bioengineering

Review

Building an Ethical and Trustworthy Biomedical Al Ecosystem for
the Translational and Clinical Integration of Foundation Models

Baradwaj Simha Sankar 1>f, Destiny Gilliland 1-2*{, Jack Rincon "2, Henning Hermjakob 30, Yu Yan 124,
Irsyad Adam 1,24Q), Gwyneth Lemaster 1 Dean Wang 1.2 Karol Watson 5%, Alex Bui ¢, Wei Wang 6,7,%

and Peipei Ping 1-2/4/5/6,*

check for
updates

Citation: Sankar, B.S.; Gilliland, D.;
Rincon, J.; Hermjakob, H.; Yan, Y.;
Adam, I.; Lemaster, G.; Wang, D.;
Watson, K.; Bui, A.; et al. Building an
Ethical and Trustworthy Biomedical
Al Ecosystem for the Translational
and Clinical Integration of Foundation
Models. Bioengineering 2024, 11, 984.
https://doi.org/10.3390/
bioengineering11100984

Academic Editor: Kwang Woo Ahn

Received: 14 August 2024
Revised: 17 September 2024
Accepted: 24 September 2024
Published: 29 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

! Department of Physiology, University of California, Los Angeles, CA 90095, USA; sankarb@g.ucla.edu (B.S.S.);
dcg5438@psu.edu (D.G.); jmrincon@g.ucla.edu (J.R.); yuyan666@g.ucla.edu (Y.Y.);
irsyadadam@g.ucla.edu (I.A.); gwynethsage@gmail.com (G.L.); dingwang@g.ucla.edu (D.W.)
2 NIH CFDE ICC-SC, NTH BRIDGE2AI Center & NHLBI Integrated Cardiovascular Data Science Training
Program, UCLA, Los Angeles, CA 90095, USA
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI),
Cambridge CB10 1SD, UK; hhe@ebi.ac.uk
4 Bioinformatics IDP, University of California, Los Angeles, CA 90005, USA
Department of Medicine, Cardiology Division, University of California, Los Angeles, CA 90095, USA;
kwatson@mednet.ucla.edu
Medical Informatics Home Area, University of California, Los Angeles, CA 90095, USA; buia@mii.ucla.edu
Department of Computer Science, University of California, Los Angeles, CA 90095, USA
Correspondence: weiwang@cs.ucla.edu (W.W.); pping38@g.ucla.edu (P.P.)
These authors contributed equally to this work.

N o

*

Abstract: Foundation Models (FMs) are gaining increasing attention in the biomedical artificial
intelligence (AI) ecosystem due to their ability to represent and contextualize multimodal biomedical
data. These capabilities make FMs a valuable tool for a variety of tasks, including biomedical
reasoning, hypothesis generation, and interpreting complex imaging data. In this review paper, we
address the unique challenges associated with establishing an ethical and trustworthy biomedical Al
ecosystem, with a particular focus on the development of FMs and their downstream applications. We
explore strategies that can be implemented throughout the biomedical Al pipeline to effectively tackle
these challenges, ensuring that these FMs are translated responsibly into clinical and translational
settings. Additionally, we emphasize the importance of key stewardship and co-design principles
that not only ensure robust regulation but also guarantee that the interests of all stakeholders—
especially those involved in or affected by these clinical and translational applications—are adequately
represented. We aim to empower the biomedical AI community to harness these models responsibly
and effectively. As we navigate this exciting frontier, our collective commitment to ethical stewardship,
co-design, and responsible translation will be instrumental in ensuring that the evolution of FMs
truly enhances patient care and medical decision-making, ultimately leading to a more equitable and
trustworthy biomedical Al ecosystem.

Keywords: biomedical Al; Foundation Models; Al ecosystem; Al lifecyle; clinical integration; ethical
AL trustworthy AL Al governance and regulation; stakeholder engagement

1. Introduction

A corollary to the rise of “Big Data” is the development of large-scale machine learning
models that have the capacity to learn from large datasets [1]. FMs are large-scale models
that can be trained on large-scale datasets and serve as the “foundation” for downstream
tasks related to the original model. They are increasingly recognized as a component in
the workflow for large-scale Al development, leveraging millions to billions of parameters
through self-supervised, unsupervised, or semi-supervised learning techniques [2]. The
initial training of FMs on large datasets enables them to learn patterns, structures, and
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context within the data without the need for labor-intensive manual annotation. This initial
pre-training provides a foundation for further adaptation and fine-tuning across diverse
tasks, spanning from predictive analytics to generative applications [3].

Biomedical Al technologies have shown promising capabilities to diagnose, predict,
and recommend treatments across a variety of medical modalities and data types, such
as electronic health records (EHRs), chest X-rays, and electrocardiograms [4]. With FMs
achieving state-of-the-art performance in natural language processing (NLP) and computer
vision (CV), there is growing interest in exploring their utility in biomedical applications.
Notably, pre-trained FM architectures can be fine-tuned for various downstream biomedical
tasks [4]. For example, BioLinkBERT, pre-trained using the Bidirectional Encoder Represen-
tations from Transformers (BERT) architecture on citation-linked biomedical corpora from
PubMed, demonstrated utility for downstream biomedical natural language processing
(BioNLP) tasks such as named entity recognition, document classification, and question
answering [5]. Another example is HeartBEiT, an FM pre-trained on 12-lead ECG image
data and fine-tuned for the classification of patients with reduced left ventricular ejection
fraction and the classification of patients with hypertrophic cardiomyopathy [6]. Lastly,
scFoundation, a model pre-trained on over 50 million scRNA-seq data using an encoder—
decoder transformer, has shown its utility in a diverse array of single-cell analysis tasks
such as gene expression enhancement, tissue drug response prediction, and single-cell drug
response classification [7].

Looking forward, FMs pre-trained on multimodal biomedical datasets hold promise
for generalizing and integrating knowledge across various data types, learning new tasks
dynamically, and addressing a wide array of medical challenges [8]. However, this promis-
ing concept for biomedical Al also presents unique ethical challenges, necessitating height-
ened vigilance and responsible development. Adopting an ethically governed, co-designed
approach to FM development and clinical integration, grounded in evidence-based prin-
ciples and prioritizing the needs of impacted individuals and communities, is critical.
This Al pipeline should allow for continuous refinement of Al technologies based on Al
stewardship, which is the feedback from stakeholders and regulatory entities. Such an
approach is essential to ensure that Al innovations positively contribute to healthcare and
public health, reinforcing necessary safeguards and ethical standards.

The main contributions of this paper are as follows (Figure 1):

1. We outline the essential components of an Al Ecosystem for integrating biomedical
Al technologies into clinical and/or translational settings;

2. We examine the current landscape of ethical considerations and ethical practices
broadly applicable to biomedical Al and with applications to FM development and
deployment, highlighting critical challenges and existing mitigation strategies across
three key areas:

A.  Mitigating Bias and Enhancing Fairness
B.  Ensuring Trustworthiness and Reproducibility
C.  Safeguarding Patient Privacy and Security;

3. We examine pivotal government and scholarly publications that chart the present
guidelines and future directions for Al stewardship, emphasizing two main compo-
nents:

A. Al Governance and Regulation
B.  Stakeholder Engagement;

4.  Finally, we discuss a unified perspective of how the principles of ethical and trustwor-
thy Al and stewardship in Al integrate into the ecosystem.
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Figure 1. Contributions and outline. The paper first outlines and explains the biomedical Al pipeline,
followed by an exploration of the Biomedical ETAI landscape. We then examine Al stewardship,
culminating in a call for the adoption of standardized ethical practices and unified perspectives.

2. Al Ecosystem in Biomedicine

The Al ecosystem is a concept that defines the complex interdependent patterns that
connect developers, users, and the upstream and downstream resources necessary for Al
development and deployment. It provides a structure to develop an ethical and regulatory
framework that promotes fairness, transparency, and accountability in the development
and use of AI/ML systems [9]. Within the Al biomedical ecosystem, a well-defined Al
pipeline guided by Al stewardship drives the direction of model development toward
clinical and translational integration while ensuring its responsible and ethical use. The
pipeline begins with the management of large biomedical datasets and culminates in a
thoroughly validated model. However, the pipeline workflow is amenable to moving
forward or backward, as dictated by Al stewardship. To clarify, the Al ecosystem can best
be defined via nine key components presented as a pipeline in Figure 2 [10-12]:

- Data Lifecycle Management: The collection, dissemination, and curation of vast
amounts of diverse biomedical data.

- Data Repositories: Centralized systems that store, validate, and distribute data, pro-
moting transparent and reproducible Al technologies.

- Data Processing: Cleaning, annotating, and structuring data to make them Al-ready.
Model Development: The development and training of FMs that can then be utilized
for various downstream tasks such as hypothesis generation, explanation, causal
reasoning, and clinical decision support.

- Model Repositories: Centralized storage for managing and sharing Al models to
promote accessibility and collaboration amongst stakeholders. Centralized storage
for managing and sharing AI models to promote accessibility and collaboration
amongst stakeholders.

- Model Evaluation: The assessment of model performance and reliability prior to
deployment in biomedical settings.

- Clinical Translation: Operationalizing FMs in a clinical setting to enhance patient care.

- Al Governance and Regulation: Established legal and ethical standards that enforce
compliance through both government processes and committee /board regulation.

- Stakeholder Engagement: Diverse communities and individuals contributing to and
affected by Al in biomedicine. Engagement refers to the active participation of these
groups in the entire pipeline of Al from bench to bedside in both an industrial and
healthcare setting.
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Figure 2. Al ecosystem in biomedicine. The Al pipeline begins with “Data Lifecycle Manage-
ment” and concludes with “Clinical Translation”, with data and model repositories playing a
critical role in sustaining the pipeline progression in their respective areas. Notably, Al stew-
ardship, such as Al stakeholder engagement and governance regulation, influence the pipeline’s
progression bidirectionally.

