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Abstract: Subgroup analysis has emerged as an important tool to identify unknown sub-
group memberships in the presence of heterogeneity. However, much of the existing work
focused on the low-dimensional scenario where only a few candidate variables are consid-
ered for modeling the subgroup membership. In this paper, we propose a two-component
structured mixture model with a Bayesian variable selection approach for identifying pre-
dictive and prognostic variables separately in the high-dimensional setting. By employing
spike and slab priors, we achieve the selection of predictive and prognostic variables and
the estimation of the treatment effect in the selected subgroup simultaneously. We establish
theoretical properties by showing strong variable selection consistency and posterior con-
traction behavior of our method, and demonstrate its performance using simulation studies.
Finally, we apply the proposed method to data from the National Supported Work and
the AIDS Clinical Trials Group 320 study, identifying predictive and prognostic variables
associated with subgroups exhibiting differential treatment effects.
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1. Introduction

Subgroup analysis is a powerful tool for identifying heterogeneous treatment effects in various
areas, including clinical trials and market segmentation. Traditional subgroup analysis focuses
on the case where subgroup membership is determined by one or a few known covariates of
interest, such as gender. Such a variable is said to be a “predictive” variable in subgroup analysis
and helps to assign better treatment [20]. Other relevant variables are said to be “prognostic”
when they contain information on the response regardless of the treatment. However, in
recent years, researchers have also considered the case where the subgroup membership is
unknown and the task is to target the potential subgroup. Seibold et al. [39], Huang et al. [17],
Loh et al. [28], and Liu et al. [26] used tree-based methods to find the subgroup iteratively.
Imai and Ratkovic [18] used a support vector machine model with lasso penalties to select
subgroup variables. Chen et al. [8] proposed a search procedure to find patient stratification
and described a resampling scheme to select the splitting variables. Shen and He [40] and Shen
and Qu [41] proposed a mixture model to simultaneously model subgroup membership and
response distributions within two distinct subgroups. Li et al. [24] and Wang et al. [45] used
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change plane models to identify unknown subgroups. Guo and He [14] and Guo et al. [15]
made inference of the treatment effect on selected subgroups. Ma et al. [30] and Pedone et al.
[33] clustered patients with similar predictive biomarkers and predicted the response based on
both cluster results and prognostic variables. However, all these methods only assume a fixed
number of covariates in their asymptotic studies and do not account for challenges arising in
high-dimensional settings, where the number of candidate variables can be large relative to the
sample size. As a result, their performance may deteriorate in such scenarios. In this paper,
building on the work of Shen and He [40], we develop a two-component structured mixture
model that extends to high-dimensional covariates.

When the design matrix is high-dimensional, especially when the number of variables ex-
ceeds the number of observations, the estimation problem is ill-posed. Moreover, as discussed
by Ghosh et al. [13], the identification of subgroup membership will be subject to larger
uncertainty without the exclusion of inactive covariates. These challenges can be remedied
by variable selection under the assumption of sparsity. For variable selection under high-
dimensional settings, one common approach is to add a penalty to the negative log-likelihood
in the objective function, including the popular LASSO penalty [44], SCAD penalty [9], and
MCP penalty [51], among others. However, Wang [48] observed several limitations of penalty-
based methods for mixture models in terms of both theoretical properties and computational
feasibility as they require optimization of non-convex objective functions.

In this paper, we consider a Bayesian alternative for high-dimensional subgroup analysis,
which aims to alleviate the theoretical and computational challenges. In the framework of
Bayesian approaches, suitable choices of prior distributions on the parameters can be used
to perform estimation and variable selection [12, 21, 38, 4, 29]. With appropriate priors on
the parameters involved in the model, the resultant posterior of the Bayesian method can be
asymptotically similar to the Lo penalized likelihood function [31, 25, 32]. A comprehensive
overview of Bayesian variable selection methods can be found in Tadesse and Vannucci [43].
While previous works have mainly focused on the theoretical properties on variable selection
[31, 50, 32], in this paper, we also study the posterior contraction properties on parameter
estimation. Such properties have gained increasing interest in recent literature [35, 47, 10].
For computations, Markov Chain Monte Carlo (MCMC) techniques can be used for sampling
from the posterior, which avoids the difficulties with optimization, especially in situations
where the objective function is non-convex, such as censored regression models [37] and
mixture models [49, 2]. Lu and Lou [29] proposed a Bayesian method to identify important
variables for subgroup assignment using only predictive covariates, without considering high-
dimensional scenarios.

The contributions of this article are summarized as follows. Firstly, we propose a structured
mixture model that captures the subgroup membership and the within-subgroup information
simultaneously and provides estimates of the treatment effect in the selected subgroup with-
out ad hoc analysis. Secondly, we allow the variables in both parts of the model to be
high-dimensional and provide variable selection methods to separately select predictive and
prognostic variables. From our model, the “predictive” variables are directly used to predict
the subgroup membership, while the selected variables from the tree-based methods or inter-
action models are not necessarily predictive. Thirdly, we establish strong selection consistency
of variable selection and obtain posterior contraction rates for parameter estimation in the
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¢ loss, and lastly, we provide a computationally scalable algorithm for high-dimensional
settings.

In view of our contributions, we also acknowledge the broader context of subgroup analysis.
While our method assumes a model-based framework for subgroup membership, another
common approach follows a rule-based paradigm, where subgroups are defined by explicit
covariate thresholding. This structure is prevalent in clinical applications, where subgroups
are determined based on interpretable criteria, and many existing methods, such as GUIDE
[27] and MOB [39], fall into that category. In this paper, we consider the rule-based setting
as a form of model misspecification and evaluate the robustness of our method. Further, we
recognize some limitations of our method in the rule-based setting. If predictive covariates
exhibit high collinearity, model-based methods may become less robust than the tree-based
approaches. We provide a critical analysis, along with simulation studies, to showcase this
aspect of our method and discuss potential improvements.

The rest of the paper is organized as follows. Section 2 introduces the structured mix-
ture model, the prior specifications, the posterior distribution, and the corresponding Gibbs
sampler. Section 3 provides the theoretical justification of the proposed method. We provide
comprehensive simulation studies in Section 4. We analyze data from the National Supported
Work study and the AIDS Clinical Trials Group 320 study in Section 5 and conclude the paper
with a discussion in Section 6. The R implementation of our method is publicly available at
https://github.com/RugianZzhang/BVSA.

2. Methodology

In this section, we propose our model for simultaneous prognostic and predictive variable
selection. We first introduce the structured logistic-normal mixture model conditional on the
model indicator. Subsequently, we specify the variable selection priors accordingly.

2.1. Structured logistic-normal mixture models

Suppose we have n independent observations {(y;, zi, Xi, t;) ., where y; € Ris the continuous
response, z; € RP» and x; € RP2» denote the candidate prognostic and predictive covariates,
respectively, and z; € {0, 1} is the treatment indicator. The subscript n in p, and p,, highlights
that the model dimensions may depend on the sample size n, and we often omit this subscript
unless necessary. Let §; € {0, 1} be the latent subgroup indicator for the ith observation.

Let B € RP! and y € RP?? be the corresponding coefficients for z; and x;, respectively.
To facilitate variable selection, we introduce a binary model indicator I € {0, 1}” with
p = p1 + p>. The model indicator I = (I8, I?) specifies model components included, where
P = (I'B o ,Iﬁ ) € {0, 1}P1 with each If indicating whether the jth component of B is
included in the model, i.e., B; # 0 if If =1,and B; = 0 if If =0forj=1,...,p;, and
similarly, I” = (I7, - -, 122) € {0, 1}72 with each IZ: indicating whether the £th component of
v is included in the model for € = 1,..., p;. Vectors with subscript / denote the sub-vectors
corresponding to the nonzero components of /. Let | - | denote the Lo norm. Then B, and z;;
are the sub-vectors of 8 and z; of length |I?| corresponding to the nonzero components of
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1P, while ¥, and x,; for ¥ and x; are sub-vectors corresponding to I7. Consider the following
two-component structured logistic-normal mixture model:

i | Giszisxistin ) = 2By + Sty + (1 = 8)tic + €,
exp(x/7 ;) ) ()

o; | (zj,xi,1 in~dBernoulli
i | (zi,xi, I) [+oxp(Tyy)

for a given model /, where a; and @, represent the treatment effects in the two latent
subgroups, and ¢;’s are the random Gaussian noises with mean zero and variance a'yz. Without
loss of generality, we assume that a; > a; for identifiability. Model (1) focuses on sub-models
indicated by the indicator 7 only, and |I#| and |I” | are the sizes of the prognostic and predictive
models, respectively.

For further analysis, we denote the n X p; and n X p, design matrices by Z and X, and denote
the treatment vector (f1,...,t,)7 by T. We assume that both Z and X include an intercept
as the first column and further allow for overlapping components in Z and X. Matrices with
subscript I denote the sub-matrices corresponding to the nonzero components of /, that is, Zjy
and X; are used to denote the n X |I8| and n x |I”| sub-matrices of Z and X corresponding to
the nonzero components in /8 and I7.

