DISSIPATION ENHANCEMENT BY SHEAR FLOWS FOR
GENERALIZED DIFFUSION OPERATORS IN HIGH DIMENSION *
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Abstract. We establish conditions for shear flows on the d-dimensional torus T¢, d> 2, that give
enhanced dissipation for the associated linear advection-diffusion equation for well-prepared data. The
diffusion operator can be of fractional or high order and does not need to have constant coefficients.
We then construct flows that satisfy these assumptions and obtain a quantitative estimate on the
dissipation enhancement. Our examples generalize known examples in two space dimensions to the high-
dimensional setting, which is relevant in applications to sampling a distribution and in optimization.
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1. Introduction

This work concerns enhanced dissipation in arbitrarily high dimension for the
(scalar) linear advection-diffusion equation, where the diffusion operator is a generaliza-
tion of the standard Laplace operator to allow for fractional and higher-order operators
and variable coefficients. The flow will be assumed incompressible, that is, the advecting
velocity v is divergence free. For the case of the Laplace operator, the advection-diffusion
equation can be written as a Fokker-Planck equation for a drift-diffusion process. The
Fokker-Planck equation models the evolution of the probability density function associ-
ated to the process. High-dimensional drift-diffusion processes have been used in many
applications, such as in diffusion approximation of Stochastic Gradient Descent methods
for non-convex optimization [27]. As customary in fluid mechanics, we call the velocity
v also the flow.

By enhanced dissipation, we mean in this context that the linear advection-diffusion
operator acts on characteristic timescales that are faster than those of the diffusion alone.
The characteristic timescale is defined as the smallest time it takes for the solution
operator to reduce the size of the solution by a fixed fraction. We will measure the
size of the solution in terms of its L? norm, which is well adapted to the use of Fourier
analytic techniques. Because we work with linear parabolic equations, the characteristic
timescale is determined also by the rate of decay in time of the solution operator as a
function of the diffusion coefficient or diffusivity v >0. Equivalently, one can fix v=1
and obtain the decay in terms of the flow amplitude A > 0.

We let T¢=1[0,27]¢, d >2, denote the standard d-dimensional torus. In the case of
other periods L, there will be a dependence of constants and rates on L. We work with
shear flows, which without loss of generality can be defined as follows. We denote a
point x in T¢ as © = (x1,22,...,74_1,y) =: (z’,y), then a shear flow is an incompressible
flow with velocity given by v(x)= (u(y),0). We restrict to considering smooth flows. A
special case is given by a unidirectional shear, where u(y)=(u(y),0,...,0). The scalar
function w is called the shear profile, e.g., u(y)=sin(y), which gives the Kolmogorov
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2 High dimensional flows

flow in two dimensions. We will give specific examples later in the paper. It is an
important question whether more general flows can be considered. Indeed, enhanced
dissipation holds for certain steady flows in any dimension [9], for certain circularly
symmetric flows in two space dimensions and pipe flows in three dimensions [10,12,19],
and certain cellular flows in two dimensions [6,28] (see also [20]). Hence, a natural
generalization of our results is to consider a flow of the form v(x)=(u(y),0), where
now x=(x1,Ta,...,L4—2,Y1,Yy2) =: (x',y) . However, it is not clear that the methods
used in this work extend to this case, in particular it is not clear what the analog
of Assumption 1.1 is in this context (cf. [14]). Our focus here is on generalizing the
diffusion operator rather than the convective term.
We then consider the following advection-diffusion equation:

Zu[ )0, 0(x,y) —VZU[DQ’YQ —vDJ(a(y)D))0(z',y)  (1.1)
=: —EVG(w JY)s (1.2)

where o4 € {0,1} for € {1,---,d—1}, v € (3,+00), the function a is smooth, positive and
bounded away from zero. In particular, there exist positive constants ¢; >0, i=1,2, such
that

a(y)>c1 >0, ae. yeT, llall ;e <ca. (1.3)

We define the fractional derivative D7 as a Riesz-type derivative of order v €R™, i.e.,
as a Fourier multiplier. Let f € L*(T), then