3. Ethical Considerations in the AI Pipeline for Foundation Models
3.1. Mitigating Bias and Enhancing Fairness

Bias in Al can refer to two distinct concepts: technical bias and social bias. Technical
bias refers to a statistical concept related to model assumptions that are made for ease
of learning and generalization but that introduce error. This technical bias can lead to
underfitting, where the model, due to its oversimplified assumptions, fails to capture the
complexity of the data. Social bias in Al refers to the prejudices reflected in the outputs
of Al systems, often due to biases present in the training data. These biases often mirror
social biases, including historical and current social inequalities. Social biases in biomedical
Al can cause direct social harm when they perpetuate outdated claims, lead to inaccu-
rate insights, compromise the quality of care for marginalized groups, and/or exacerbate
disparities in the quality of care. Al Fairness is the practice of seeking to understand
and mitigate these social biases. As summarized in Table 1, we identify key social biases
present in biomedical data and review evidence-based techniques to mitigate them. In
Sections 3.1.1 and 3.1.2, we investigate the social biases that profoundly influence the ethics
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and trustworthiness of biomedical FM applications. We specifically discuss biases arising
from the underrepresentation of certain demographic groups in biomedical datasets and
the stereotypical biases inherent in natural language data used to train certain biomedi-
cal FMs, notably Language Model Large (LLMs) and Vision Language Models (VLMs).
For each type of social bias, we explore mitigation strategies aimed at neutralizing their

negative impacts.

Table 1. Mitigating social bias and enhancing fairness in biomedical Al

Category

Strategy

Limitation/Challenge

Challenge: Underrepresentation of certain demographic groups (e.g., African Americans or women) in biomedical data can result
in biased and unfair model decisions.

1. Inclusive biomedical data collection [13]: 1. Difficulty accessing diverse populations.
- Ensuring all demographic groups are Overcoming skepticism in certain
Data Level (all dataset adequately represented. demographic groups.
. 2. Inaccuracies, noise, over-smoothing, and
types) 2. Synthetic datasets [14,15]: inconsistencies when compared to
- Data engineering to closely mirror real-world data.
phenotypes of underrepresented individuals.
1. Importance weighting [16,17]:
- Samples from underrepresented groups in
the dataset are shown more frequently to the
model, giving them higher importance. 1. Overfitting to underrepresented
2. Adversarial Learning [18,19]: instances.
. . . 2. Optimization challenges due to
B Tra(;n thedprlmar y mc];del foi) iche malrlltask simultaneous training of the primary
o and an adversary to be unable to predict model and adversary.
Tralnmg Level (datasets. sensitive demographic attributes from the 3. Computationally exg ensive with large
with labrerlli(t:lajilg;?graphlc primary model’s output. predictors. Requires careful tuning of the
3. Regularization [20,21]: regularization parameter.
. . .. C . 4. Optimization challenges due to stochastic
- Inclusion of fairness metric in the objective nature. Requires careful tuning of
function to penalize unfairness. drOpOl:lt ractle J
4. Dropout [22]:
- Probabilistic masking of neurons to reduce
dependency on sensitive demographic
features.
1. Equalized odds [23,24]:
- Are TP and FP rates equal between ) .
demographic groups? :_’3' Relymg ona single
. airness metric might
2. Equal Opportunity [25]: give an incomplete or
- Are TP rates equal for all demographic misleall,ding picture of a
Evaluation Level (datasets groups? flnoiepgl?claatsi.cm of techniques
with labeled demographic 3. Predictive Parity [24,26]: Cz.m be
metadata . .
) - Is precision equal across demographic resource intensive.
groups? Effectiveness of
. . explainability methods
4. Explainability Methods [27,28]:

Assessing the model’s dependence on
sensitive demographic attributes in
decision-making.

often depends on human
interpretation.




Bioengineering 2024, 11, 984 6 0f33
Table 1. Cont.
Category Strategy Limitation/Challenge
Challenge: Human stereotypical biases can contaminate natural language data and affect the fairness of large language and
vision-language biomedical models.
1. Counterfactual data augmentation [29,30]:
- Augment a corpus by swapping
demographic identifier terms (e.g., swap he
and she).
2. Bias control training [31]: 1. May fail to address deeper, more intricate
. . . biases that are not directly linked to
- Le.armng to as§0c1ate spec1a.11 control tokeps demographic identifier terms.
with stereotypically cgteg.orlzed text to adjust 2 Bias control is a function of the
modeé.resFonses during inference categorization of responses with their
accordingly. stereotype associations
LLM yp -
3. Debiasing word embeddings [32,33]: 3. Can struggle with maintaining semantic
G 6 ted ¢ th h consistency.
i cherating augmentec sentences Moty 4. Can potentially lose valuable context and
demographic identifier word swapping, . . .
; . meaning. Specific to attention-based
encoding both original and augmented .
. ¢ architectures.
sentences and maximizing their mutual
information.
4. Attention head pruning [34]:
- Ablate subset of attention heads encoding
stereotypes.
L Additive Residual Learner [35]: 1. The model may overcompensate and flip
VLM - Disentangle skewed similarity in the similarity skew with different
representation of certain images and their demographic annotations.
demographic annotations.
1. Model Alignment [36-39]: 1.  Curating high-quality, ethically aligned
- Techniques to tune Al systems to align with output can be labor-intensive and
Versatile (LLM and VLM) human preferences and values (e.g., time-consuming. Alignment can come
reinforcement learning with human with performance trade-offs.
feedback).

Table 1. We explored social biases present in biomedical data that affect the fairness of
biomedical Al. Subsequently, we identified evidence-based techniques to mitigate these
common challenges. A more detailed explanation of these concepts and relationships
is described in Sections 3.1.1 and 3.1.2. (Abbreviations: TP—True Positive, FP—False
Positive).

3.1.1. Social Al Bias: Underrepresentation Bias

Social bias in Al can arise when the training data do not accurately represent the real-
world distribution of labels and/or features [40]. In biomedicine, this social bias manifests
as an underrepresentation of demographic groups in clinical trials and biomedical data
registries when compared with the distribution of the general population [41-43]. If
biomedical datasets lack sufficient representation from all demographic subgroups, Al
models trained on such data may not effectively capture each group’s specific feature
distribution. Consequently, these models may exhibit poor generalization performance
when making decisions for individuals from these underrepresented groups. Therefore, in
the context of healthcare delivery, downstream prediction tasks in FM development may
exhibit disparities in prediction metrics across different subgroups. When these Al systems
are deployed, they can lead to unfair outcomes for certain subgroups as well as perpetuate
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or exacerbate health inequities [9,44]. For example, large biorepositories supporting omics
datasets predominantly consist of data from individuals of European descent, leading
to a notable underrepresentation of racial and ethnic minorities that impacts equitable
healthcare delivery in precision medicine applications [42,43].

First, we examine methods for mitigating underrepresentation bias at the data level. It
is crucial that we work towards the inclusive collection of biomedical datasets encompass-
ing a diverse range of demographic groups [44]. This includes a proportional representation
of underrepresented groups based on race/ethnicity, gender, socioeconomic status, age, dis-
ability status, geography, and other characteristics. However, inclusivity in data collection is
along-term goal that requires tremendous mobilization of resources and amending of histor-
ical mistrust among certain demographic populations in biomedical research participation.
In the short term, foundation Al model providers can alleviate the issue of imbalanced
representation by publishing data sheets or model cards that specify data sources and
demographic breakdowns used during model development. This transparency allows
users to fine-tune pre-trained models with their own datasets, helping to better balance
representation across demographic groups in real-world applications. In conjunction with
these efforts, synthetic datasets present a potential strategy to augment underrepresented
groups, improving representation during pre-training and fine-tuning [14]. Synthetic data,
artificially generated through computer simulations or algorithms, attempt to closely mirror
the statistical properties of real-world data. It is a broad concept that encompasses a variety
of processes and techniques, from techniques that transform the data to advanced deep
learning techniques that generate data by learning from real-world data. In biomedicine,
synthetic datasets can be engineered to reduce bias by closely emulating the phenotypes
of underrepresented individuals, allowing the training of biomedical AI models that can
generalize across demographic groups [14]. Nonetheless, the use of synthetic data intro-
duces challenges such as potential inaccuracies, noise, over-smoothing, and inconsistencies
when compared to real-world data [15]. Therefore, while synthetic datasets provide a
potential solution to address underrepresentation, careful consideration must be given to
their generation and use to ensure they contribute positively to the development of fair
and unbiased Al systems.

Second, we examine mitigation strategies that can be applied during model train-
ing to address the unfairness in downstream FM prediction tasks caused by data under-
representation bias. These strategies can be applied to various data types but necessitate
datasets to have associated demographic metadata. One approach includes importance
weighting, a technique where samples from underrepresented groups in the dataset are
shown more frequently to the model, giving them higher importance in model decision-
making [16,17]. Another approach involves the use of adversarial strategies to address
bias in machine learning models. In machine learning, an adversary refers to an agent
that intentionally seeks to deceive, manipulate, or exploit a model to achieve a specific
goal; it has been explored as a potential strategy to both mitigate and detect bias [18,45].
For instance, Yang et al. introduce a novel adversarial debiasing framework to determine
COVID-19 status while mitigating biases [19]. By enhancing the loss function for better
model convergence, they demonstrate its effectiveness in debiasing patient ethnicity and
hospital location, addressing multiclass sensitive features—a significant advancement
over prior binary-focused methods. An additional strategy is regularization, which is
commonly applied in prediction tasks to reduce overfitting but can also be adapted to
reduce disparities across different demographic groups in the model’s predictions. This is
achieved by introducing a regularization hyperparameter in the model’s loss function that
penalizes model weights resulting in high values of a chosen fairness metric [20,21]. Lastly,
dropout regularization, which applies a binary mask to neurons so that each neuron has a
probability (p) of being dropped out, can also reduce unfair predictions by decreasing the
model’s reliance on specific sensitive demographic features [22]. It is important to note that
each method to improve model fairness may come with potential trade-offs in performance
and training time.
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For FM downstream tasks, it is imperative to assess the model’s fairness, particularly
when underrepresentation bias is present. This evaluation should consider the uncertainties
of bias mitigation at both the dataset and training levels to ensure the model performs
equitably in real-world applications. One common approach to assessing fairness in clas-
sification tasks is by evaluating the impact of sensitive demographic features on model
predictions using fairness metrics. For instance, equalized odds measure the classifier’s
accuracy with regard to the true positive rates and false positive rates between different
demographics [23,24]. Similarly, the equal opportunity metric requires that the true posi-
tive rates are equal for all demographic groups, ensuring that all groups equally benefit
from the model [24,25]. On the other hand, predictive parity ensures that precision, or
the likelihood of a true positive, is equal across different demographic groups, meaning
individuals receiving the same decision should have equal outcomes [26]. While these met-
rics can provide insight into how the model’s decisions may be disparate or equal among
demographic groups, relying on a single fairness metric can be limiting; it may provide
an incomplete or misleading picture of the model’s social bias since each metric captures
only a specific aspect of fairness. In addition, these metrics are limited to classification
tasks. Therefore, evaluating a model’s dependence on sensitive demographic features or its
disregard for socio-demographic variables can be achieved using explainability techniques
(see Section 3.2.2). These techniques help elucidate the relationship between input data
attributions and model outputs, ensuring that Al in biomedicine is fair and equitable [27].
However, applying explainability techniques comes with challenges. These methods can be
resource-intensive, and their effectiveness often depends on human interpretation. More-
over, explainability techniques can offer either a global understanding of how features
influence the overall decision-making process or a local understanding of how features
affect individual decisions [46]. While both perspectives are valuable, each provides only a
partial view of the model’s behavior.

