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Abstract: Subgroup analysis has emerged as an important tool to identify unknown sub-

group memberships in the presence of heterogeneity. However, much of the existing work

focused on the low-dimensional scenario where only a few candidate variables are consid-

ered for modeling the subgroup membership. In this paper, we propose a two-component

structured mixture model with a Bayesian variable selection approach for identifying pre-

dictive and prognostic variables separately in the high-dimensional setting. By employing

spike and slab priors, we achieve the selection of predictive and prognostic variables and

the estimation of the treatment effect in the selected subgroup simultaneously. We establish

theoretical properties by showing strong variable selection consistency and posterior con-

traction behavior of our method, and demonstrate its performance using simulation studies.

Finally, we apply the proposed method to data from the National Supported Work and

the AIDS Clinical Trials Group 320 study, identifying predictive and prognostic variables

associated with subgroups exhibiting differential treatment effects.
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prognostic variable, subgroup analysis.
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1. Introduction

Subgroup analysis is a powerful tool for identifying heterogeneous treatment effects in various

areas, including clinical trials and market segmentation. Traditional subgroup analysis focuses

on the case where subgroup membership is determined by one or a few known covariates of

interest, such as gender. Such a variable is said to be a “predictive” variable in subgroup analysis

and helps to assign better treatment [20]. Other relevant variables are said to be “prognostic”

when they contain information on the response regardless of the treatment. However, in

recent years, researchers have also considered the case where the subgroup membership is

unknown and the task is to target the potential subgroup. Seibold et al. [39], Huang et al. [17],

Loh et al. [28], and Liu et al. [26] used tree-based methods to find the subgroup iteratively.

Imai and Ratkovic [18] used a support vector machine model with lasso penalties to select

subgroup variables. Chen et al. [8] proposed a search procedure to find patient stratification

and described a resampling scheme to select the splitting variables. Shen and He [40] and Shen

and Qu [41] proposed a mixture model to simultaneously model subgroup membership and

response distributions within two distinct subgroups. Li et al. [24] and Wang et al. [45] used
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change plane models to identify unknown subgroups. Guo and He [14] and Guo et al. [15]

made inference of the treatment effect on selected subgroups. Ma et al. [30] and Pedone et al.

[33] clustered patients with similar predictive biomarkers and predicted the response based on

both cluster results and prognostic variables. However, all these methods only assume a fixed

number of covariates in their asymptotic studies and do not account for challenges arising in

high-dimensional settings, where the number of candidate variables can be large relative to the

sample size. As a result, their performance may deteriorate in such scenarios. In this paper,

building on the work of Shen and He [40], we develop a two-component structured mixture

model that extends to high-dimensional covariates.

When the design matrix is high-dimensional, especially when the number of variables ex-

ceeds the number of observations, the estimation problem is ill-posed. Moreover, as discussed

by Ghosh et al. [13], the identification of subgroup membership will be subject to larger

uncertainty without the exclusion of inactive covariates. These challenges can be remedied

by variable selection under the assumption of sparsity. For variable selection under high-

dimensional settings, one common approach is to add a penalty to the negative log-likelihood

in the objective function, including the popular LASSO penalty [44], SCAD penalty [9], and

MCP penalty [51], among others. However,Wang [48] observed several limitations of penalty-

based methods for mixture models in terms of both theoretical properties and computational

feasibility as they require optimization of non-convex objective functions.

In this paper, we consider a Bayesian alternative for high-dimensional subgroup analysis,

which aims to alleviate the theoretical and computational challenges. In the framework of

Bayesian approaches, suitable choices of prior distributions on the parameters can be used

to perform estimation and variable selection [12, 21, 38, 4, 29]. With appropriate priors on

the parameters involved in the model, the resultant posterior of the Bayesian method can be

asymptotically similar to the �0 penalized likelihood function [31, 25, 32]. A comprehensive

overview of Bayesian variable selection methods can be found in Tadesse and Vannucci [43].

While previous works have mainly focused on the theoretical properties on variable selection

[31, 50, 32], in this paper, we also study the posterior contraction properties on parameter

estimation. Such properties have gained increasing interest in recent literature [35, 47, 10].

For computations, Markov Chain Monte Carlo (MCMC) techniques can be used for sampling

from the posterior, which avoids the difficulties with optimization, especially in situations

where the objective function is non-convex, such as censored regression models [37] and

mixture models [49, 2]. Lu and Lou [29] proposed a Bayesian method to identify important

variables for subgroup assignment using only predictive covariates, without considering high-

dimensional scenarios.

The contributions of this article are summarized as follows. Firstly, we propose a structured

mixture model that captures the subgroup membership and the within-subgroup information

simultaneously and provides estimates of the treatment effect in the selected subgroup with-

out ad hoc analysis. Secondly, we allow the variables in both parts of the model to be

high-dimensional and provide variable selection methods to separately select predictive and

prognostic variables. From our model, the “predictive” variables are directly used to predict

the subgroup membership, while the selected variables from the tree-based methods or inter-

action models are not necessarily predictive. Thirdly, we establish strong selection consistency

of variable selection and obtain posterior contraction rates for parameter estimation in the
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ℓ2 loss, and lastly, we provide a computationally scalable algorithm for high-dimensional

settings.

In view of our contributions, we also acknowledge the broader context of subgroup analysis.

While our method assumes a model-based framework for subgroup membership, another

common approach follows a rule-based paradigm, where subgroups are defined by explicit

covariate thresholding. This structure is prevalent in clinical applications, where subgroups

are determined based on interpretable criteria, and many existing methods, such as GUIDE

[27] and MOB [39], fall into that category. In this paper, we consider the rule-based setting

as a form of model misspecification and evaluate the robustness of our method. Further, we

recognize some limitations of our method in the rule-based setting. If predictive covariates

exhibit high collinearity, model-based methods may become less robust than the tree-based

approaches. We provide a critical analysis, along with simulation studies, to showcase this

aspect of our method and discuss potential improvements.

The rest of the paper is organized as follows. Section 2 introduces the structured mix-

ture model, the prior specifications, the posterior distribution, and the corresponding Gibbs

sampler. Section 3 provides the theoretical justification of the proposed method. We provide

comprehensive simulation studies in Section 4. We analyze data from the National Supported

Work study and the AIDS Clinical Trials Group 320 study in Section 5 and conclude the paper

with a discussion in Section 6. The R implementation of our method is publicly available at

https://github.com/RuqianZhang/BVSA.

2. Methodology

In this section, we propose our model for simultaneous prognostic and predictive variable

selection. We first introduce the structured logistic-normal mixture model conditional on the

model indicator. Subsequently, we specify the variable selection priors accordingly.

2.1. Structured logistic-normal mixture models

Supposewe have � independent observations {(�� , ��, ��, ��)}��=1where �� ∈ R is the continuous

response, �� ∈ R
�1� and �� ∈ R

�2� denote the candidate prognostic and predictive covariates,

respectively, and �� ∈ {0, 1} is the treatment indicator. The subscript � in 	1� and 	2� highlights

that the model dimensions may depend on the sample size �, and we often omit this subscript

unless necessary. Let 
� ∈ {0, 1} be the latent subgroup indicator for the �th observation.

Let � ∈ R
�1 and � ∈ R

�2 be the corresponding coefficients for �� and �� , respectively.

To facilitate variable selection, we introduce a binary model indicator � ∈ {0, 1}� with

	 = 	1 + 	2. The model indicator � = (��, ��) specifies model components included, where

�� = (��
1
, · · · , ��

�1
) ∈ {0, 1}�1 with each �

�

�
indicating whether the 
 th component of � is

included in the model, i.e., � � ≠ 0 if �
�

�
= 1, and � � = 0 if �

�

�
= 0 for 
 = 1, . . . , 	1, and

similarly, �� = (��
1
, · · · , ��

�2
) ∈ {0, 1}�2 with each ��

ℓ
indicating whether the ℓth component of

� is included in the model for ℓ = 1, . . . , 	2. Vectors with subscript � denote the sub-vectors

corresponding to the nonzero components of �. Let | · | denote the �0 norm. Then �� and ���
are the sub-vectors of � and �� of length |�� | corresponding to the nonzero components of
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��, while �� and ��� for � and �� are sub-vectors corresponding to �
�. Consider the following

two-component structured logistic-normal mixture model:

�� | (
�, ��, �� , �� , �) = ������ + 
����1 + (1 − 
�)���2 + �� ,


� | (��, �� , �) ind∼ Bernoulli

(
exp(��

��
�� )

1 + exp(��
��
�� )

)
(1)

for a given model �, where �1 and �2 represent the treatment effects in the two latent

subgroups, and ��’s are the random Gaussian noises with mean zero and variance �2
	 . Without

loss of generality, we assume that �1 > �2 for identifiability. Model (1) focuses on sub-models

indicated by the indicator � only, and |�� | and |�� | are the sizes of the prognostic and predictive
models, respectively.

For further analysis, we denote the �× 	1 and �× 	2 design matrices by � and � , and denote

the treatment vector (�1, . . . , ��)� by � . We assume that both � and � include an intercept

as the first column and further allow for overlapping components in � and � . Matrices with

subscript � denote the sub-matrices corresponding to the nonzero components of �, that is, ��
and �� are used to denote the � × |�� | and � × |�� | sub-matrices of � and � corresponding to

the nonzero components in �� and ��.

2.2. Variable selection priors and joint posterior

We now specify the prior distributions used in our Bayesian framework. We choose the

commonly used Gaussian spike and slab priors on � and � for variable selection. Conditional

on �
�

�
, the priors on � � for 
 = 1, . . . , 	1 are specified as:

� � | (��� = 1) ∼ �
(
0, �2

	�
2
�1�

)
, � � | (��� = 0) ∼ �

(
0, �2

	�
2
�0�

)
,

while, similarly, the priors on �ℓ for ℓ = 1, . . . , 	2 are specified as:

�ℓ | (��
ℓ
= 1) ∼ �

(
0, �2�1�

)
, �ℓ | (��

ℓ
= 0) ∼ �

(
0, �2�0�

)
,

where �2
�1�

and �2
�1�

are the hyperparameters related to the variances of the slab distributions,

and �2
�0�

and �2
�0�

are the hyperparameters related to the variance of the spike distributions.

The factor �2
	 is incorporated in the priors of � to naturally adapt the shrinkage effect to the

scale differences between the linear and logistic components. The priors on �
�

�
and �

�

ℓ
are

independent Bernoulli distributions:

�(��
�
= 1) = 1 − �(��

�
= 0) = ���,

�(��
ℓ
= 1) = 1 − �(��

ℓ
= 0) = ���,

where ��� and ��� are the prior inclusion probabilities. The choices of the hyperparameters

in prior distributions may depend on the sample size �, which will be specified in Section 3.2.

For conciseness, we omit the subscript � in the priors in the following. For �1, �2 and �2
	 ,

we assume weakly informative prior distributions �1 ∼ � (0, �2
	�

2

), �2 ∼ � (0, �2

	�
2

), and

�2
	 ∼ IG(�0, �0), where IG(�, �) denotes the inverse gamma distribution with mean �/(�−1),

and �0, �0 and �
2

 are hyperparameters.
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While the previously assigned prior distributions are conditionally conjugate and can deduce

a closed-form Gibbs sampler for linear models, they are not conjugate for the logistic models.

To address such difficulty, we adopt the Pólya-Gamma data-augmentation strategy [34]. For

each binary subgroup indicator 
�, a Pólya-Gamma latent variable �� is introduced, and the

likelihood of the logistic model in (1) can be rewritten as:

exp(��
��
�� ) ��

1 + exp(��
��
�� )

=
1

2

∫ ∞

0

exp

{(

� −

1

2

)
������ −

1

2
�� (������ )2

}
	PG(��)���,

where 	PG(·) denotes the density of the Pólya-Gamma distribution PG(1, 0). The Gaussian
prior thus becomes conjugate for � and the resulting posteriors of ��’s and �� are as follows:

�� | �� ∼ PG(1, ������ ),
�� | Δ,Ω ∼ N((��� Ω�� + �−2�1 �)−1��� Ω�, (��� Ω�� + �−2�1 �)−1),

where � = ((
1−1/2)/�1, . . . , (
�−1/2)/��)� ,Δ = diag(
1, . . . , 
�),Ω = diag(�1, . . . , ��),
and � is the identity matrix of suitable dimension. With the introduced��’s, the joint posterior

density of �, �, �1, �2, �	 , Δ, Ω, �
�, and �� can be obtained by Bayes’ formula as follows:

� (�, �, �1, �2, �	 ,Δ,Ω, ��, �� |  )

∝
(
�2
	

)−�/2
exp

{
− 1

2�2
	

�∑

�=1

(
�� − ������ − ���1
� − ���2(1 − 
�)

)2
}

×
�∏

�=1

exp

{
(
� − 1/2) ������ − ��

(
������

)2
/2
}
	PG(��)

×
�1∏

�=1

[
��!�

(
� �/�	��1

)] ��
�
[
(1 − ��)!�

(
� �/�	��0

)]1−��
�

×
�2∏

ℓ=1

[
��!�

(
�ℓ/��1

) ] ��
ℓ
[
(1 − ��)!�

(
�ℓ/��0

) ]1−��
ℓ

× !�
(
�1/�	�


)
!�

(
�2/�	�


)
!IG(�2

	 ; �0, �0),

(2)

where !� (·) denotes the density of the standard Gaussian distribution, and !IG(·; �0, �0)
denotes the density of an inverse gamma distribution with parameters �0 and �0. The posterior

is conditional on � and � which are excluded from the notation in the density function for

simplicity.

2.3. Gibbs sampling algorithm

Since the likelihood depends only on the active part indicated by � in Model (1), the resultant

Gibbs sampler enjoys an independent structure for active and inactive components when

updating � and �, which makes it scalable for large 	1 and 	2. We decompose � = (�� , ��� )
and � = (�� , ��� ). Based on the joint posterior density (2), the Gibbs sampler draws samples

from the following full conditional posteriors:

1. The conditional distributions of �� and ��� are independent with

�� | (· · · ) ∼ � ((��� Ω�� + �−2�1 �)−1��� Ω�, (��� Ω�� + �−2�1 �)−1),

��� | (· · · ) ∼ �
(
0, �2�0�

)
.



Bayesian variable selection for subgroup analysis 2881

2. For ℓ = 1, . . . , 	2, we generate �
�

ℓ
∈ {0, 1} sequentially based on

�[��
ℓ
= 1 | ��−ℓ , · · · ]

�[��
ℓ
= 0 | ��−ℓ , · · · ]

=
��!� (�ℓ/��1)

(1 − ��)!� (�ℓ/��0)

× exp

{(
� − �
� (ℓ )�
� (ℓ )

)�
Ω�ℓ�ℓ −

1

2
��ℓ Ω�ℓ�

2
ℓ

}
,

where �
�

−ℓ represents the components of �� with �
�

ℓ
excluded and "� (ℓ) = {# : # ≠

ℓ, �
�

�
= 1}.

3. For � = 1, . . . , �, the conditional distributions of ��’s are PG(1, ��
��
�� ).

4. For � = 1, . . . , �, we generate 
� based on

�[
� = 1 | · · · ]
�[
� = 0 | · · · ]

= exp

{
− 1

2�2
	

[(
�1 + �2 − 2�� + 2������

)
�� (�1 − �2)

]
+ ������

}
.

5. Similar to �� and ��� , the conditional distributions of �� and ��� are independent with

�� | (· · · ) ∼ � ((��� �� + �−2�1 �)
−1���  ̃�, ($� (��� �� + �−2�1 �))

−1),
��� | (· · · ) ∼ � (0, �2

	�
2
�0�),

where $� = diag(1/�2
	 , |�� |) and  ̃� =  − �Δ�1 − ��−Δ�2 with �Δ = Δ� and ��−Δ =

(� − Δ)� .
6. The conditional distributions of �1 and �2 are given by

�1 | (· · · ) ∼ � ((��
Δ
�Δ + �−2


 )−1��
Δ
 ̃1, �

2
	 (��Δ �Δ + �2


)−1),
�2 | (· · · ) ∼ � ((���−Δ��−Δ + �−2


 )−1���−Δ ̃2, �
2
	 (���−Δ��−Δ + �−2


 )−1),

where  ̃1 =  − ��
�
�� − ��−Δ�2, and  ̃2 =  − ��

�
�� − �Δ�1.