D1f =3Ik k)™, (14)

kEZ

where f is the Fourier Transform of f and k is the wavenumber. We remark that D7 is
a positive operator and D? =—32. By Plancherel’s Theorem, it holds that

1DT fll72 =Y k2 )= [1F e -

keZ

where H7 is a homogeneous Sobolev space. In particular, D} is a self-adjoint, un-
bounded operator on L?(T) with (maximal) domain D(D")=H"(T). The diffusion
operator U(Zl 10@D§Z+D;’(a(y)D3)) in (1.1) is then strongly elliptic, self-adjoint
and positive with (maximal) domain H2?Y(T%). The global well-posedness of (1.1)
can be established, for instance, by semigroup methods (see e.g. [35]) for any initial
data 6 € L(T4), yielding a unique solution 6 € C([0,00); L?(T%))NC((0,00); H?>7(T4)) N
C1(0,+00); L?(T9)). In fact, well-posedness can be proved under much weaker assump-
tions on a and u, but we do not seek the optimal regularity in this work.

Informally, enhanced dissipation is the result of the transfer of energy by the advec-
tion operator to small scales, where it is damped more efficiently by diffusion, as it can
be seen by taking the Fourier Transform. This phenomenon has been well studied in
the mathematics literature, especially for reaction-diffusion equations and quenching in
combustion (see e.g. [16,31] and references therein). The flow of v will be called dissi-
pation enhancing (relazation enhancing for the steady case) if the associated advection-
diffusion operator exhibits dissipation enhancement. For steady Lipschitz-continuous
flows and Laplace’s operator, Constantin et Al [9] give a spectral characterization of
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relaxation-enhancing flows, namely, the advection operator cannot have any eigenfunc-
tions in H'(M), where M is a smooth compact Riemannian manifold. For unsteady
flows, it is known that sufficiently regular mixing flows are dissipation enhancing (we
refer the reader to [17] and references therein for the definition of mixing flows and a
more in-depth discussion). In the case of shear flows, the advection operator v-V has a
large kernel, so enhanced dissipation occurs only on the L?-orthogonal complement to
this kernel and it depends on the shear profile, in particular on its critical points and
their order (cf. [21,28] for the case of cellular flows). Then, dissipation enhancement has
been established by using different tools, from hypocoercivity estimates (we mention in
particular [1,2,14]) to probabilistic methods [13] to resolvent estimates [11,23,37] (see
also [19] for shear flows in a circular geometry). The study of enhanced dissipation is
more challenging in the case of unbounded domains or domains with boundaries. In
both cases, the spectral properties of the advection operator are quite different from the
periodic case. Therefore, we work only in the torus T%.

There are related phenomena to dissipation enhancement in fluid flows. We mention
Taylor dispersion, which is an enhancement of the rate of spreading of a species in the
direction of the shear flow (see again [14] and references therein), and the stability of
linearized viscous and inviscid flows around shear flows with the associated mechanism
of inviscid damping (among the several recent results, see [5,7,22,29,33]). In non-linear
systems, enhanced dissipation can have important effects, such as delaying or prevent-
ing blow-up, as in aggregation models, for instance the Platak-Keller-Segel model for
which addition of advection by a sufficiently strong flow prevents blow-up of solutions
irrespective of the total mass [3,20,24-26,36]. Similarly, addition of a strong enough
background flow leads to global existence for the Kuramoto-Sivashinsky equation, a
model of front propagation in combustion [11,18,20]. There is also a close connection
between enhanced dissipation and accelerated sampling in Langevin dynamics. In [8],
the first author of this paper and her collaborators constructed an exponentially mixing
drift to the overdamped Langevin equation on the d-dimensional torus and obtained a
signicantly smaller mixing time for the modified Langevin dynamics.

While some of the above works have considered fractional dissipation and the higher-
dimensional setting (e.g. [26], where mixing flows are used), to our knowledge, our paper
1s the first to address both variable-coefficient fractional operators and steady shear flows
with a rather general shear profile in arbitrarily high dimensions. Proving enhanced
dissipation for shear flow is significantly more difficult than for mixing flows, because
the shear only acts in certain directions. This is why we cannot treat general variable
coeflicients operators.