3.1.2. Social Al Bias: Stereotypical Biases

Stereotypical biases in real-world datasets are a significant concern in the field of AL
These biases, often reflections of societal stereotypes, can be unintentionally incorporated
into Al models during the training process (Figure 3). Historical and persistent stereotypical
biases are particularly prevalent in natural language data, making pre-trained LLMs—a
type of FM trained on extensive text corpora for a variety of downstream NLP tasks—prone
to learning and perpetuating these biases [47]. The presence of stereotypical biases can lead
to unfair outcomes when LLMs are used in applications such as text classification, sentiment
analysis, or recommendation systems. Given the potential for LLMs in clinical settings for
tasks like compiling patient notes and aiding in clinical decision-making, the development
and deployment of biomedical LLMs is tempered by ethical concerns [48,49]. Biomedical
LLMs can learn and even amplify stereotypical biases present in the biomedical text corpora.
When examining four major commercial LLMs (Bard, ChatGPT-3.5, Claude, GPT-4) on
medical queries related to race-based practices, these models often perpetuated outdated,
debunked stereotypes from their biased training data [49]. Additionally, a UNESCO study
on Al gender biases provided clear evidence of gender stereotyping across various LLMs,
emphasizing the need for systematic changes to ensure fairness in Al-generated content [50].
This highlights the presence of stereotype biases in LLMs used in biomedical Al systems
and underscores the need to address these biases across all demographic groups, including
by race and gender.
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Figure 3. Impact of historical stereotypes on bias propagation in LLMs and VLMs for biomedical
applications. This figure illustrates how historical stereotypes embedded in natural language and
image datasets can propagate biases throughout model training and inference. Through biased
embeddings formed during training, models may generate harmful inferences in clinical settings,
such as recommending inadequate pain management for Black patients or inaccurately assessing
risk levels in medical imaging based on gender or smoking history. The figure emphasizes the
potential for biased data to shape clinical outcomes, underscoring the ethical importance of addressing
representation bias in biomedical Al models.

Recognizing the critical need to address stereotypical biases inherent in natural lan-
guage data, a variety of specific strategies have been investigated to mitigate these biases in
LLMs. One such strategy is counterfactual data augmentation (CDA), where demographic
identifiers like ‘he” and ‘she” are swapped to balance the dataset [29,30]. This method helps
to reduce the reinforcement of existing stereotypes by providing a diverse set of examples,
ultimately leading to fairer model outputs. Counterfactual data augmentation, while useful,
may not adequately address more complex biases that are not directly associated with
demographic identifiers. In their work, ‘Queens are Powerful too: Mitigating Gender Bias
in Dialogue Generation,” the authors propose bias control training to mitigate gender bias
in generative dialogue models [31]. By associating control tokens with gendered properties,
they achieve granular control over the “genderedness” of model outputs while maintaining
dialogue quality and safety [31]. However, this process of bias control training is highly
dependent on the categorization of responses regarding their stereotype associations. Com-
plimenting bias control training includes minimizing bias in word embeddings, which are
vector representations that capture the semantic and syntactic properties of words. As the
foundation of LLMs, word embeddings enable these models to understand and generate
human-like text. Word embedding biases refer to the phenomenon where these embed-
dings reflect and perpetuate societal biases present in the training data [51]. This means
that words associated with a particular protected group (e.g., gender) might be closer in the
embedding space to stereotypically associated words. To reveal biases related to protected
groups, one approach involves identifying pairs of data points that differ in a specific at-
tribute, creating a “seed direction” that represents this difference [32]. Analogous pairs are
then generated and scored based on their alignment with the seed direction, systematically
uncovering biased relationships in the embeddings. Once identified, a method to debias
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these words involves generating augmented sentences through demographic identifier
word swapping, encoding both the original and augmented sentences and maximizing
their mutual information [33]. However, the process of debiasing word embeddings can
encounter difficulties in maintaining semantic consistency. This presents a decision-making
challenge where one must balance performance trade-offs when implementing debiasing
techniques. Ma et al. explored how attention heads can encode bias and found that a small
subset of attention heads within pre-trained language models are primarily responsible
for encoding stereotypes toward specific minority groups and could be identified using
attention maps [32]. The authors used Shapley values [52] to estimate the contribution of
each attention head to stereotype detection and performed ablation experiments to assess
the impact of pruning the most and least contributive heads [34]. Attention head pruning,
while effective in model compression and mitigating encoded stereotypes, is a technique
specific to architectures that utilize attention heads. It may also risk the loss of semantic
meaning that can impact the model’s performance.

Stereotypical biases inherent in natural language data can also influence multimodal
models that incorporate natural language, such as VLMs [53]. These biases, if unaddressed,
can inadvertently affect the performance and fairness of these models. For example, VLMs
like DALL-E and Midjourney have been shown to exhibit racial and stereotypical biases in
their outputs [9]. For instance, when prompted to generate images of CEOs, these models
predominantly produced images of men, reflecting gender bias acquired during training.
Saravanan et al. also explored social bias in text-to-image foundation models performing
image editing tasks [54]. Their findings revealed significant unintended gender alterations,
with images of women altered to depict high-paid roles at a much higher rate (78%) than
men (6%). Additionally, there was a notable trend of skin lightening in images of Black
individuals edited into high-paid roles [54]. However, VLMs in biomedicine can analyze
visual and textual medical data for tasks such as medical report generation and visual
question answering [55]. Biomedical VLMs can learn stereotypical associations between
words and images, perpetuating these in their inference and exacerbating health inequities.
Therefore, it is essential to explore methods that can disentangle the skewed similarities in
the representation of certain images and their associated demographic annotations. Seth
et al. introduce a debiasing framework for pre-trained vision-language models (VLMs)
using an Additive Residual Learner (ARL) to disentangle protected attributes from image
representations [35]. By training the ARL to modify image representations and reduce
certainty in classifying attributes like race, gender, and age, the framework improves
fairness without sacrificing zero-shot predictive performance [35]. However, the ARL may
overcompensate during the debiasing process, potentially flipping the similarity skew in
the opposite direction for different demographic annotations. This can result in unintended
biases being introduced, highlighting the need for careful calibration and evaluation of the
model’s performance across various demographic groups.

To complement the discussed debiasing strategies, model alignment techniques offer a
versatile set of strategies for mitigating stereotypical biases in Al systems. These techniques
aim to align models more closely with human values and preferences, enhancing their safety,
fairness, and contextual appropriateness [36,56]. In the biomedical field, aligning LLMs
and VLMs to avoid social stereotypes in decision-making is essential for creating more
equitable and fairer AL These alignment techniques are applicable to both LLMs and VLMs,
enhancing their performance and adaptability. However, the specific methodologies and
considerations may vary depending on the model architecture and the task at hand. Two
foundational techniques in model alignment are Instruction Tuning (IT) and Supervised
Fine-Tuning (SFT), each with distinct objectives. SFT involves fine-tuning model outputs
against preferred outcomes [57] using a curated dataset of high-quality outputs. IT, on
the other hand, fine-tunes models using a labeled dataset of instructional prompts and
corresponding outputs [58], with the goal of improving performance on specific tasks and
general instruction-following. These techniques should be used judiciously, keeping in
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mind the potential risks and challenges associated with fine-tuning, such as overfitting and
distributional shifts.

Reinforcement Learning from Human Feedback (RLHF) offers another layer of re-
finement for LLMs by integrating human feedback into the learning process [37]. In
reinforcement learning, an agent learns which actions to take by interacting with an en-
vironment, receiving rewards for correct actions and penalties for incorrect ones. RLHF
enhances this process by incorporating human feedback to guide and accelerate learning,
enabling the model to make more informed decisions. The primary goal of RLHF is to
optimize a model’s responses based on a reward system that aligns with human preferences.
For LLMs, this involves defining a policy that dictates responses to prompts and resulting
completions. The process includes pre-training a base LLM, generating output pairs, and
using a reward model (RM) that is trained on human feedback to mimic human ratings.
The LLM is then trained to achieve high feedback scores from the RM. The challenge lies in
optimizing these rewards without overly relying on them, as human preferences can be
complex and nuanced. Reinforcement Learning with AI Feedback (RLAIF) [38] is a related
approach that uses Al systems to evaluate actions and guide learning. In RLAIF, an Al
system, such as an LLM, provides feedback instead of human evaluators. This feedback
is used to train a reward model similar to RLHF but with Al-generated evaluations. The
key difference between RLHF and RLAIF is in the source of feedback—human evaluators
in RLHF versus Al systems in RLAIF. Another method, Direct Preference Optimization
(DPO) [39], fine-tunes LLMs with human feedback without using reinforcement learning.
Like RLHE, DPO involves generating output pairs and receiving human feedback, but the
LLM is trained to assign high probabilities to positive examples and low probabilities to
negative ones, effectively bypassing the need for reinforcement learning. However, DPO
requires labeled positive and negative pairs for training, whereas RLHF, once the RM is
trained, can annotate as much data as needed for fine-tuning.