2.2. Variable selection priors and joint posterior

We now specify the prior distributions used in our Bayesian framework. We choose the
commonly used Gaussian spike and slab priors on 8 and y for variable selection. Conditional
on If, the priors on g for j = 1,..., py are specified as:

Bil (=1~ N (0.035%,,) . 81 (£ =0)~N(0.037,).
while, similarly, the priors on y, for £ = 1, ..., p, are specified as:
ye [ =)~ N(0.22,) . e | (2 =0)~ N (0.22,).
where 72

Bl

and 72, and 72, are the hyperparameters related to the variance of the spike distributions.
BOn yOn
The factor 03

scale differences between the linear and logistic components. The priors on If and I}' are
independent Bernoulli distributions:

, and Tfln are the hyperparameters related to the variances of the slab distributions,

is incorporated in the priors of B to naturally adapt the shrinkage effect to the

B_1y=1_p(/P=0) =
P(Ij_l)_l P(I]-—O)—C]ﬁn,
P17 =1) = 1=P(I =0) = gy,

where gg,, and g, are the prior inclusion probabilities. The choices of the hyperparameters
in prior distributions may depend on the sample size n, which will be specified in Section 3.2.
For conciseness, we omit the subscript » in the priors in the following. For @1, a; and O'yz,
we assume weakly informative prior distributions a; ~ N (O, (TyZO'IZI), ar ~ N(0O, (Tyza(z,), and
U§ ~ IG(ao, bg), where IG(a, b) denotes the inverse gamma distribution with mean b/(a—1),
and a, bo and o2 are hyperparameters.
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While the previously assigned prior distributions are conditionally conjugate and can deduce
a closed-form Gibbs sampler for linear models, they are not conjugate for the logistic models.
To address such difficulty, we adopt the Pélya-Gamma data-augmentation strategy [34]. For
each binary subgroup indicator ¢;, a P6lya-Gamma latent variable w; is introduced, and the
likelihood of the logistic model in (1) can be rewritten as:

exp(xz?}'yl)éi 1 /ij { 1\ 7 1 T 2}
—_— == expi|0; — = | x5 v — zwi(x; w;)dw;,
1+exp(xl.TIy1) 2 Jo p i~ 5 Bedi 3 l( 1171) pPG( l) i
where ppg(+) denotes the density of the Pélya-Gamma distribution PG(1, 0). The Gaussian
prior thus becomes conjugate for y and the resulting posteriors of w;’s and y; are as follows:

Wi | Y~ PG(19xi7}7/I)’
711 A,Q~ N((X[ QX1 + 7,71 X[ Q«, (X[ QX1 + 7,717,
where k = ((61=1/2) /w1, ..., (6,=1/2)/w,)T, A = diag(sy, ..., d,),Q = diag(w;, . .., w,),

and I is the identity matrix of suitable dimension. With the introduced w;’s, the joint posterior
density of y, B, a1, az, oy, A, Q, I8, and I” can be obtained by Bayes’ formula as follows:

f(‘y’ﬁaal7a2’0-y9A’Q9Iﬁ7[y | Y)

5\ /2 1 & T 2
o (o'y) exp _F (yi -z, B — tia16; — tiap (1 — 6,-))

Y i=1

n 2
X l_[ exp {(5i —-1/2)xhy, - wi (XiTI)Q) /2} prG(w;)
i=1 Iﬁ (2)

X ﬁ [QBT(N (ﬁj/O'yT/n)] [(1 —qp)nN (ﬁj/O'yT/go)]l_If
j=1

Y

P2 ¥ B
x| [ lavn (re/mn)]" [(1 = ap)en (ve/m0)] ™"
=1

Xy (@1/oyoq) TN (QZ/O-yO-a)ﬂ'IG(G')Z;;ao, bo),

where 7 (-) denotes the density of the standard Gaussian distribution, and m1g(+; ag, bo)
denotes the density of an inverse gamma distribution with parameters ag and bq. The posterior
is conditional on X and Z which are excluded from the notation in the density function for
simplicity.

2.3. Gibbs sampling algorithm

Since the likelihood depends only on the active part indicated by / in Model (1), the resultant
Gibbs sampler enjoys an independent structure for active and inactive components when
updating 8 and y, which makes it scalable for large p and p,. We decompose 8 = (8;, B;c)
and y = (y;,y;c). Based on the joint posterior density (2), the Gibbs sampler draws samples
from the following full conditional posteriors:

1. The conditional distributions of y; and y;c are independent with

yil (o) ~ N(X[ QX + 7,707 X[ Qk, (X[ QX +7,7D) 7,

y,c|(---)~N(0,T§OI).



Bayesian variable selection for subgroup analysis 2881
2. For¢=1,..., py, we generate I? € {0, 1} sequentially based on

Pl =1|17.-] _ GymN (Ye/Ty1)
P =010,--1 (1-g)an(ye/ty0)

T 1
X exp {(K - XC7(€)7C7(£)) QXrye - EXZQXW?} ,

where 17 , represents the components of /7 with IZ; excluded and C”(€) = {k : k #

6, =1},
Uk
3. Fori =1,...,n, the conditional distributions of w;’s are PG(l,xl.TI'yI).
4. Fori =1,...,n, we generate d; based on
Plo;=1] ]
Pl6;=0] ]

1
= exp {_Tﬂ [(aq +ay —2y; + 2zl-TIﬁ1) ti(aqg — 0/2)] +xiTI;v1} .
y

5. Similar to y; and y;c, the conditional distributions of 8; and 8,c are independent with
Bi| () ~NWZ[ Z1 + 750 D7 Z] Vg, Wor (Z] Z1 + 747 D)) D),
Bic | (---) ~ N(0, oy75,D),

where W, = diag(l/o-z, |78|) and Yﬂ =Y —Thay — Tj_pap With Tp = AT and Tj_p =
I-A)T.
6. The conditional distributions of @ and a; are given by
ar| () ~ NI Ty + o) ' TV, o (T T + 03) D),

@ | () ~ NI\ Tia + 0 ) T\ Vo, o3 (T A Tra + 02) 7)),

where Yl =Y - ZITﬁI - TI_Aa’z, and Yz =Y - ZITﬂI - TAaq.

7. For j =1,...,pj, we generate If sequentially based on
B _ B
P =117 qprn(Bj/oyTp)
PIE =01 17, ] (1= ap)an(Bj/oyTp)

_ 1
X exp {ﬁijTWG (% - Zes pBes () - §WUZJTZJ‘35} ’

where Il_i ; represents the components of I# with If excluded and CA(j) = {k : k #
j 17 =1y
8. We generate 0'3 from IG(ag + (n+ 2 + p1)/2, by) with
by =bo+ (Y — Z1B))" (Vg — Z1B)) /2 + (af + @3) /202 + BT D1gB)2,
where Djg = diag(rglzlﬁ + Tl;()z(l - IB)).

The use of conjugate priors for the regression coefficients facilitates stable posterior updates,
contributing to good mixing properties. Notably, the updates of the high-dimensional param-
eters are decomposed into two independent steps involving one dense but small precision
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matrix and one large but diagonal precision matrix. Similar model structure and decomposi-
tion of the precision matrix can be seen in Wang et al. [46] and in Narisetty et al. [32] where
a sparse approximation of the precision matrix is used.

While we adopt a logit link function and leverage the Pélya-Gamma augmentation method
to achieve efficient Gibbs sampling, a similar approach using a probit link is also feasible
through the latent normal variable augmentation proposed by Albert and Chib [1].

3. Theoretical results

In this section, we investigate the theoretical properties of our proposed method. Specifically,
we focus on the strong selection consistency of both prognostic and predictive variables, as
well as the posterior contraction behavior with respect to the ¢, error.

3.1. Reparameterization and marginal posterior distribution

Under the M-Closed assumption [3], the true model structure is assumed to be within the set
of candidate models and is denoted by Iy, while / represents a candidate model. Let B, € R”!
and y, € RP2 be the true coefficient vectors, with B; and y; denoting the sub-vectors of the

true coefficients under model /. Given a model /, the likelihood of {y;}"" | can be written as
77( ]71) (yi_zilﬂl_tia'l)z
Ln(y, B, ar, 2,09, 1) = exp § —
" Y 1_[ \/_o'y 20')2,
+ —71'()6”’}/1) exp _(yi _Zz;ﬂl_tl'a?)z
V2noy, 203 ’

where 7(-) = exp(-)/(1 + exp(-)). As suggested by Stédler et al. [42], we adopt a similar
reparameterization and denote 6 = (y, ¢ = B/oy, 51 = a1/0y, 52 = az/0y, p = 1/0y). Then
the log-likelihood is

1
\/_exp {_E(pyl i1¢1 _tisl)z}

1
+(1 - ﬂ(x,-TI)’I))E exp {—E(Pyi —z ;- tiSZ)z}) .

1,(67,1) = Z log (n(x,,y,)
3)

We assume the pairs (71, 7y1), (70, Ty0), and (gg, q,) are of the same orders (as functions
of n or p), respectively, so from now on we ignore the subscripts B or y in these parameters.
With the notation b = (y, ¢) € RP, the joint prior distribution is given by

T(l-—q)\

]
1
n(az,elc,nocexp{—i(rfzb?bz+r(;2b?cb,c)}( _— ) n(s1.82.p), (4

where 6; = (b, 51,52, ), 8;c = b;c, and

n(s1,52,p) = AN (s1/T)nN(52/0a)mp(p5 a0, bo),

with 7, (+; @, bo) denoting the density deduced from the Gamma distribution p? ~ I'(aq, bo).
Then the joint posterior probability can be derived from (3) and (4) as:

ﬂ(01a01C71 | Y) OCexp{ln(al’l)}ﬂ(gl’glcaI)a



Bayesian variable selection for subgroup analysis 2883

and the marginal posterior probability for model / is given by
1) [ explta (0. 0)(01.0c. a0, 0
0; Jo,c

where ©; and ®,c are the spaces consisting of all §; and 6,c, respectively.

3.2. Main results

Notations: for any sequences a, and b,, we denote a, ~ b, if a,/b, — ¢ for some ¢ > 0.
We denote b,, = a,, or equivalently a,, < b,, if b,, = O (a,). For any a, b € R, the maximum
and minimum of a and b are denoted by a V b and a A b. For any real symmetric matrix A,
Amax (A) and Ayin(A) are the maximum and minimum eigenvalues of A, respectively.