In view of the geometry of the shear flow v , we consider first a reduced form of the
operator in (1.1), where the diffusion is only in the direction orthogonal to v:

d—1

0:0=— uc(y)ds,0—vDy(aly) D})0=: —L,0(z'y). (1.5)
(=1

We study both (1.5) and (1.1) by applying the Fourier Transform in @' = (z1,...,24_1).
Let k= (k1,ko, - ,kq_1) €Z91 be the associated wavenumber, and let

d—1 d—1

Loge=vY oulke® +vDj(aly)Dy)+iy _keue(y). (1.6)
(=1 (=1
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We similarly define

d—1

Lys:=vD](a(y)D))+i Y keus(y). (1.7)
=1

We view both £, and £, 4 as unbounded operators on L?(T). Given an (unbounded)
operator £ on L?, we denote the semigroup generated by £ with et* and the opera-
tor norm with [|[|,,. Since [Je™"vk o, <[[e" vk |y, it is enough to study the latter
operator.

Generalizing the results in [11], inspired by [14], we impose the following condition
on the shear w. It can be seen as a condition on the level sets of the components u, of
u, in particular a condition of the degeneracy of the critical points.

ASSUMPTION 1.1. There exist m,N €N, ¢y >0 and 6o € (0,1), with the property that
for any NeR, §€(0,80) and k= (ky,ka, -+, kq_1) €Z1 with |k|#0, there exist n <N
and points {y1, -+ ,yn} €T such that

d—1
> keug(y) = Al > o™, (1.8)
(=1

for any ly—y;|>46, je{l,---,n}.

The Kolmogorov flow satisfies the above assumption with m =2 in two space di-
mensions (see as in [11]). More generally, a unidirectional shear flow with profile
u(y) =sin™y satisfies Assumption 1.1, also in two space dimensions. We remark that,
if Assumption 1.1 holds for some dg <1, it also holds for any smaller y. Therefore, in
what follows we will be able to choose dy as small as needed without loss of generality.

Under Assumption 1.1 on the flow, we are able to prove enhanced dissipation holds
for (1.5) on the complement of the kernel of the advection operator v-V. This kernel
consists of functions independent of x’. Therefore, given any function g€ L?(T?), we
denote

1

27
(g)(y):?/ g1, wq_1,y)dxy - drg_q, (1.9)
™ Jo

and let

g£=9—1(9)- (1.10)

(g) denotes the projection onto the kernel of v-V and g the component of g in the
orthogonal complement. We then state our main theorem as follows.

THEOREM 1.1. Let w satisfy Assumption 1.1. Let 0e€C([0,00); L?(T%))N
C((0,00); H2(T4))NC*(0,+00); L?(T%)) be the unique solution of (1.5) with initial data
0o € L*(T9). There exist a universal constant C >0, independent of 0y, and a number
€0 >0 such that

o T [Iny| 20 ()
10 ()] > < Cem o™ 0 (0g) 4| o (1.11)

where () is given by

_ (1_'7)’ l<’7<17
a(v)—{o, 321. (1.12)
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By interpolation and the Sobolev embedding, one can derive rates of decay in LP
for 1<p<dp/(d—~p). The bound in (1.11) is a quantitative estimate of the dissipation
enhancement, since diffusion without advection would have a characteristic time 7=
O(v), while in our case 7=O(v7+2 ), which is much larger for v small, as m/(m+2v) <
1, neglecting the logarithmic correction.

We close the Introduction with some notation and a plan of the paper. In Section
2 we prove Theorem 1.1, using certain resolvent estimates for £, , while Section 3 is
devoted to examples of flows satisfying Assumptions 1.1.