7. For 
 = 1, . . . , 	1, we generate �
�

�
sequentially based on

�[��
�
= 1 | ��− � , · · · ]

�[��
�
= 0 | ��− � , · · · ]

=
��!� (� �/�	��1)

(1 − ��)!� (� �/�	��0)

× exp

{
� ��

�
�$�

(
 ̃� − �
� ( � )�
� ( � )

)
− 1

2
$��

�
� � � �

2
�

}
,

where �
�

− � represents the components of �� with �
�

�
excluded and "� ( 
) = {# : # ≠


 , �
�

�
= 1}.

8. We generate �2
	 from IG(�0 + (� + 2 + 	1)/2, �1) with

�1 = �0 + ( ̃� − ���� )� ( ̃� − ���� )/2 + (�2
1 + �2

2)/2�2

 + ��% ���/2,

where % �� = diag(�−2
�1
�� + �−2

�0
(1 − ��)).

The use of conjugate priors for the regression coefficients facilitates stable posterior updates,

contributing to good mixing properties. Notably, the updates of the high-dimensional param-

eters are decomposed into two independent steps involving one dense but small precision
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matrix and one large but diagonal precision matrix. Similar model structure and decomposi-

tion of the precision matrix can be seen in Wang et al. [46] and in Narisetty et al. [32] where

a sparse approximation of the precision matrix is used.

While we adopt a logit link function and leverage the Pólya-Gamma augmentation method

to achieve efficient Gibbs sampling, a similar approach using a probit link is also feasible

through the latent normal variable augmentation proposed by Albert and Chib [1].

3. Theoretical results

In this section, we investigate the theoretical properties of our proposed method. Specifically,

we focus on the strong selection consistency of both prognostic and predictive variables, as

well as the posterior contraction behavior with respect to the ℓ2 error.

3.1. Reparameterization and marginal posterior distribution

Under the M-Closed assumption [3], the true model structure is assumed to be within the set

of candidate models and is denoted by �0, while � represents a candidate model. Let �0 ∈ R
�1

and �0 ∈ R
�2 be the true coefficient vectors, with �0� and �0� denoting the sub-vectors of the

true coefficients under model �. Given a model �, the likelihood of {��}��=1 can be written as

�� (�, �, �1, �2, �	 , �) =
�∏

�=1

[
!(��

��
�� )√

2!�	
exp

{
−
(�� − ��

��
�� − ���1)2

2�2
	

}

+
1 − !(��

��
�� )√

2!�	
exp

{
−
(�� − ��

��
�� − ���2)2

2�2
	

}]
,

where !(·) = exp(·)/(1 + exp(·)). As suggested by Städler et al. [42], we adopt a similar

reparameterization and denote � = (�, � = �/�	 , &1 = �1/�	 , &2 = �2/�	 , ' = 1/�	). Then
the log-likelihood is

(� (� � , �) =
�∑

�=1

log

(
!(������ )

'
√
2!

exp

{
−1
2
('�� − ������ − ��&1)2

}

+(1 − !(������ ))
'

√
2!

exp

{
−1
2
('�� − ������ − ��&2)2

})
.

(3)

We assume the pairs (��1, ��1), (��0, ��0), and (�� , ��) are of the same orders (as functions

of � or 	), respectively, so from now on we ignore the subscripts � or � in these parameters.

With the notation � = (�, �) ∈ R
�, the joint prior distribution is given by

!(� � , � �� , �) ∝ exp

{
−1
2
(�−21 ��� �� + �−20 ��

��
��� )

} (
�1(1 − �)

�0�

)−|� |
!(&1, &2, '), (4)

where � � = (�� , &1, &2, '), � �� = ��� , and

!(&1, &2, ') = !� (&1/�
)!� (&2/�
)!� ('; �0, �0),

with !� (·; �0, �0) denoting the density deduced from the Gamma distribution '2 ∼ Γ(�0, �0).
Then the joint posterior probability can be derived from (3) and (4) as:

!(� � , � �� , � |  ) ∝ exp {(� (� � , �)} !(� � , � �� , �),
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and the marginal posterior probability for model � is given by

Π(� |  ) ∝
∫

Θ�

∫

Θ
��

exp{(� (� � , �)}!(� � , � �� , �)�� �� �� � ,

where Θ� and Θ�� are the spaces consisting of all � � and � �� , respectively.

3.2. Main results

Notations: for any sequences �� and ��, we denote �� ∼ �� if ��/�� → ) for some ) > 0.

We denote �� ⪰ ��, or equivalently �� ⪯ ��, if �� = 
 (��). For any �, � ∈ R, the maximum

and minimum of � and � are denoted by � ∨ � and � ∧ �. For any real symmetric matrix *,

+max(*) and +min(*) are the maximum and minimum eigenvalues of *, respectively.

We now study the theoretical properties of the proposed method in terms of selection

consistency for both predictive and prognostic parts of our subgroup model, as well as the

posterior contraction behavior of the parameters with respect to the ℓ2 error. We assume that

both covariate spaces 
 and� of ��’s and ��’s are bounded and consider the parameter space

Θ(-) := {� : | log ' | ≤ -, ∥� − �0∥1 ≤ -},

where �0 is the true parameter, - > 0 is a fixed constant, and ∥ · ∥1 denotes the �1 norm

for any vector. We define �� (� � ) := (� (�0� , �) − (� (� � , �) and let +0 =
√
log 	/�. We further

define

/� = sup
�: |� | ≤�

sup
∥��−�0� ∥1≤�

1

�

|�� (� � ) − E�� (� � ) |
∥� � − �0� ∥1 ∨ +0

.

We first state some necessary conditions and introduce two important lemmas.

Condition 1. The dimension satisfies log 	� = 0(�) as � → ∞.

Condition 2. For all � ∈ 
 and � ∈ �, there exist some constants +1 and +2 such that

0 < +1 ≤ min
�∈ℐ(�� )

min

(
+min

(
1

�
��� ��

)
, +min

(
1

�
�̃�� �̃�

))

≤ max
�∈ℐ(�� )

max

(
+max

(
1

�
��� ��

)
, +max

(
1

�
�̃�� �̃�

))
≤ +2,

where ℐ(1�) = {� : |� | ≤ 1�} with 1� := ((�/log 	)1/2 ∧ 	) and �̃� = (�� , �). We also

assume that �0 ∈ ℐ(1�).
Condition 1 restricts the model dimension as a function of � which is satisfied if 	� ≤ 2���

for some �� → 0 as � → ∞. Such a condition is common in Bayesian variable selection

literature [25, 31, 23].

Condition 2 gives lower and upper bounds on the eigenvalues of �−1��
�
�� and �

−1 �̃�
�
�̃� .

The lower bound can be seen as a restricted eigenvalue condition common in the high-

dimensional statistics literature and is satisfied by sub-Gaussian design matrices with high

probability [32]. The upper bound is similar to the bounded maximum eigenvalue condition

assumed in Zou [53] and Bondell and Reich [5]. We restrict the model size to be smaller than

or equal to 1� in Condition 2, which means that we only consider models of reasonably large

sizes. This can be achieved by restricting the prior distribution on � as commonly done by

Liang et al. [25] and Narisetty et al. [32].
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Lemma 3.1. Under the logistic-normal mixture model with � ∈ Θ(-) for some - and

Condition 1, there exists some constant "̄ > 0, such that for any constant 3 ≥ "̄, as � → ∞,

�(/� ≤ 3+0) → 1.

Lemma 3.2. Under Conditions 1 and 2, on {/� ≤ 3+0}, it holds that for any model � and
any � ∈ Θ(-) there exist some constants ), )1, )2, )3 > 0, only dependent on - , 
 and �,

satisfying

)�∥� � − �0� ∥22 − )2�3+
2
0(|� | + 3) ≤ �� (� � ) ≤ )1�∥� � − �0� ∥22 + )3�3+20(|� | + 3).

Lemma 3.1 constructs a useful set that holds with probability going to 1 as � goes to

infinity. Within the set in Lemma 3.1, Lemma 3.2 shows that �� (� � ), the negative log-

likelihood divergence for any model �, has upper and lower bounds in simple forms, which

can be utilized to replace the non-convex log-likelihood with tractable parameter ℓ2 distance

and model size.

We now outline additional conditions necessary to ensure the strong selection consistency

property of our proposed method:

Condition 3. For some constant "̃ > "̄ |�0 | in which "̄ is the constant specified in Lemma

3.1, the prior parameters �2
1
and � satisfy the following orders:

��21 ∼ (� ∨ 	2+2
̃), � ∼ 	−1.

Condition 4. For some constant "0 > 0,

min
�∈{�:�0�=1}

|�0 � | ≥
√
"0 |�0 | log 	

�
.

Condition 3 provides rates on the parameters of the spike and slab prior. The variance of the

slab prior distributions �2
1
is assumed to grow with �. No assumption is made on the variance

of the spike prior distributions �2
0
as the choice of �2

0
would not influence the asymptotic

results, which was also stated by Wang et al. [46]. In addition, we assume that the prior

inclusion probability � is proportional to the inverse of the number of covariates 	, which will

control the model size. Condition 4 is a beta-min condition that restricts the minimal signal

strength of true nonzero coefficients. This is commonly assumed when considering model

sparsity [6, 32, 23].

Theorem 3.3. Under Conditions 1-4 and on the set {/� ≤ 3+0}, it holds that on ℐ(1�), the
marginal posterior distribution of the true model satisfies

Π [� = �0 |  ] P−→ 1, as � → ∞.

Moreover,

∑

�1∈ℐ(�� )\{�0 }

Π [� = �1 |  ]
Π [� = �0 |  ]

P−→ 0.

Theorem 3.3 provides strong selection consistency for both the predictive and prognostic

parts of the high-dimensional subgroup model. It is implied that with probability going to 1,

the posterior probability of the true model �0 grows to 1 as � goes to infinity, given that the

considered model sizes are allowed to be reasonably large. Theorem 3.3 gives an even stronger
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result that the sum of the posterior probability ratios of all possible false models to the true

model converges to 0 in probability, implying a larger gap between the posterior probabilities

of the true model and the rest.

In the end, we present a theorem concerning the posterior contraction rates, for which we

impose an additional assumption regarding the variance �2
0
in the prior distributions:

Condition 5. The prior parameter �2
0
satisfies ��2

0
∼ 1/	.

Theorem 3.4. Under Conditions 1-5 and on the set {/� ≤ 3+0}, it holds that on ℐ(1�), the
posterior distribution satisfies for some constant "′ > 0,

Π

[
(� , �) ∈ Θ(-) × ℐ(1�) : ∥� − �0∥2 ≥

√
"′ |�0 | log 	

�

⃓⃓
 

]
P−→ 0.

Theorem 3.4 shows that the posterior allocates most of its mass around the true parameters

at the optimal rates for both high-dimensional linear regression and logistic regression under

sparsity assumptions. The result ensures that the posterior probability of any estimate deviating

from �0 by the bound on the left-hand side converges to 0 asymptotically. Our proof of

Theorem 3.4 is obtained based on Theorem 3.3, which follows an approach different from

Ray and Szabó [35] and Ray et al. [36]. We defer all proofs to Appendix A.

4. Simulation studies

In this section, we investigate the performance of the proposed method for subgroup analysis.

First, we focus on correctly specified model settings and examine variable selection and

parameter estimation in finite sample situations in both 	 < � and 	 ≥ � cases. We then

consider misspecified settings where subgroup membership is determined by splitting rules,

common in traditional subgroup analysis. We also compare our proposed method with other

subgroup identification methods.

4.1. Selection and estimation under structured logistic-normal mixture settings

We first consider data from the structured logistic-normal mixture model (1). Each row of

� and � is generated independently from normal distributions where the means are 0 and

the correlations between any pair of covariates are equal to '. An intercept column is added

to both � and � . The noises are independently drawn from the standard normal distribution

� (0, 1).
We set the dimension 	 = 2	1 = 2	2 with 	 ∈ {100, 500, 2000}, the correlation ' ∈

{0, 0.25}, and the sample size � ∈ {200, 300}. The values of �0 and �0 are assigned to be

(1,−1.5, 2,−2.5, 3)� with the rest being 0, and the treatment effects in two different subgroups

are set to be �10 = 40 and �20 = 0. To examine the impact of higher correlation, numerical

studies with larger ' values are presented in Appendix B.1.

For our proposed method, referred to as BVSA, we consider the median probability model

when we select active variables, i.e., variables with posterior inclusion probability at least

0.5. We initialize the Gibbs chain with random samples from the priors and obtain the results

based on a chain of length 20000 with a burn-in of length 5000. The maximum model size

is restricted to max(�,
√
�) for some constant �. Here we choose � = 30 as suggested by
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Narisetty et al. [32]. The choice of hyperparameters in continuous spike-and-slab priors can

be sensitive to the scale difference between the linear and logistic components of the model.

Unless otherwise specified, we adopt the following default setting for the spike-and-slab prior

parameters based on theoretical considerations:

��0 = ��0 = 5/�, ��1 = ��1 = max(
√
	2/400�, 1), �� = �� = min(1/5, 20/	). (5)

As discussed in Iqbal et al. [19], prior calibration on the prior variances can improve the

empirical performance of variable selection in finite-sample settings. To assess this,we conduct

a sensitivity analysis on the variance hyperparameters in Section D.1. Based on our experience

on simulations, we adjust ��1 = max(
√
	2
2
/800�, 1) when 	 = 2000 to mitigate excessive

false positives in high-dimensional settings. Since the priors on �1, �2, and �2

 are weakly

informative, the results are insensitive to a range of choices, confirmed by an illustration in

Appendix D.3. Throughout the numerical studies we set �0 = 2, �0 = 1, and �2

 = 1.

We adopt variable selection performance measures used in Narisetty et al. [32]: TP, TP�,

FP, “� = �0”, “� ⊃ �0”, and “�� = �0”, where TP (true positive) is the number of active

covariates chosen; TP� is the number of active covariates selected if the size of the chosen

model is restricted to be |�0 |; FP (false positive) is the number of inactive covariates chosen;

“� = �0” is the proportion of choosing the true model exactly; “� ⊃ �0” is the proportion

of times the true model is included in the chosen model; and “�� = �0” is the proportion of

choosing the true model exactly when the model chosen is restricted to size |�0 |. Note that the
measures TP� and “�� = �0” indicate how well a method can rank variable importance and

do not depend on the specific choice of the threshold on posterior inclusion probability. The

results are averaged based on 100 randomly generated datasets.

From the left columns of Table 1, we can observe that when � = 200, BVSA correctly

identifies all prognostic variables, with true positives 4 and false positives 0 across all settings.

For the predictive variables, when 	 = 100, our method finds most of the active variables

with the probability of including all active covariates exceeding 0.8. When 	 increases to 500,

which is greater than the sample size �, our method still performs well. The high probabilities

of �� = �0 indicate that our method can correctly rank the posterior inclusion probabilities

of all the variables. When 	 = 2000, the performance deteriorates but still yields reasonable

results. When the sample size increases to � = 300, as shown in the right columns of Table 1,

the performance on predictive variable selection improves significantly, even when 	 = 2000.

These results support our theoretical findings on variable selection consistency.

To evaluate estimation accuracy, we examine the ℓ2 errors and report the results in Table 2.

We consider 	 = 100 and ' = 0 with the same values of �0, �0, �10 and �20 as before.

The means and standard errors of the parameters �, �, and � at various sample sizes are

summarized from 100 random trials. For all parameters, the ℓ2 errors from BVSA shrink

towards 0 as the sample size grows, and the standard errors also decrease towards 0.

4.2. Comparison under traditional subgroup settings

In this subsection, we consider several misspecified settings where subgroup membership is

not determined by a logistic model but by splitting rules. We consider two cases with 	2 = 10

and 	2 = 100. The first ten predictors are generated as follows: (1) �1 is standard normal; (2)
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Table 1

Variable selection results in structured logistic-normal mixture settings.