Moreover, red teaming represents a way to assess the stereotypic outputs of LLMs
and VLMs. It involves intentional adversarial attacks wherein an input is modified in
a way that bypasses the model’s alignment to reveal inherent vulnerabilities, including
biased output. This process often involves a human-in-the-loop, or another model, to
assess and provoke the target model into producing harmful outputs. Red-teaming in
biomedicine should engage multidisciplinary teams to evaluate Al systems and prevent
biased medical information. For example, Chang et al. conducted a study using multidisci-
plinary red-teaming to test medical scenarios with adversarial commands, such as “you
are a racist doctor” [59]. They exposed vulnerabilities in GPT-3.5 and 4.0 that allowed the
propagation of identity-based discrimination and false stereotypes, influencing treatment
recommendations and perpetuating discriminatory behaviors based on race or gender, such
as biased renal function assessments. However, it is important to note that the red-teaming
process may fail to expose certain biases if the adversarial inputs are not sufficiently di-
verse or comprehensive. Therefore, while valuable, red-teaming should be used alongside
other strategies, such as continuous monitoring and training reward models on human
interpretable objectives [60]. For example, Constitutional Al, developed by Anthropic,
focuses on making models less harmful and more helpful by creating a “constitution” that
outlines ethical principles and rules to guide the model [61]. Ultimately, RLHF is crucial for
reducing bias prior to the clinical integration of FMs, as it offers a way to ethically align
models to the needs and values of diverse patient populations.

3.2. Ensuring Trustworthiness and Reproducibility

Trustworthiness and reproducibility are paramount in the biomedical Al ecosystem, as
they ensure the reliability and accuracy of Al models in critical translational and healthcare
applications. As summarized in Table 2, this section provides an overview of the chal-
lenges in achieving consistent, reliable, and verifiable results in Al systems, as well as the
evidence-based techniques we have identified to mitigate these issues. In Section 3.2.1, we
discuss the essential data lifecycle concepts, highlighting how the Findable, Accessible, In-
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teroperable, Reusable (FAIR) principles need to be supported by data integrity, provenance,
and transparency in the current Al ecosystem. Section 3.2.2 delves into interpretability
and explainability, emphasizing the need for AI/ML models to foster trust and under-
standing among users in translational settings. Section 3.2.3 covers enhancing Al accuracy,
exploring model alignment strategies, and human-in-the-loop approaches to improve the
performance and ethical alignment of FMs. Finally, Section 3.2.4 discusses algorithmic
transparency, which is indispensable for both reproducing results and establishing trust in
a model.

Table 2. Ensuring trustworthiness and reproducibility in biomedical AL

Category

Strategy Limitation/Challenge

Challenge: The absence of standardized data management protocols throughout its lifecycle obstructs collaboration in biomedical
Al, particularly in integrating diverse datasets for comprehensive model development.

Biomedical Data

1. Broad implementation of FAIR principles
is challenged by data fragmentation,

FAIR data principles [62-64] interoperability issues, inadequate

documentation, and the need for

appropriate infrastructure and resources
to implement effective data management

Data Provenance [65] practices.

2. Maintaining data lineage can be
cumbersome due to evolving data
sources, complex workflows or data
transformations, and schema
modifications.

Good practices for discovery and reuse of
digital objects.

Documenting data origins,
processing/transformations, and usage.

Challenge: The decision-making process and output of a biomedical Al model must be transparent, understandable, and verifiable
by human experts to build the trust required for integration into clinical and translational settings.

Biomedical Al systems

1.

Interpretability and Explainability
Methods [66-70]

Techniques incorporated into model 1.
development or evaluation to enhance
understanding of the model’s inner workings

and the impact of data attributes on

Application of techniques can be resource
intensive. Effectiveness of explainability
methods often depends on human

. - interpretation.
decision-making. 2. Human input can introduce implicit
Integrating Human Expertise [71-73] biases.

3. Complexity of Al models, proprietary
information protection, rapidly evolving
Al technologies, and the difficulty in
documenting implicit biases and
decision-making processes within the
Transparent Al Documentation [74-77] models.

Al leveraging human expertise and insights
to improve its performance, learn from
mistakes, and make more informed and
accurate decisions.

Documentation of upstream resources used
in development, model-level properties, and
downstream applications.

Table 2. (Abbreviations: FAIR—Findable, Accessible, Interoperable, Reproducible).
We explored the challenges in the ability of Al systems to consistently produce reliable and
verifiable results that instill confidence in their predictions and decisions in the biomedical
field. Subsequently, we identified evidence-based techniques to mitigate these common
challenges. A more detailed explanation of these concepts and relationships is described in
Sections 3.2.1-3.2.4.
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3.2.1. Essential Data Lifecycle Concepts

FAIR principles, which promote good practices for scientific data and its resources,
have a long-standing foundation for establishing the trustworthiness and reproducibility of
biomedical data, particularly regarding the discovery and reuse of digital objects through-
out their lifecycle [62-64]. We underscore the critical role of data provenance in ensuring
that biomedical Al complies with the principles of FAIR by offering a transparent and
traceable record of data origins, processing, and usage. Since FMs are trained on datasets
from various sources and increasingly across different modalities, tracking data provenance
becomes essential for building trust and accountability among model developers, data cre-
ators, policymakers, and the public [65]. Importantly, modifications and /or augmentations
to datasets inevitably influence the distribution of features and/or classes and are, therefore,
vital in data provenance. These alterations may also introduce errors, noise, inconsistency,
and discrepancy in smoothness and dynamics in comparison to real-world data, which
ultimately impact the trustworthiness of model output [15,77]. Furthermore, preserving
data lineage becomes arduous due to changing data sources, intricate workflows or data
transformations, and alterations in schema. To address these challenges, Longpre et al.
constructed a unified data provenance framework that builds on existing standards [1].
Importantly, the authors highlight the need for “codifying” data lineage through symbolic
attribution and convey the importance of modality-agnostic frameworks that accommodate
evolving metadata types and jurisdiction-specific requirements [65].

3.2.2. Interpretability and Explainability

Al-augmented biomedical decisions are often met with concerns about the technol-
ogy’s ability to explain how it arrives at specific outcomes. A model that can be understood
in a human-friendly way is therefore essential to foster trust and engagement among clini-
cians and biomedical investigators. The goal of interpretability and explainability in Alis to
meet this need, but widespread adoption is hindered by the challenge of finding techniques
that are universally applicable, resource-efficient, and not prone to misinterpretation by
humans. Interpretability in Al refers to the degree to which a model’s inner workings
are comprehensible to users within the context of the application domain [78]. On the
other hand, explainability is about describing the behavior of an Al model in human terms
by highlighting potential influences of input features with the model output at a local or
global level [78]. In a systematic review of explainability and interpretability in medical
Al the authors categorize the techniques into two approaches—a priori and a posteriori—
helping to clarify the differences between these concepts [66]. A priori techniques are
implemented during the model development phase with the aim of improving the model’s
interpretability. Examples of a priori techniques include (a) selecting features that align
with established and relevant biomedical concepts, (b) implementing regularization to
penalize large weights, and (c) using models with simpler topologies [66—68]. A posteriori
techniques are applied after the model has been trained, serving as methods to explain
the model’s predictions with respect to the input. Examples of a posteriori techniques
include (a) feature perturbation to monitor how slight changes in the input affect the model
output and (b) counterfactuals that elucidate a model’s reasoning through the lens of “what
if” scenarios [66,69,70]. This distinction offers important insight into how interpretability
and explainability can be strategically approached at different stages of Al development,
balancing design choices with post hoc explanation tools.

3.2.3. Enhancing Al Reliability with Human-in-the-Loop

A human-in-the-loop approach to Al systems aims to solve complex tasks by inte-
grating human expertise/insights into the decision-making loop [79] benefit from the
rich knowledge and oversight of human experts [73]. Human-in-the-loop approaches
can play a pivotal role in developing accurate and reliable biomedical Al applications
such as medical diagnostics, treatment planning, and personalized medicine [72]. In these
biomedical applications, human-in-the-loop approaches aim to leverage domain-specific
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knowledge to complement the data-driven nature of AI models and mitigate the risk of
spurious correlations. In biomedical imaging, for instance, human experts can identify
regions of interest from rich but sparse imaging data. While Al aims to automate this task
across large datasets, the expectation is that it must perform at least as well as human
experts and be able to distinguish between relevant signals and noise. This highlights
the need to first examine how human experts are trained and how this process can be
emulated in the training of Al models. When training a human expert to interpret medi-
cal imaging, a mentor typically presents a variety of cases covering different conditions.
Through this process, trainees learn to distinguish between normal and abnormal findings,
as well as between signal and noise, gradually developing the ability to make accurate
diagnoses. Gupta et al. present a methodology for Al-driven microscopy analysis that
demonstrates how expert guidance can effectively refine training data to closely mirror
the human learning process [71]. Their approach enables experts to iteratively select and
approve training data, allowing the Al model to first be trained on a large, noisy dataset
and then fine-tuned on a curated, high-quality dataset with less noise and more meaningful
signal. This expert-guided process enhances the model’s generalizability across diverse
datasets and fosters confidence among users of the Al system. While incorporating human
input requires caution to avoid introducing implicit biases, a structured approach that
integrates diverse perspectives can avoid this harm.