We now study the theoretical properties of the proposed method in terms of selection
consistency for both predictive and prognostic parts of our subgroup model, as well as the
posterior contraction behavior of the parameters with respect to the £, error. We assume that
both covariate spaces X and Z of x;’s and z;’s are bounded and consider the parameter space

O(M) := {6 : [logp| < M, |6 — 6olly < M},

where 0 is the true parameter, M > 0 is a fixed constant, and || - ||; denotes the L; norm
for any vector. We define Z,,(0y) := [,(0o1, 1) — 1,,(01, 1) and let Ay = +/log p/n. We further
define
V. = sup sup llzn(al) - Ezn(al)l
N L <p 16r-borli<m 1101 = 8orll1 V Ao

We first state some necessary conditions and introduce two important lemmas.
Condition 1. The dimension satisfies log p,, = 0(n) as n — oo.
Condition 2. For all x € X and z € Z, there exist some constants A and A, such that

1 |
0<A; < min min (/lmm (—X,TX,) » Amin (—Z,TZ,))
IeI (my,) n n

< max max (amax (lX,Tx,) , Amax (EZITZ,)) < Ay,
I1€1 (my) n n

where 7 (m,) = {I : |I| < m,} with m, := ((n/logp)l/2 A p)and Z; = (Z;,T). We also

assume that Iy € 1 (m,,).

Condition 1 restricts the model dimension as a function of n which is satisfied if p,, < "
for some d,, — 0 as n — co. Such a condition is common in Bayesian variable selection
literature [25, 31, 23].

Condition 2 gives lower and upper bounds on the eigenvalues of n‘lXITX 1 and n‘IZITZI.
The lower bound can be seen as a restricted eigenvalue condition common in the high-
dimensional statistics literature and is satisfied by sub-Gaussian design matrices with high
probability [32]. The upper bound is similar to the bounded maximum eigenvalue condition
assumed in Zou [53] and Bondell and Reich [5]. We restrict the model size to be smaller than
or equal to m,, in Condition 2, which means that we only consider models of reasonably large
sizes. This can be achieved by restricting the prior distribution on / as commonly done by
Liang et al. [25] and Narisetty et al. [32].

dn
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Lemma 3.1. Under the logistic-normal mixture model with § € (M) for some M and
Condition 1, there exists some constant C > 0, such that for any constant R > C, as n — oo,

P(V, < RAy) — 1.

Lemma 3.2. Under Conditions 1 and 2, on {V,, < RAy}, it holds that for any model I and
any 6 € ©(M) there exist some constants c,cy, ca,c3 > 0, only dependent on M, X and Z,

satisfying
cn||@; — 00113 — conRAZ(|1| +3) < Z,(81) < c1n]|61 — oz l5 + c3nRAZ(|1] +3).

Lemma 3.1 constructs a useful set that holds with probability going to 1 as n goes to
infinity. Within the set in Lemma 3.1, Lemma 3.2 shows that Z,(6;), the negative log-
likelihood divergence for any model /, has upper and lower bounds in simple forms, which
can be utilized to replace the non-convex log-likelihood with tractable parameter £, distance
and model size.

We now outline additional conditions necessary to ensure the strong selection consistency
property of our proposed method:

Condition 3. For some constant C > C|Iy| in which C is the constant specified in Lemma
3.1, the prior parameters 712 and ¢ satisfy the following orders:

1

2+2C)’ g~ p— )

nT12~(an

Condition 4. For some constant Cy > 0,

Collp|1
min |boy] = y S0l logP.
jE{kZlOkZI} n

Condition 3 provides rates on the parameters of the spike and slab prior. The variance of the
slab prior distributions 1'12 is assumed to grow with n. No assumption is made on the variance
of the spike prior distributions Tg as the choice of ‘rg would not influence the asymptotic
results, which was also stated by Wang et al. [46]. In addition, we assume that the prior
inclusion probability ¢ is proportional to the inverse of the number of covariates p, which will
control the model size. Condition 4 is a beta-min condition that restricts the minimal signal
strength of true nonzero coefficients. This is commonly assumed when considering model

sparsity [6, 32, 23].

Theorem 3.3. Under Conditions 1-4 and on the set {V,, < RAv}, it holds that on I (m,,), the
marginal posterior distribution of the true model satisfies

N[I=1|Y] =1, asn— .

Moreover,

N[I=11Y] »
=i, v] "
Lel (mp)\{Io} 0

Theorem 3.3 provides strong selection consistency for both the predictive and prognostic
parts of the high-dimensional subgroup model. It is implied that with probability going to 1,
the posterior probability of the true model Iy grows to 1 as n goes to infinity, given that the
considered model sizes are allowed to be reasonably large. Theorem 3.3 gives an even stronger
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result that the sum of the posterior probability ratios of all possible false models to the true
model converges to 0 in probability, implying a larger gap between the posterior probabilities
of the true model and the rest.

In the end, we present a theorem concerning the posterior contraction rates, for which we
impose an additional assumption regarding the variance Té in the prior distributions:
Condition 5. The prior parameter Tg satisfies m'g ~1/p.

Theorem 3.4. Under Conditions 1-5 and on the set {V,, < RAy}, it holds that on I (my,), the
posterior distribution satisfies for some constant C' > 0,

P

IT|(6,1) € ©(M) X I(my): [0 —6oll2 = — 0.

C’|lp|log p | Y
n

Theorem 3.4 shows that the posterior allocates most of its mass around the true parameters
at the optimal rates for both high-dimensional linear regression and logistic regression under
sparsity assumptions. The result ensures that the posterior probability of any estimate deviating
from 6y by the bound on the left-hand side converges to 0 asymptotically. Our proof of
Theorem 3.4 is obtained based on Theorem 3.3, which follows an approach different from
Ray and Szabé [35] and Ray et al. [36]. We defer all proofs to Appendix A.

4. Simulation studies

In this section, we investigate the performance of the proposed method for subgroup analysis.
First, we focus on correctly specified model settings and examine variable selection and
parameter estimation in finite sample situations in both p < n and p > n cases. We then
consider misspecified settings where subgroup membership is determined by splitting rules,
common in traditional subgroup analysis. We also compare our proposed method with other
subgroup identification methods.

4.1. Selection and estimation under structured logistic-normal mixture settings

We first consider data from the structured logistic-normal mixture model (1). Each row of
Z and X is generated independently from normal distributions where the means are 0 and
the correlations between any pair of covariates are equal to p. An intercept column is added
to both Z and X. The noises are independently drawn from the standard normal distribution
N(0,1).

We set the dimension p = 2p; = 2p, with p € {100, 500,2000}, the correlation p €
{0,0.25}, and the sample size n € {200,300}. The values of B, and y, are assigned to be
(1,-1.5,2,-2.5, 3)T with the rest being 0, and the treatment effects in two different subgroups
are set to be @19 = 40 and a»o = 0. To examine the impact of higher correlation, numerical
studies with larger p values are presented in Appendix B.1.

For our proposed method, referred to as BVSA, we consider the median probability model
when we select active variables, i.e., variables with posterior inclusion probability at least
0.5. We initialize the Gibbs chain with random samples from the priors and obtain the results
based on a chain of length 20000 with a burn-in of length 5000. The maximum model size
is restricted to max(d, yn) for some constant d. Here we choose d = 30 as suggested by
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Narisetty et al. [32]. The choice of hyperparameters in continuous spike-and-slab priors can
be sensitive to the scale difference between the linear and logistic components of the model.
Unless otherwise specified, we adopt the following default setting for the spike-and-slab prior
parameters based on theoretical considerations:

TR0 = Tyo = 5/n, Tp1 = Ty1 = max(yp?/400n, 1), gg =g, =min(1/5,20/p). (5)

As discussed in Igbal et al. [19], prior calibration on the prior variances can improve the
empirical performance of variable selection in finite-sample settings. To assess this, we conduct
a sensitivity analysis on the variance hyperparameters in Section D.1. Based on our experience

on simulations, we adjust 7,1 = max 4/ p% /800n, 1) when p = 2000 to mitigate excessive

false positives in high-dimensional settings. Since the priors on a1, a,, and o2 are weakly
informative, the results are insensitive to a range of choices, confirmed by an illustration in
Appendix D.3. Throughout the numerical studies we set ag = 2, bg = 1, and 02 = 1.

We adopt variable selection performance measures used in Narisetty et al. [32]: TP, TPy,
FP, “I = Iy”, “I D Iy”, and “I; = Iy”, where TP (true positive) is the number of active
covariates chosen; TP, is the number of active covariates selected if the size of the chosen
model is restricted to be |Iy|; FP (false positive) is the number of inactive covariates chosen;
“I = Iy” is the proportion of choosing the true model exactly; “I > Iy” is the proportion
of times the true model is included in the chosen model; and “Iy = [y is the proportion of
choosing the true model exactly when the model chosen is restricted to size |Iy|. Note that the
measures TP, and “I; = Ip” indicate how well a method can rank variable importance and
do not depend on the specific choice of the threshold on posterior inclusion probability. The
results are averaged based on 100 randomly generated datasets.

From the left columns of Table 1, we can observe that when n = 200, BVSA correctly
identifies all prognostic variables, with true positives 4 and false positives 0 across all settings.
For the predictive variables, when p = 100, our method finds most of the active variables
with the probability of including all active covariates exceeding 0.8. When p increases to 500,
which is greater than the sample size n, our method still performs well. The high probabilities
of Iy = Iy indicate that our method can correctly rank the posterior inclusion probabilities
of all the variables. When p = 2000, the performance deteriorates but still yields reasonable
results. When the sample size increases to n = 300, as shown in the right columns of Table 1,
the performance on predictive variable selection improves significantly, even when p = 2000.
These results support our theoretical findings on variable selection consistency.