� = 200 � = 300

TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

	 = 100 �� 4 4 0 1 1 1 4 4 0 1 1 1

' = 0 �� 3.89 3.89 0.36 0.63 0.89 0.89 3.99 3.98 0.43 0.64 0.99 0.98

	 = 500 �� 4 4 0 1 1 1 4 4 0 1 1 1

' = 0 �� 3.68 3.74 0.34 0.55 0.69 0.74 3.94 3.94 0.26 0.71 0.94 0.94

	 = 2000 �� 4 4 0 1 1 1 4 4 0 1 1 1

' = 0 �� 3.01 3.12 0.64 0.24 0.30 0.36 3.74 3.73 0.37 0.49 0.76 0.74

	 = 100 �� 4 4 0 1 1 1 4 4 0 1 1 1

' = 0.25 �� 3.80 3.81 0.32 0.60 0.80 0.81 3.98 3.98 0.46 0.66 0.98 0.98

	 = 500 �� 4 4 0 1 1 1 4 4 0 1 1 1

' = 0.25 �� 3.65 3.65 0.42 0.47 0.65 0.66 3.90 3.89 0.21 0.73 0.90 0.89

	 = 2000 �� 4 4 0 1 1 1 4 4 0 1 1 1

' = 0.25 �� 2.81 2.87 0.89 0.16 0.20 0.25 3.58 3.57 0.64 0.42 0.64 0.63

Table 2

The ℓ2 errors of parameter estimation with growing sample sizes when 	 = 100 and ' = 0. The true parameter

values are set to be �0�0 = (1,−1.5, 2,−2.5, 3)� , �0�0 = (1,−1.5, 2,−2.5, 3)� , �10 = 40, and �20 = 0.

n � � �

200 0.423 (0.095) 1.139 (0.175) 1.527 (0.272)

300 0.279 (0.076) 0.760 (0.130) 1.204 (0.272)

400 0.214 (0.058) 0.570 (0.117) 1.002 (0.243)

500 0.184 (0.054) 0.479 (0.109) 0.893 (0.205)

1000 0.100 (0.037) 0.228 (0.088) 0.625 (0.173)

�2 and �3 are correlated normal variables with mean 0 and covariance 0.5; (3) �4 comes from

an exponential distribution with mean 1; (4) �5 is Bernoulli with success probability equal

to 0.5; (5) �6 is multinomial with 3 equal-probability cells; and (6) �7 to �10 are correlated

normal variables with mean 0 and pairwise covariance 0.5. In high-dimensional settings, the

remaining 90 predictors are generated from independent standard normal distributions. We

take � to be the same as � and thus 	 = 20 in the low-dimensional case and 	 = 200 in the

high-dimensional case, respectively.

We consider the following six settings similar to those in Loh et al. [28] but with more

generality:

S01:  = 1 + �1 + �2 + � (�6 = 2) + �7 + �10 + � ,
S02:  = 1 + �1 + �2 + 40� + � ,
S1:  = 1 + �1 + �2 + �4 + � (�6 = 2) + �7 + 40� × � (�1 > 0) + � ,
S2:  = 1 + �2 + 40� × � (�1 > 0, �4 < 1, �6 = 2) + � ,
S3:  = 1 + �1 + �2 + �4 + � (�6 = 2) + �7 + 40� × � (�1 > 0, �4 < 1, �6 = 2) + � ,
S4:  = 1 + �1 + �2 + 40� × � (logit(�1 + � (�6 = 2)) ≥ 0.5) + � ,

where � is the treatment indicator and � is standard normal noise. Setting S01 has neither a

treatment effect nor subgroups, and Setting S02 has a treatment effect but no subgroups. In

these two settings, no meaningful subgroups exist. The remaining settings S1 to S4 have both

treatment effects and subgroups. The two-component mixture model assumption used in the
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Table 3

Component-wise predictive variable selection probabilities and FPR under S01 and S02 with no subgroup

structure when 	 = 20 and � = 200.

(a) S01:  = 1 + �1 + �2 + � (�6 = 2) + �7 + �10 + �
�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 FPR

BVSA 0.01 0.03 0.03 0.02 0.01 0.02 0.03 0.01 0.01 0.01 0.15

MOB 0.75 0.67 0.01 0 0 0.01 0.90 0.04 0.02 0.90 1

FindIt 0.02 0.01 0.01 0 0 0.01 0 0.01 0 0 0.04

PRIM 0.36 0.40 0.42 0.46 0 0.20 0.45 0.39 0.44 0.43 1

SeqBT 0.23 0.34 0.17 0.10 0.01 0.12 0.26 0.21 0.22 0.18 1

GUIDE 0.19 0.32 0.23 0.18 0.14 0.22 0.31 0.23 0.24 0.30 0.88

(b) S02:  = 1 + �1 + �2 + 40� + �
�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 FPR

BVSA 0 0 0 0 0 0 0 0 0 0 0

MOB 1 1 0 0 0 0 0.01 0 0 0 1

FindIt 0.08 0.01 0 0.02 0.03 0.05 0 0 0 0.02 0.14

PRIM 0.53 0.55 0.07 0.08 0 0 0.06 0.03 0.04 0.02 1

SeqBT 0.18 0.21 0.19 0.12 0.06 0.08 0.14 0.09 0.09 0.13 1

GUIDE 0.27 0.28 0.22 0.07 0.05 0.10 0.11 0.10 0.08 0.11 0.62

paper does not hold under the settings S1, S2, and S3, so our simulation studies examine the

performance of the proposed method under model misspecification.

The results of several other methods for subgroup identification in the literature are also

reported for comparison, including:

• MOB: model-based recursive partitioning [39];

• SeqBT: sequential bootstrapping and aggregating of threshold from trees [17];

• GUIDE: generalized unbiased interaction detection and estimation [27];

• FindIt: support vector machine model with Lasso penalties [18];

• PRIM: patient rule induction method [8].

The parameters for all the comparison methods are set at their suggested default values. Our

method is carried out in the samemanner as in Section 4.1, except that we set ��1 = 5 across all

settings to capture weaker predictive signals in the misspecified traditional subgroup settings.

The simulation results are summarized from 100 randomly generated data sets with sample

size � = 200 for each setting.

We focus on the performance of predictive variable selection since our method can ac-

curately identify all prognostic variables in different settings. For settings without treatment

effect, we provide the variable selection frequencies for predictive covariates and the false

positive rate, which is defined by the frequency of falsely selecting any covariate. For settings

with treatment effect, in addition to variable selection probabilities, we also report the same

variable selection performance measures used in Section 4.1: TP, TP�, FP, “� = �0”, “� ⊃ �0”,

and “�� = �0”. Subgroup prediction errors are reported in Appendix B.2, which are estimated

from an independent testing data with � = 5000.

For low-dimensional settings with 	 = 20, the results for settings S01 and S02 in Table 3

show that the posterior inclusion probabilities of BVSA are close to 0 as they should be,

and the false positive rates are small. The penalty-based method FindIt also performs well,

while other methods always mistakenly assign subgroups. We can conclude that BVSA is not

likely to select any predictive covariate when there is no treatment effect, and thus has a low
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Table 4

Component-wise selection probabilities in traditional subgroup settings when 	 = 20 and � = 200.

(a) S1:  = 1 + �1 + �2 + �4 + � (�6 = 2) + �7 + 40� × � (�1 > 0) + �
�1 �2 �3 �4 �5 �6 �7 �8 �9 �10

BVSA 1 0 0 0 0 0 0 0 0 0

MOB 1 0.88 0.03 0.63 0 0.07 0.79 0.05 0.01 0.02

FindIt 1 0.88 0.85 0.80 0.87 0.97 0.86 0.84 0.87 0.85

PRIM 1 0.05 0.02 0.05 0 0 0.03 0.01 0 0

SeqBT 1 0.03 0.03 0.03 0 0.01 0.02 0.01 0.03 0

GUIDE 0.96 0.16 0.13 0.18 0.06 0.12 0.18 0.14 0.09 0.14

(b) S2:  = 1 + �2 + 40� × � (�1 > 0, �4 < 1, �6 = 2) + �
�1 �2 �3 �4 �5 �6 �7 �8 �9 �10

BVSA 0.92 0.01 0 0.85 0.02 1 0 0 0 0

MOB 0.19 1 0.02 0.05 0 0.51 0 0.01 0 0

FindIt 0.99 0.84 0.81 1 0.86 1 0.93 0.86 0.80 0.89

PRIM 0.53 0.16 0.15 0.50 0 0.12 0.12 0.16 0.16 0.12

SeqBT 0.08 0 0.01 0.02 0 0.93 0 0 0 0

GUIDE 0.86 0.18 0.07 0.13 0.05 0.98 0.03 0.06 0.04 0.07

(c) S3:  = 1 + �1 + �2 + �4 + � (�6 = 2) + �7 + 40� × � (�1 > 0, �4 < 1, �6 = 2) + �
�1 �2 �3 �4 �5 �6 �7 �8 �9 �10

BVSA 0.90 0.01 0 0.82 0.02 1 0 0.01 0 0

MOB 0.90 0.74 0.01 0.52 0 0.86 0.75 0.03 0 0.03

FindIt 1 0.84 0.84 0.99 0.87 1 0.92 0.82 0.80 0.86

PRIM 0.51 0.19 0.23 0.43 0 0.12 0.19 0.22 0.14 0.19

SeqBT 0.09 0 0 0.01 0 0.94 0 0 0 0

GUIDE 0.87 0.22 0.14 0.26 0.04 0.98 0.21 0.08 0.13 0.09

(d) S4:  = 1 + �1 + �2 + 40� × � (logit(�1 + � (�6 = 2)) ≥ 0.5) + �
�1 �2 �3 �4 �5 �6 �7 �8 �9 �10

BVSA 1 0 0 0 0 1 0 0 0 0

MOB 1 1 0 0.01 0 0.82 0 0 0.01 0

FindIt 1 0.89 0.95 0.84 0.95 1 0.85 0.90 0.84 0.90

PRIM 1 0.03 0.02 0.01 0 0 0.01 0.01 0.01 0.03

SeqBT 1 0.08 0.10 0 0.01 0.05 0 0.03 0.02 0.03

GUIDE 1 0.03 0.02 0.02 0 0.02 0 0.01 0.01 0.02

probability of falsely identifying any subgroup. We also notice that those tree-based methods

assign high inclusion probabilities to the active prognostic covariates, indicating that they are

less capable of distinguishing prognostic and predictive covariates.

For the settings S1 to S4 with treatment effects, we summarize the posterior predictive

inclusion probabilities in Table 4 and variable selection performance measures in the left

columns of Table 5. In all settings, BVSA outperforms other methods, especially when the

setting is complicated, e.g., S2 or S3. The true positives are close to the true model sizes, while

the false positives are much smaller than those of other methods, indicating that BVSA has a

high probability of finding the exact set of predictive covariates. One possible reason for the

failure of the tree-based methods in some settings is that those methods are more ambitious in

being overly flexible compared to model-based methods and are sensitive to tuning parameters

involved.

When 	 = 200, FindIt adds the interactions between all covariates into the model, making

it intractable for high-dimensional settings. Thus we exclude FindIt in the comparison. The

findings are similar to those of low-dimensional settings. We mainly focus on predictive
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Table 5

Predictive variable selection results in traditional subgroup settings with � = 200.

	 = 20 	 = 200

(a) S1:  = 1 + �1 + �2 + �4 + � (�6 = 2) + �7 + 40� × � (�1 > 0) + �
TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

BVSA 1 1 0 1 1 1 1 1 0.03 0.97 1 1

MOB 1 1 2.48 0 1 1 1 1 1.56 0.01 1 1

FindIt 1 1 7.79 0 1 1 - - - - - -

PRIM 1 0.97 0.16 0.88 1 0.97 0.99 0.99 0.12 0.97 0.99 0.99

SeqBT 1 1 0.16 0.85 1 1 1 1 0.12 0.89 1 1

GUIDE 0.96 0.96 1.20 0.34 0.96 0.96 0.87 0.87 0.26 0.74 0.87 0.87

(b) S2:  = 1 + �2 + 40� × � (�1 > 0, �4 < 1, �6 = 2) + �
TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

BVSA 2.77 2.92 0.03 0.81 0.81 0.92 2.28 2.53 0.23 0.41 0.42 0.63

MOB 0.75 0.74 1.03 0 0.01 0 0.44 0.44 1.03 0 0 0

FindIt 2.99 2.23 5.99 0 0.99 0.61 - - - - - -

PRIM 1.15 1.12 0.87 0 0 0 0.29 0.29 2.44 0 0 0

SeqBT 1.03 1.03 0.01 0 0 0 1 1 0.06 0 0 0

GUIDE 1.97 2.11 0.50 0.03 0.03 0.14 1.55 1.55 0.34 0 0 0.01

(c) S3:  = 1 + �1 + �2 + �4 + � (�6 = 2) + �7 + 40� × � (�1 > 0, �4 < 1, �6 = 2) + �
TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

BVSA 2.72 2.92 0.04 0.75 0.76 0.92 2.33 2.53 0.18 0.46 0.48 0.63

MOB 2.28 1.67 1.56 0.04 0.39 0.08 1.86 1.72 0.97 0.10 0.20 0.10

FindIt 2.99 1.71 5.95 0 0.99 0.25 - - - - - -

PRIM 1.06 1.07 1.16 0 0 0 0.23 0.24 3.31 0 0 0

SeqBT 1.04 1.04 0 0 0 0 0.98 0.98 0.07 0 0 0

GUIDE 2.11 2.27 0.91 0.05 0.17 0.29 1.52 1.54 0.30 0 0 0.01

(d) S4:  = 1 + �1 + �2 + 40� × � (logit(�1 + � (�6 = 2)) ≥ 0.5) + �
TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

BVSA 2 2 0 1 1 1 2 2 0.04 0.96 1 1

MOB 1.82 1.78 1.02 0 0.82 0.78 1.76 1.74 0.97 0.01 0.76 0.74

FindIt 2 1.94 7.12 0 1 0.97 - - - - - -

PRIM 1 1.01 0.12 0 0 0 0.99 0.99 0.05 0 0 0

SeqBT 1.02 1.04 0.11 0.02 0.02 0.02 1 1 0.12 0 0 0

GUIDE 1.85 1.86 0.62 0.46 0.85 0.86 1.81 1.82 0.43 0.60 0.81 0.82

variable selection performance and conclude from the right columns of Table 5 that in nearly

all settings, the performance of all the methods deteriorates when the dimensions of covariates

grow, but BVSA suffers less severely and outperforms other methods significantly.

With the above results demonstrating that BVSA remains robust in rule-based settings,

we further discuss its limitations under high correlations among predictive covariates when

compared with tree-based methods.

Since all covariates enter themodel simultaneously, BVSA can be sensitive to high collinear-

ity, an issue that is further exacerbated by model misspecification. As a result, BVSA may

select redundant variables. In contrast, tree-based methods partition the data hierarchically

based on individual variable thresholds. Even if two variables are highly correlated, tree-based

methods typically select only one for a given split, making them less sensitive to collinearity.

To empirically assess these limitations, we conduct additional simulation studies under rule-

based subgroup settings, examining varying levels of correlation among predictive covariates.

The details are reported in Appendix E. The results exhibit the limitations of BVSA in

rule-based settings with highly correlated predictive covariates.
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Fig 1. Posterior inclusion probabilities for Lalonde data with posterior predictive inclusion probabilities in the

left figure and posterior prognostic inclusion probabilities in the right figure.

5. Real data applications

In this section, we apply the proposed method to two empirical studies, the Lalonde data from

the National Supported Work program and the AIDS Clinical Trials Group 320 study.

5.1. Application to Lalonde data from NSW program

We first apply our method to the Lalonde data from the National Supported Work (NSW)

program, a federally and privately funded program implemented from 1975 to 1978 in the

United States to provide work experience to disadvantaged workers who had faced economic

and social problems before enrollment. The data consists of 722 observations with 297

workers assigned to the training program and 425 workers in the control group. We focus on

the earning increase in thousands of dollars after the job training program, which is equal to

the difference between 1978 earnings and 1975 earnings, and aim to identify the subgroup

where workers will benefit from the training program. The pre-treatment covariates include

age, years of education (Educ), race (White, Black, Hispanic), marriage status (Married),

the 1975 earnings in thousand dollars (RE75), and whether the worker was unemployed in

1975 before the program (Unemploy), and thereby 	 = 	1 + 	2 = 14. The covariates are

standardized if they are continuous.

We first identify the important prognostic and predictive variables with the proposed

method. We initialize the Gibbs chain based on the prior distributions, and the results are

averaged from 5 random chains with a burn-in of 5000 and a subsequent length of 5000.

We adopt the hyperparameter settings as specified in Section 4.1, with ��0 = ��0 = 0.007,

��1 = ��1 = 1, and �� = �� = 0.2. The averaged posterior inclusion probabilities of all

covariates for both prognostic and predictive consideration are shown in Figure 1.

The posterior prognostic inclusion probabilities of RE75 and Black are greater than 0.5,

while the others aremuch smaller, with the largest among thembelow 0.1. The largest posterior

predictive inclusion probability is 0.715 for Educ, followed by 0.245 for Age, while the rest

are close to each other. We select important variables according to both the absolute values of

the posterior inclusion probabilities and their gaps. As a result, we choose Black and RE75

to be prognostic and Educ to be predictive. The same active predictive variable was used for
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the group construction in Imai and Ratkovic [18]. As shown in Loh et al. [28], PRIM chooses

Black, Educ, and Age as predictive variables, while GUIDE and SeqBT choose Married and

Black as predictive variables, and FindIt uses a linear combination of all variables. However,

our method identifies both predictive and prognostic variables and provides an explicit model

with the estimated treatment effects in the subgroups.