3.2.4. Transparency and Reproducibility

Transparency is a nuanced concept used in various scientific disciplines, but recently,
it has been at the forefront of discussions pertaining to global Al regulation. In a 2019 study,
“transparency” was found to be the most commonly used principle addressing Al ethical
guidelines, and it is one of the five key ethical principles promoted in 84 Al studies [74].
It is imperative to note that transparency is recommended for both the technical features
of an algorithm and practical implementation methodology within current social parame-
ters [75]. Closely related to transparency, reproducibility encompasses methods such as
sharing open data and open-source code to ensure that scientific findings are accurate,
reliable, or otherwise reproducible [79]. As FMs rapidly expand in biomedical applica-
tions, standardizing Al transparency practices becomes essential for responsible clinical
integration. Bommasani et al. propose a comprehensive framework of 100 transparency
indicators for “Foundation Model Transparency Reports”, covering the entire supply chain
of FMs, from upstream resources (data, labor, compute) to model properties (evaluations,
capabilities, limitations) and downstream use and impact [77]. They advocate for the
institutionalization of these transparency reports early in the industry’s development to
reduce compliance costs, improve risk management, and establish stronger transparency
norms [77]. While challenges such as the complexity of Al models, protection of proprietary
information, rapidly evolving technologies, and the documentation of implicit biases and
decision-making processes present hurdles, they also offer opportunities for innovation
and improvement in AI documentation practices.

3.3. Safequarding Patient Privacy and Security

In this section, we explore critical aspects of safeguarding patient privacy and security
within the biomedical Al ecosystem. As summarized in Table 3, we identify recurring
challenges related to the protection of patient data and outline evidence-based techniques
to address these issues. In Section 3.3.1, we discuss strategies to maintain data security
and ensure proper data provenance. In Section 3.3.2, we examine how technologies like
blockchain, edge computing, and federated learning can enhance data security and pri-
vacy within cloud and hybrid cloud infrastructures. In Section 3.3.3, we address the risks
and strategies to combat patient re-identification and membership inference attacks. In
Section 3.3.4, we examine the challenges of memorization in Al models and discuss strate-
gies to mitigate these issues. These sections collectively highlight the ongoing challenges of
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patient privacy within the realm of biomedical Al, emphasizing the importance of robust

security measures and ethical practices.

Table 3. We explored recurring challenges regarding the maintenance of privacy and
security of patient data. Subsequently, we identified evidence-based techniques to mitigate
these common challenges. A more detailed explanation of these concepts and relationships

is described in Sections 3.3.1-3.3.4.

Table 3. Safeguarding patient privacy and security in biomedical Al

Category

Strategy

Limitation/Challenge

Challenge: Unauthorized access to sensitive biomedical data jeopardizes individual privacy, undermines stakeholder trust, and
threatens compliance with regulatory guidelines.

Data Life Cycle

1.

Role-based access control, data access logs, and
strong authentication methods [80]

Common data security measures to protect
sensitive information.

Obtaining and respecting patient consent [81,82]

Informed consent; adhering to agreed terms;
allowing withdrawal

Data Provenance [83]

Detailed audit trail of origin and journey of data,
including their creation, movement, and
transformation.

Managing complex permissions and
challenges in detecting unauthorized
activities in large-scale logs.

Ensuring comprehension of complex
data use scenarios and maintaining
up-to-date consents amid rapidly
evolving technologies.

Complexity of tracking data lineage in
large-scale systems, potential
inaccuracies in provenance data, and the
challenge of maintaining up-to-date
provenance information.

Challenge: Developing biomedical Al in the cloud offers flexible, ready-to-use, and scalable infrastructure. However, ensuring the
security and privacy of sensitive data during storage and computation is challenging in this environment.

1. Blockchain technology [84] A “51% attack’: a potential security risk in
- Provides a decentralized, tamper-resistant ledger blockchain networks where a miner or
that ensures transparent and secure data group of miners, possessing over half the
Data Storage recording. network’s computing power, can rewrite
) Data E . g5 the blockchain.
) ata Encryption [85] Computationally intensive and may
- Algorithms to transform readable data to introduce latency issues.
unreadable data.
1. Hybrid Cloud [86]
- Flexible public and private cloud approach for
optimizing security. Integrating private cloud with public
2. Edge Computing [87-89] cloud introduces additional
) infrastructure complexity.
Combutation - Allows for comPutlng closer to c%ata sources, Increased complexity of managing
p reducm.g Potenhal exposure during distributed systems.
transmission. Maintaining data integrity across
3. Federated Learning [90] multiple nodes.

Enables decentralized models to be trained
across multiple devices or servers holding local
data samples without exchanging them.
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Table 3. Cont.

Category

Strategy Limitation/Challenge

Challenge: Sensitive biomedical data are vulnerable to adversarial attacks, including the risk of re-identifying individuals or
inferring whether an individual’s data were used to train a model.

1.  Removing patient identifiers and/or
implementing rule and ML-based patient data 1. Algorithms have demonstrated the
Patient anonymization [91-93] ability to successfully identify an
Re-identification - Manual or computational elimination of individual’s record in a dataset.
personally identifiable information from health
data.
1. Techniques to increase model generalization
[94,95]
- Strat.egies to encourage smaller or sparser 1. Must be balanced against a potential
coefficients. utility penalty for the model.
2. Data augmentation [95] 2. Must be balanced against a potential
. . utility penalty for the model.
- Techniques that artificially transform data to 3. Inaccuracies, noise, over-smoothing, and
Membership Inference increase its size and entropy. inconsistencies when compared to
Attacks 3. When training on synthetic biomedical data, real-world data.
employ a full synthesis approach [96] 4. Reliance on posterior probability can
.. . . render the method sensitive to the
- Training a generative model to create synthetic , . ..
. A model’s complexity and training
data that mirrors the real data distribution. d .
ynamics.
4. Privacy risk score [97]

Measures the likelihood that an input sample is
part of the training dataset.

Challenge: Large-scale biomedical models can memorize data, making them vulnerable to unique security risks such as data leaks,
manipulation to produce misleading outputs, and the exposure of sensitive patient information.

Over-Parameterized
Models and
“Long-Tailed” Data

1.

Data augmentation [98]

Techniques that artificially transform data to 1.

: RS Must be balanced against a potential
increase its size and entropy.

utility penalty for the model.

Model size reduction [99,100] 2. Must be balanced against a potential
utility penalty for the model.
Appropriately matching patient records;
Patient data deduplication [101-103] potential loss of important data.

Techniques to compress the model. 3.

Identifying and removing duplicate entries from
a dataset.

3.3.1. Essential Data Lifecycle Concepts

In safeguarding access to sensitive patient data, it is essential to employ robust au-
thentication methods, implement role-based access control, and maintain comprehensive
logs of all data access instances [80]. However, while these mechanisms are fundamental
for protecting patient data privacy, they are not without their challenges. For instance,
role-based access control can become cumbersome in environments with complex permis-
sion hierarchies, and the sheer volume of data access logs can make it difficult to detect
unauthorized activities effectively in large-scale systems. As these challenges illustrate,
the complexity of managing data access is closely tied to the broader responsibility of
ensuring that, as the need for data sharing and reuse in biomedical research grows, the
rights and privacy of participants are respected and upheld. This process necessitates
obtaining informed consent for data sharing, de-identifying data sets before dissemination,
and ensuring that the data are only utilized for the purposes explicitly agreed upon [81,82].
Although informed consent is a cornerstone of patient privacy protection, it presents chal-
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lenges of its own, such as ensuring that participants fully understand the complexities
of how their data might be used and keeping consent documents relevant in the face of
rapidly advancing technologies.

Moreover, fostering a secure and responsible Al ecosystem hinges on the effective
implementation of data provenance. Data provenance involves the meticulous documenta-
tion of a dataset’s origin, movement, and transformations throughout its lifecycle. Such
documentation not only enhances transparency but also aids in identifying and analyzing
potentially malicious activities [83]. Nonetheless, the methods used to establish data prove-
nance come with their own set of limitations, including the complexity of tracking data
lineage in large-scale systems, the potential for inaccuracies in provenance data, and the
difficulty of maintaining up-to-date records as data evolve. Collectively, these principles of
data access control, informed consent, and data provenance play a critical role in ensuring
the trust and safety of all stakeholders within the biomedical Al ecosystem.

3.3.2. Protecting Patient Privacy in Cloud Storage and Computation

The advantages of developing Al in the cloud include access to a flexible hardware
infrastructure specifically designed for Al This infrastructure is equipped with state-of-
the-art GPUs that not only accelerate the training process but also efficiently handle the
influx of inference processing associated with the deployment of a new Al system. In this
scenario, the trained neural network is put to work for practical applications. Furthermore,
the cloud eliminates the need for complex hardware configuration and purchase decisions,
providing ready-to-use Al software stacks and development frameworks. Cloud-based Al
development also has its disadvantages. One of the primary concerns is the rising costs
associated with storing large datasets and training models. Additionally, data security
becomes a significant challenge. Ensuring the security and privacy of sensitive data during
both storage and computation is crucial. This challenge is further amplified by the need to
perform complex computations on this sensitive data without compromising its integrity.
Therefore, while cloud-based Al development offers numerous benefits, it also presents
complex challenges that need to be effectively addressed.

Data privacy is a critical issue when deploying models for clinical practice in cloud en-
vironments due to the sensitive nature of patient health information (PHI). This sensitivity
restricts data storage infrastructure, network data transfers, and access to computing re-
sources [89]. A hybrid cloud model enables organizations to utilize their own infrastructure
for sensitive, private data and computation while integrating public clouds for nonsensitive,
public data and computation [86]. Alternatively, a blockchain-based interplanetary file
system (IPFS) can be implemented as secondary storage to safeguard the privacy and
security of patient health information [84]. IPFS allows users to host and receive content in
a decentralized manner, while blockchain ensures that once data are recorded, they cannot
be altered without the consensus of the network. Blockchain technology securely transmits
and stores patient data, providing a potential solution for addressing privacy concerns
associated with rapid medical data access and processing. However, a ‘51% attack” is a
potential security risk in blockchain networks where a miner or group of miners, possessing
over half the network’s computing power, can rewrite the blockchain [104].

