022YFA1004401), NSFC 12301283, Shanghai Sailing
program 23YF1410300, Science and Technology Commission of Shanghai Municipality
(22DZ2229014). A. Mazzucato was partially supported by the US National Science
Foundation Grants DMS-1909103, DMS-2206453, and by Simons Foundation under
Grant No. 1036502.

2. Enhanced dissipation for shear flows in Td, d→2
This section contains the proof of Theorem 1.1. As discussed in the Introduction,

it is enough to estimate the operator norm of e↑tLϑ,k , which in turn follows from a
spectral estimate, employing a Gearhart-Prüss-Greiner type theorem (see e.g. [15] for
more details), Theorem 1.3 in [37]. This result specializes the Gearhart-Prüss-Greiner
theorem to m-accretive operators. An unbounded operator L on a Banach space X
with dense domain D(L) is called accretive if ↑L is dissipative, that is, the positive half
line is in the resolvent set of ↑L and we have the resolvent estimate:

↗(↽I+L)f↗→↽↗f↗, ↽>0, f ↓D(L),

where I is the identity operator on X. When X=H is a Hilbert space with inner
product (,), then accretivity is equivalent to coercivity of the induced bilinear form (see
again [15]), i.e.,

Re⇑Lf,f⇓→0, ⇔f ↓D(L). (2.1)

The operator L is called m or maximally-accretive if it is accretive and (↽I+L) is
surjective for any ↽>0. Again, for operators on Hilbert spaces, there is a useful char-
acterization of m-accretive operator that applies in this context. Namely, an accretive
operator L on a Hilbert space H has a closure that is m-accretive if and only if the
adjoint L→ is accretive (see [32, Theorem I-4.4] and also [34, Lemma 1.3]). Theorem
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1.3 in [37] gives an exponential bound on the semigroup generated by an m-accretive
operator provided its spectral function # discussed below satisfies a certain lower bound.

Our task in what follows is, therefore, to show that Lϑ,k is m-accretive for fixed
k↓Z+ as an unbounded operator on L2(T) with maximal domainH2ε(T). In particular,
Lϑ,k is a closed operator. Moreover, since there is no enhanced dissipation in the kernel
of the advection operator, we can assume that k ⇒=0 and work with functions that have
average zero in x. A straightforward calculation shows that (2.1) is satisfied, so Lϑ,k is
accretive. But L→

ϑ,k is an operator of the same form and, hence, also accretive, so that
we can conclude that Lϑ,k is m-accretive. Next, we estimate the spectral function of
this operator in Proposition 2.1, which implies the decay estimate for the semigroup.

We first state some auxiliary lemmata. The first lemma can be viewed as a gener-
alized Leibnitz rule for the fractional derivative. This is a well-known result, at least in
the case of the whole space Rd (see [30] and references therein). We omit the proof for
brevity.
Lemma 2.1. For any f,g↓Hε(T)↘L↘(T), φ>0, the following holds:

↗Dε

z
(fg)↗

L2 ⇐C (↗f↗
Hε ↗g↗L→ +↗f↗

L→ ↗g↗
Hε ) . (2.2)

We will also need an interpolation inequality for fractional Sobolev spaces, which
follows from the Sobolev embedding (see e.g. [4]). We include a short proof for com-
pleteness.
Lemma 2.2. Let f ↓Hε(T), φ> 1

2 , then

↗f↗
L→ ⇐ 1↖

2ε
↗f↗

L2 +C ↗f↗
1
2ε

Ḣε ↗f↗
1↑ 1

2ε

L2 . (2.3)

Proof. Let f̄ = 1
2ϖ

∫ 2ϖ
0 f(y)dy denote the mean of f and observe that

∥∥f↑ f̄
∥∥
Hε ↙↗f↗

Ḣε .

Next, fix $↓Z+ to be chosen later. Then

↗f↗
L→ ⇐ |f̄ |+

∥∥f↑ f̄
∥∥
L→ ⇐ 1↖

2ε
↗f↗

L2 +
∑

|k| ↗=0

|f̂(k)|

⇐ 1↖
2ε

↗f↗
L2 +




∑

0<|k|<!

+
∑

|k|≃!



 |f̂(k)|

⇐ 1↖
2ε

↗f↗
L2 +(

∑

0<|k|<!