Throughput, C or ¢ will denote a generic constant that may change line to line.
We use standard notation to denote function spaces, e.g. H*(T?) denote the L2-based
Sobolev space of order s€R. We also denote the image of H*(T%) under the Fourier
Transform with h*(Z4); that is,

W (Z%):={(fr), k € Z%]|f|

1/2
hs;<2|k|2sfk2> <o}, sER. (1.13)
k

The homogeneous Sobolev spaces are denoted, as usual, by Hs (T?), and correspond-
ingly, their image under the Fourier Transform by hs (Z%). When no confusion can arise,
we will omit the domain and write H* for H*(T%), for example. Finally, we let (,) be
the L?-inner product.

Acknowledgments. The authors thank the anonymous referees for their insightful
comments. Y. Feng was partially supported by the National Key Research and De-
velopment Program of China (2022YFA1004401), NSFC 12301283, Shanghai Sailing
program 23YF1410300, Science and Technology Commission of Shanghai Municipality
(22DZ2229014). A. Mazzucato was partially supported by the US National Science
Foundation Grants DMS-1909103, DMS-2206453, and by Simons Foundation under
Grant No. 1036502.

2. Enhanced dissipation for shear flows in T¢, d>2

This section contains the proof of Theorem 1.1. As discussed in the Introduction,
it is enough to estimate the operator norm of e~****, which in turn follows from a
spectral estimate, employing a Gearhart-Priiss-Greiner type theorem (see e.g. [15] for
more details), Theorem 1.3 in [37]. This result specializes the Gearhart-Priiss-Greiner
theorem to m-accretive operators. An unbounded operator £ on a Banach space X
with dense domain D(L) is called accretive if —L is dissipative, that is, the positive half
line is in the resolvent set of —£ and we have the resolvent estimate:

IAL+L)FIZANFL - A>0, feD(L),

where I is the identity operator on X. When X =H is a Hilbert space with inner
product (,), then accretivity is equivalent to coercivity of the induced bilinear form (see
again [15]), i.e.,

Re(Lf,f)>0, VfeD(L). (2.1)

The operator £ is called m or mazimally-accretive if it is accretive and (A +L) is
surjective for any A>0. Again, for operators on Hilbert spaces, there is a useful char-
acterization of m-accretive operator that applies in this context. Namely, an accretive
operator £ on a Hilbert space H has a closure that is m-accretive if and only if the
adjoint L£* is accretive (see [32, Theorem I1-4.4] and also [34, Lemma 1.3]). Theorem
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1.3 in [37] gives an exponential bound on the semigroup generated by an m-accretive
operator provided its spectral function ¥ discussed below satisfies a certain lower bound.
Our task in what follows is, therefore, to show that £, j is m-accretive for fixed
k € Z, as an unbounded operator on L?(T) with maximal domain H*Y(T). In particular,
L, 1 is a closed operator. Moreover, since there is no enhanced dissipation in the kernel
of the advection operator, we can assume that k0 and work with functions that have
average zero in . A straightforward calculation shows that (2.1) is satisfied, so £, g, is
accretive. But E;k is an operator of the same form and, hence, also accretive, so that
we can conclude that £, is m-accretive. Next, we estimate the spectral function of
this operator in Proposition 2.1, which implies the decay estimate for the semigroup.
We first state some auxiliary lemmata. The first lemma can be viewed as a gener-
alized Leibnitz rule for the fractional derivative. This is a well-known result, at least in
the case of the whole space R? (see [30] and references therein). We omit the proof for
brevity.
LEMMA 2.1. For any f,g€ HY(T)NL>(T), v>0, the following holds:

ID2 ()l L2 SC UL v lgll oo + 1l oo 1191 ) - (2.2)

We will also need an interpolation inequality for fractional Sobolev spaces, which
follows from the Sobolev embedding (see e.g. [4]). We include a short proof for com-
pleteness.