Edge computing is a paradigm that shifts data processing and storage from the cloud
closer to the source devices, enhancing data security and privacy while also decreasing
latency [105]. It, therefore, offers utility in enhancing the security of patient-sensitive data
within the biomedical Al ecosystem by preventing public data leaks while also speeding
up decision-making, reducing latency, and improving the overall quality of care [106]. For
example, Humayun et al. introduced a framework to integrate cutting-edge technologies
like mobile edge computing and blockchain to enhance healthcare data security [107].
Meng et al. presented an edge computing-based approach for healthcare applications that
store and perform computation on cloud servers [107]. They employed homomorphic
encryption, which allows computations to be performed on encrypted data without the
need for decryption, thus ensuring patient data security even if accessed by attackers [85].
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They also presented a strategy to distribute computation across multiple virtual nodes at
the edge, leveraging cloud computational resources while keeping all arithmetic operations
masked. The approach prevents adversaries from discerning the specific tasks performed
on the encrypted patient data. Serverless edge computing represents an evolution of
cloud serverless technology, where there is an abstracting of servers from the application
development process, enabling developers to build applications without concern for the
underlying infrastructure [88]. Serverless edge computing highlights the potential for
distributing models with preserved privacy, combining the flexibility of cloud computing
with the security of local deployment [89]. However, while an edge or serverless edge
computing approach offers a promising solution for enhancing patient data security, there
is an added complexity of managing distributed systems.

Federated learning is a framework for distributed machine learning whereby patient
data stored across various hospitals and healthcare institutions are kept decentralized on
their local servers. These institutions use a federated workflow where learning takes place
locally on their own nodes/edge devices. A central cloud server then aggregates the results
to create a unified model. Sadilek et al. applied modern and general federated learning
methods that explicitly incorporate differential privacy to clinical and epidemiological
research [90]. They demonstrated that federated models could achieve similar accuracy,
precision, and generalizability as standard centralized statistical models while achieving
considerably stronger privacy protections. While federated learning enhances patient data
privacy by decentralizing data processing, it faces challenges related to maintaining data
integrity across multiple nodes.

3.3.3. Patient Re-Identification and Membership Inference Attacks

Patient data are essential for developing FM models in biomedicine, but robust meth-
ods are needed to protect patient confidentiality. The first crucial step to address privacy
concerns involves anonymization or removal of patient-identifiable information. The De-
partment of Health and Human Services has specified the 18 types of protected health
information to be removed from patient data in order to comply with the Health In-
surance Portability and Accountability Act (HIPAA) [91]. In addition, rule-based and
machine learning-based systems have been developed to de-identify /anonymize health
data, including novel methods based on the self-attention mechanism [92,93,108]. However,
de-identification strategies are proving to be insufficient in protecting patient records in the
face of algorithms that have successfully reidentified such data [109,110]. Narayanan et al.
showed that de-anonymization attacks could be highly effective even when the adversary’s
background knowledge is imprecise, and the data have been perturbed prior to release,
meaning an adversary with minimal knowledge about an individual can identify this
individual’s record in a dataset [111]. This introduces us to a similar concept known as
membership inference attacks (MIA), which is aimed at discovering whether a specific
individual’s data were used in the training set of a model. Sarkar et al. demonstrated that
de-identification of clinical notes for training language models was not sufficient to protect
against MIAs [112]. Therefore, MIAs pose significant risks in exposing the personal infor-
mation of individuals whose data contributed to a model, and strategies to mitigate this risk
must be implemented. The general principle of MIA involves analyzing model responses
to inputs that infer training data membership, revealing a model’s privacy vulnerabilities
in addition to its potential overfitting or insufficient generalization [96,113-115]. Since
MIA and protection against it has largely been studied on simple classification models,
Ko et al. studied MIA strategies on multi-modal FMs trained on imaging and text data
(CLIP). In their exploration of well-established MIA defense strategies for simple models
applied to a multi-modal model, there were two important findings: (a) L2 regularization,
a strategy to penalize the weights of the model to encourage smaller or sparser coefficients,
moderately protects against privacy attacks by reducing model sensitivity to variations
in input data; however, this comes at a cost to the model’s utility; (b) data augmentation,
a technique that artificially applies various transformations to the data to increase their
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size and entropy (e.g., rotating or scaling an image), enhanced protection of the model
against MIA (the AUC score for the weakly supervised attack went from 0.7754 to 0.7533)
and improved the model’s generalizability (zero-shot performance improved by 1.2%) [94].
These findings support the idea that defense mechanisms that curb model overfitting also
reduce the model’s susceptibility to MIA [95]. However, this privacy protection must be
balanced against a potential utility penalty for the model [116]. Zhang et al. assessed
the vulnerabilities of models trained on synthetic health data to MIA [117]. They studied
MIA attacks on two types of synthetic data: (a) Full synthesis, which involves learning
a generative model that mimics the real data distribution from which synthetic data are
sampled while severing direct links to real individuals, and (b) partial synthesis, which em-
ploys a transformation function that perturbs features of real records to generate synthetic
counterparts but maintaining some connection to the original data. The findings suggest
that partial synthesis is more susceptible to membership inference attacks compared to full
synthesis, indicating that the method chosen for synthetic data generation largely affects
data privacy. Consequently, a full synthesis approach seems to be the optimal choice when
training models on synthetic data. As previously discussed, synthetic data quality can
be undermined by inaccuracies, noise, over-smoothing, and inconsistencies relative to
real-world data, so it is crucial to ensure rigorous quality control measures when generating
and using synthetic data [15].

Song and Mittal introduced a privacy risk score that was shown to align closely with
the actual probability of a sample being from the training set; this is crucial for identifying
which data points might be particularly vulnerable to MIA [97]. In a nutshell, the privacy
risk score measures the likelihood that an input sample is part of the training dataset based
on the observed behavior of the target machine learning model. This likelihood is defined
by the posterior probability that a sample belongs to the training set given the observed
outputs from the target model. However, the reliance on posterior probability can render the
method sensitive to the model’s complexity and training dynamics, potentially diminishing
its reliability in more intricate or less interpretable models. Despite these limitations, the
privacy risk score remains a valuable tool, guiding decisions on model deployment in
clinical settings and informing the development of stronger privacy preservation strategies
before deployment.

3.3.4. Memorization of Patient Data

The distribution of real-world data tends to be “long-tailed”, where a few cate-
gories contain most of the data, while a large number of categories have only a few
samples [118,119]. Overparameterization in large AI models aids in capturing rare events
at the “tails” of the dataset but introduces challenges like high computational costs, opti-
mization difficulties, overfitting, performance loss when scaled down, and vulnerabilities
to data leaks as well as manipulation [99,100]. For example, an FM trained on clinical data
might memorize specific details about patients with a rare disease, increasing the risk that
adversarial attacks could compel the model to reveal sensitive data despite precautions
taken during model alignment [8]. Carlini et al. highlight the relativity of memorization by
introducing the “Onion Effect”, where removing the most vulnerable outlier points reveals
anew layer of data previously considered safe, now susceptible to privacy attacks [101,120].
Similarly, Hassan Dar et al. explored memorization in latent diffusion models used for
creating synthetic medical images from CT, MRI, and X-ray datasets and found high levels
of memorization across all datasets [98]. They observed that implementing data augmenta-
tion strategies can decrease the extent of memorization. Consequently, data augmentation
appears to be an effective strategy for reducing memorization, as discussed in the previous
section, and for enhancing protection against MIA. However, it is essential to fine-tune the
data augmentation techniques to ensure that they do not compromise the performance of
the model.

Deduplication of training data involves identifying and removing duplicate entries
from a dataset. This task is particularly labor-intensive given the vast size of training
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datasets, which often span hundreds of gigabytes, rendering perfect deduplication im-
practical. Moreover, accurately matching patient records can present challenges due to
inconsistencies in data entry and variations in patient information. Although generally
reliable, there is a risk of losing important data during the deduplication process. Despite
these limitations, deduplication remains a crucial strategy for managing patient datasets
since duplicate records can lead to breaches of patient privacy as a result of data memo-
rization. In fact, Carlini et al., in another paper on quantifying memorization in language
models, demonstrated that sequences repeated fewer than 35 times see a statistically sig-
nificant reduction in memorization from 3.6% to 1.2% with deduplication [101]. As a
bonus, deduplication efforts also enable better model evaluation by diminishing train—
test overlap and decreasing the number of training steps required to achieve the same
or enhanced accuracy [101]. A few methods for deduplication of patient records include
(a) exact substring duplication—when two examples share a sufficiently long substring,
one is removed [102]; (b) suffix array—removal of duplicate substrings from the dataset if
they occur verbatim in more than one example [121]; and (c) MinHash—an algorithm for
estimating the n-gram similarity between all pairs of examples in a corpus and removing
data with high n-gram overlap [122]. Deduplication of patient data requires a method for
record linkage since directly comparing personal information across systems to identify
duplicates violates privacy regulations and is not feasible with de-identified data [103].
Privacy-protecting linkage approaches of clinical data records first require the creation
of secure and anonymous patient identifiers. Some approaches include the (a) U.S. NIH
Global Unique Identifier (GUID)—which generates hash codes for personal identifiable
information in records; (b) Mainzelliste—developed in Germany; it is an open-source ser-
vice for pseudonymization that generates pseudonyms unlinked to identifiable elements
but allows for data matching; and (c) European Patient Identity Management (EUPID)—
generates context-specific pseudonyms using hashing algorithms and thus supports using
different pseudonyms for the same patient in various contexts while assuring patient
anonymity across the contexts [123]. These identifiers, such as the hash codes generated by
GUID, can be compared to link and deduplicate patient data. In summary, deduplicating
training data, although labor-intensive, can be essential for safeguarding patient privacy
and maintaining the integrity of biomedical Al systems. By leveraging diverse techniques
and privacy-preserving linkage methods, we can markedly decrease data memorization
and ensure patient anonymity.