To evaluate estimation accuracy, we examine the £, errors and report the results in Table 2.
We consider p = 100 and p = 0 with the same values of B, ¥, @10 and @y as before.
The means and standard errors of the parameters 8, @, and y at various sample sizes are
summarized from 100 random trials. For all parameters, the ¢, errors from BVSA shrink
towards O as the sample size grows, and the standard errors also decrease towards 0.

4.2. Comparison under traditional subgroup settings

In this subsection, we consider several misspecified settings where subgroup membership is
not determined by a logistic model but by splitting rules. We consider two cases with p, = 10
and p, = 100. The first ten predictors are generated as follows: (1) X; is standard normal; (2)



Bayesian variable selection for subgroup analysis 2887
Table 1
Variable selection results in structured logistic-normal mixture settings.
n =200 n =300
TP TPy FP 1=1013101_;=10 TP TPy FP 1210131015210
p=100 IF 4 4 0 1 1 1 4 4 0 1 1 1
p=0 I 3.893.89 036 0.63 0.89 0.89 3.99 398 043 0.64 0.99 0.98
p=500 IF 4 4 0 1 1 1 4 4 0 1 1 1
p=0 I 3.68 3.74 034 055 0.69 0.74 3.943940.26 0.71 094 0.94
p=20001F 4 4 0 1 1 1 4 4 0 1 1 1
p=0 I 3.013.12 064 024 030 036 3.743.730.37 049 0.76 0.74
p=100 IF 4 4 0 1 1 1 4 4 0 1 1 1
p=0.25 717 3.803.81 032 0.60 0.80 0.81 3.983.98 046 0.66 0.98 0.98
p=500 I 4 4 0 1 1 1 4 4 0 1 1 1
p =025 17 365365042 047 0.65 0.66 3.903.890.21 0.73 0.90 0.89
p=2000F 4 4 0 1 1 1 4 4 0 1 1 1
p=025 71 281287089 0.16 020 025 3.583.570.64 042 0.64 0.63
Table 2

The €y errors of parameter estimation with growing sample sizes when p = 100 and p = 0. The true parameter
values are set to be oy, = (1,-1.5,2,-2.5,3)T, yp, = (1,-1.5,2,-2.5,3)T, @y = 40, and az9 = 0.

n B @ Y
200 0.423(0.095) 1.139(0.175) 1.527(0.272)
300 0.279 (0.076)  0.760 (0.130)  1.204 (0.272)
400  0.214(0.058) 0.570(0.117)  1.002 (0.243)
500  0.184 (0.054) 0.479 (0.109)  0.893 (0.205)
1000 0.100 (0.037) 0.228 (0.088)  0.625 (0.173)

X, and X3 are correlated normal variables with mean O and covariance 0.5; (3) X4 comes from
an exponential distribution with mean 1; (4) X5 is Bernoulli with success probability equal
to 0.5; (5) Xe is multinomial with 3 equal-probability cells; and (6) X7 to Xo are correlated
normal variables with mean 0 and pairwise covariance 0.5. In high-dimensional settings, the
remaining 90 predictors are generated from independent standard normal distributions. We
take Z to be the same as X and thus p = 20 in the low-dimensional case and p = 200 in the
high-dimensional case, respectively.

We consider the following six settings similar to those in Loh et al. [28] but with more
generality:

SO1: Y:]+X1+X2+I(X6=2)+X7+X10+E,

S02: Y =1+ X1 +X,+401 + ¢,

SI: Y=1+X1+Xp+X4+1(Xg=2)+X7+40t X I(X; > 0) +¢,

S2: Y=1+X+40rxI(X; >0,X4 <1,Xs=2) +¢€,

S3: Y=1+X1+ X0+ Xy +1(Xe=2)+ X7+40t x (X1 >0,X4 <1,Xs=2) +¢,
S4: Y =1+X;+Xo+40r x I(logit(X; + I(Xe =2)) > 0.5) +¢,

where ¢ is the treatment indicator and € is standard normal noise. Setting SO1 has neither a
treatment effect nor subgroups, and Setting SO2 has a treatment effect but no subgroups. In
these two settings, no meaningful subgroups exist. The remaining settings S1 to S4 have both
treatment effects and subgroups. The two-component mixture model assumption used in the
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Table 3
Component-wise predictive variable selection probabilities and FPR under SO1 and SO2 with no subgroup
structure when p = 20 and n = 200.

(a)SOlIYZ1+X1+X2+I(X6=2)+X7+X10+E

X1 X X3 X4 X5 X¢ X7 Xg X9 Xjo FPR
BVSA 0.01 0.03 0.03 0.02 0.01 0.02 0.03 0.01 0.01 0.01 0.15
MOB 0.75 0.67 0.01 O 0 0.01 090 0.04 0.02 0.90 1
Findlt  0.02 0.01 0.01 O 0 001 0 001 O 0 0.04
PRIM 036 040 042 046 0 020 0.45 0.39 0.44 0.43 1
SeqBT 0.23 0.34 0.17 0.10 0.01 0.12 0.26 0.21 0.22 0.18 1
GUIDE 0.19 032 0.23 0.18 0.14 0.22 0.31 0.23 0.24 0.30 0.88
b)S02: Y =1+X;+X,+40t + €

X1 Xo X3 X4 X5 X¢ X7 Xg Xo Xjo FPR
BVSA 0 0 0 0 0 0 0 0 0 0 0
MOB 1 1 0 0 0 0 001 O 0 0 1
Findlt ~ 0.08 0.01 O 0.02 0.03 0.05 0 0 0 0.02 0.14
PRIM  0.53 0.55 0.07 0.08 O 0 0.06 0.03 0.04 0.02 1
SeqBT 0.18 0.21 0.19 0.12 0.06 0.08 0.14 0.09 0.09 0.13 1
GUIDE 0.27 0.28 0.22 0.07 0.05 0.10 0.11 0.10 0.08 0.11 0.62

paper does not hold under the settings S1, S2, and S3, so our simulation studies examine the
performance of the proposed method under model misspecification.

The results of several other methods for subgroup identification in the literature are also
reported for comparison, including:

e MOB: model-based recursive partitioning [39];

e SeqBT: sequential bootstrapping and aggregating of threshold from trees [17];
o GUIDE: generalized unbiased interaction detection and estimation [27];

e FindIt: support vector machine model with Lasso penalties [18];

e PRIM: patient rule induction method [8].

The parameters for all the comparison methods are set at their suggested default values. Our
method is carried out in the same manner as in Section 4.1, except that we set 7,,; = 5 across all
settings to capture weaker predictive signals in the misspecified traditional subgroup settings.
The simulation results are summarized from 100 randomly generated data sets with sample
size n = 200 for each setting.

We focus on the performance of predictive variable selection since our method can ac-
curately identify all prognostic variables in different settings. For settings without treatment
effect, we provide the variable selection frequencies for predictive covariates and the false
positive rate, which is defined by the frequency of falsely selecting any covariate. For settings
with treatment effect, in addition to variable selection probabilities, we also report the same
variable selection performance measures used in Section 4.1: TP, TPy, FP, “I = 1y, “I > Iy”,
and “I; = Iy”. Subgroup prediction errors are reported in Appendix B.2, which are estimated
from an independent testing data with n = 5000.

For low-dimensional settings with p = 20, the results for settings SO1 and SO2 in Table 3
show that the posterior inclusion probabilities of BVSA are close to 0 as they should be,
and the false positive rates are small. The penalty-based method Findlt also performs well,
while other methods always mistakenly assign subgroups. We can conclude that BVSA is not
likely to select any predictive covariate when there is no treatment effect, and thus has a low
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Table 4
Component-wise selection probabilities in traditional subgroup settings when p = 20 and n = 200.

@SLY=1+X1+X0+ Xy +1(Xg=2)+X7+40t x I(X] >0) +€
X X X3 X4 X5 X¢ X7 Xz X9 Xy

1 0 0 0 0 0 0 0 0 0
MOB 1 0.88 0.03 0.63 0 0.07 0.79 0.05 001 0.02
FindIt 1 088 0.85 080 0.87 097 086 084 087 0.85
PRIM 1 0.05 0.02 0.05 0 0 0.03 0.01 0 0

1

9

BVSA

SeqBT 0.03 0.03 0.03 0 0.01 0.02 0.01 0.03 0
GUIDE 096 0.16 0.13 0.18 0.06 0.12 0.18 0.14 0.09 0.14
(b)S2: Y =1+X,+40t x I(X] >0,X4 < 1,Xg=2)+€

X3 X X3 X4 X5 Xo X7 Xz X9 Xy
BVSA 0.92 0.01 0 0.85 0.02 1 0 0 0 0
MOB 0.19 1 0.02 0.05 0 0.51 0 0.01 0 0
FindIt 0.99 0.84 0.81 1 0.86 1 093 0.86 0.80 0.89
PRIM 0.53 0.16 0.15 0.50 0 0.12 0.12 0.16 0.16 0.12
SeqBT  0.08 0 0.01 0.02 0 0.93 0 0 0 0
GUIDE 0.86 0.18 0.07 0.13 0.05 098 0.03 006 0.04 0.07
©S3:Y=1+X1+X0+Xy+1(Xg=2)+X7+40t x (X1 >0,X4 <1,Xg=2)+€

X3 X X3 X4 X5 X¢ X7 Xz X9 Xy
BVSA 0.90 0.01 0 0.82 0.02 1 0 0.01 0 0
MOB 090 0.74 0.01 0.52 0 0.86 0.75 0.03 0 0.03
FindIt 1 0.84 0.84 099 0.87 1 092 0.82 0.80 0.86
PRIM 0.51 0.19 023 043 0 0.12 0.19 022 0.14 0.19
SeqBT 0.09 0 0 0.01 0 0.94 0 0 0 0
GUIDE 0.87 022 0.14 026 0.04 098 021 008 0.13 0.09
(d)S4:Y =1+X| +Xr+40r x I(logit(X; + [(Xg =2)) 2 0.5) +€

X X X3 X X5 Xs X7 Xz X9 Xj

BVSA 1 0 0 0 0 1 0 0 0 0
MOB 1 1 0 0.01 0 0.82 0 0 0.01 0
FindIt 1 0.89 095 0.84 0.95 1 0.85 0.90 0.84 0.90
PRIM 1 0.03 0.02 0.01 0 0 0.01 0.01 0.01 0.03
SeqBT 1 0.08 0.10 0 0.01  0.05 0 0.03 0.02 0.03
GUIDE 1 0.03 0.02 0.02 0 0.02 0 0.01 0.01 0.02

probability of falsely identifying any subgroup. We also notice that those tree-based methods
assign high inclusion probabilities to the active prognostic covariates, indicating that they are
less capable of distinguishing prognostic and predictive covariates.