LEMMA 2.2. Let f€ HY(T), v>1, then

||f“LW—r||f||L2+C||f|| Al (2.3)

Proof. Let f= f - f(y)dy denote the mean of f and observe that

1F = Fll i = N 1o

Next, fix A€Z, to be chosen later. Then

1F e < |71+ £ - fHLoo_rllwaZlf
k|0

Sil\flle Yo > |

0<|k|<A |K|>A

<=l (X DEC Y WP+ WP Y k)

0<|k|<A 0<|k|<A |E|>A |k|>A

1 1 3 L2
< EHJC”LFHV Hf_fHL2+CHf”HVA *

to\

where in the last inequality we used that y>1. Finally, inequality (2.3) follows by
picking

1
11,

A= ——HT
1= 71l
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For technical reasons that will be clear later in performing energy estimates, we will
need to have a suitable smooth approximation for the signum of (Zj;ll koue(y) — /\>.

LEMMA 2.3. Let the vector field w satisfy Assumption 1.1. For any N€R and k=
(K1, ka—1) EZE1 with |k|#0, let {y;,j=1,---,n} denote the distinguished points in
Assumption 1.1 and let 5y be as in Assumption 1.1. For any 0 € (0,00), define the set

Then there exists a smooth function x:T—[—1,1] with the property that

d—1
x(¥) (Zkzw(y)—/\> >0, VyeT, (2.4)
=1

d—1
x(y) (Z keue(y) — /\> =
=1

Moreover, for any fized fy>% there exists a constant C, independent of 6, such that

d—1
> keue(y)—A|, VyeE. (2.5)
(=1

Xl < €82 s[>, (2.6)

where the function « is defined as in (1.12).

Proof. We begin by observing that, if w satisfies Assumption 1.1, then wuy,
£=1,...,d—1 can change sign only on intervals of size §. Therefore, by standard molli-
fication argument we can construct a smooth function y:T — [—1,1] that approximate

sign (Zzl;ll koue(y) — /\) in the following sense:

105X, <C82 7, [|O5x|| e <CO77, VseZy, (2.7)
d—1

x(y) (Zkzw(y)—A>20, VyeT, (2.8)
/=1

, Vyek. (2.9)

d—1
D keue(y)— A
=1

d—1
x(y) (Z keue(y) — A) =
=1

The rest of the proof is devoted to estimating ||x|| z (T) for fractional exponent v>1/2,
using the Gagliardo-Nirenberg interpolation inequality. To obtain the best exponent,
we will interpolate with ||x|| z1/2(T) as an endpoint. We claim that

Xl 17> <C o] (2.10)

To prove the claim, we recall the Fourier representation of the H'/2 norm

_i2 .
Ix—=xXll32=C > IROPe, (2.11)
|E£0
where )‘(:% 027rx(y) dy and x(¢) is the ¢y, Fourier coefficient. Then integrating by
parts and using the identity e =" = —ﬁ%e_”y, we have that

. 1 C
IX(f)ISM/Tlayxldyém, L#0; (2.12)
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. 1 [ c

XOI< 5 [ 09x|dy < ——5, (0. (2.13)
|2 Jr 5|

Thus the H'/2-seminorm can be bounded by

IXF=C > + > |IROFK (2.14)

0<|f|<é—1  |[£|>6-1

1 1
<C — 4 — 2.15

0<|f|<s—1 [6|>6-1
<Cllnd|+C, (2.16)
and estimate (2.10) follows by choosing dp <1 in Assumption 1.1, which can be done

whitout loss of generality. Applying the Gagliardo-Nirenberg interpolation inequality
then gives:

Il s <ClIxI 507 Xt < Clnd 76277, ye(1/2,1); (2.17)
1— — 1_
Il g <l 2 I 0L < co =, y>1, (2.18)

where |] denotes the greatest integer less than or equal to 7. Finally, since ||x||, <
X1 7+ +1Ixl 22 5 Il L2 <27 and dp < 1, the desired result in (2.6) follows. O

We now turn to the key result, Proposition 2.1 below, in order to prove Theorem 1.1.
We define the spectral function ¥ associated to the operator £, x, introduced in (1.7),
as:

U(L, k) =inf { |(Loe—iN)gllz2my:9€D(Lu k), AER, [lgll 2 (1) = 1} . (2.19)
By Theorem 1.3 in [37], since £, , is m-accretive on L*(T),

He—tﬁy,k Hop < e (Lo k)3 . V>0,
Therefore, it is enough to bound the spectral function ¥(L, k).