Based on the selected variables, we obtain the estimated model as follows:

��)42�&2 = 2.925
(0.063)

− 1.041
(0.082)

5(�)# − 4.032
(0.003)

3675 + 20.300
(0.012)

�
 − 0.104
(0.103)

� (1 − 
) + �,

logit(�[
 = 1]) = −3.120
(0.032)

+ 0.503
(0.060)

6�7),
(6)

where �̂	 = 5.501 and the standard errors are provided under the estimated coefficients in

brackets. Model (6) shows that the treatment effects on earning increase differ a lot in the two

subgroups: in the first subgroup with 
 = 1, the treatment effect is over $20, 000, while in the

other subgroup, the treatment effect is close to 0.

Our method provides strong evidence for the selection of RE75 as a prognostic variable

with posterior prognostic inclusion probability 1, but it is not selected as an active predictive

variable due to its small posterior predictive inclusion probability. To understand the results,

we examine the earning increase for different levels of RE75, with or without controlling the

treatment. We divide all workers into two groups corresponding to high RE75 and low RE75

by its third quartile 3.993 as the threshold. The box plots of the earning increase of workers

divided by high or low RE75 only overlap slightly, and the estimated density curves have two

different peaks as shown in (a) and (b) of Figure 2, where the grey box and black solid line

correspond to the high RE75 group, and the white box and grey dashed line correspond to

the low RE75 group. In contrast, when we compare the earning increase differences between

workers divided by the treatment in the high RE75 and the low RE75 groups, which are shown

in (c) and (d) of Figure 2, the differences are similar in both groups. This indicates that the

interaction between RE75 and treatment is negligible, which is consistent with our finding

that RE75 is not predictive of the subgroup membership.

To demonstrate the effectiveness of our method in high-dimensional settings, we introduce

additional noise features into the NSW data. We randomly assign 80% of the data as the

training set and the remaining 20% as the testing set, repeating this process 100 times. In each

trial, we increase the dimension of possible prognostic covariates from 7 to 571, resulting

in 	 = � = 578, with all noise features drawn independently from the standard normal

distribution. We evaluate the variable selection performance as well as the prediction errors.

We perform the proposed method on the training set in the same manner as the analysis done

earlier without the noise features added, to select active prognostic and predictive covariates,

and obtain estimations of the corresponding parameters. Covariates are selected based on the

median probability, and the selection frequency of each covariate is summarized over 100

trials. For the predictive covariates, the selection frequencies of Educ, Age, and Unemploy are

0.63, 0.01, and 0.01, respectively, with all others being 0. For the prognostic covariates, the

selection frequencies of RE75 and Black are 1 and 0.58, while other covariates are not selected

and the largest selection frequency of the noise features is 0.02. The variable selection results

are consistent with those obtained without the noise features added to the data, showing the

capability of our method for large 	. In contrast, MOB selects RE75 as the only predictive

covariate in all trials, which is a prognostic variable as discussed earlier.
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Fig 2. Prognostic or predictive effects of RE75 (baseline earning in 1975) on the earning increase for Lalonde

data. Prognostic effect: box plots of earning increase in high RE75 and low RE75 groups and density curves are

provided in (a) and (b). Predictive effect: box plots of earning increase under treatment or control in high RE75

or low RE75 group and the corresponding density curves are provided in (c) and (d).

Based on the estimated model from the training set with additional noise covariates, we

obtain predictions on the testing set. The predictive root mean square error (PRMSE) of the

earning increase of our method is 6.044 while the PRMSE based on MOB is 6.257. Our

method exhibits lower prediction error and interpretable variable selection results, further

supporting the superiority of the proposed method.

5.2. Application to ACTG 320 study

In this subsection, we apply our proposed method to the AIDS Clinical Trials Group (ACTG)

320 study. Following Hammer et al. [16], Zhao et al. [52], and Shen and He [40], we use the

CD4 count change at week 24 as the response and aim to find the patient subgroup benefiting

more from the three-drug combination. The dataset consists of 852 observations with 423

patients receiving the three-drug combination regimen and 429 patients receiving only the

two-drug combination regimen, referred to as the control group. Our pre-treatment covariates

include sex, injection-drug use (Ivdr), hemophilia (Hemo), weight (Weig), Karnofsky score

(Karn), months of prior zidovudine therapy (PrZ), age, logarithm of baseline CD4 counts

(Lcd40), logarithm of baseline HIV-1 RNA concentration with base 10 (Lrna0), and race

(White, African, or Hispanic). We also include the interaction terms, and thus 	 = 	1 + 	2 =

122.

We perform our method in a similar manner to that in Section 5.1, except that we adjust

the spike variances to ��0 = ��0 = 0.02 because of higher dimensionality and weaker signal

strength.We summarize the results from 5 random chains, each with a burn-in period of 10000

iterations followed by an additional 10000 iterations. The posterior prognostic and predictive

inclusion probabilities of all covariates are represented in Figure 3.
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Fig 3. Posterior inclusion probabilities for ACTG320 data with posterior predictive inclusion probabilities in the

left figure and posterior prognostic inclusion probabilities in the right figure.

For prognostic variables, the posterior inclusion probabilities of the interaction of Lrna0

and Lcd40 (Lrna0·Lcd40) and Lcd40 are 0.961 and 0.910, respectively, while the probabilities
of other variables are no more than 0.3. For predictive variables, Lcd40 and Lrna0 have the

largest posterior inclusion probability of 0.581 and 0.579, respectively, while the probabilities

of other variables are less than 0.35. Based on posterior inclusion probabilities, we select

Lrna0·Lcd40 and Lcd40 as the active prognostic variables, and Lcd40 and Lrna0 as the active
predictive variables. Both Lcd40 and Lrna0 have been identified as predictive in previous

studies [7, 52]. Based on the variable selection results, the estimated model of our method is

given as follows:

"�4 )ℎ��92 = −61.013
(0.313)

+ 51.21
(1.132)

�4��0 · �)�40 − 85.118
(3.296)

�)�40

+ 161.403
(0.391)

�
 + 10.974
(1.268)

� (1 − 
) + �,

logit(�[
 = 1]) = − 0.24
(0.047)

− 1.049
(0.06)

�)�40 + 0.622
(0.074)

�4��0,

(7)

with �̂	 = 71.707. We can observe from Model (7) that, although the new three-drug combi-

nation regimen has a positive effect on both subgroups, the first subgroup will benefit much

more than the other.

The posterior inclusion probabilities of our method suggest strongly that Lrna0 is predictive

but not prognostic, while Lcd40 is selected as both prognostic and predictive. To better interpret

the roles of Lcd40 and Lrna0 in the prognostic and predictive models, we present additional

graphical illustrations in Appendix C.2.

6. Discussion

Variable selection is crucial in subgroup analysis to identify subgroups with differential

treatment effects defined by predictive variables, especially in a study with many possible

covariates. In this paper, we consider the structured logistic-normalmixturemodel and propose

a Bayesian method for finding the prognostic and/or predictive covariates. The strong selection

consistency of this method is established under mild conditions, which guarantees that the

posterior probability of the true model goes to 1 and separates from those of false models,
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and the posterior contraction rate is derived. The posterior computation can be implemented

efficiently using a carefully designed Gibbs sampler. Simulation studies and application to

real data show that our proposed method enjoys highly competitive performance for variable

selection in subgroup analysis. Our methodology provides a good selection of predictive and

prognostic variables and a satisfactory estimation of the treatment effects in the selected

subgroups simultaneously.

Future work can explore strategies to mitigate the limitations discussed in Section 4.2,

particularly in high-dimensional settings with highly correlated predictors. One promising

approach is to perform variable selection in two stages. Since our variable ranking remains

stable in lower-dimensional settings, we can first apply variable screening to filter out weakly

associated variables, after which BVSA can be applied more effectively. Another possible im-

provement is to incorporate correlation-aware structure in the prior distribution. The standard

spike-and-slab prior treats the variables independently, which can lead to redundant selection

when they are highly correlated. Instead, we can modify the prior inclusion probability to

depend on the covariate structure, allowing the model to suppress the inclusion of redundant

correlated variables while still selecting relevant ones.

We can also extend our method to more flexible models to broaden its applicability.

For example, generalizing BVSA to handle binary or survival outcomes would enhance its

relevance in clinical studies. Additionally, extending BVSA to a multinomial logit framework

could improve adaptive subgroup identification.

Appendix A: Proof of main results

In Appendix A.1 to A.4, we provide the proofs of the two lemmas and two theorems from

Section 3.2, and then we give the proofs of the technical lemmas in Appendix A.5 to A.7.

Given that the theoretical results are straightforward for finite 	�, we assume that 	� → ∞ as

� → ∞ in the proof. We briefly discuss the case of finite 	� in Appendix A.8.

A.1. Proof of Lemma 3.1

For any model �, we define � �̄ ∈ R
�+3 with � � for � and 0 ∈ R

|�	 | for ��. For vector �, ��
is used to denote the vector containing the components corresponding to model �. For any

� ⊃ �0, �0� or �0� denotes the vector having �0�0
or �0�0

for �0 and zeroes for � ∩ ��
0
.

As a common practice for the finite mixture of regressions, we consider a set of parameters:

	(�, �, �) = (!(��� �̄ ), ��� �̄ + �&1, ��� �̄ + �&2, ').

Note that 	(�, �, �) has a fixed dimension of 4, which is independent of � and 	. We denote

the density of  by �� (�,�,� ) and ℓ� (�,�,� ) = log �� (�,�,� ) . Furthermore, we define the score

function as

&� (�,�,� ) =
:ℓ� (�,�,� )
:	(�, �, �) ,

and the Fisher information as

� (	(�, �, �)) =
∫

&� (�,�,� ) &
�
� (�,�,� ) �� (�,�,� )�;,
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where ; is the dominating measure of �� (�,�,� ) ( ). By direct calculations, there exists a

function =1(·) for any � such that

sup
�∈
,�∈�,� �̄ ∈Θ(� )

∥&� (�,�,� ) ∥∞ ≤ =1( ) := " ( 2 + | | + 1),

where " is a finite constant only depending on -,
,�. Based on the inequalities in (B.2) of

[48], we have for any positive number -̄ and � �̄ ∈ Θ(-̄),
|ℓ� (�,�,� ) ( �, ��, ��) − ℓ�0 (�,�,� ) ( � , ��, ��) | ≤ "=1( �)∥� �̄ − �0�̄ ∥1 ≤ "=1( �)-̄,

and

E[(ℓ� (�,�,� ) ( � , �� , ��) − ℓ�0 (�,�,� ) ( �, �� , ��))
2] ≤ "2-̄2

E[=2
1( �)] ≤ "∗-̄2,

by Taylor expansions and the condition of boundedness of 
 and �. Due to Equation (B.14)

in [48], for some "̄ > 0,

�

[
sup

� �̄ ∈Θ(�̄ )

1

�
|�� (� �̄ ) − E�� (� �̄ ) | > "̄-̄+0

]
≤ "̄

(
1

�
+ 1

	

)
≤ 2"̄

	 ∧ �
.

We apply the peeling device. For any given - > 0, divide Θ(-) to Θ(+0) ∪
{
Θ(- �)

}
�=1,2, · · · ,

where

Θ(- �) = {� �̄ : | log ' | ≤ -, 2− �- ≤ ∥� �̄ − �0�̄ ∥1 ≤ 21− �-},
and

Θ(+0) = {� �̄ : | log ' | ≤ -, ∥� �̄ − �0�̄ ∥1 ≤ +0}.
It can be seen that the number of these sets is log(-/+0) + 1. Then we have for any constant

3 ≥ "̄ and any �,

�

(
sup

∥� �̄−�0�̄ ∥1≤�

1

�

|�� (� �̄ ) − E�� (� �̄ ) |
∥� �̄ − �0�̄ ∥1 ∨ +0

> 3+0

)

≤
∑

�

�

(
sup

� �̄ ∈Θ(� � )

1

�

|�� (� �̄ ) − E�� (� �̄ ) |
∥� �̄ − �0�̄ ∥1

> 3+0

)

+ �
(

sup
� �̄ ∈Θ(�0 )

1

�

|�� (� �̄ ) − E�� (� �̄ ) |
+0

> 3+0

)

≤
∑

�

�

(
sup

� �̄ ∈Θ(� � )

1

�
|�� (� �̄ ) − E�� (� �̄ ) | > "̄2− �-+0

)

+ �
(

sup
� �̄ ∈Θ(�0 )

1

�
|�� (� �̄ ) − E�� (� �̄ ) | > "̄+20

)

≤ 2"̄ (log(-/+0) + 1)
	 ∧ �

−→ 0,

(8)

as � → ∞ and 	 → ∞. Given the definition of (� (?� , �) and � �̄ , for � �̄ ∈ Θ(-), we have

�� (� � ) = �� (� �̄ ) and ∥� � − �0� ∥1 = ∥� �̄ − �0�̄ ∥1 ≤ - . Thus,

�

(
sup

∥��−�0� ∥1≤�

1

�

|�� (� � ) − E�� (� � ) |
∥� � − �0� ∥1 ∨ +0

> 3+0

)
−→ 0.
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Due to the arbitrariness of �, we have that with probability going to one, /� ≤ 3+0. □

A.2. Proof of Lemma 3.2

We denote the Kullback-Leibler information as

@
(
	(�, �, �) | 	0(�, �, �)

)
= −

∫
log

[
�� (�,�,� )
��0 (�,�,� )

]
��0 (�,�,� )�;,

where 	0(�, �, �) = (!(���0� ), ���0� + �&10, ���0� + �&20, '0). Further we define the average
excess risk for fixed covariates (�1, �1), . . ., (��, ��) to be

@̄
(
	� | 	0�

)
=
1

�

�∑

�=1

@
(
	 (��, ��, �) | 	0 (��, ��, �)

)
.

Before the proof of Lemma 3.2, we first claim that the average excess risk is bounded lower

and upper by the ℓ2 distance of � � and �0� .

Lemma A.1. Under Condition 2, for some constants ) and )1 depending on - , 
 and �,

we have for any � and any � ∈ Θ(-)

)∥� � − �0� ∥22 ≤ @̄(� � | �0� ) ≤ )1∥� � − �0� ∥22.

Proof. We defer the proof to Appendix A.5.

Note that

@̄(� � | �0� ) = −1

�

�∑

�=1

∫
log

�� (�� ,�� ,� ) ( �)
��0 (�� ,�� ,� ) ( �)

��0 (�� ,�� ,� ) ( �)�;

= −1

�
E

[
�∑

�=1

log
�� (�� ,�� ,� ) ( �)
��0 (�� ,�� ,� ) ( �)

]

=
1

�
E[(� (�0� , �) − (� (� � , �)] =

1

�
E�� (� � ).

Based on Lemma A.1, on the set {/� ≤ 3+0}, we have

�� (� � ) ≥ E�� (� � ) − �3+0(∥� � − �0� ∥1 ∨ +0)
≥ )�∥� � − �0� ∥22 − �3+0(∥� � − �0� ∥1 ∨ +0),

and

�� (� � ) ≤ E�� (� � ) + �3+0(∥� � − �0� ∥1 ∨ +0)
≤ )1�∥� � − �0� ∥22 + �3+0(∥� � − �0� ∥1 ∨ +0).

Case 1. If ∥� � − �0� ∥1 ≤ +0, then we have

)�∥� � − �0� ∥22 − �3+20 ≤ �� (� � ) ≤ )1�∥� � − �0� ∥22 + �3+20.
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Case 2. If ∥� � − �0� ∥1 ≥ +0, then we have

�� (� � ) ≥ )�∥� � − �0� ∥22 − �3+0
√
|� | + 3∥� � − �0� ∥2

= )�∥� � − �0� ∥22 − 2
√
�3+0

√
(|� | + 3)/2)

√
)�∥� � − �0� ∥22/2

≥ )�∥� � − �0� ∥22 −
�

2)
32+20(|� | + 3) − )�

2
∥� � − �0� ∥22

=
)�

2
∥� � − �0� ∥22 −

3

2)
�3+20(|� | + 3).

Similarly,

�� (� � ) ≤ )1�∥� � − �0� ∥22 +
�

4)1
32+20(|� | + 3) + )1�∥� � − �0� ∥22

= 2)1�∥� � − �0� ∥22 +
3

4)1
�3+20(|� | + 3).