For the settings S1 to S4 with treatment effects, we summarize the posterior predictive
inclusion probabilities in Table 4 and variable selection performance measures in the left
columns of Table 5. In all settings, BVSA outperforms other methods, especially when the
setting is complicated, e.g., S2 or S3. The true positives are close to the true model sizes, while
the false positives are much smaller than those of other methods, indicating that BVSA has a
high probability of finding the exact set of predictive covariates. One possible reason for the
failure of the tree-based methods in some settings is that those methods are more ambitious in
being overly flexible compared to model-based methods and are sensitive to tuning parameters
involved.

When p = 200, FindIt adds the interactions between all covariates into the model, making
it intractable for high-dimensional settings. Thus we exclude FindIt in the comparison. The
findings are similar to those of low-dimensional settings. We mainly focus on predictive
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Table 5
Predictive variable selection results in traditional subgroup settings with n = 200.

p=20 p =200
@SLY=1+X1+Xp+X4+1(Xg=2)+X7+40r xI(X; >0) +€
TP TPs FP I=IO IDIO IS=IO TP TPs FP I=IO IDIO Iszl()

BVSA 1 1 0 1 1 1 1 1 0.03 097 1 1
MOB 1 1 248 0 1 1 1 1 156 0.01 1 1
FindIt 1 1 779 0 1 1 - - - - - -
PRIM 1 097 0.16 0.88 1 097 099 099 0.12 097 099 0.99
SeqBT 1 1 0.16 0.85 1 1 1 1 0.12 0.89 1 1

GUIDE 0.96 0.96 1.20 0.34 096 0.96 0.87 0.87 0.26 0.74 0.87 0.87
(b)S2: Y =1+X,+40t x I(X] >0,X4 < 1,Xg=2)+€

TP TPy FP I=1Iy IDIy Ig=1y TP TPy FP I=1Iy I>ly Is =1
BVSA 2.77 292 0.03 0.81 0.81 092 228 2.53 0.23 041 042 0.63
MOB 0.75 0.74 1.03 0 0.01 0 044 044 1.03 0 0 0
Findlt 2.99 223 599 0 0.99 0.61 - - -

PRIM 1.15 1.12 0.87 0 0 0 0.29 0.29 244 0 0
SeqBT 1.03 1.03 0.01 0 0 0 1 1 006 O 0 0
GUIDE 1.97 2.11 0.50 0.03 0.03 0.14 1.55 155034 0 0 0.01

©S3Y=1+X1+X0+Xy+I1(Xg=2)+X7+40t x (X1 >0,X4 <1,Xg=2)+€

TP TPy FP I=1y ID>Iy Is=1y TP TPy FP I=1Iy I>1Iy Is =1
BVSA 272 292 0.04 075 076 092 233 253 0.18 046 048 0.63
MOB 228 1.67 1.56 0.04 0.39 0.08 1.86 1.72 0.97 0.10 020 0.10
Findlt 299 1.71 595 O 0.99 0.25 - - -
PRIM 1.06 1.07 1.16 0 0 0 0.23 0.24 3.31

0 0 0
SeqBT 1.04 1.04 O 0 0 0 0.98 098 0.07 0 0 0
GUIDE 2.11 2.27 091 0.05 0.17 0.29 1.52 1.54 030 O 0 0.01

(d)S4:Y =1+ X +Xp +40r x I(logit(X] + I[(Xg =2)) > 0.5) +€

TP TPy FP I=1Iy I>ly Is=1y TP TPy FP I=1y 1>y Is =1
BVSA 2 2 0 1 1 1 2 2 0.04 096 1 1
MOB 182 1.78 1.02 0 0.82 0.78 1.76 1.74 0.97 0.01 0.76 0.74
FindIt 2 194 712 0 1 0.97 - - - - - -
PRIM 1 1.01 0.12 O 0 0 0.99 099 0.05 O 0 0
SeqBT 1.02 1.04 0.11 0.02 0.02 0.02 1 1 012 O 0 0
GUIDE 1.85 1.86 0.62 046 0.85 0.86 1.81 1.82 043 0.60 0.81 0.82

variable selection performance and conclude from the right columns of Table 5 that in nearly
all settings, the performance of all the methods deteriorates when the dimensions of covariates
grow, but BVSA suffers less severely and outperforms other methods significantly.

With the above results demonstrating that BVSA remains robust in rule-based settings,
we further discuss its limitations under high correlations among predictive covariates when
compared with tree-based methods.

Since all covariates enter the model simultaneously, BVSA can be sensitive to high collinear-
ity, an issue that is further exacerbated by model misspecification. As a result, BVSA may
select redundant variables. In contrast, tree-based methods partition the data hierarchically
based on individual variable thresholds. Even if two variables are highly correlated, tree-based
methods typically select only one for a given split, making them less sensitive to collinearity.

To empirically assess these limitations, we conduct additional simulation studies under rule-
based subgroup settings, examining varying levels of correlation among predictive covariates.
The details are reported in Appendix E. The results exhibit the limitations of BVSA in
rule-based settings with highly correlated predictive covariates.
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Fig 1. Posterior inclusion probabilities for Lalonde data with posterior predictive inclusion probabilities in the
left figure and posterior prognostic inclusion probabilities in the right figure.

5. Real data applications

In this section, we apply the proposed method to two empirical studies, the Lalonde data from
the National Supported Work program and the AIDS Clinical Trials Group 320 study.

5.1. Application to Lalonde data from NSW program

We first apply our method to the Lalonde data from the National Supported Work (NSW)
program, a federally and privately funded program implemented from 1975 to 1978 in the
United States to provide work experience to disadvantaged workers who had faced economic
and social problems before enrollment. The data consists of 722 observations with 297
workers assigned to the training program and 425 workers in the control group. We focus on
the earning increase in thousands of dollars after the job training program, which is equal to
the difference between 1978 earnings and 1975 earnings, and aim to identify the subgroup
where workers will benefit from the training program. The pre-treatment covariates include
age, years of education (Educ), race (White, Black, Hispanic), marriage status (Married),
the 1975 earnings in thousand dollars (RE75), and whether the worker was unemployed in
1975 before the program (Unemploy), and thereby p = p; + p» = 14. The covariates are
standardized if they are continuous.

We first identify the important prognostic and predictive variables with the proposed
method. We initialize the Gibbs chain based on the prior distributions, and the results are
averaged from 5 random chains with a burn-in of 5000 and a subsequent length of 5000.
We adopt the hyperparameter settings as specified in Section 4.1, with g9 = 7,0 = 0.007,
781 = 71 = 1, and gg = g, = 0.2. The averaged posterior inclusion probabilities of all
covariates for both prognostic and predictive consideration are shown in Figure 1.

The posterior prognostic inclusion probabilities of RE75 and Black are greater than 0.5,
while the others are much smaller, with the largest among them below 0.1. The largest posterior
predictive inclusion probability is 0.715 for Educ, followed by 0.245 for Age, while the rest
are close to each other. We select important variables according to both the absolute values of
the posterior inclusion probabilities and their gaps. As a result, we choose Black and RE75
to be prognostic and Educ to be predictive. The same active predictive variable was used for
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the group construction in Imai and Ratkovic [18]. As shown in Loh et al. [28], PRIM chooses
Black, Educ, and Age as predictive variables, while GUIDE and SeqBT choose Married and
Black as predictive variables, and FindIt uses a linear combination of all variables. However,
our method identifies both predictive and prognostic variables and provides an explicit model
with the estimated treatment effects in the subgroups.

Based on the selected variables, we obtain the estimated model as follows:

Increase = 2.925 — 1.041Black — 4.032RE5 +2O 300t6 — 0. 104t(1 —0) +e,
0.063)  (0.082) (0.003) 0.012) (0.103

logit(P[6 = 1]) = —3.120 + 0.503Ed
Ogl ( [ ]) (0.032)  (0.060) “e

(6)

where 6, = 5.501 and the standard errors are provided under the estimated coefficients in
brackets. Model (6) shows that the treatment effects on earning increase differ a lot in the two
subgroups: in the first subgroup with § = 1, the treatment effect is over $20, 000, while in the
other subgroup, the treatment effect is close to 0.