1)
1
2 (

∑

0<|k|<!

|f̂(k)|2) 1
2 +(

∑

|k|≃!

|f̂(k)|2|k|2ε) 1
2 (

∑

|k|≃!

|k|↑2ε)
1
2

⇐ 1↖
2ε

↗f↗
L2 +$

1
2

∥∥f↑ f̄
∥∥
L2 +C ↗f↗

Ḣε $
1↑2ε

2 ,

where in the last inequality we used that φ> 1
2 . Finally, inequality (2.3) follows by

picking

$=
↗f↗

1
ε

Ḣε

∥∥f↑ f̄
∥∥

1
ε

L2

.
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For technical reasons that will be clear later in performing energy estimates, we will

need to have a suitable smooth approximation for the signum of
∑

d↑1
ω=1 kωuω(y)↑↽


.

Lemma 2.3. Let the vector field u satisfy Assumption 1.1. For any ↽↓R and k=
(k1, · · · ,kd↑1)↓Zd↑1 with |k| ⇒=0, let {yj ,j=1, · · · ,n} denote the distinguished points in
Assumption 1.1 and let ↼0 be as in Assumption 1.1. For any ↼↓ (0,↼0), define the set

E :={y↓T | |y↑yj |→ ↼,⇔j=1, · · · ,n} .

Then there exists a smooth function χ :T∝ [↑1,1] with the property that

χ(y)

(
d↑1∑

ω=1

kωuω(y)↑↽

)
→0 , ⇔y↓T , (2.4)

χ(y)

(
d↑1∑

ω=1

kωuω(y)↑↽

)
=

∣∣∣∣∣

d↑1∑

ω=1

kωuω(y)↑↽

∣∣∣∣∣ , ⇔y↓E. (2.5)

Moreover, for any fixed φ> 1
2 there exists a constant C, independent of ↼, such that

↗χ↗
Hε ⇐C↼

1
2↑ε | ln↼|ς(ε) , (2.6)

where the function ⇁ is defined as in (1.12).
Proof. We begin by observing that, if u satisfies Assumption 1.1, then uω,

ς=1, . . . ,d↑1 can change sign only on intervals of size ↼. Therefore, by standard molli-
fication argument we can construct a smooth function χ :T∝ [↑1,1] that approximate

sign
∑

d↑1
ω=1 kωuω(y)↑↽


in the following sense:

∥∥ϑs

y
χ
∥∥
L2 ⇐C↼

1
2↑s ,

∥∥ϑs

y
χ
∥∥
L→ ⇐C↼↑s , ⇔s↓Z+, (2.7)

χ(y)

(
d↑1∑

ω=1

kωuω(y)↑↽

)
→0 , ⇔y↓T , (2.8)

χ(y)

(
d↑1∑

ω=1

kωuω(y)↑↽

)
=

∣∣∣∣∣

d↑1∑

ω=1

kωuω(y)↑↽

∣∣∣∣∣ , ⇔y↓E. (2.9)

The rest of the proof is devoted to estimating ↗χ↗
Ḣε (T) for fractional exponent φ>1/2,

using the Gagliardo-Nirenberg interpolation inequality. To obtain the best exponent,
we will interpolate with ↗χ↗

Ḣ1/2(T) as an endpoint. We claim that

↗χ↗
Ḣ1/2 ⇐C| ln↼| . (2.10)

To prove the claim, we recall the Fourier representation of the Ḣ1/2 norm

↗χ↑ χ̄↗2
Ḣ1/2 =C

∑

|ω| ↗=0

|χ̂(ς)|2|ς| , (2.11)

where χ̄= 1
2ϖ

∫ 2ϖ
0 χ(y)dy and χ̂(ς) is the ςth Fourier coe”cient. Then integrating by

parts and using the identity e↑iωy =↑ 1
iω

d

dy
e↑iωy, we have that

|χ̂(ς)|⇐ 1

|ς|

∫

T
|ϑyχ| dy⇐

C

|ς| , ς ⇒=0; (2.12)
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|χ̂(ς)|⇐ 1

|ς|2

∫

T

∣∣ϑ2
y
χ
∣∣ dy⇐ C

↼ |ς|2
, ς ⇒=0 . (2.13)

Thus the Ḣ1/2-seminorm can be bounded by

↗χ↗2
Ḣ1/2 =C




∑

0<|ω|<φ↑1

+
∑

|ω|≃φ↑1



 |χ̂(ς)|2|ς| (2.14)

⇐C




∑

0<|ω|<φ↑1

1

|ς|+
∑

|ω|≃φ↑1

1

↼2 |ς|3



 (2.15)

⇐C| ln↼|+C , (2.16)

and estimate (2.10) follows by choosing ↼0′1 in Assumption 1.1, which can be done
whitout loss of generality. Applying the Gagliardo-Nirenberg interpolation inequality
then gives:

↗χ↗
Ḣε ⇐C ↗χ↗2↑2ε

Ḣ1/2 ↗χ↗
2ε↑1

Ḣ1 ⇐C| ln↼|1↑ε↼
1
2↑ε , φ↓ (1/2,1); (2.17)

↗χ↗
Ḣε ⇐C ↗χ↗1↑ε+⇐ε⇒

Ḣ↓ε↔ ↗χ↗ε↑⇐ε⇒
Ḣ↓ε↔+1

⇐C↼
1
2↑ε , φ→1 , (2.18)

where ∞φ∈ denotes the greatest integer less than or equal to φ. Finally, since ↗χ↗
Hε ⇐

↗χ↗
Ḣε +↗χ↗

L2 , ↗χ↗L2 ⇐2ε and ↼0′1, the desired result in (2.6) follows.
We now turn to the key result, Proposition 2.1 below, in order to prove Theorem 1.1.

We define the spectral function # associated to the operator Lϑ,k, introduced in (1.7),
as:

#(Lϑ,k)= inf

↗(Lϑ,k↑ i↽)g↗L2(T) :g↓D(Lϑ,k),↽↓R, ↗g↗L2(T)=1


. (2.19)

By Theorem 1.3 in [37], since Lϑ,k is m-accretive on L2(T),
∥∥e↑tLϑ,k

∥∥
op

⇐ e↑t”(Lϑ,k)+
ϱ
2 , ⇔t→0 ,

Therefore, it is enough to bound the spectral function #(Lϑ,k).
Proposition 2.1. Let u satisfy Assumption 1.1. Let ω<1 and k ⇒=0. There exists a
positive constant ⇀0= ⇀0(N,m,φ) independent of ω and k such that

#(Lϑ,k)→ ⇀0ω
m

m+2ε | lnω|↑2ς(ε) , (2.20)

where ⇁(φ) is given in (1.12).
Remark 2.1. As pointed in [23], the logarithmic correction appears only when φ↓
(1/2,1). When φ→1, our result is consistent with the previous estimates for integer or
fractional φ values in [11,23].

Proof. For any given ↽↓R and g↓D(Lϑ,k)=H2ε(T) with ↗g↗
L2 =1, we denote

L↼ :=ωDε

y
(a(y)Dε

y
)+ i

(
d↑1∑

ω=1

kωuω(y)↑↽

)
,

where for clarity we have suppressed the dependence on ω and k as they are fixed
throughout the proof. We observe that

Re⇑L↼g,g⇓=ω⇑a(y)Dε

y
g,Dε

y
g⇓
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→ c1ω
∥∥Dε

y
g
∥∥2
L2 ,

which in turn gives

∥∥Dε

y
g
∥∥2
L2 ⇐

1

c1ω
↗L↼g↗L2 ↗g↗L2 . (2.21)

Let the set E and the function χ be as in Lemma 2.3. We integrate by parts in the
inner product ⇑L↼g,χg⇓:

⇑L↼g,χg⇓=ω⇑a(y)Dε

y
g,Dε

y
(χg)⇓+ i

(d↑1∑

ω=1

kωuω(y)↑↽

)
g,χg


.

Applying Holder’s inequality, Lemma 2.1, Lemma 2.3 and the properties of χ in
Lemma 2.3, we then have that

|⇑(
d↑1∑

ω=1

kωuω(y)↑↽)g,χg⇓|=
∣∣Im⇑L↼g,χg⇓↑ωIm⇑a(y)Dε

y
g,Dε

y
(χg)⇓

∣∣

⇐↗L↼g↗L2 ↗g↗L2 +ω↗a↗
L→

∥∥Dε

y
g
∥∥
L2

∥∥Dε

y
(χg)

∥∥
L2

⇐↗L↼g↗L2 ↗g↗L2 +Cc2ω(
∥∥Dε

y
g
∥∥
L2 ↗χ↗Hε ↗g↗L→ +

∥∥Dε

y
g
∥∥
L2 ↗g↗Hε ↗χ↗L→)

⇐↗L↼g↗L2 ↗g↗L2 +Cc2ω↼
1
2↑ε | ln↼|ς(ε)↗g↗

Ḣε ↗g↗L2

+Cc2ω↼
1
2↑ε | ln↼|ς(ε)↗g↗1+

1
2ε

Ḣε ↗g↗1↑
1
2ε

L2 +Cc2ω↗g↗2Ḣε .