4. Al Stewardship
4.1. Al Governance and Regulation

The regulation of Al involves several key international and national bodies, each con-
tributing uniquely to the governance landscape. To cultivate an environment where ethical
Al practices such as the development of FMs flourish, governing bodies have concentrated
on several key areas. First and foremost, transparency is emphasized by requiring clear
and understandable Al decision-making processes. This ensures that the operations and
outcomes of Al systems are accessible and comprehensible to all stakeholders. Additionally,
accountability mechanisms are being established to hold Al developers and users respon-
sible for their systems, thereby fostering trust and reliability. Concurrently, guidelines to
mitigate biases and ensure fairness are being promoted and implemented, which work
hand-in-hand with strict data-handling practices designed to protect individual privacy. A
comprehensive governance approach supported and implemented by the federal and state
are essential to ensure that Al development is both ethical and aligned with standardized
societal values.

Landscape and Integration of AI Governance and Regulation

The European Union (EU) has been at the forefront of the Al governance initiative,
implementing the General Data Protection Regulation (GDPR) in 2018, which sets strin-
gent guidelines on data protection and privacy directly impacting Al development and
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deployment [124]. Building on this, the EU’s Artificial Intelligence Act, first introduced in
2021, aimed to create a harmonized framework for Al regulation, focusing on high-risk
applications and promoting trustworthy Al practices. It is important to note that the
European Commission’s High-Level Expert Group on Al (HLEG), established in 2018,
also developed the Ethics Guidelines for Trustworthy Al, which emphasize the need for
Al systems to be lawful, ethical, and robust [125]. Similarly, the Council of Europe’s Ad
Hoc Committee on Artificial Intelligence (CAHAI), formed in 2019, is working towards a
comprehensive legal framework for Al, focusing on protecting human rights, democracy,
and the rule of law within the AI context [126]. Regarding international governance, the
United Nations (UN) has also made significant strides through UNESCO’s Recommen-
dation on the Ethics of Artificial Intelligence, published in 2021 [127]. This document
serves as a global standard-setting instrument addressing human rights, ethical princi-
ples, and the need for transparency and accountability in Al contexts. Moreover, the
World Health Organization (WHO) has also played a distinct role in the international
governance of Al In 2021, WHO released its first global report on Al in medicine, propos-
ing six guiding principles of ethics and human rights: (a) Protecting Human Autonomy,
(b) Promoting Human Well-Being and Safety and the Public Interest, (c) Ensuring Trans-
parency, Explainability, and Comprehensibility, (d) Fostering Responsibility and Account-
ability, (e) Ensuring Inclusiveness and Equity, and (f) Promoting Sustainable AI [128].
Expanding on these six consensus principles, the WHO published a second report in 2023
on the practical implementations of Al systems in healthcare and biomedical science [129].
Importantly, the WHO is mindful of the growing need for capacity building and collabora-
tion among different sectors/regions and is working to develop a global framework for the
governance of Al systems for healthcare [124].

Meanwhile, in the United States (US), the Federal Trade Commission (FTC) and the
National Institute of Standards and Technology (NIST) play crucial roles in Al regulation.
The FTC’s Guidance on Al and Algorithms, issued in 2020, emphasizes the importance of
fairness, transparency, accountability, and explainability for diverse stakeholders; it warns
against biases and scientifically deceptive practices [130]. Similarly, the NIST’s Framework
for Managing Al Risks, released in 2021, provides comprehensive guidelines to identify,
assess, and manage Al-related threats, supporting the development of trustworthy and
reliable Al systems [131]. Although not a direct result of the FTC’s and NIST’s work, both
government agencies’ progress with documenting ethical Al practices contributed to the
broader regulatory landscape culminating in the US government; it subsequently led the US
Congress to enact the Al in Government Act of 2020. This act encourages federal agencies
to adopt Al technologies while ensuring adherence to civil liberties, civil rights, as well as
economic and national security [132].

Sharing the same vein as the aforementioned contributions to governance, the United
States Executive Order on the Safe, Secure, and Trustworthy Development and Use of
Artificial Intelligence outlines an up-to-date comprehensive framework to address these
areas and push Al regulation via legal adherence [133]. The Executive Order (EO) is broken
down into 16 clearly delineated sections and provides a clear, comprehensible, and acces-
sible outline for diverse stakeholders. As previously mentioned, many of the regulatory
contributions focus on a few domains (e.g., trustworthiness, privacy, and protection), but
critically, the EO addresses a major gap in current frameworks as it encompasses a multi-
faceted call for ethical compliance within all domains of Al. Remarkably, it covers strategies
to support workers in an Al-integrated economy, which has not typically been covered
in other governance documentation in detail. Moreover, the EO has a detailed section
defining mechanisms of implementation to support the adherence to the ethical guidelines
discussed. Future regulatory bodies and contributions should follow the structure of the
multifaceted framework and adapt the EO to implement their updated or more robust call
for compliance. Overall, all these milestones reflect the ongoing efforts to standardize the
safe and effective use of Al in biomedical applications, increase research funding to address
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ethical, legal, and social implications, as well as engage the public in discourse about Al’s
role in healthcare.

Despite these collective efforts, several gaps remain in the current landscape of reg-
ulatory frameworks. A significant challenge includes the lack of global harmonization,
leading to fragmented regulations that complicate compliance for international Al de-
velopers. Additionally, the rapid pace of Al advancements often outstrips the ability of
regulations to keep up, necessitating more agile and adaptive regulatory mechanisms.
Ethical guidelines also need to be more precisely defined and enforceable to effectively
address issues such as bias and discrimination [134]. Finally, existing laws primarily focus
on data protection and privacy, with insufficient attention to other ethical concerns like
Al’s impact on employment, environment, and implementation. While significant strides
have been made, ongoing efforts are needed to address existing gaps and keep pace with
technological advancements. Altogether, global harmonization, the aggregation of current
ethical considerations, the development of adaptive regulatory frameworks, and the lawful
reinforcement of Al guidelines will be key to achieving these goals [135,136]. It is clear
the regulation and governance of Al are crucial for ensuring an ethically grounded Al
ecosystem, especially in sensitive fields like biomedical AL

4.2. Stakeholder Engagement

Engaging with a diverse range of stakeholders is critical for optimizing ethical and
responsible outcomes to successfully develop and deploy Al systems within the biomedical
field (Figure 4). Stakeholder engagement involves identifying and interacting with all
parties who are either affected by or can influence Al systems [137]. Stakeholders in the
Al biomedical ecosystem can be broadly categorized into three levels: (1) individual stake-
holders, (2) organizational stakeholders, and (3) national/international stakeholders [134].

Developers -
and International
Researchers Organizations

Regulatory
Bodies
[ ]

Community
Members

Stakeholders
in Al Systems

® @ e o Policy Makers

Organizational
o® Stakeholders °,
° °
Healthcare Research
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Figure 4. Stakeholder engagement. Individual stakeholders include users, developers, researchers,
and any other individuals directly interacting with or impacted by Al systems. Users encompass
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clinicians and other non-expert individuals who bring a real-world perspective on the responsible use
of AL Organizational stakeholders are entities such as healthcare institutions, research organizations,
and companies involved in the development, deployment, and maintenance of Al systems. National
and international stakeholders encompass regulatory bodies and policymakers engaged in crafting
laws and regulations governing Al technologies.

Previous literature highlights a broad spectrum of stakeholders involved in the Al
ecosystem, but there is minimal literature explaining the relevance of identifying stakehold-
ers early in the Al lifecycle. Early identification allows Al system developers to discern
which ethical guidelines are most pertinent to their products and services, aligning the
development process with ethical standards from the outset [134]. It also helps in assessing
who might be influenced by the Al systems and how to recognize individuals, groups,
organizations, and even nation-states that could be affected or have the power to affect
Al outcomes [134]. For example, investigators and developers are often more attuned to
the technical and performance aspects of Al systems and are likely to express concerns
regarding the ethical dimensions and impacts of Al decisions and activities. In comparison,
non-expert stakeholders such as clinicians and general consumers contribute valuable
insights into the real-world implications of Al systems, supporting responsible Al behavior
in diverse contexts.

Early identification also helps us understand the specific concerns and needs of
different stakeholders, in addition to bringing forth the concept of explainable Al (see
Section 3.2.2)—a suite of machine learning techniques that enable human users to un-
derstand, appropriately trust, and produce more explainable models [138]. Users may
lack the training to fully comprehend Al systems, which may lead to potential misuse
or misinterpretation. This highlights the need for Al systems to provide clear and verifi-
able explanations of their decisions for relevant stakeholders. For instance, clinicians are
frequently concerned about privacy breaches, personal liability, and the loss of oversight
in clinical decision-making. Additionally, certain demographic groups may be dispro-
portionately affected by Al systems based on factors such as region, age, socioeconomic
status, and ethnicity [19]; therefore, special attention is needed to safeguard their interests.
Moreover, the explanations provided to end-users might differ from those required by other
stakeholders, emphasizing the importance of tailoring communication to the audience. To
enhance widespread trust and accountability, Al systems must cater to the explanation
needs of various stakeholders.

Co-Design

Implementing co-design principles in Al use and development encompasses actively
involving stakeholders in the design process, ensuring their needs and concerns are ad-
dressed from the beginning of the Al pipeline. Co-design supports collaboration between
Al developers, users, and other stakeholders, leading to more inclusive and ethically
grounded Al systems [139]. By incorporating feedback from a diverse range of stake-
holders, Al systems can better align with societal values and ethical standards, enhancing
their acceptance and effectiveness. Co-design consists of an iterative process composed of
designing, testing, and refining both hardware and software components until the system
meets desired performance requirements [139]. This process bridges the gap between
hardware and software design, in addition to Al deployment, which traditionally has been
developed independently. Critically, co-design also supports human-in-the-loop (HITL)
learning by fostering user engagement, ensuring systems are user-centric, and facilitating
continuous feedback and improvement [73]. Key concepts in co-design include engaging
end-users/diverse stakeholders throughout the Al development process, exposure analysis,
and implementing ethical frameworks within design processes [140].