Our method provides strong evidence for the selection of RE75 as a prognostic variable
with posterior prognostic inclusion probability 1, but it is not selected as an active predictive
variable due to its small posterior predictive inclusion probability. To understand the results,
we examine the earning increase for different levels of RE75, with or without controlling the
treatment. We divide all workers into two groups corresponding to high RE75 and low RE75
by its third quartile 3.993 as the threshold. The box plots of the earning increase of workers
divided by high or low RE75 only overlap slightly, and the estimated density curves have two
different peaks as shown in (a) and (b) of Figure 2, where the grey box and black solid line
correspond to the high RE75 group, and the white box and grey dashed line correspond to
the low RE75 group. In contrast, when we compare the earning increase differences between
workers divided by the treatment in the high RE75 and the low RE75 groups, which are shown
in (c) and (d) of Figure 2, the differences are similar in both groups. This indicates that the
interaction between RE75 and treatment is negligible, which is consistent with our finding
that RE75 is not predictive of the subgroup membership.

To demonstrate the effectiveness of our method in high-dimensional settings, we introduce
additional noise features into the NSW data. We randomly assign 80% of the data as the
training set and the remaining 20% as the testing set, repeating this process 100 times. In each
trial, we increase the dimension of possible prognostic covariates from 7 to 571, resulting
in p = n = 578, with all noise features drawn independently from the standard normal
distribution. We evaluate the variable selection performance as well as the prediction errors.
We perform the proposed method on the training set in the same manner as the analysis done
earlier without the noise features added, to select active prognostic and predictive covariates,
and obtain estimations of the corresponding parameters. Covariates are selected based on the
median probability, and the selection frequency of each covariate is summarized over 100
trials. For the predictive covariates, the selection frequencies of Educ, Age, and Unemploy are
0.63, 0.01, and 0.01, respectively, with all others being 0. For the prognostic covariates, the
selection frequencies of RE75 and Black are 1 and 0.58, while other covariates are not selected
and the largest selection frequency of the noise features is 0.02. The variable selection results
are consistent with those obtained without the noise features added to the data, showing the
capability of our method for large p. In contrast, MOB selects RE75 as the only predictive
covariate in all trials, which is a prognostic variable as discussed earlier.
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Fig 2. Prognostic or predictive effects of RE75 (baseline earning in 1975) on the earning increase for Lalonde
data. Prognostic effect: box plots of earning increase in high RE75 and low RE75 groups and density curves are
provided in (a) and (b). Predictive effect: box plots of earning increase under treatment or control in high RE75
or low RE75 group and the corresponding density curves are provided in (c) and (d).

Based on the estimated model from the training set with additional noise covariates, we
obtain predictions on the testing set. The predictive root mean square error (PRMSE) of the
earning increase of our method is 6.044 while the PRMSE based on MOB is 6.257. Our
method exhibits lower prediction error and interpretable variable selection results, further
supporting the superiority of the proposed method.

5.2. Application to ACTG 320 study

In this subsection, we apply our proposed method to the AIDS Clinical Trials Group (ACTG)
320 study. Following Hammer et al. [16], Zhao et al. [52], and Shen and He [40], we use the
CD4 count change at week 24 as the response and aim to find the patient subgroup benefiting
more from the three-drug combination. The dataset consists of 852 observations with 423
patients receiving the three-drug combination regimen and 429 patients receiving only the
two-drug combination regimen, referred to as the control group. Our pre-treatment covariates
include sex, injection-drug use (Ivdr), hemophilia (Hemo), weight (Weig), Karnofsky score
(Karn), months of prior zidovudine therapy (PrZ), age, logarithm of baseline CD4 counts
(Lcd40), logarithm of baseline HIV-1 RNA concentration with base 10 (Lrna0), and race
(White, African, or Hispanic). We also include the interaction terms, and thus p = p| + p> =
122.

We perform our method in a similar manner to that in Section 5.1, except that we adjust
the spike variances to 7gp = 7,0 = 0.02 because of higher dimensionality and weaker signal
strength. We summarize the results from 5 random chains, each with a burn-in period of 10000
iterations followed by an additional 10000 iterations. The posterior prognostic and predictive
inclusion probabilities of all covariates are represented in Figure 3.
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Fig 3. Posterior inclusion probabilities for ACTG320 data with posterior predictive inclusion probabilities in the
left figure and posterior prognostic inclusion probabilities in the right figure.

For prognostic variables, the posterior inclusion probabilities of the interaction of Lrna0
and Lcd40 (Lrna0-Lcd40) and Led40 are 0.961 and 0.910, respectively, while the probabilities
of other variables are no more than 0.3. For predictive variables, Lcd40 and LrnaO have the
largest posterior inclusion probability of 0.581 and 0.579, respectively, while the probabilities
of other variables are less than 0.35. Based on posterior inclusion probabilities, we select
Lrna0-Lcd40 and Lcd40 as the active prognostic variables, and Lcd40 and Lrna0 as the active
predictive variables. Both Lcd40 and Lrna0 have been identified as predictive in previous
studies [7, 52]. Based on the variable selection results, the estimated model of our method is
given as follows:

Cd4 change = —61.013 + 51.21 Lrna0 - Lcd40 — 85.118Lcd40

0313)  (1.132) (3.296)
+161.403t6 + 10.974¢t(1 - 6) +
(0.391) (1.268) ( )+ (7
logit(P[6 = 1]) = — 0.24 — 1.049Lcd40 + 0.622 Lrna0,
(0.047) (0.06) (0.074)

with &-, = 71.707. We can observe from Model (7) that, although the new three-drug combi-
nation regimen has a positive effect on both subgroups, the first subgroup will benefit much
more than the other.

The posterior inclusion probabilities of our method suggest strongly that Lrna0 is predictive
but not prognostic, while Lcd40 is selected as both prognostic and predictive. To better interpret
the roles of Lcd40 and Lrna0 in the prognostic and predictive models, we present additional
graphical illustrations in Appendix C.2.

6. Discussion

Variable selection is crucial in subgroup analysis to identify subgroups with differential
treatment effects defined by predictive variables, especially in a study with many possible
covariates. In this paper, we consider the structured logistic-normal mixture model and propose
a Bayesian method for finding the prognostic and/or predictive covariates. The strong selection
consistency of this method is established under mild conditions, which guarantees that the
posterior probability of the true model goes to 1 and separates from those of false models,
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and the posterior contraction rate is derived. The posterior computation can be implemented
efficiently using a carefully designed Gibbs sampler. Simulation studies and application to
real data show that our proposed method enjoys highly competitive performance for variable
selection in subgroup analysis. Our methodology provides a good selection of predictive and
prognostic variables and a satisfactory estimation of the treatment effects in the selected
subgroups simultaneously.

Future work can explore strategies to mitigate the limitations discussed in Section 4.2,
particularly in high-dimensional settings with highly correlated predictors. One promising
approach is to perform variable selection in two stages. Since our variable ranking remains
stable in lower-dimensional settings, we can first apply variable screening to filter out weakly
associated variables, after which BVSA can be applied more effectively. Another possible im-
provement is to incorporate correlation-aware structure in the prior distribution. The standard
spike-and-slab prior treats the variables independently, which can lead to redundant selection
when they are highly correlated. Instead, we can modify the prior inclusion probability to
depend on the covariate structure, allowing the model to suppress the inclusion of redundant
correlated variables while still selecting relevant ones.

We can also extend our method to more flexible models to broaden its applicability.
For example, generalizing BVSA to handle binary or survival outcomes would enhance its
relevance in clinical studies. Additionally, extending BVSA to a multinomial logit framework
could improve adaptive subgroup identification.

Appendix A: Proof of main results

In Appendix A.1 to A.4, we provide the proofs of the two lemmas and two theorems from
Section 3.2, and then we give the proofs of the technical lemmas in Appendix A.5 to A.7.
Given that the theoretical results are straightforward for finite p,, we assume that p,, — oo as
n — oo in the proof. We briefly discuss the case of finite p, in Appendix A.8.

A.1. Proof of Lemma 3.1

For any model I, we define 07 € RP*3 with @, for I and 0 € R! for I¢. For vector v, v;
is used to denote the vector containing the components corresponding to model /. For any
I > Iy, By or yo; denotes the vector having B, or ¥, for Iy and zeroes for I N I§.

As a common practice for the finite mixture of regressions, we consider a set of parameters:

Y(x.2, D) = (n(xTyp), 2" dp+151,2" g +152, ).

Note that ¥ (x, z, I) has a fixed dimension of 4, which is independent of n and p. We denote
the density of Y by fy(x,z,1) and €y (x, 2.1y = 10g fy(x,z,1)- Furthermore, we define the score
function as

0y (1)
Sy (x,z,1) = W’

and the Fisher information as

I(l//(x,z,l))=/Sw(x,z,1>S$<x,z,1)fw(x,z,l>d#’
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where p is the dominating measure of fy(x,; 1)(¥). By direct calculations, there exists a
function G (-) for any I such that

sup sy (.0 lloo < G1(Y) := C(Y? + Y] + 1),
x€X,ze€Z,07€O(M)

where C is a finite constant only depending on M, X, Z. Based on the inequalities in (B.2) of
[48], we have for any positive number M and 8; € ©(M),

16y .oty Vi Xis 20) = g (x,2.0) (Yin Xis 20) | < CG1(Y))N107 — Bofll1 < CG1(Yi)M,
and
E[(6y(x,2.1y (Yi, X0, 20) = byo .20y Vi X1, 20)) ] < CPMPE[G1(Y;)] < C*M?,

by Taylor expansions and the condition of boundedness of X and Z. Due to Equation (B.14)
in [48], for some C > 0,

1 -
P sup _lzn(al_) - EZn(al_” > CMAy
0;c0(M) 1

SC‘(l+l)< 2¢

n pl]  pAn

We apply the peeling device. For any given M > 0, divide (M) to ®(1y) U {@(Mj)}j:1 o
where