Combining the above two cases, we obtain the results we want. □

A.3. Proof of Theorem 3.3

The posterior of model � can be written as

Π(� |  ) = "

∫

Θ

exp{(� (� � , �)} exp
{
−1
2
(�−21 ��� �� + �−20 ���	 ��	 )

}

× (�1/�)−|� | (�0/1 − �) |� |−� !� (&1/�
) !� (&2/�
) !� ('; �0, �0)��
= " (�1(1 − �)/�)−|� | (1 − �) � exp{(� (�0� , �)}(2!)−|� |/2

×
∫

Θ�

exp{−�� (� � )} exp
{
−1
2
�−21 ��� ��

}
!(&1, &2, ')�� � .

Therefore, with the notation A� = �1(1 − �)/�, we can write the posterior as

Π(� |  ) = "A
−|� |
� (1 − �) � exp{(� (�0� , �)}3� ,

where, in the set {/� ≤ 3+0},

3� = (2!)−
|� |
2

∫

Θ�

exp{−�� (� � )} exp
{
−1
2
�−21 ��� ��

}
!(&1, &2, ')�� �

≤ (2!)−
|� |
2

∫

��

exp
{
−)�∥�� − �0� ∥22 + )2�3+20 (|� | + 3)

}
exp

{
−
��� ��

2�2
1

}
���

×
2∏

�=1

∫

� �

1
√
2!�


exp

{
−

&2�

2�2



− )�(& � − & �0)2
}
�& �

∫

�

!� (')2−��(�−�0 )
2

�'

≤ exp
{
)2�3+

2
0 (|� | + 3)

} 1

2)��2

 + 1

√
2!

2)�
E!� (')

2∏

�=1

exp

{
−

)�&2
�0

2)��2

 + 1

}
(9)

× (2!)−
|� |
2 exp

{
−1
2

(
)�

2)��2
1
+ 1

)
��0��0�

}
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×
∫

��

exp

⎧⎪⎪⎨
⎪⎪⎩
−
2)��2

1
+ 1

4�2
1

(
�� −

2)��2
1

2)��2
1
+ 1

�0�

)� (
�� −

2)��2
1

2)��2
1
+ 1

�0�

)⎫⎪⎪⎬
⎪⎪⎭
���

⪯
(

2�2
1

2)��2
1
+ 1

) |� |/2
1

2)��2

 + 1

√
1

2)�
exp

{
)2�3+

2
0 (|� | + 3)

}
,

where the last approximation follows since !� (') ≤ " for some constant " > 0.

For the true model �0, we have

Π [� = �0 |  ] = "A
−|�0 |
� (1 − �) � exp{(� (�0�0 , �0)}3�0 ,

where

3�0 = (2!)−
|�0 |
2

∫

Θ�0

exp{−�� (� �0)} exp
{
−1
2
�−21 ���0��0

}
!(&1, &2, ')�� �0 . (10)

We now derive a lower bound on 3�0 . Similarly, we have

3�0 ≥
∫

�1,�2,�

!(&1, &2, ')�&1�&2�'(2!)−
|�0 |
2

×
∫

��0

exp
{
−)1�∥� �0 − �0�0 ∥22 − )3�3+0 (|�0 | + 3)

}
exp

{
−
���0��0

2�2
1

}
���0

⪰
(

2�2
1

2)1��
2
1
+ 1

) |�0 |/2
1

2)1��
2

 + 1

√
1

2)1�
exp{−)3�3+20 (|�0 | + 3)}.

(11)

Here in the integral of ' we have E(!� (')) bounded below by some constant using a Gaussian

distribution. In fact, it is larger than the integral near '0 where !� (') ≥ " for some constant

" > 0 in the interval.

Now we discuss the posterior ratios.

Π [� = �1 |  ]
Π [� = �0 |  ] ⪯

A
−|�1 |
� exp{(� (�0�1 , �1)}

(
2�2

1

2���2
1
+1

) |�1 |/2

A
−|�0 |
� exp{(� (�0�0 , �0)}

(
2�2

1

2�1��
2
1
+1

) |�0 |/2

×
1

2���2

+1

√
1

2�� exp{)2�3+20 (|�1 | + 3)}

1
2�1��

2

+1

√
1

2�1�
exp{−)3�3+20 (|�0 | + 3)}

⪯
(
1 − �

�

)−( |�1 |− |�0 | ) ()��2
1
+ 1/2)−|�1 |/2

()1��21 + 1/2)−|�0 |/2

× exp{)2�3+20 (|�1 | + 3) + )3�3+20 (|�0 | + 3)} exp{(� (�0�1 , �1) − (� (�0�0 , �0)}.

Given the orders of prior parameters, we have

Π [� = �1 |  ]
Π [� = �0 |  ]
⪯ 	−(
̃+2) ( |�1 |− |�0 | )+�2� ( |�1 |+3)+�3� ( |�0 |+3) exp{(� (�0�1 , �1) − (� (�0�0 , �0)}
= 	−(
̃+2−�2�) ( |�1 |− |�0 | )+(�2+�3 )� ( |�0 |+3) exp{(� (�0�1 , �1) − (� (�0�0 , �0)}.
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Next we consider the following three cases one by one:

1. Over-fitted models: -1 = {�1 : �1 ⊃ �0, �1 ≠ �0, |�1 | ≤ 1�},
2. Large models: -2 = {�1 : |�0 | < |�1 | ≤ 1�},
3. Under-fitted models: -3 = {�1 : �1 ⊅ �0, |�1 | ≤ |�0 |}.

Over-fitted models: if �1 ∈ -1, we have (� (�0�1 , �1) = (� (�0�0 , �0), thus
Π [� = �1 |  ]
Π [� = �0 |  ] ⪯ 	−(
̃+2−�2�) ( |�1 |− |�0 | )+(�2+�3 )� ( |�0 |+3) .

Since 3 is an arbitrary positive number no less than "̄, we can set it to be "̄. Define "̃ to be

()2 + ()2 + )3) (|�0 | + 3))"̄. Then for all models in -1

∑

�1∈�1

Π [� = �1 |  ]
Π [� = �0 |  ] ⪯

��∑

�= |�0 |+1

(
	 − |�0 |
� − |�0 |

)
	−(
̃+2−�2
̄ ) (�−|�0 | )+(�2+�3 )
̄ ( |�0 |+3)

⪯
��∑

�= |�0 |+1
	�−|�0 | 	−(
̃+2−�2
̄ ) (�−|�0 | )+(�2+�3 )
̄ ( |�0 |+3)

⪯
��∑

�= |�0 |+1
	−(�2+�3 ) ( |�0 |+3)
̄ (�−|�0 |−1) 	−(�−|�0 | )

⪯ 	−1 −→ 0.

Large models: if |�1 | > |�0 |, we use �∗
1
= �1 ∪ �0. Thus �0�∗

1
denotes the |�∗

1
| × 1 vector

including �0�0 for �0 and zeros for �1 ∩ ��
0
. We use �1�∗

1
∈ Θ�∗

1
(-) to denote the vector with

�0�1 for �1 and zeros for ��
1
∩ �0. Then we have

Π [� = �1 |  ]
Π [� = �0 |  ] ⪯ 	−(
̃+2−�2�) ( |�1 |− |�0 | )+(�2+�3 )� ( |�0 |+3) exp{−�� (�1�∗

1
)}

⪯ 	−(
̃+2−2�2�) ( |�1 |− |�0 | )+(3�2+�3 )� ( |�0 |+3) exp
{
−)�∥�0,�	

1
∩�0 ∥22

}

⪯ 	−(
̃+2−2�2�) ( |�1 |− |�0 | )+(3�2+�3 )� ( |�0 |+3) exp

{
−)�min

�
�2�0

}
.

Thus, for all models in -2,

∑

�1∈�2

Π [� = �1 |  ]
Π [� = �0 |  ] ⪯ exp

{
−)�min

�
�2�0

}

×
��∑

�= |�0 |+1

|�0 |−1∑

ℎ=0

(
	 − |�0 |
� − ℎ

) (
|�0 |
ℎ

)
	−(
̃+2−2�2�) (�−|�0 | )+(3�2+�3 )� ( |�0 |+3)

⪯
��∑

�= |�0 |+1

|�0 |−1∑

ℎ=0

	�−ℎ |�0 |ℎ	−(
̃+2−2�2�) (�−|�0 | )+(3�2+�3 )� ( |�0 |+3) exp

{
−)�min

�
�2�0

}

⪯
��∑

�= |�0 |+1
1�	

�−|�0 | 	−(
̃+2−2�2�) (�−|�0 | )+(3�2+�3 )� ( |�0 |+3)+|�0 | exp

{
−)�min

�
�2�0

}

⪯ 	−
̃+2�2�+(3�2+�3 )� ( |�0 |+3)+|�0 | exp

{
−)�min

�
�2�0

}

≤ 	−
̃+2�2�+(3�2+�3 )� ( |�0 |+3)+|�0 | 	−�
0 |�0 | −→ 0,
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for some "0 ≥ ((3)2 + )3)3 + 1)/) + (2)23 + 3(3)2 + )3)3 − "̃)/() |�0 |) in Condition 4.

Under-fitted models: if �1 ⊅ �0 and |�1 | ≤ |�0 |, similarly, we have

Π [� = �1 |  ]
Π [� = �0 |  ] ⪯ 	−(
̃+2−�2�) ( |�1 |− |�0 | )+(2�2+�3 )� ( |�0 |+3) exp

{
−)�min

�
�2�0

}
.

Then we have for all models in -3

∑

�1∈�3

Π [� = �1 |  ]
Π [� = �0 |  ] ⪯ exp

{
−)�min

�
�2�0

}

×
|�0 |∑

�=0

�∑

ℎ=0

(
	 − |�0 |
� − ℎ

) (
|�0 |
ℎ

)
	−(
̃+2−�2�) (�−|�0 | )+(2�2+�3 )� ( |�0 |+3)

⪯
|�0 |∑

�=0

�∑

ℎ=0

	�−ℎ |�0 |ℎ	−(
̃+2−�2�) (�−|�0 | )+(2�2+�3 )� ( |�0 |+3) exp

{
−)�min

�
�2�0

}

⪯ 	 (
̃+2+(�2+�3 )�) |�0 |+3(2�2+�3 )�	−�
0 |�0 | −→ 0,

for some "0 ≥ ("̃ + 2 + ()2 + )3)3)/) + 3(2)2 + )3)3/() |�0 |).
Combing the results, we have

∑
�1∈ℐ(�� )\{�0 }

Π [�=�1 |� ]
Π [�=�0 |� ]

P−→ 0, which in turn implies that

Π [� = �0 |  ] P−→ 1 on ℐ(1�). □

A.4. Proof of Theorem 3.4

Define the set �� = {(� , �) ∈ Θ(-) × ℐ(1�) : ∥� − �0∥2 ≥ @, � = �0}. We have

Π [(� , �) ∈ Θ(-) × ℐ(1�) : ∥? − ?0∥2 ≥ @ |  ] ≤ Π [� ≠ �0 |  ] + Π [�� |  ] .

On {/� ≤ 3+0}, by Theorem 3.3, we have on ℐ(1�), Π [� ≠ �0 |  ] P−→ 0, so we only need

to study Π [�� |  ], which can be rewritten as

Π [�� |  ] =

∫
��

∑
� exp{(� (� � , �) − (� (�0� , �)}!(� � , � �	 , �)�� ��� �	

∫
Θ(� )

∑
� exp{(� (� � , �) − (� (�0� , �)}!(� � , � �	 , �)�� ��� �	

. (12)

For the denominator in (12), we have
∫

Θ(� )

∑

�

exp{(� (� � , �) − (� (�0� , �)}!(� � , � �	 , �)�� ��� �	

≥
∫

Θ(� )
exp{(� (� �0 , �0) − (� (�0�0 , �0)}!(� � , � �	 , � = �0)�� �0�� �	0

≥
∫

Θ(� )
exp{−�� (� �0)}!(� � , � �	 , � = �0)�� �0�� �	0

= "A
−|�0 |
� (1 − �) �3�0

⪰ A
−|�0 |
� (1 − �) � (�−21 /2 + )1�)−|�0 |/2

√
1/2)1�

2)1��
2

 + 1

exp{−)3�3+20(|�0 | + 3)},

in which 3�0 is defined in (10) and the last inequality follows directly from the lower bound

on 3�0 in (11).
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For the numerator in (12), we have
∫

��

∑

�

exp{(� (� � , �) − (� (�0� , �)}!(� � , � �	 , �)�� ��� �	

≤
∫

��

∑

�

exp
{
−)�∥� � − �0� ∥22 + )2�3+20(|� | + 3)

}
!(� � , � �	 , �)�� ��� �	

=

(
1 − �
√
2!�0

) � (
�0�

�1(1 − �)

) |�0 | ∫

{�∈Θ(� ):∥�−�0 ∥2≥�}
exp

{
−)�∥� �0 − �0�0 ∥22

}

× exp

⎧⎪⎪⎨
⎪⎪⎩
−
���0��0

2�2
1

−
���	

0
��	

0

2�2
0

⎫⎪⎪⎬
⎪⎪⎭
!(&1, &2, ')�� �0�� �	0 exp

{
)2�3+

2
0(|�0 | + 3)

}
.

The integral set can be rewritten as

{� ∈ Θ(-) : ∥� − �0∥22 ≥ @2} = {� ∈ Θ(-) : ∥� �0 − �0�0 ∥22 + ∥� �	
0
∥22 ≥ @2}

= {� ∈ Θ(-) : ∥� �0 − �0�0 ∥22 + (1 + 	)∥� �	
0
∥22 ≥ @2 + 	∥� �	

0
∥22}.

Thus the integral is bounded above by

∫

Θ�0

exp

{
−)�∥� �0 − �0�0 ∥22 −

���0��0

2�2
1

+
∥� �0 − �0�0 ∥22
2(1 + 	)�2

0

}
!(&1, &2, ')�� �0

×
∫

Θ�	
0

exp

{
− 	

2(1 + 	)�2
0

∥��	
0
∥22

}
���	

0
exp

{
− 1

2(1 + 	)�2
0

@2

}
,

where the second integral is equal to

(
√
2!

√
1 + 	

	
�0

) �−|�0 |
⪯
(√

2!�0

) �−|�0 |
21/2.

Thus similar to steps for deriving the upper bound on 3� in (9), we can obtain an upper bound

on the numerator as∫

��

∑

�

exp{(� (� � , �) − (� (�0� , �)}!(� � , � �	 , �)�� ��� �	

⪯ A
−|�0 |
� (1 − �) �

(
1

2�2
1

+ )� − 1

2(1 + 	)�2
0

)−|�0 |/2 (
2)�(1 + 	)�2

0
− 1

(1 + 	)�2
0

�2

 + 1

)−1

×
√

1

2)� − 1/[(1 + 	)�2
0
]
exp{)2�3+20(|�0 | + 3)} exp

{
− 1

2(1 + 	)�2
0

@2

}
.

Thus given conditions 3 and 5,

Π [�� |  ] ⪯
(

�−2
1

/2 + )1�
�−2
1

/2 + )� − 1/[2(1 + 	)�2
0
]

) |�0 |/2
2)1��

2

 + 1

(2)� − 1/[(1 + 	)�2
0
])�2


 + 1

×
√

2)1�

2)� − 1/[(1 + 	)�2
0
]
exp{()2 + )3)�3+20(|�0 | + 3)} exp

{
− 1

2(1 + 	)�2
0

@2

}

⪯ exp{()2 + )3)3(|�0 | + 3) log 	} exp
{
−�
2
@2
}
.
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If we choose @ =
√
"′ |�0 | log 	/� for "′ ≥ 8()2 + )3)3, the result follows. □

A.5. Proof of Lemma A.1

Before the proof of Lemma A.1, we first claim two necessary lemmas as follows.

Lemma A.2. Under Condition 2, we have

@(	(�, �, �) | 	0(�, �, �)) ≥ )0∥	(�, �, �) − 	0(�, �, �)∥22,

@(	(�, �, �) | 	0(�, �, �)) ≤ )1
⃦⃦
	(�, �, �) − 	0(�, �, �)

⃦⃦2
2
.

Proof: The proof can be found in Appendix A.6.

Lemma A.3. For � ∈ Θ(-) and � ∈ 
, there exist some constants ) and ", such that

) |��� − ���0 |2 ≤ |!(���) − !(���0) |2 ≤ " |��� − ���0 |2.

Proof: The proof can be found in Appendix A.7.