PROPOSITION 2.1. Let w satisfy Assumption 1.1. Let v<1 and k#0. There exists a
positive constant eg=eo(N,m,v) independent of v and k such that

(L, 1) > eovte |Iny| 220 (2.20)

where a(y) is given in (1.12).
REMARK 2.1. As pointed in [23], the logarithmic correction appears only when €
(1/2,1). When v>1, our result is consistent with the previous estimates for integer or
fractional v values in [11,25].

Proof. For any given A€ R and g€ D(L, ) = H*'(T) with ||g||;. =1, we denote

d—1
Ly:=vD](a(y)D})+i (Z Koue(y) — )\> ,
(=1

where for clarity we have suppressed the dependence on v and k as they are fixed
throughout the proof. We observe that

Re(Lrg,9) =v{a(y)D}g,D}g)
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> e | Dl

which in turn gives

1
1D39ll52 < o 1300122 lgll e - (2.21)

Let the set E and the function x be as in Lemma 2.3. We integrate by parts in the
inner product (£xg,x9):

(Lxg:xg) =v{a(y)Dyg,D}(xg)) <<Zkeue )g,xg>-

Applying Holder’s inequality, Lemma 2.1, Lemma 2.3 and the properties of x in
Lemma 2.3, we then have that

Zkzw A)g,xg)| = [Im(Lxg,xg) —vIm(a(y) D} g, D] (x9))|

<ILxgll 2 llgll g2 + v llall o (| DYl 12 125 (x9) || -
<ILxgll 2 lgll 2 + Ceav (|| DY g| Lo XN gl e + ([ D5 9| 2 N9l - NIl o )

< (L2902 llgll 12+ Ceavd= = [*D g - gl 2

1+

1— L
+Ceovd | d|* D g 7 Nlgll 2™ +Ceav g -

We further use the estimate in (2.21) and obtain

‘< (dikzw(y) —>\> g,xg>
(=1

C
<c (1+ ) 1£rgllze gl o (2.22)

1 3
+Ce; PeE6E o0 || Lagl| 2, | gl 22
4vy+1

6y
+Cey 7 et oA ”\1H5|‘“(7)II£A9HL ||9||L

-1

By utilizing again the properties of x in Lemma 2.3, it follows that

d—1 d—1

‘< (Z’WW(W—A) g,xg> 2/ X (ka(y)—)) g dy
=1 E

/E Zk‘g’lm

(=1

> coé’”/ g*dy, (2.23)
E

A g dy

where Assumption 1.1 was used in the last inequality.
Combining estimate (2.22) and (2.23), we get

C(Cl +02) CCQV1/2|IH5‘ a(7) 1/2 3/2
/gzdyéiﬂﬁxgllm gl -+ r—— 1Egl 2 gl
E CoC gmty

29+1

CCQZ/21“_V1 |Ing|>() Zy
+ A7 11 1 |“C>\g||L
coc; oM

||9||L : (2.24)
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On the other hand, since the complement E° of the set E has measure |E°| < N§, using
Lemma 2.3, the integral of g2 on E€ can be bounded by

2 2 : ==
[E 9°dy < Nlgllz~ <ONo(lgllz=+lgll - gl 2 )

4~—1

2 L A
SCONO(|lgllzz +er™ v [[1Lagli 3 gl 27 )- (2.25)

Adding (2.24) and (2.25) yields

C(c1+e2) Ceov'/?|Ing|*™) 120 13/2
2 <« AT e Z=r T e / /
llf < e 5o 1enala i+ = 27 2E Wl I
CCQV%|ID6|Q(’Y) 2v+1 6v—1 5 L N 1 4y—1
1 1 -t L p) 2
+— = — L2127 llgll=" +CON(llglz +en v [[Lagllz llgllpz" )-

coey T oMt

By taking g < ﬁ and applying Young’s inequality, we have that

S 291 valy)
Lo <o ate | dvimde) R g FE Nt
T 192 > . 2 om 4 4
+2v-1 2y Ay 442 2444
4 00016 6061(5 R Coznyrl Cl2w+1 5% c1v