O(M;) = {6 : llog p| < M,e /M < |07 - Boylly < e' M},
and
O(0) = {05 : [logp| < M, |16 — Oyll1 < Ao}

It can be seen that the number of these sets is log(M/1g) + 1. Then we have for any constant
R > C and any I,

P( wp L1260 ~BZ,(6p)

> R/?.o
07607l <M T 107 = Oo7ll1 Vv Ao )

SZP
7

l|Zn(01_) _Ezn(al_” > R,
grcomy 1107 — 8ol

1|Z,,(07) —EZ,(0;5
+P sup _| n( I) n( I)l
0;€0(1) 1 Ao

<>P

J

> R/l())
®)

1 _
sup  —1Zu(67) —EZ,(87)] > Ce™/ Mg
0[6@(Mj)n

1 B}
+P| sup —|Z,(87) —EZ,(8;)| > CA}
0;€0 (1) 1

< 2C (log(M /o) + 1)
- pAn

—0,

as n — oo and p — oo. Given the definition of [,,(6;, 1) and 0}, for ; € ©(M), we have
Zn(01) = Z,(05) and ||0; — 00111 = 1|07 — Oo7ll1 < M. Thus,

1|Z,(0r) —EZ,(6))|
P sup -
10:-80 <M 1101 = Borll1 V Ao

> R/lo) — 0.
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Due to the arbitrariness of /, we have that with probability going to one, V,; < RAy. m|

A.2. Proof of Lemma 3.2

‘We denote the Kullback-Leibler information as

Jo(x,2.0)

W ad) | Wolea D) = / log | 22

:| fl//o(X,Z,I)dﬂﬁ

where Y (x,z, 1) = (r(xTyo;), 28 dor + 1510, 27 bo; + 1520, Po). Further we define the average
excess risk for fixed covariates (x1, z1), .. ., (x,, 2,) to be

n

1
(1 1or) = D8 (W Gz D) | (20 1).

i=1

Before the proof of Lemma 3.2, we first claim that the average excess risk is bounded lower
and upper by the ¢, distance of 8; and 6.

Lemma A.1. Under Condition 2, for some constants ¢ and c depending on M, X and Z,
we have for any I and any 8 € ©(M)

cll6; — Oorll3 < £(81 | 80r) < c1ll0r — Boll3.

Proof. We defer the proof to Appendix A.5.
Note that

flﬁ(xl is I)( l)
g0y | 0o =—— Z/ f%(Xl ZZl I)(y)ftllo(xi,z,:,l)(yi)dﬂ

——E Zl flﬁ(x, Zis 1)(Y)

f'/’o(xt zi, 1) (Y)

= YE{L (o1, 1) ~ 1n(601, )] = T EZ,(6)).

Based on Lemma A.1, on the set {V,, < RAp}, we have

Z,(01) 2 EZ,(01) —nRAy(]16; — 0orll1 V o)
> cn|0; — 0os113 — nRA (101 — Borll1 V o),

and

Z,(01) <EZ,(01) +nRA(||07 = Oorll1 V A0)
< c1n|0; — 801115 + nRA(116; — Ozl V o).

Case 1. If ||6; — 6o;||1 < Ao, then we have

cenl|@r — Borll3 — nRA2 < Z,(01) < c1nl|0; — o; 15 + nRA3.
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Case 2. If ||6; — 6o;|l1 = Ao, then we have
Z,(81) = cnl0; — o712 — nRA|I| + 31107 — Bor 12
=cnl|0; - 0ol - 2\/5R10W\/C”||01 —6o;113/2

n cn
> cnl|@; - Oorll; - ZRZ/%(W +3) - 7”01 —6orll3

cn , R 5
= 0161 = 801l = 5 -nRAZ(11 +3).
Similarly,
n
Zy(01) < c1nll; = Borll3 + =R (111 +3) + canllfr = Bl
R
=2¢1n||0; — Oo/113 + 4—nR,13(|1| +3).
1
Combining the above two cases, we obtain the results we want.
A.3. Proof of Theorem 3.3
The posterior of model  can be written as
| -
n(|y)=c / exp{ln(81, 1)} exp {—5(71 *brbi+ 1 Zb,ch,c)}
0

x (11/q) M (10/1 = )P 7y (51/00) 7N (52/50) 70, (05 a0, bo)d
=C (i (1- q)/q)—lll (1-¢q)? eXp{ln(G()],I)}(Zﬂ')_l”/Z

1 _
X / exp{—Z,(01)} exp {_ETl ZbITbI} n(sy,s2,p)dO.
(S}
Therefore, with the notation v,, = 71 (1 — g) /¢, we can write the posterior as
(I | Y) = Cv,, "' (1 - q)P exp{ln(Bor. D)} R,

where, in the set {V,, < RAp},

_l 1 _
Rr=Q2n)" 2 / exp{—Z,(61)} exp {_ETI szTbI} nw(s1,82,0)d0;
(823

_l 2 2 b;bl
<@m7% [ exp{-enllbs = boll} + canRAF (1]+3)} exp{~=15 b,
by Tl

2 2
1 sj 2 _ _ 2
X exp | — —cn(s; —sj0) ds-/n (p)e~mP=P0) gy
1, oy s -swfs [

) 1 o 2 cns?o
< exp {Can/lO (1] + 3)} m EEﬂp(p) l_[ exp —m 9)
a j=1 a

11| 1 cn
x (27) 2 exp{—=|——— | b, b
(2m) p{ 2(2cn7’12+1) o OI}
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/ 2cn712 +1 5 2cn7’12 5 g 5 2cn7'1 b b
X exp 4 — - -
by P 4712 ! 2CI’lT12 +1 of ! 2cm’1 +1 of !

|11/2
272 1 1
1 / 2
=< ~—exp {c2nRA; (|1 +3
(2cn712+1) 2cnol +1 ¥ 2cn p{ 2 (Il )}

where the last approximation follows since 7,,(p) < C for some constant C > 0.
For the true model I, we have

I[I =1y | Y] = Cvy; "™ (1 = g)P exp{L.(8os,» 10) } Ry

_ ol
R[O = (27‘!’) 2 /
(C]

We now derive a lower bound on Rj,. Similarly, we have

where

1
exp{~Z,(61,)} exp {—Erfzbi)bzo} n(s1.52.p)d0.  (10)

Iy

ol
Ry, 2/ ﬂ(sl,sz,p)dsldszdp(27r)_70
51,82,0

bl b
X/ exp {—c1n||010 —001()”%—C3nR/10(|10|+3)}exp {_ 207_20 db]o (11)
I

0 1

[1o]/2
(20 0 L L exptecanR2 (11o] +3))
Pt X —Cc3n .
2clnT12+1 2cinol + 1\ 2cn preanfidofifo

Here in the integral of p we have E(r,,(p)) bounded below by some constant using a Gaussian
distribution. In fact, it is larger than the integral near pg where 7,,(p) > C for some constant
C > 0 in the interval.

Now we discuss the posterior ratios.

~In| 2c; |12
npr=niv Vi exp{ln(8or,, 1)} (m)
Oi=1Y] ~ _ ENTATE

vall exp{l (Boi 10)} (7

Ty 2en exp{eanRAS (1] +3)}

2C1n10'(21,+1 V 201n exp{ C3I’lR/12 (|10| + 3)}
y (1 —C]) (Ih1=1ol) (CnTl +1/2)—|11|/2
q (cint? +1/2)~10l/2
X exp{can/lé ([I1] +3) + 03nR/l(2) (1Io] + 3)} exp{L,(Bo1,» I1) — L (Bozy» I0) }-

Given the orders of prior parameters, we have
O/ =1 Y]
I =1 |Y]
< p~ (D UhI=lhD+e2R(IN1+3)+e3R (o] +3) exp{l,(Bor,» 1) — L, (8oz,. 1)}
— p—(C+2—CzR)(|11|—|10|)+(62+C3)R(|10|+3) exp{L,(Qor,, 1) = L, (B01y, 1) }.
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Next we consider the following three cases one by one:

1. Over-fitted models: My = {I; : I D Iy, I # Iy, |I1| < m,},
2. Large models: M, = {I : |lo| < |I]| < m,},
3. Under-fitted models: M3 = {I; : I ? Ip, |I1| < |Ip|}.

Over-fitted models: if /; € M, we have [,,(0o1,, 11) = [,,(6o1,, Io), thus

MIT=0 Y] (cor-eR)(nl-1n)+(eaven Rl+3)
OI=10|Y] ~ '

Since R is an arbitrary positive number no less than C, we can set it to be C. Define C to be
(c2 + (c2 + ¢3)(|Io| + 3))C. Then for all models in M

My,
D Mir=n1r] > (p‘ |10|)p—<é+2—czc><d—|Io|>+<cz+c3>C(|Io|+3>

15, [/ =1y | Y] =T d — |Io]
ny
< pd—llolp—(é+2—czé)(d—|10|)+(02+C3)C(|10|+3)
d=|10|+1

ny
< Z p—(62+C3)(|10|+3)C(d—|10|—1)p—(d—|10|)
d=|Iy|+1
=< p_1
Large models: if |I;| > |ly|, we use I} = I} U Ip. Thus Bor: denotes the [77] X 1 vector

including 6y, for Iy and zeros for I; N I§. We use 6, I €0 (M) to denote the vector with
0y, for I} and zeros for I7 N Iy. Then we have

— 0.