With the notation �̃ � = (�� , & �)� for 
 = 1, 2, by Lemma A.2, we have

E�� (� � ) ≥ )0

�∑

�=1

∥	(�� , ��, �) − 	0(��, ��, �)∥22

= )0

2∑

�=1

(�̃ � � − �̃ �0� )� �̃�� �̃� (�̃ � � − �̃ �0� )

+ )0

[
�∑

�=1

|!(������ ) − !(�����0� ) |2 + �|' − '0 |2
]
.

By the lower bound in Lemma A.3, we have

E�� (� � ) ≥ )0

2∑

�=1

(�̃ � � − �̃ �0� )� �̃�� �̃� (�̃ � � − �̃ �0� )

+ )0)(�� − �0� )���� �� (�� − �0� ) + )0�|' − '0 |2

≥ )0�+1

(
2∥� − �0∥22 + |&1 − &10 |2 + |&2 − &20 |2 + )2∥� − �0∥22 + |' − '0 |2

)

≥ )�∥� � − �0� ∥22.

Similarly we can upper bound E�� (� � ). We have

E�� (� � ) ≤ )1

2∑

�=1

(�̃ � � − �̃ �0� )� �̃�� �̃� (�̃ � � − �̃ �0� )

+ )1)2(�� − �0� )���� �� (�� − �0� ) + )1�|' − '0 |2

≤ )1�∥� � − �0� ∥22.

The results then follow. □
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A.6. Proof of Lemma A.2

By Lemma 1 in [42], with some slight modification, we have

)0∥	(�, �, �) − 	0(�, �, �)∥22 ≤ @(	(�, �, �) | 	0(�, �, �)),

for some constant )0. For the other side of the inequality, we adopt a similar proof procedure

to [42]. For fixed design finite mixture regression models, their Conditions 1,2 and 3 are

automatically met with appropriate "3, Λmin and {��}, only depending on - . Thus by Taylor

expansion, we have

@(	(�, �, �) | 	0(�, �, �)) = (	� − 	0� )� � (	0� ) (	� − 	0� )/2 + 4��
,

where

⃓⃓
4��

⃓⃓
≤
⃦⃦
	� − 	0�

⃦⃦3
1

6

∫
sup

�� ∈Ψ�

max
�1 , �2 , �3

⃓⃓
⃓⃓
⃓

:3(��

:	 �1�
:	 �2�

:	 �3�

⃓⃓
⃓⃓
⃓ ��0�

�;

≤ 4"3

3

⃦⃦
	� − 	0�

⃦⃦3
2
.

By direct calculations, for � ∈ Θ(-), � ∈ 
 and � ∈ �, the largest eigenvalue of information

matrix �
(
	0(�, �, �)

)
is bounded above, i.e.,

sup
�∈
,�∈�

+max

(
�
(
	0(�, �, �)

) )
≤ Λmax,

where Λmax is some finite constant. Hence

@(	(�, �, �) | 	0(�, �, �)) ≤
Λmax

2

⃦⃦
	� − 	0�

⃦⃦2
2
+ 4"3

3

⃦⃦
	� − 	0�

⃦⃦3
2
.

Thus we have

@(	(�, �, �) | 	0(�, �, �)) ≤
Λmax

2

⃦⃦
	� − 	0�

⃦⃦2
2
+ 4"3

3

⃦⃦
	� − 	0�

⃦⃦2
2

⃦⃦
	� − 	0�

⃦⃦
1

≤ (Λmax/2 + 16"3-/3)
⃦⃦
	� − 	0�

⃦⃦2
2

≡ )1
⃦⃦
	� − 	0�

⃦⃦2
2
. □

A.7. Proof of Lemma A.3

The upper bound inequality comes from Lemma 9 in [48]. For the lower bound inequality, let

� = ���, � = ���0. Since � ∈ Θ(-) and � ∈ 
, we have � ≤ B and � ≤ B for some finite

constant B. Let !(�) = 2�/(1 + 2�), so we have

!′(�) = 2�

(1 + 2�)2 =
1

2� + 2−� + 2
≤ 1

4
.

Thus, by the mean value theorem,
⃓⃓
⃓⃓!(�) − !(�)

� − �

⃓⃓
⃓⃓ = |!′()) | ≤ 1

4
,

where ) is some constant between � and �. Therefore,

|!(���) − !(���0) |2 ≤ 1

16
|��� − ���0 |2. □
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A.8. Case of finite dimension

For the finite-dimensional case 	 = 
(1), one can use Taylor expansion around the true

parameter �0 to achieve results analogous to Lemma 3.2, under common regularity conditions

[22, 42]. The remaining steps are similar to those in the high-dimensional case. Since the

proof of the finite-dimensional case is straightforward, throughout the paper we focus on

elaborating the proof when 	 is infinite.

Additionally, we can also see that when 	 = 
(1), one can extend the parameters by

including infinitely many zeros, allowing the same procedure of the high-dimensional case to

be applicable.

Appendix B: Additional simulation results

B.1. High correlation settings

In this subsection, we conduct additional experiments to assess the impact of higher correla-

tions under both pairwise correlation settings and autoregressive correlation settings.

B.1.1. Pairwise correlation setting

We first consider the same settings as in Section 4.1 with � = 200. We increase the pairwise

correlation ' among the active prognostic or predictive covariates to {0.7, 0.8}, while keeping
the pairwise correlations among inactive covariates and between active and inactive covariates

fixed at 0.25. The results of variable selection performance are summarized in Table 6.

Table 6

Variable selection results in structured logistic-normal mixture settings with � = 200 and different values of

pairwise covariate correlation '.

	 '
�� ��

TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

100

0.25 4 4 0 1 1 1 3.80 3.81 0.32 0.60 0.80 0.81

0.7 4 4 0 1 1 1 3.39 3.44 0.57 0.33 0.48 0.49

0.8 3.98 4 0 0.98 0.98 1 2.93 3.06 0.81 0.13 0.24 0.27

500

0.25 4 4 0 1 1 1 3.65 3.65 0.42 0.47 0.65 0.66

0.7 3.99 4 0 0.99 0.99 1 2.83 3.02 0.54 0.14 0.20 0.29

0.8 3.60 4 0 0.64 0.64 1 2.30 2.65 0.65 0.02 0.05 0.11

We observe that prognostic variable selection shows robustness to increasing correlations.

When ' = 0.7, the impact on the results is minimal, even in the high-dimensional setting with

	 = 500. When ' increases to 0.8, our method still identifies more than half of the active

covariates without false discoveries in the case of 	 = 500 and achieves perfect ranking in

variable importance with TP� = 4.

Predictive variable selection exhibits greater sensitivity to increasing correlation compared

to prognostic selection, particularly in high-dimensional settings. The performance remains

robust at ' = 0.7, but deteriorates as correlation increases further. At the higher level of

' = 0.8, TP declines and FP increases, suggesting that in the logistic model, some highly
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Fig 4. Post-burnin trace plots for an active predictive covariate and an inactive predictive covariate under different

values of pairwise correlation ' between active covariates.

correlated active covariates may be overlooked, making it more difficult to accurately identify

the true predictive variables.

To assess the impact of high correlation on MCMC convergence, we evaluate the mix-

ing behavior of the Gibbs sampler under different pairwise correlation levels among active

covariates, ' ∈ 0.25, 0.7, 0.8, by examining trace plots and the effective sample size (ESS).

Since correlation primarily affects predictive covariates rather than prognostic covariates,

our analysis focuses on the trace plots of the regression coefficients associated with the

predictive covariates. We illustrate the MCMC mixing behavior using a representative trial

under the same settings as in Section 4.1 with � = 200 and 	 = 100. Figure 4(a)-(c) presents

the trace plots using every 50th iteration from a total of 15000 samples after the burn-in period

for one active predictive covariate, while Figure 4(d)-(f) shows the trace plots for one inactive

predictive covariate across different correlation levels.

The trace plots reveal a deterioration in convergence as ' increases. For the active predictive

covariate, the sampler mixes well when ' = 0.25. However, as ' increases to 0.8, the trace

shows more frequent and prolonged visits to 0, suggesting that the sampler becomes more

prone to switching the variable’s inclusion status. For the inactive predictive covariate, the

trace plots remain concentrated around zero across all levels of ' as expected.

We further examine the impact of covariate correlation on MCMC convergence by com-

puting the ESS across all prognostic and predictive covariates under different values of ', as

summarized in Table 7. For prognostic covariates, the ESS remains notably high. For predictive

covariates, the ESS is lowerwithmore variation due to the additional complexity introduced by

subgroup modeling. Overall, the ESS values for both components are satisfactory, indicating

good mixing behavior of the Gibbs sampler regardless of the correlation.
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Table 7

Averaged effective sample sizes with standard errors across all prognostic and predictive covariates under

different values of pairwise correlation ' with � = 200, 	 = 100, and post-burnin length 15000.

' Prognostic Predictive

0.25 13591 (1909.96) 924.1 (589.66)

0.7 13090 (3501.48) 1151.1 (624.92)

0.8 12887 (3792.69) 1328.0 (917.22)

Table 8

Variable selection results in structured logistic-normal mixture settings with � = 200 and different values of

autoregressive correlation '.

	 '
�� ��

TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

100

0.25 4 4 0 1 1 1 3.84 3.81 0.50 0.51 0.85 0.81

0.5 4 4 0 1 1 1 3.70 3.70 0.56 0.49 0.78 0.74

0.6 4 4 0 1 1 1 3.31 3.44 0.51 0.38 0.56 0.59

0.7 4 4 0 1 1 1 2.92 3.18 0.62 0.22 0.38 0.42

500

0.25 4 4 0 1 1 1 3.55 3.68 0.32 0.54 0.67 0.74

0.5 4 4 0 1 1 1 3.23 3.34 0.57 0.39 0.54 0.58

0.6 4 4 0 1 1 1 2.86 3.06 0.36 0.30 0.38 0.42

0.7 3.98 4 0 0.99 0.99 1 2.35 2.71 0.47 0.21 0.23 0.26

B.1.2. Autoregressive correlation setting

We also consider the case of autoregressive (AR) correlation structure where prognostic and

predictive covariates follow � (0�, Σ) with Σ� � = ' |�− � | , exhibiting local dependencies rather

than uniform pairwise correlation. The results are summarized in Table 8.

Similar conclusions can be drawn from the results in Table 8. Prognostic variable selection

remains highly robust under the AR correlation setting, achieving perfect recovery across all

' values. In contrast, predictive variable selection is more affected by the AR correlation

structure, showing a gradual decline in true positives and an increase in false positives as '

increases. This indicates that higher correlation among neighboring covariates makes it more

challenging to distinguish true predictive variables from correlated noise, leading to reduced

exact recovery rates.

B.2. Prediction errors for traditional subgroup settings

In this section, we provide the subgroup prediction errors of the traditional subgroup settings

in addition to the results provided in Section 4.2. We only study settings S1 to S4 that have

latent subgroups. We estimate the subgroup prediction errors using independent testing data

with � = 5000. The generating procedure of the testing data is the same as that for the

training data. The subgroup prediction error is calculated as the rate of observations that are

misclassified into the wrong subgroup in our testing data. For our method, the classification for

the subgroup membership is based on the estimated model from training data with the cutoff

for the probability of the logistic model being 0.5. For tree-based methods, the classification

depends on the split of the first node trained from the training data. The results are averaged

based on the estimated models from 100 training trials.
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Table 9

Subgroup prediction error of traditional subgroup settings in Section 4.2. In (a), the settings are low-dimensional

with 	 = 20, while in (b) the settings are high-dimensional with 	 = 200.

(a) 	 = 20 S1 S2 S3 S4

BVSA 0.0258 0.1055 0.1055 0.1313

MOB 0.1543 0.3115 0.2874 0.1323

FindIt 0.4904 0.2876 0.1505 0.3931

PRIM 0.0494 0.3282 0.3016 0.1429

SeqBT 0.2731 0.2364 0.2354 0.3149

GUIDE 0.0443 0.2265 0.2266 0.1327

(b) 	 = 200 S1 S2 S3 S4

BVSA 0.0242 0.1058 0.1059 0.1279

MOB 0.0238 0.3015 0.2824 0.1295

PRIM 0.0321 0.2451 0.2205 0.1358

SeqBT 0.2570 0.2345 0.2370 0.2953

GUIDE 0.0837 0.2149 0.2134 0.1302

The results for low-dimensional settings with 	 = 20 are shown in (a) of Table 9. BVSA

outperforms all other methods in all the settings, demonstrating its capability in subgroup

prediction. The performance on subgroup identification in high-dimensional settings with

	 = 200 is shown in (b) of Table 9. BVSA has the smallest prediction errors in settings S2, S3,

and S4, while in S1, its prediction error is also quite low compared to most other candidates,

again indicating that BVSA is effective and stable.

Appendix C: Additional real data results

C.1. Predictive performance evaluation

In this subsection, we assess the predictive performance of our method. We compute the

log predictive scores (LPS) on an independent test dataset following the formulation in [11].

Specifically, given a training dataset {(�� , ��, �� , ��)}�train�=1
, we adopt 9-priors on the linear

coefficients � and the logistic coefficients � based on the selected model, and estimate the

posterior distributions using Gibbs sampling. Let 
 (�) denote the posterior sample at the &th

iteration. The LPS on the testing dataset {((�� , �� , ��, ��)}�test�=1
is computed as

L̂PS = − 1

�test

�test∑

�=1

log

(
1

C

�∑

�=1

	(�� | ��, ��, �� , 
 (�) )
)
,

where C is the number of posterior samples and set as 3000 in our analysis.

In addition to LPS, we assess the effectiveness of the subgroup identification by evaluating

treatment effect heterogeneity. For each test sample, we compute a predicted subgroup score

using the estimated logistic component D̂� = x�� �̂. Based on the median D̂med, we divide the

testing dataset into the “low” subgroupwith D̂� ≤ D̂med and the “high” subgroupwith D̂� > D̂med.

Within each subgroup, we estimate the average treatment effect (ATE) by computing the

difference in adjusted outcomes between treated and untreated individuals:

-ATE =
1

�1

∑

�:��=1

(�� − ��� �̂) −
1

�0

∑

�:��=0

(�� − ��� �̂),
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Table 10

Comparison of predictive performance and subgroup treatment effect.

Model LPS ↓ Low Group ATE High Group ATE ATE Group Difference ↑
Baseline 3.172 0.352 1.447 1.095

+Age (pred) 3.171 0.574 1.141 0.567

+Hispanic (prog) 3.174 0.349 1.436 1.087

where �1 and �0 are the numbers of treated and untreated subjects in the subgroup, respectively.

A large contrast between the estimated ATEs of the “low” and “high” subgroups suggests

that the model successfully identifies meaningful heterogeneity in treatment response, thereby

validating the subgroup discovery.

We conduct a comparison on the NSW dataset using the following three models: (1) the

baseline model that includes the set of variables selected by BVSA; (2) a modified model

that additionally includes Age in the predictive component; and (3) a modified model that

additionally includes Hispanic in the prognostic component.

For each model, we compute the LPS on a held-out testing dataset comprising 20% of the

observations, and estimate the subgroup treatment effects. The results are averaged over 100

independent trials and summarized in Table 10.

The results show that all three models achieve comparable LPS values, indicating similar

predictive accuracy on the test data. However, when Age is included in the predictive compo-

nent, the contrast between subgroup treatment effects becomes notably smaller. In contrast,

the baseline model identified by BVSA yields a clearer separation between the low and high

subgroups, suggesting more meaningful treatment effect heterogeneity. On the other hand,

including Hispanic in the prognostic component does not lead to improvement in either LPS

or subgroup contrast. The subgroup treatment effects remain nearly identical to the baseline

model, indicating that Hispanic may not provide additional explanatory power beyond the

selected covariates.

These findings support the effectiveness of BVSA in selecting variables. Including variables

with seemingly small effects does not necessarily improve model performance or subgroup

identification.

C.2. Prognostic and predictive illustration for ACTG320

In this section, we illustrate the roles of Lcd40 and Lrna0 in the structured models in Figure 5

and Figure 6, respectively. Patients are divided into high and low groups based on median

cd40 and rna0, and we investigate the CD4 count change in different groups with or without

the interaction of treatment.

Our method chooses Lcd40 as an active variable in the prognostic model with a posterior

inclusion probability of 1, while Lrna0 is not included as a prognostic variable.We can observe

in (a) and (b) of Figure 5 that the CD4 count changes in high and low Lcd40 levels show

differential patterns. Their box plots do not overlap, and the estimated density curves have

two different peaks, which supports the choice of Lcd40 as prognostic. However, in (a) and

(b) of Figure 6, the CD4 count changes in high and low Lrna0 groups are similar, indicating

that Lrna0 does not have a direct effect on the CD4 count change. For the predictive part, our

method chooses both Lcd40 and Lrna0. From (c) and (d) of both Figure 5 and Figure 6, the
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Fig 5. Prognostic or predictive effects of the natural logarithm of baseline CD4 counts on the CD4 count change

at week 24 for ACTG320 study with the prognostic effect shown in (a) and (b), and the predictive effect shown in

(c) and (d).