NLxgll 2 llgll e -

Moreover, choosing
8§ =Stz
and using the fact v <1, we have also
1=gll ;2 < C(N,m,y)r™ 755 b D || Lyg]| 2 -

This last inequality finally implies that there exists a positive constant ey =e(N,m,7),
such that

U(L, 1) > eoumt= | Ing| =220,

which concludes the proof. O

3. Examples of dissipation-enhancing high-dimensional shear flows

In this section, we give an example to illustrate that the set of flows in T¢ satisfying
Assumption 1.1 is not empty. Our example can be viewed as a multi-directional, higher-
dimensional analog of the Kolmogorov flow.
PROPOSITION 3.1. Let the flow velocity v=(u,0), where the components of the shear
w are given by ug(y) =sin‘(y) for £=1,---,d—1, then Assumption 1.1 holds with m=
2(d—1).

Proof. We begin with a claim that clarifies the meaning of Assumption 1.1 further.

Claim: Given heN, for any 6 >0, ay€R, £=1,--- ,h—1, and A€R, we can find a set
of at most h points z;, €R, j=1,---,h, which depend on ay, £{=1,---,h—1, and A,
satisfying

’zh+ah,1zh_1+---+a1z—>\|>6h, (3.1)
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for all |z—z; 5| >0, j=1,---,h.
Proof of the Claim: We note that there exist points z; €C, j=1,---,h, satisfying
zh+o¢h_1zh71Jr"'JFOllZ*/\:H?:l(Z*Zj)’

since the left-hand side is a polynomial of order h. We let z;, =Rez; for j=1,---,h.
Then z;, €R and we have the estimate

|zh+ah,1zh_1+---+alz—)\|21‘[?:1|z—zj’h| (3.2)

Hence (3.1) follows as long as |z —z; 5| >0 for all j=1,---,h. The claim is proved.

We return to the proof of the Proposition. By hypothesis, u(y) =sin‘(y). We
distinguish two cases. If kg 1 #0, for any A€R and k= (ki,ko--,kq_1) € Z9™! with
|k|#£0 the left hand side of (1.8) can be estimated as

d-1
kaq— k A
Zkgsinl(y)—)\ =|kg_1|[sin? () + 22 sin?2(y) + -+ + ——sin(y) — (3.3)
P ka1 ka1 d—1
> St () + PRS2 ) 4k singy) -
kdfl kdfl kdfl

>T19Z] [sin(y) — 2j,a-1]

where z; 4—1 is as in the proof of the Claim above with h=d—1 and we used (3.2).

Then following the argument in [11, Example 3.1], we observe that we can estimate
|sin(y) — zj,4—1| as follows. For each j=1,...,d—1, there exists a positive integer M;
and points y; ,, n <M;, with the following property: there is a positive constant c;
such that |sin(y) —zja—1|>¢;0% for any y satisfying |y —y;n|>6 for all y;,, n<M;,
and ¢ € (0,09). Hence, (3.3) becomes

e Lt

d-1
Z Egsin®(y) — A
=1

If kq_1 =0 instead, we let £= argmaxi<¢<d—1 ke #0. Consequently,

=, . ¢ .7 ki1 . 71 ki A
> kesin' (y) = A| =gl [sin’ (y) + = sin 1 (y) + -+ T sin(y) - - (3.4)
e 7 7 7
_ . _
> |sin’ (y) + =1 sine_l(y)erJrﬁsin(y)fi
k7 *r ks

7 .
>1T5, ’sm(y) — Zj,Z| .
Again, using the same argument as in [11, Example 3.1], we have that there exist ¢> 0,

6o >0, and finitely many points y,, n < M, with M a positive integer, such that for any
y satisfying |y —y,| > ¢ for all y,, n <M, and 6 € (0,d¢), the following holds

> 2.

d—1
Z kysin®(y) — A
=1

We conclude that Assumption 1.1 is verified with m=2(d—1) in this case. O
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