We further use the estimate in (2.21) and obtain
∣∣∣∣∣

(d↑1∑

ω=1

kωuω(y)↑↽

)
g,χg

∣∣∣∣∣⇐C


1+

c2
c1


↗L↼g↗L2 ↗g↗L2 (2.22)

+Cc↑1/2
1 c2ω

1
2 ↼

1
2↑ε | ln↼|ς(ε)↗L↼g↗

1
2

L2 ↗g↗
3
2

L2

+Cc
↑ 4ε+1

4ε

1 c2ω
2ε↑1
4ε ↼

1
2↑ε | ln↼|ς(ε)↗L↼g↗

2ε+1
4ε

L2 ↗g↗
6ε↑1
4ε

L2 .

By utilizing again the properties of χ in Lemma 2.3, it follows that
∣∣∣∣∣

(d↑1∑

ω=1

kωuω(y)↑↽

)
g,χg

∣∣∣∣∣→
∫

E

χ

(
d↑1∑

ω=1

kωuω(y)↑↽

)
g2dy

=

∫

E

∣∣∣∣∣

d↑1∑

ω=1

kωuω(y)↑↽

∣∣∣∣∣g
2dy

→ c0↼
m

∫

E

g2dy , (2.23)

where Assumption 1.1 was used in the last inequality.
Combining estimate (2.22) and (2.23), we get

∫

E

g2dy⇐ C(c1+c2)

c0c1↼m
↗L↼g↗L2 ↗g↗L2 +

Cc2ω1/2| ln↼|ς(ε)

c0c
1/2
1 ↼m+ε↑ 1

2

↗L↼g↗1/2L2 ↗g↗3/2
L2

+
Cc2ω

2ε↑1
4ε | ln↼|ς(ε)

c0c
4ε+1
4ε

1 ↼m+ε↑ 1
2

↗L↼g↗
2ε+1
4ε

L2 ↗g↗
6ε↑1
4ε

L2 . (2.24)
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On the other hand, since the complement Ec of the set E has measure |Ec|⇐N↼, using
Lemma 2.3, the integral of g2 on Ec can be bounded by

∫

Ec

g2dy⇐N↼↗g↗2
L→ ⇐CN↼(↗g↗2

L2 +↗g↗
1
ε

Ḣε ↗g↗
2ε↑1

ε

L2 )

⇐CN↼(↗g↗2
L2 +c1

↑ 1
2ε ω↑

1
2ε ↗L↼g↗

1
2ε

L2 ↗g↗
4ε↑1
2ε

L2 ) . (2.25)

Adding (2.24) and (2.25) yields

↗g↗2
L2 ⇐

C(c1+c2)

c0c1↼m
↗L↼g↗L2 ↗g↗L2 +

Cc2ω1/2| ln↼|ς(ε)

c0c
1/2
1 ↼m+ε↑ 1

2

↗L↼g↗1/2L2 ↗g↗3/2
L2

+
Cc2ω

2ε↑1
4ε | ln↼|ς(ε)

c0c
4ε+1
4ε

1 ↼m+ε↑ 1
2

↗L↼g↗
2ε+1
4ε

L2 ↗g↗
6ε↑1
4ε

L2 +CN↼(↗g↗2
L2 +c1

↑ 1
2ε ω↑

1
2ε ↗L↼g↗

1
2ε

L2 ↗g↗
4ε↑1
2ε

L2 ) .

By taking ↼0<
1

4CN
and applying Young’s inequality, we have that

1

4
↗g↗2

L2 ⇐C



 c1+c2
c0c1↼m

+
c22ω| ln↼|2ς(ε)

c20c1↼
2m+2ε↑1

+
c

4ε
2ε+1

2 ω
2ε↑1
2ε+1 | ln↼|

4εϖ(ε)
2ε+1

c
4ε

2ε+1

0 c
4ε

2ε+1

1 ↼
4ε2↑2ε+4mε

2ε+1

+
N2ε↼2ε

c1ω



 ·

·↗L↼g↗L2 ↗g↗L2 .

Moreover, choosing

↼= ↼0ω
1

m+2ε ,

and using the fact ω<1, we have also

1=↗g↗
L2 ⇐C(N,m,φ)ω↑

m
m+2ε | ln↼|2ς(ε)↗L↼g↗L2 .

This last inequality finally implies that there exists a positive constant ⇀0= ⇀(N,m,φ),
such that

#(Lϑ,k)→ ⇀0ω
m

m+2ε | ln↼|↑2ς(ε),

which concludes the proof.

3. Examples of dissipation-enhancing high-dimensional shear flows
In this section, we give an example to illustrate that the set of flows in Td satisfying

Assumption 1.1 is not empty. Our example can be viewed as a multi-directional, higher-
dimensional analog of the Kolmogorov flow.
Proposition 3.1. Let the flow velocity v=(u,0), where the components of the shear
u are given by uω(y)=sinω(y) for ς=1, · · · ,d↑1, then Assumption 1.1 holds with m=
2(d↑1).