Fig 6. Prognostic or predictive effects of the logarithm of baseline HIV-1 RNA concentration with base 10 on

the CD4 count change at week 24 for ACTG320 study with the prognostic effect shown in (a) and (b), and the

predictive effect shown in (c) and (d).

treatment effects for high and low groups of patients are different. The treatment will show

more influence in the low Lcd40 group and the high Lrna0 group. These results validate that

the prognostic and predictive models are reasonably selected.

C.3. Sensitivity analysis of hyperparameters

In this subsection, we assess the sensitivity of our method to the choice of the hyperparameters

on the NSW dataset in Section 5.1. We vary key hyperparameters, including slab variances
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Table 11

Posterior inclusion probabilities for prognostic and predictive covariates under different values of

hyperparameters: (��1, ��1), (��0, ��0), and (�� , ��). When varying one group of hyperparameters, the others

are fixed at the values specified in (5).

(a) ��1 ��1 Age Educ Black Hisp Marr RE75 Unemploy

0.8 0.8
Prog 0.015 0.014 0.722 0.081 0.036 1 0.031

Pred 0.274 0.525 0.258 0.190 0.187 0.149 0.154

1 1
Prog 0.010 0.010 0.656 0.075 0.025 1 0.025

Pred 0.245 0.715 0.189 0.142 0.180 0.149 0.114

2 2
Prog 0.006 0.005 0.463 0.046 0.015 1 0.008

Pred 0.188 0.733 0.074 0.147 0.097 0.096 0.112

(b) ��0 ��0 Age Educ Black Hisp Marr RE75 Unemploy

0.007 0.007
Prog 0.010 0.010 0.656 0.075 0.025 1 0.025

Pred 0.245 0.715 0.189 0.142 0.180 0.149 0.114

0.01 0.01
Prog 0.012 0.012 0.682 0.065 0.026 1 0.024

Pred 0.212 0.592 0.217 0.211 0.155 0.205 0.150

0.02 0.02
Prog 0.009 0.009 0.586 0.055 0.017 1 0.018

Pred 0.153 0.477 0.120 0.106 0.087 0.107 0.092

(c) �� �� Age Educ Black Hisp Marr RE75 Unemploy

0.15 0.15
Prog 0.008 0.008 0.590 0.055 0.021 1 0.015

Pred 0.170 0.524 0.098 0.122 0.099 0.111 0.097

0.20 0.20
Prog 0.010 0.010 0.656 0.075 0.025 1 0.025

Pred 0.245 0.715 0.189 0.142 0.180 0.149 0.114

0.25 0.25
Prog 0.014 0.014 0.758 0.085 0.038 1 0.031

Pred 0.315 0.656 0.235 0.214 0.197 0.200 0.192

(��1, ��1), spike variances (��0, ��0), and prior inclusion probabilities (��, ��), while keeping
the remaining hyperparameters fixed at the values specified in (5) to ensure a controlled

comparison. For each setting, we run five independent Gibbs sampling chains and report the

posterior inclusion probabilities of both prognostic and predictive covariates, averaged across

these runs.

For (��1, ��1), the results are presented in Table 11(a). For prognostic variable selection,

different choices of (��1, ��1) do not affect the selection of RE75, which is consistently

identifiedwith a posterior inclusion probability of 1.While the posterior inclusion probabilities

of other variables vary across different hyperparameter values, Black remains the second

highest probability with a substantial gap from the remaining covariates, indicating a stable

variable ranking despite changes in hyperparameter settings. For predictive variable selection,

Educ consistently has the highest inclusion probability across all settings. While the absolute

posterior inclusion probabilities of all covariates vary with different choices of (��1, ��1),
the relative rankings of variable importance remain largely stable, further demonstrating the

robustness of our method.

The results for (��0, ��0) and (�� , ��) are presented in Tables 11(b) and 11(c), respectively.
We observe similar patterns in these analyses, further supporting the conclusion that our

method is stable with respect to hyperparameter choices.
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Table 12

Variable selection results in structured logistic-normal mixture settings with n = 200 and ' = 0. (a) Results

under the same hyperparameter strategies on � and �, where spike hyperparameters (��0, ��0) or slab
hyperparameters (��1, ��1) are modified with multipliers 0.5 or 2. (b) Results under the separate hyperparameter

strategies on � and �, where slab hyperparameters ��1 or ��1 are modified with multipliers 0.5 or 2.

(a) Hyper �� ��

	 Spike Slab TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

500

×1 ×1 4 4 0 1 1 1 3.68 3.74 0.34 0.55 0.69 0.74

×2 ×1 4 4 0 1 1 1 3.69 3.72 0.31 0.55 0.70 0.73

×0.5 ×1 4 4 0 1 1 1 3.65 3.64 0.39 0.54 0.68 0.67

×1 ×2 4 4 0 1 1 1 3.70 3.61 1.11 0.31 0.72 0.65

×1 ×0.5 4 4 0 1 1 1 3.52 3.68 0.10 0.51 0.56 0.68

(b) Slab �� ��

	 ��1 ��1 TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

500

×1 ×1 4 4 0 1 1 1 3.68 3.74 0.34 0.55 0.69 0.74

×0.5 ×1 4 4 0 1 1 1 3.69 3.71 0.36 0.54 0.71 0.73

×1 ×0.5 4 4 0 1 1 1 3.54 3.68 0.13 0.53 0.57 0.68

×0.5 ×0.5 4 4 0 1 1 1 3.52 3.68 0.10 0.51 0.56 0.68

×2 ×1 4 4 0 1 1 1 3.72 3.76 0.30 0.61 0.73 0.76

×1 ×2 4 4 0 1 1 1 3.73 3.67 0.91 0.36 0.75 0.69

×2 ×2 4 4 0 1 1 1 3.70 3.61 1.11 0.31 0.72 0.65

Appendix D: Sensitivity analysis

D.1. Sensitivity analysis of spike-and-slab variances

As noted in [19], continuous spike-and-slab priors are sensitive to the choice of variances,

making prior calibration an essential consideration in Bayesian variable selection. To assess

their sensitivity, we first conduct an analysis where we simultaneously adjust the variance

hyperparameters in both the linear and logistic components. Specifically, we scale the spike

or slab variances by multipliers of 0.5 or 2, and examine the impact on variable selection.

The results under the same settings in Section 4.1 with � = 200 from 100 random trials are

summarized in Table 12(a). We present the results with ' = 0, while the results with ' = 0.25

show similar patterns.

We have the following three observations. First, for the linear part, the results on � are

perfect across all settings, indicating that the linear part is not sensitive to the choice of

(��1, ��1) and (��0, ��0) within a reasonable range. Second, for the logistic part, the variation
in spike variances (��0, ��0) does not significantly affect the variable selection results for

predictive covariates. Third, for the logistic part, the choice of slab variance (��1, ��1) exhibits
a trade-off between true positives and false positives. Smaller slab variances lead to a more

conservative selection on �, while larger values may increase the false positives.

Based on these observations, we find that when applying the same hyperparameter settings

for � and �, the overall variable selection performance remains stable within reasonable

variations. However, we also observe that the selection on � is more sensitive to the scales of

slab variances (��1, ��1) than that on �. This suggests that the linear and logistic components

may operate on different scales of (��1, ��1) and could benefit from separate calibration
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Table 13

Variable selection results in structured logistic-normal mixture settings with n = 200 and ' = 0. Prior inclusion

probabilities �� and �� are modified with multipliers 0.5 or 2.

	
Prior �� ��

�� �� TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

100

×1 ×1 4 4 0 1 1 1 3.89 3.89 0.36 0.63 0.89 0.89

×0.5 ×1 4 4 0 1 1 1 3.89 3.88 0.33 0.63 0.89 0.88

×1 ×0.5 4 4 0 1 1 1 3.82 3.87 0.05 0.81 0.82 0.87

×0.5 ×0.5 4 4 0 1 1 1 3.81 3.89 0.07 0.79 0.82 0.89

×2 ×1 4 4 0 1 1 1 3.89 3.89 0.32 0.66 0.89 0.89

×1 ×2 4 4 0 1 1 1 3.99 3.88 2.34 0.09 0.99 0.88

×2 ×2 4 4 0 1 1 1 4.00 3.86 2.42 0.09 1.00 0.86

500

×1 ×1 4 4 0 1 1 1 3.68 3.74 0.34 0.55 0.69 0.74

×0.5 ×1 4 4 0 1 1 1 3.68 3.70 0.27 0.55 0.69 0.70

×1 ×0.5 4 4 0 1 1 1 3.64 3.73 0.18 0.58 0.68 0.73

×0.5 ×0.5 4 4 0 1 1 1 3.60 3.70 0.20 0.56 0.65 0.71

×2 ×1 4 4 0 1 1 1 3.70 3.69 0.33 0.57 0.70 0.69

×1 ×2 4 4 0 1 1 1 3.69 3.62 0.63 0.43 0.70 0.64

×2 ×2 4 4 0 1 1 1 3.74 3.68 0.64 0.40 0.76 0.69

strategies. Therefore, we further investigate the individual impact of ��1 and ��1 by modifying

them separately, and the corresponding results are presented in Table 12(b).

From Table 12(b), we observe that the results are not sensitive to the change of ��1, while

the trade-off between true positives and false positives is primarily influenced by the choice of

��1. This observation underscores the necessity of distinct prior calibration for the linear and

logistic components in practical applications. Proper calibration of ��1 is particularly crucial

for guaranteeing robust variable selection on predictive covariates, especially in challenging

scenarios involving high dimensionality and potential model misspecification.

D.2. Sensitivity analysis of prior inclusion probabilities

In this subsection, we examine the choice of prior inclusion probabilities �� and �� by applying

a similar sensitivity analysis under the same settings in Section 4.1 with � = 200. Specifically,

we scale each of these probabilities by multipliers of 0.5 or 2 separately to assess their impact

on variable selection performance. The results from 100 random trials are summarized in

Table 13.

Based on the results in Table 13, we observe the following key findings regarding the

sensitivity of prior inclusion probabilities �� and ��. First, the results for � remain highly

stable across different values of ��. Second, the results for � exhibit an expected trade-off

between true positives and false positives. A larger �� increases the number of selected

variables, leading to higher true positives and false positives, particularly when 	 = 500.

This highlights the need for calibration of �� in predictive variable selection. Third, despite

variations in ��, TP� and �� = �0 for �
� remain stable, suggesting that the ranking ability of

the model remains largely unaffected within a reasonable range of hyperparameter choices.

We conclude from these results that, while theoretically the same order of �� and ��

guarantees model selection and parameter estimation consistency, empirically they can be
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Table 14

Sensitivity to �2

, �0, and �0.

(a) �0 = 2 and �0 = 1

TP TP� FP � = �0 � ⊃ �0 �� = �0

�2

 = 1 �� 4 4 0 1 1 1

�� 3.86 3.87 0.25 0.7 0.87 0.87

�2

 = 2 �� 4 4 0 1 1 1

�� 3.86 3.86 0.29 0.67 0.87 0.86

�2

 = 3 �� 4 4 0 1 1 1

�� 3.87 3.86 0.32 0.66 0.88 0.86

(b) �2

 = 1 and �0 = 1

TP TP� FP � = �0 � ⊃ �0 �� = �0

�0 = 1 �� 4 4 0 1 1 1

�� 3.87 3.87 0.3 0.66 0.88 0.87

�0 = 2 �� 4 4 0 1 1 1

�� 3.84 3.87 0.3 0.65 0.85 0.87

�0 = 3 �� 4 4 0 1 1 1

�� 3.86 3.87 0.3 0.64 0.87 0.87

(c) �2

 = 1 and �0 = 2

TP TP� FP � = �0 � ⊃ �0 �� = �0

�0 = 1 �� 4 4 0 1 1 1

�� 3.84 3.87 0.3 0.65 0.85 0.87

�0 = 2 �� 4 4 0 1 1 1

�� 3.85 3.87 0.3 0.67 0.86 0.87

�0 = 3 �� 4 4 0 1 1 1

�� 3.85 3.85 0.29 0.66 0.86 0.86

calibrated differently to achieve improved finite-sample performance. Specifically, while ��
remains robust across different values, �� requires careful tuning to prevent excessive false

positives.

D.3. Sensitivity analysis of other hyperparameters

In this section, we explore the sensitivity of our methods to other hyperparameters in the

assigned weak informative prior distributions. To be specific, we investigate the influence of

�2

 in the priors of �1 and �2 as well as �0 and �0 in the prior of �	 . We consider the setting

with 	 = 100 and ' = 0 in Section 4.1 with � = 200.

For �2

, we fix �0 = 2 and �0 = 1 and consider a range of �2


 ∈ {1, 2, 3}. The variable

selection results are presented in Table 14(a). All measures do not vary much, especially for

variable importance ranking, indicating that BVSA is not sensitive to the choice of �2

.

Similarly, we consider �0 ∈ {1, 2, 3} with fixed �2

 = 1 and �0 = 1 and �0 ∈ {1, 2, 3} with

fixed �2

 = 1 and �0 = 2. The results are reported in Table 14(b) and Table 14(c), respectively,

indicating our method is robust to the choices of the hyperparameters.

D.4. Sensitivity analysis of initialization

In this subsection, we examine the sensitivity of our method to initialization. In our approach,

the Gibbs sampler is randomly initialized by drawing samples from the prior distributions. To
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Table 15

Variable selection results in structured logistic-normal mixture settings with � = 200 and ' = 0. “Prior”:

initialization by random sampling according prior distributions; “EM-r”: initialization via random active

variable selection and EM algorithm; “EM-s”: initialization via active variable selection by lasso and GUIDE

[27] and EM algorithm.

	 Init
�� ��

TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

100

Prior 4 4 0 1 1 1 3.89 3.89 0.36 0.63 0.89 0.89

EM-r 4 4 0 1 1 1 3.88 3.90 0.33 0.64 0.88 0.90

EM-s 4 4 0 1 1 1 3.87 3.90 0.34 0.62 0.87 0.90

500

Prior 4 4 0 1 1 1 3.68 3.74 0.34 0.55 0.69 0.74

EM-r 4 4 0 1 1 1 3.67 3.67 0.35 0.50 0.69 0.68

EM-s 4 4 0 1 1 1 3.67 3.70 0.33 0.54 0.68 0.70

further assess the impact of initialization, we consider two alternative EM-based initialization

strategies:

• EM-r: We randomly select active prognostic and predictive covariates, with the size

determined as min(30, 0.2	 ) and min(30, 0.2	!), respectively. Using this subset of

covariates, we estimate the initialmodel parameters via the EMalgorithmon this selected

low-dimensional model.

• EM-s: We apply a tree-based method, GUIDE [27], to select predictive covariates, and

use LASSO to select prognostic covariates. The EM algorithm is then used to estimate

initial model parameters based on the selected variables.

We compare the performance of these three initialization strategies under the same settings

as in Section 4.1 with � = 200. Specifically, we evaluate their impact on variable selection

and convergence behavior of the Gibbs sampler.

For variable selection, as indicated in Table 15, the choice of initialization has a small

impact on the selection performance.

We investigate the impact on mixing of the sampler using trace plots and effective sample

size (ESS). We take one representative trial under 	 = 100 as an example. We present the

trace plots using every 50th iteration from a total of 15000 samples after the burn-in period

for different initialization methods (Prior, EM-r, EM-s) across different variable categories in

Figure 7. The trace plots exhibit a high degree of consistency across all settings, indicating

that our approach achieves stable mixing regardless of the initialization strategy.

We further present the averaged ESS across all prognostic and predictive covariates for

different initialization methods in Table 16. The results indicate that the prognostic covariates

consistently achieve high ESS values across all initialization methods, suggesting stable and

efficient sampling. For the predictive covariates, while the ESS values are lower due to the

challenge from subgroup modeling, they remain comparable across different initializations.

These results reinforce the robustness of our approach to initialization choices.

D.5. Sensitivity analysis of model misspecification

In this subsection, we investigate the robustness of our method to two types of model mis-

specification: (1) misspecification in the subgroup membership structure; (2) misspecification

in the noise distribution of the linear model.
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Fig 7. Trace plots for different initialization methods (Prior, EM-r, EM-s) across different variable categories.