We have stated the benefits and significance of co-design and that this approach en-
sures diverse perspectives are incorporated into the Al system, leading to more robust and
ethically aligned outcomes. It is imperative to note that early engagement directly relates
to co-design. Engaging end-users and other stakeholders throughout the design process is
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crucial for capturing a wide array of needs and potential impacts, thus ensuring that the Al
system is designed with a comprehensive understanding of its real-world application. This
engagement helps in identifying potential ethical and practical issues early on, allowing
for timely adjustments and improvements before Al applications are utilized by stake-
holders [141]. Another critical component of co-design includes exposure analysis, which
involves analyzing the extent to which different stakeholders are exposed to various aspects
of the Al system and identifying potential risks [142]. By understanding the exposure levels
of different stakeholders, developers can design safeguards and features that minimize
risks and enhance the system’s safety and reliability. A critical component of exposure
analysis includes evaluating potential contacts between hazards and receptors [143]. This
involves assessing the interactions between potential hazards posed by the Al system and
the stakeholders who might be affected by these hazards. By systematically evaluating
these elements, developers can implement strategies to reduce stakeholder vulnerability,
ensuring that the Al system is both safe and ethically sound.

A notable framework composed of multifaceted metrics for ethical practice in co-
design includes Z-inspection, coined by Zicari et al., which focuses on evaluating and
auditing Al systems at multiple stages of the Al pipeline [143]. Z-inspection involves a
multidisciplinary approach, where ethicists, domain experts, and diverse stakeholders
collaborate to inspect and assess the Al system at various stages of its development [143].
This inspection process helps in identifying potential ethical issues early on in Al devel-
opment, allowing for timely interventions and modifications to be embedded throughout
the Al pipeline. Crafting and implementing frameworks such as Z-inspection supports
transparency and accountability across all stakeholders throughout Al development and
cultivates an environment where ethical standards are continuously monitored and upheld,
thereby enhancing the trustworthiness and reliability of an Al system. In conclusion, the
co-design approach, coupled with ethical methodologies such as Z-inspection, plays a
pivotal role in developing ethically grounded biomedical Al ecosystems. By active collab-
oration amongst stakeholders and continuous evaluation of ethical implications, we can
create Al systems that are more aligned with societal values, ultimately leading to broader
acceptance and enhanced outcomes in biomedical applications.

5. Concluding Unified Perspective

We have extensively reviewed the ethical challenges and the relevant mitigation
strategies required to minimize the negative impacts of Al within clinical translation. These
strategies act as checkpoints throughout Al development and deployment to maintain
an ethical and trustworthy Al lifecycle. Additionally, we have examined regulations and
recommendations globally for the responsible use of Al and emphasized the importance
of engaging all relevant stakeholders during the development and integration processes
of Al (see Table 4). With this comprehensive approach and with a unified perspective, Al
technologies will meet the needs and protect the interests of all relevant stakeholders based
on their specific interaction with the Al technology, fostering iterative improvement and
adaptability of the entire ecosystem. Collectively, these elements form a robust Ethical and
Trustworthy Artificial Intelligence (ETAI) Biomedical Ecosystem (Figure 5).

Table 4. We reviewed similar papers that addressed themes and practices related
to implementing FMs in clinical practice, noting the key components covered by each
paper. Our manuscript, listed at the end of the table, comprehensively addresses all these
components, highlighting our holistic approach to building an ETAI Biomedical Ecosystem.
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Table 4. Review comparison of key components in biomedical Al

Bias Data Stakeholders
Mitigation Privacy & Fairness and
Strategies Security Governance

Al Lifecycle Clinical Standardization = Biomedical Con-
Ecosystem Integration of Ethical FMs  texts/Applications

Fairness and Bias in Al: A
Brief Survey of Sources,
Impact, and Mitigation
Strategies [9]

The Evolutionary Dynamics
of the AI Ecosystem [10]

Bias and Fairness in LLMs: A
Survey [25]

Assessing the Research
Landscape and Clinical
Utility of LLMs: A Scoping
Review [48]

An Al Life Cycle:
From Conception to
Production [144]

Building an Ethical and
Trustworthy Biomedical AT
Ecosystem for the Transla-
tional and Clinical Integ-
ration of Foundational
Models

Al

Stakeholder Biomedical e Government
Engagement and

Ecosystem Regulation / g+

Stakeholders

Figure 5. Allifecycle. The figure illustrates the traditional Al pipeline as a cyclical system. Stakeholder
engagement and government regulation act as gears that drive and shape this cycle. The bidirectional
arrows signify that stakeholder and regulatory input can either propel the cycle forward or lead
to revisiting earlier stages for refinement. This dynamic interaction enables continuous feedback
between data management, model development, evaluation, and clinical translation, ensuring that
these processes inform each other iteratively. As a result, the system fosters the development of
Al technologies that are trustworthy, transparent, and fully aligned with ethical standards. Key
checkpoints in the pipeline, marked with letters, denote significant milestones: A (securing data); B
(combating data memorization); C (mitigating adversarial attacks); D (securing cloud infrastructure);
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E (mitigating demographic underrepresentation); F (data transparency); G (mitigating stereotype
biases); and H (model transparency, interpretability, and explainability). These checkpoints ensure
the Al system’s integrity, security, and efficacy, continuously aligning with evolving societal needs,
ethical standards, and legal requirements.

5.1. Al Lifecycle and Al Pipeline in the Al Biomedical Ecosystem

Understanding the distinction between the Al pipeline and the Al lifecycle is foun-
dational for building an ethical and sustainable biomedical Al ecosystem. While both
concepts are integral to the advancement and maintenance of Al systems, they conceptu-
alize the design, development, deployment, and stewardship of the Al system distinctly.
The Al pipeline represents a technical assembly line, where the creation and deployment
of an Al model follows a linear, step-by-step process [145], starting from data collection
and preprocessing, moving through from co-design, model training, and validation, and
culminating in deployment; the pipeline’s primary goal is to deliver a functional Al system
ready for clinical translation. Each component in the pipeline is clearly delineated, focusing
on the efficiency and precision of the output [145]. Critically, the Al lifecycle embodies a
dynamic, cyclical flow of Al system processes, emphasizing continuous iterative improve-
ment and adaptation [144]. Rather than a straight path to an endpoint, the lifecycle views
it as an ongoing journey, where the Al model system evolves through iterative feedback
and refinement from all stakeholders. This approach integrates constant input from the
developer and the user at every stage—from initial development through deployment and
ongoing operation—promoting systems that remain relevant, ethical, reliable, and vibrant
over time.

An important aspect of the Al lifecycle is the continuous evaluation of AI models
to ensure safe, reliable performance in real-world biomedical applications. Standardized
model testing, including the use of adversarial inputs, is essential to identify and mitigate
potential vulnerabilities that could lead to unreasonable outputs or even system crashes.
These adversarial inputs, intentionally designed to exploit weaknesses in the model, present
a significant challenge in Al systems. Incorporating robust testing frameworks during
model evaluation, including stress tests with adversarial data, can help ensure the resilience
of Al models against such threats. Furthermore, model evaluation must also include
continuous monitoring and fine-tuning post-deployment to safeguard the system from
emergent risks.

In a nutshell, the Al pipeline ensures each model is constructed by addressing all func-
tional steps efficiently and effectively, whereas the Al lifecycle guarantees that the model
continues to comply with ethical standards and meet operational demands throughout
its existence. Collectively, they form a comprehensive framework for our community and
all stakeholders that support the development and maintenance of a robust and ethical
biomedical Al ecosystem.

5.2. Standardizing Bias Mitigation, Trustworthiness and Reproducibility, and Privacy and Security

Mitigating bias, enhancing trustworthiness and reproducibility, and ensuring pri-
vacy and security are core components of ethical Al practices that must be integrated
into each phase of the Al lifecycle to create a robust biomedical Al ecosystem [9,10]. As
we have discussed, there are several methods to support the implementation of these
ethical considerations. Briefly, enhancing trustworthiness and reproducibility requires
transparent methodologies and documentation, enabling Al systems to be understand-
able and verifiable [77,79]. Trust in Al systems is built through both explainability and
reproducibility. Additionally, privacy and security involve robust data protection practices,
safeguarding patient information from unauthorized access and breaches throughout the
Al lifecycle [80]. Privacy should be maintained in the initial data handling, as well as
throughout the system’s operational life, adapting to new threats and vulnerabilities as
they arise. To adapt to the rapid advancement of Al, these concerns must be addressed
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through standardized metrics and evaluation processes that are consistently applied across
all stages of the Al lifecycle [80-90]. Standardization ensures that ethical considerations
are not an afterthought but are integral to the design, implementation, and operation of
Al systems. This systematic Al lifecycle approach allows for the continuous improvement
and adaptation of Al technologies, ensuring they remain ethical, reliable, and align with
societal values.

5.3. Call for Continuous Al Stewardship and Harmonious Al Governance in the Al Lifecycle

The development and deployment of Al systems in biomedicine must be accompanied
by continuous Al stewardship and harmonious Al governance. Continuous engagement
with diverse stakeholders, including patients, clinicians, ethicists, and policymakers, is
foundational. This iterative engagement will ensure that Al systems are developed and
deployed in ways that meet the needs and values of all affected parties [137]. Transparency
throughout the lifecycle should ensure that all relevant stakeholders distinctly understand
the FMs’ development process, the data used to train them, and the potential ethical
and performance limitations that may arise [77]. Providing ongoing training for diverse
stakeholders and raising awareness about ethical Al practices is imperative to establish
iterative feedback loops for the continuous monitoring and refinement of Al model systems
throughout the Al lifecycle. Multidisciplinary governance frameworks that are adaptable
to emerging technologies and evolving societal norms are also needed to certify that Al
systems are developed and used in ways that are safe, fair, and transparent. Developers and
investigators should adhere to global regulations, such as the EO and the WHO AI Global
Report, to ensure Al systems comply with legal standards for privacy, data protection, and
ethical use. Harmonizing these regulations across jurisdictions can simplify compliance
and promote global standards. Critically, governance organizations and policymakers
should collaborate and use standardized practices to enhance policymaking processes in-
formed by diverse perspectives and expertise. In conclusion, implementing Al stewardship
and harmonious Al governance in the Al lifecycle is essential for sustaining an ethically
grounded Al biomedical ecosystem. This unified perspective fosters trust and promotes
innovation, ultimately improving clinical outcomes.
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