Proof. We begin with a claim that clarifies the meaning of Assumption 1.1 further.

Claim: Given h↓N, for any ↼>0, ⇁ω↓R, ς=1, · · · ,h↑1, and ↽↓R, we can find a set
of at most h points zj,h↓R, j=1, · · · ,h, which depend on ⇁ω, ς=1, · · · ,h↑1, and ↽,
satisfying

∣∣zh+⇁h↑1z
h↑1+ · · ·+⇁1z↑↽

∣∣> ↼h , (3.1)
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for all |z↑zj,h|> ↼, j=1, · · · ,h.

Proof of the Claim: We note that there exist points zj ↓C, j=1, · · · ,h, satisfying

zh+⇁h↑1z
h↑1+ · · ·+⇁1z↑↽=%h

j=1(z↑zj) ,

since the left-hand side is a polynomial of order h. We let zj,h=Rezj for j=1, · · · ,h.
Then zj,h↓R and we have the estimate

∣∣zh+⇁h↑1z
h↑1+ · · ·+⇁1z↑↽

∣∣→%h

j=1 |z↑zj,h| (3.2)

Hence (3.1) follows as long as |z↑zj,h|> ↼ for all j=1, · · · ,h. The claim is proved.
We return to the proof of the Proposition. By hypothesis, uω(y)=sinω(y). We

distinguish two cases. If kd↑1 ⇒=0, for any ↽↓R and k=(k1,k2 · · · ,kd↑1)↓Zd↑1 with
|k| ⇒=0 the left hand side of (1.8) can be estimated as

∣∣∣∣∣

d↑1∑

ω=1

kω sin
ω(y)↑↽

∣∣∣∣∣= |kd↑1|
∣∣∣∣sin

d↑1(y)+
kd↑2

kd↑1
sind↑2(y)+ · · ·+ k1

kd↑1
sin(y)↑ ↽

kd↑1

∣∣∣∣ (3.3)

→
∣∣∣∣sin

d↑1(y)+
kd↑2

kd↑1
sind↑2(y)+ · · ·+ k1

kd↑1
sin(y)↑ ↽

kd↑1

∣∣∣∣

→%d↑1
j=1 |sin(y)↑zj,d↑1|

where zj,d↑1 is as in the proof of the Claim above with h=d↑1 and we used (3.2).
Then following the argument in [11, Example 3.1], we observe that we can estimate

|sin(y)↑zj,d↑1| as follows. For each j=1, . . . ,d↑1, there exists a positive integer Mj

and points yj,n, n⇐Mj , with the following property: there is a positive constant c̄j
such that |sin(y)↑zj,d↑1|→ c̄j↼2 for any y satisfying |y↑yj,n|→ ↼ for all yj,n, n⇐Mj ,
and ↼↓ (0,↼0). Hence, (3.3) becomes

∣∣∣∣∣

d↑1∑

ω=1

kω sin
ω(y)↑↽

∣∣∣∣∣→ ↼2(d↑1)%d↑1
j=1 c̄j .

If kd↑1=0 instead, we let ς̄=argmax1⇑ω<d↑1kω ⇒=0. Consequently,

∣∣∣∣∣

d↑1∑

ω=1

kω sin
ω(y)↑↽

∣∣∣∣∣= |k
ω̄
|
∣∣∣∣sin

ω̄(y)+
k
ω̄↑1

k
ω̄

sinω̄↑1(y)+ · · ·+ k1
k
ω̄

sin(y)↑ ↽

k
ω̄

∣∣∣∣ (3.4)

→
∣∣∣∣sin

ω̄(y)+
k
ω̄↑1

k
ω̄

sinω̄↑1(y)+ · · ·+ k1
k
ω̄

sin(y)↑ ↽

k
ω̄

∣∣∣∣

→%ω̄

j=1

∣∣sin(y)↑z
j,ω̄

∣∣ .

Again, using the same argument as in [11, Example 3.1], we have that there exist c̄>0,
↼0>0, and finitely many points yn, n⇐M , with M a positive integer, such that for any
y satisfying |y↑yn|→ ↼ for all yn, n⇐M , and ↼↓ (0,↼0), the following holds

∣∣∣∣∣

d↑1∑

ω=1

kω sin
ω(y)↑↽

∣∣∣∣∣→ c̄↼2ω̄ .

We conclude that Assumption 1.1 is verified with m=2(d↑1) in this case.
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