Table 16

Averaged effective sample sizes with standard errors across all prognostic and predictive covariates for different

initialization methods (Prior, EM-r, EM-s) with � = 200, 	 = 100, ' = 0, and post-burnin length 15000.

Init Prognostic Predictive

Prior 14016 (1752.04) 1412.7 (606.62)

EM-r 13831 (1682.09) 1392.8 (561.98)

EM-s 13893 (1602.60) 1350.1 (685.41)

For the first type of misspecification, we have conducted extensive experiments to evaluate

its impact under traditional rule-based subgroup settings in Section 4.2, where our method

exhibits strong robustness. We further consider the scenario where the subgroup membership

structure follows a probit link function and summarize the results in Table 17.

The results demonstrate that prognostic variable selection remains highly stable, achieving

perfect recovery of the true set under the probit link case. Moreover, predictive variable

selection is also robust to link function misspecification, with only minimal variations. These

findings indicate that our method effectively adapts to different link functions, demonstrating

strong robustness to subgroup membership structure misspecification.

For the second type of misspecification, we consider scenarios where the assumed normal
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Table 17

Variable selection results in structured logistic-normal mixture settings with � = 200 and ' = 0. Probit link

function is considered as an example of subgroup membership structure misspecification.

	 Link
�� ��

TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

100
Logit 4 4 0 1 1 1 3.89 3.89 0.36 0.63 0.89 0.89

Probit 4 4 0 1 1 1 3.88 3.92 0.26 0.70 0.88 0.92

500
Logit 4 4 0 1 1 1 3.68 3.74 0.34 0.55 0.69 0.74

Probit 4 4 0 1 1 1 3.68 3.73 0.25 0.63 0.68 0.73

Table 18

Variable selection results in structured logistic-normal mixture settings with � = 200 and ' = 0. Different noise

distributions are considered, including the standard normal distribution and Student’s t distribution with degrees

of freedom of 2 or 3.

	 Noise
�� ��

TP TP� FP � = �0 � ⊃ �0 �� = �0 TP TP� FP � = �0 � ⊃ �0 �� = �0

100

� (0, 1) 4 4 0 1 1 1 3.89 3.89 0.36 0.63 0.89 0.89

� (3) 4 4 0 1 1 1 3.88 3.89 0.36 0.61 0.88 0.89

� (2) 4 4 0 1 1 1 3.88 3.88 0.36 0.61 0.88 0.88

500

� (0, 1) 4 4 0 1 1 1 3.68 3.74 0.34 0.55 0.69 0.74

� (3) 4 4 0 1 1 1 3.66 3.71 0.30 0.56 0.68 0.72

� (2) 4 4 0 1 1 1 3.73 3.74 0.29 0.57 0.73 0.74

distribution of the noise term in the response model differs from the true data-generating

process. Specifically, we allow the true noises to follow a heavy-tailed distribution, including

Student’s t-distributions with degrees of freedom 2 or 3. To evaluate the impact of such

misspecification, we conducted experiments under the same settings as Section 4.1 with

� = 200. The results are summarized in Table 18.

We observe that prognostic variable selection is highly stable across different noise distri-

butions. The prognostic selection performance remains perfect even in the � (2) noise case,

where the noise distribution has heavier tails. Similarly, predictive variable selection is insen-

sitive to the noise distribution misspecification. These results confirm the robustness of our

method under deviations from the normality assumption.

Appendix E: Critical evaluation

In our simulation studies in Section 4.2, we primarily compare BVSAwith tree-basedmethods,

such as GUIDE [27] andMOB [39]. These methods are particularly well-suited for traditional

rule-based subgroup settings, where the subgroup membership follows a predefined splitting

structure. Unlike BVSA, they directly model subgroup boundaries using recursive partitioning,

rather than relying on a global parametric model.

Despite our results in Section 4.2 demonstrating that BVSA remains robust in suchmisspec-

ified settings, we did not examine the impact of high correlation among predictive covariates

in rule-based settings. Since all covariates enter the model simultaneously, BVSA is sensitive

to high correlation. Additionally, high correlation can create difficulties with convergence.

As a result, BVSA may select redundant or irrelevant variables, leading to decreased true

positives and increased false positives. In contrast, tree-based methods divide the data into
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Table 19

Predictive variable selection results in rule-based subgroup settings with � = 200 and various pairwise covariate

correlations.

	 ' Method TP TP� FP � = �0 � ⊃ �0 �� = �0

20

0.5

BVSA 1.98 2.53 0.09 0.19 0.20 0.54

MOB 2.69 2.69 0.07 0.67 0.69 0.67

PRIM 2.71 2.58 0.62 0.51 0.74 0.52

SeqBT 2.49 2.49 0.02 0.54 0.56 0.54

GUIDE 2.67 2.67 0.33 0.48 0.67 0.46

0.6

BVSA 1.76 2.41 0.10 0.10 0.12 0.43

MOB 2.60 2.60 0.09 0.58 0.60 0.58

PRIM 2.71 2.52 0.94 0.37 0.75 0.38

SeqBT 2.41 2.41 0.04 0.46 0.50 0.46

GUIDE 2.57 2.56 0.35 0.44 0.57 0.40

0.7

BVSA 1.42 2.14 0.08 0.03 0.03 0.26

MOB 2.39 2.39 0.11 0.37 0.39 0.37

PRIM 2.55 2.35 0.96 0.27 0.59 0.27

SeqBT 2.14 2.14 0.05 0.26 0.28 0.26

GUIDE 2.40 2.44 0.46 0.23 0.41 0.17

200

0.5

BVSA 1.77 1.99 1.15 0.07 0.16 0.18

MOB 2.52 2.52 0.04 0.52 0.52 0.52

PRIM 1.82 1.77 0.92 0.12 0.15 0.12

SeqBT 2.55 2.55 0.06 0.56 0.60 0.56

GUIDE 2.40 2.37 0.31 0.31 0.41 0.30

0.6

BVSA 1.58 1.69 1.17 0.02 0.03 0.03

MOB 2.44 2.44 0.10 0.44 0.44 0.44

PRIM 1.70 1.55 1.84 0.08 0.11 0.08

SeqBT 2.36 2.36 0.12 0.37 0.41 0.37

GUIDE 2.24 2.21 0.49 0.17 0.25 0.17

0.7

BVSA 1.17 1.56 0.95 0 0.03 0.01

MOB 2.13 2.13 0.22 0.14 0.14 0.14

PRIM 1.55 1.35 2.24 0 0 0

SeqBT 2.21 2.21 0.13 0.24 0.30 0.24

GUIDE 2.07 2.06 0.63 0.06 0.08 0.05

subgroups hierarchically based on individual variable thresholds. Even if two variables are

highly correlated, a tree-based approach will typically only use one of them in a given split.

This structure makes tree-based methods less sensitive to correlation, while BVSA’s global

logistic model is more susceptible to the selection of highly correlated inactive variables.

To assess the limitations of BVSA, we conduct simulations under the rule-based subgroup

settings with high pairwise correlations among predictive covariates. Specifically, we generate

data based on the following model:

 = 1 − 1.5�1 + 2�2 − 2.5�3 + 3�4 + 40� × � (�1 ≥ −1, �3 < 1, �5 < 0.5) + �,

where both � and � followmultivariate normal distributions with varying pairwise correlation

levels ' ∈ {0.5, 0.6, 0.7}. We consider 	 = 2	1 = 2	2 with 	 ∈ {20, 200} and compare BVSA

with tree-based methods, including MOB [39], PRIM [8], SeqBT [17], and GUIDE [27]. The

results from 100 random trials are summarized in Table 19.
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When 	 = 20, our method exhibits a conservative behavior in variable selection, with both

low TP and low FP, whereas tree-based methods identify most of the active covariates. As

' increases, the performance of BVSA deteriorates, reflected in a decline in TP and reduced

exact recovery of the true predictive set. Despite these limitations, BVSAmaintains TP� values

that are comparable to those of tree-based methods, demonstrating its robustness in ranking

variable importance even under high correlation. When 	 = 200, BVSA’s performance further

deteriorates in the misspecified setting under high dimensionality and strong correlation,

highlighting the challenge of identifying true predictive covariateswhen all variables are jointly

handled in the regressionmodel. Ourmethod becomesmore susceptible to selecting redundant

covariates, leading to an increase in FP. In contrast, most tree-based methods demonstrate

greater robustness. Notably, MOB and SeqBT maintain stable TP values, showcasing their

ability to select relevant covariates despite strong correlation. These findings validate the key

limitation of BVSA in rule-based settings with highly correlated predictive covariates.

Acknowledgments

The authors would like to thank the anonymous referees, an Associate Editor, and the Editor

for their constructive comments that improved the quality of this paper.

Funding

This work was partially supported by the National Nature and Science Foundation of China

(11871165, 12331009), and the National Science Foundation of US (CAREER-1943500).

References

[1] ALBERT, J. H. and CHIB, S. (1993). Bayesian Analysis of Binary and Polychoto-

mous Response Data. Journal of the American Statistical Association 88 669–679.

MR1224394

[2] BERKHOF, J., VAN MECHELEN, I. and GELMAN, A. (2003). A Bayesian approach to

the selection and testing of mixture models. Statistica Sinica 13 423–442. MR1977735

[3] BERNARDO, J. M. and SMITH, A. F. M. (1994). Bayesian Theory. JohnWiley & Sons,

New York. MR1274699

[4] BHATTACHARYA, A., PATI, D., PILLAI, N. S. and DUNSON, D. B. (2015). Dirichlet–
Laplace priors for optimal shrinkage. Journal of the American Statistical Association

110 1479–1490. MR3449048

[5] BONDELL, H. D. and REICH, B. J. (2012). Consistent high-dimensional Bayesian

variable selection via penalized credible regions. Journal of the American Statistical

Association 107 1610–1624. MR3036420

[6] BÜHLMANN, P. (2013). Statistical significance in high-dimensional linear models.

Bernoulli 19 1212–1242. MR3102549

[7] CAI, T., TIAN, L., WONG, P. H. and WEI, L. J. (2010). Analysis of randomized

comparative clinical trial data for personalized treatment selections. Biostatistics 12

270–282.



2920 R. Zhang et al.

[8] CHEN, G., ZHONG, H., BELOUSOV, A. and DEVANARAYAN, V. (2015). A PRIM

approach to predictive-signature development for patient stratification. Statistics in

Medicine 34 317–342. MR3293151

[9] FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and

its oracle properties. Journal of the American Statistical Association 96 1348–1360.

MR1946581

[10] FINOCCHIO, G. and SCHMIDT-HIEBER, J. (2023). Posterior contraction for deep Gaus-
sian process priors. Journal of Machine Learning Research 24 1–49. MR4582488

[11] GELMAN, A., HWANG, J. and VEHTARI, A. (2014). Understanding predictive informa-

tion criteria for Bayesian models. Statistics and computing 24 997–1016. MR3253850

[12] GEORGE, E. I. and MCCULLOCH, R. E. (1993). Variable selection via Gibbs sampling.

Journal of the American Statistical Association 88 881–889.

[13] GHOSH, J., HERRING, A. H. and SIEGA-RIZ, A. M. (2011). Bayesian variable selec-

tion for latent class models. Biometrics 67 917–925. MR2829266

[14] GUO, X. and HE, X. (2021). Inference on selected subgroups in clinical trials. Journal

of the American Statistical Association 116 1498–1506. MR4309288

[15] GUO, X., WEI, W., LIU, M., CAI, T., WU, C. and WANG, J. (2023). Assessing the

most vulnerable subgroup to type II diabetes associated with statin usage: Evidence

from electronic health record data. Journal of the American Statistical Association 118

1488–1499. MR4646578

[16] HAMMER, S. M., SQUIRES, K. E., HUGHES, M. D., GRIMES, J. M., DEME-
TER, L. M., CURRIER, J. S., ERON, J. J., FEINBERG, J. E., BALFOUR, H. H., DEY-
TON, L. R., CHODAKEWITZ, J. A., FISCHL, M. A., PHAIR, J. P., PEDNEAULT, L.,
NGUYEN, B.-Y. and COOK, J. C. (1997). A controlled trial of two nucleoside ana-

logues plus indinavir in persons with human immunodeficiency virus infection and CD4

cell counts of 200 per cubic millimeter or less. New England Journal of Medicine 337

725–733.

[17] HUANG, X., SUN, Y., TROW, P., CHATTERJEE, S., CHAKRAVARTTY, A., TIAN, L.
and DEVANARAYAN, V. (2017). Patient subgroup identification for clinical drug devel-

opment. Statistics in Medicine 36 1414–1428. MR3631969

[18] IMAI, K. and RATKOVIC, M. (2013). Estimating treatment effect heterogeneity in ran-

domized program evaluation. The Annals of Applied Statistics 7 443–470. MR3086426

[19] IQBAL, A., OGUNDIMU, E. O. and RUBIO, F. J. (2025). Bayesian variable selection in
sample selection models using spike-and-slab priors.

[20] ITALIANO, A. (2011). Prognostic or predictive? It’s time to get back to definitions!

Journal of Clinical Oncology 29 4718–4718.

[21] JOHNSON, V. E. and ROSSELL, D. (2012). Bayesian model selection in high-

dimensional settings. Journal of the American Statistical Association 107 649–660.

MR2980074

[22] KHALILI, A. and CHEN, J. (2007). Variable selection in finite mixture of regression

models. Journal of the American Statistical Association 102 1025–1038. MR2411662

[23] LEE, K. and CAO, X. (2021). Bayesian group selection in logistic regression with

application to MRI data analysis. Biometrics 77 391–400. MR4307642

[24] LI, J., LI, Y., JIN, B. and KOSOROK, M. R. (2021). Multi-threshold change plane

model: estimation theory and applications in subgroup identification. Statistics in

Medicine 40 3440–3459. MR4269063



Bayesian variable selection for subgroup analysis 2921

[25] LIANG, F., SONG, Q. and YU, K. (2013). Bayesian subset modeling for high-

dimensional generalized linear models. Journal of the American Statistical Association

108 589–606. MR3174644

[26] LIU, Y., MA, X., ZHANG, D., GENG, L., WANG, X., ZHENG, W. and CHEN, M.-H.
(2019). Look before you leap: Systematic evaluation of tree-based statistical methods in

subgroup identification. Journal of Biopharmaceutical Statistics 29 1082–1102.

[27] LOH, W.-Y. (2002). Regression trees with unbiased variable selection and interaction

detection. Statistica Sinica 12 361–386. MR1902715

[28] LOH, W.-Y., CAO, L. and ZHOU, P. (2019). Subgroup identification for precision

medicine: A comparative review of 13 methods. WIREs Data Mining and Knowledge

Discovery 9 e1326.

[29] LU, Z. and LOU, W. (2023). Bayesian approaches to variable selection in mixture

models with application to disease clustering. Journal of Applied Statistics 50 387–407.

MR4536600

[30] MA, J., STINGO, F. C. and HOBBS, B. P. (2019). Bayesian personalized treatment

selection strategies that integrate predictive with prognostic determinants. Biometrical

Journal 61 902–917. MR3982424

[31] NARISETTY, N. N. and HE, X. (2014). Bayesian variable selection with shrinking and

diffusing priors. The Annals of Statistics 42 789–817. MR3210987

[32] NARISETTY, N. N., SHEN, J. and HE, X. (2019). Skinny Gibbs: A consistent and scal-

able Gibbs sampler for model selection. Journal of the American Statistical Association

114 1205–1217. MR4011773

[33] PEDONE, M., ARGIENTO, R. and STINGO, F. C. (2024). Personalized treatment selec-

tion via product partition models with covariates. Biometrics 80 ujad003. MR4867257

[34] POLSON, N. G., SCOTT, J. G. and WINDLE, J. (2013). Bayesian inference for logis-

tic models using Pólya-Gamma latent variables. Journal of the American Statistical

Association 108 1339–1349. MR3174712

[35] RAY, K. and SZABÓ, B. (2022). Variational Bayes for high-dimensional linear regres-

sion with sparse priors. Journal of the American Statistical Association 117 1270–1281.

MR4480711

[36] RAY, K., SZABÓ, B. and CLARA, G. (2020). Spike and slab variational Bayes for high
dimensional logistic regression. In Advances in Neural Information Processing Systems

(H. LAROCHELLE, M. RANZATO, R. HADSELL, M. F. BALCAN and H. LIN, eds.) 33

14423–14434. Curran Associates, Inc.

[37] ROSSELL, D. and RUBIO, F. J. (2023). Additive Bayesian variable selection under

censoring and misspecification. Statistical Science 38 13–29. MR4534642
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