M =01Y] | eoerrn-
< R (Ih1= o) +(e2+e3)R(Ho1+3) oyl 7 (@ 1.
H[IZI()|Y] Ip Xp{ n( 1[1)}
< p—(é+2—262R)(|11|—|Io|)+(302+c3)R(|10|+3) exp {_CHHOO,II"OI()”%}
< p—(é+2—202R)(|11|—|10|)+(362+63)R(|10|+3) exp {_cn min b?o} .
J

Thus, for all models in M>,

ni/=n1Y
Z w < exp {—cn minb_%o}

S =10 1] J
& WS 1ol (0] e : (
—(C+2—2C2R (d—|10|)+(3C2+C3)R |Io|+3)
X
2 2 )
d=[Io|+1 h=0
mp |IO|_1 5
j Z pd—h|IO|hp—(C+2—2(,‘2R)(d—|10|)+(3(,‘2+C3)R(|Io|+3) eXp {—C”l m.in b%o}
d=|To|+1 h=0 J
my N
<Y Il (C92-2eaRI - ) Gesre) RUBIHOL gy {_m min b%}
d=|I()|+1

< p—C+2c2R+(3c2+C3)R(|10|+3)+|10| exp {—Cn min bfo}
J

S p—C+2C2R+(3C2+C3)R(|I()|+3)+|I()|p—CCO|I()| 0,
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for some Cy > ((3¢c2 +c3)R+1)/c + (2¢2R +3(3¢c2 + ¢3)R — C)/(c|Ip|) in Condition 4.
Under-fitted models: if I} ? Iy and |I;| < |Iy|, similarly, we have
[l =11Y]

=(C+2=c2R) (||~ To)+(2¢c2+¢3) R([1|[+3) exp —cnmin b2 b
NiI=1|Y] ~ '

Then we have for all models in M3

[I=11Y]

MI=h1Y] ol e mins?
M =1o| Y] eXp{ e JO}

I]EM

M~

d
y Z |10| ol) - (C2-car) (@= I+ exven R(1101+3)
h
d=0 h=0
| d i
j Z pd—h|10|hp—(c+2—C2R)(d—|I()|)+(262+C3)R(|I()|+3) eXp {_Cl’l min b?o}
d=0 h=0 J
ﬁ p(C+2+(c2+C3)R)|Io|+3(2c'2+C3)Rp—cC0|Io| SN 0’
for some Co > (C +2+ (ca+c3)R)/c +3(2¢2 + c3)R/(c|Ip)).
- P
Combing the results, we have 7, ¢ 7(m,)\ (1} % — 0, which in turn implies that
N[I=1|Y] = 10nI(mp). O

A.4. Proof of Theorem 3.4

Define the set D, = {(0,1) € O(M) X I (m,,) : |0 — O]|» = &,1 = Ip}. We have
I[(0,]) e OM)XT(my): 100l >2e|Y]<I[I#1I| Y]+ [D,]|Y].

On {V,, < RAg}, by Theorem 3.3, we have on 1 (m,,), 1[I # Iy | Y] N 0, so we only need
to study I1[D, | Y], which can be rewritten as

fz) 21 exp{lu(01,1) = 1,(0or, 1)} (01, 0;c, 1)d0;d0c
f@(M) S exp{ln (07, 1) — 1,(801, 1)} (01,01, 1)d0;dO e

For the denominator in (12), we have

N[D. |Y]= (12)

/ > exp{ln(81.1) = Lu(8or, )} (61, 81c, 1)d61d0c

(M) 7

> /( )exp{ln(alo,lo) = 1n(Bos,, 10)} (01, 01,1 = Io)dO,d6 ¢
oM

> / eXp{=Zu(01,)}7(81, 81c, 1 = 10)d61,d8)c
O(M)
= v "l (1 - g)" Ry,
\1/2
Vr_tll()l(l _ q)p(Tl—2/2+cln)—|IO|/2A

2

exp{—c3nRA5(|Io| +3)},
2cinof +

in which Ry, is defined in (10) and the last inequality follows directly from the lower bound
on Ry, in (11).
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For the numerator in (12), we have

/ Z exp{ln(01,1) = 1,(O01, 1) }m(01,01c,1)d6;d0 e
0.4

s/ > exp {-cnllf; - Oor13 + conRAZ(|1] +3)} 7(61, 01, 1)dO;d6e
D, T

[To]
1- T0q ) / )
= exp \—cn||01, — oy ||
(\/271"1'0) (TI(1 -q) {0€O(M):||60-6)]2> s} { 0 0 2}

T
bfb, bicbje
X exp —0—20 -2 20 (51,52, p)d01,d6 ¢ exp {coanRAZ(|1o] +3)} .
271 27'0

The integral set can be rewritten as

{60 € O(M) : 160013 > &} ={0 € O(M) : (181, — By, |15 + 105 |13 > £°}
={0 € O(M) : |61, — Bo, |l + (1 + p) 1651l = & + plIc 13}
Thus the integral is bounded above by

bibi, 1161, — 8opl3
exp { —cnl||0; — Oop ||I* — —— + 0 02 (s, 82, 0)d0
/@ ) p{ 101, = 00 = =3 5+ S S5 )

1
x | exp—————— by |3 { dbr exp—————&% .
/e {2(1 pe 0P 2(1+p)zg

where the second integral is equal to

p—IIp|
=|1o|
(v— L+p ) < (Varm) " o

Thus similar to steps for deriving the upper bound on R; in (9), we can obtain an upper bound
on the numerator as

[ Y explba(0r.D) = 1a(00r. 1701010, 1010,
D. 5

=lol/2 2 1
_ 1 1 2cn(l1+p)ts—1
<y ol = g)P (—2 2+cn—72 2) ( 02 o+ 1
7 (1+p)y (1+p)7;

: R
X \/2011— 1/[(1 +P)T ] exp{can/l (40| +3)}exp{ e }

2(1+ p)Tg
Thus given conditions 3 and 5,

Iyl/2
22+ cin ol/ 2cino? +1
I1 [Dg | Y] =< 2 2 2
71‘2/2+cn—1/[2(1+p)7'0] (2en = 1/[(1 +p)rg)og + 1

2cin 1 2
X \/ch— Il +p)T ] Xp{(C2+C3)nR/l (| +3)}exp{ 20 +p)‘r§8 }

n
< exp{(c2 +c3)R(|Ip| +3) log p} exp {—582} .
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If we choose & = 1/C’|Iy|log p/n for C" > 8(c3 + ¢3) R, the result follows. O

A.5. Proof of Lemma A.1

Before the proof of Lemma A.1, we first claim two necessary lemmas as follows.
Lemma A.2. Under Condition 2, we have

eW(x,z,1) [ Yo(x,2,1) = colly(x, 2, 1) = o (x, 2, D3,

s (x,2.1) | Wo(x.2.1) < et 9z D) = ol 2, Dl
Proof: The proof can be found in Appendix A.6.

Lemma A.3. For 0 € ®(M) and x € X, there exist some constants ¢ and C, such that
cly =Tyl < In(x"y) = 2Ty P < Clxly = 2Tyl
Proof: The proof can be found in Appendix A.7.
With the notation (}j = (o7, sj)T for j = 1,2, by Lemma A.2, we have
n
BZu(01) 2 co ) I (xir 2ir 1) = Yo (xir 26, D113
i=1

2
= co Z(&ﬁjl - ¢~5j01)TZITZI($j1 200
J=1

+ Co

n

2 2
§ (v D) = 7 (xfpyon) P +nlp = pol
i=1

By the lower bound in Lemma A.3, we have

2
EZ,(81) > co Z(ajl b0 Z[ Z1(;1 - d,01)
=
T T 2
+coc(yy —vor) X; Xi(yy —vor) + conlp — pol
> condi (2||¢ — @oll3 + 51— s10]* + |52 — 520> + c2lly = woll5 + 1o — p0|2)

> cn||6;7 - Oorll3-
Similarly we can upper bound EZ,,(6;). We have
2
EZ,(61) < ci Z(¢jl i) Z[ Z1(;1 - b j01)
7=

+cic2(yy = vo)TXF Xi(y; = vor) + cinlp — pol?
< c1n||0r — Oorll3.

The results then follow. ]
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A.6. Proof of Lemma A.2

By Lemma 1 in [42], with some slight modification, we have

C()”lﬁ(x, Zv[) - lpO('xv <, I)H% < 3(‘/’(x> Z, I) | lpO(x’ Z,l)),

for some constant cq. For the other side of the inequality, we adopt a similar proof procedure
to [42]. For fixed design finite mixture regression models, their Conditions 1,2 and 3 are
automatically met with appropriate C3, Apin and {@ ¢}, only depending on M. Thus by Taylor
expansion, we have

s (x.2. 1) [ Wo(x.2.1)) = Wy = or) "I (Wor) (i = o) 2+ 1y,
where
63l¢,I
0 ;10 j, 109 ;1

3
|r,,,l| < M/wsup max Jwo, Au

1€Y1 JisJ2,J3

_4c
o ||‘ﬁ1 ‘P01||2

By direct calculations, for § € (M), x € X and z € Z, the largest eigenvalue of information
matrix / (Y (x, z, 1)) is bounded above, i.e.,

sup  Amax (I (‘ﬁo(xa 2, I))) < Amaxs
xeX,zeZ

where Apax is some finite constant. Hence
4C3

Amax
sz 0) [ o2 D) < =52 g = warlly + 5 s = vl -

Thus we have

max 4C
s (.2 D) [ o(x2.0) < =5 =l + =7 s = vorl 3 s = vl
< (AmaX/Z +16C3M /3) ||‘ﬁ1 ~ ol
501”%—%1”; .

A.7. Proof of Lemma A.3

The upper bound inequality comes from Lemma 9 in [48]. For the lower bound inequality, let
a=xTy,b=x"y,.Since § € ®(M) and x € X, we have @ < Q and b < Q for some finite
constant Q. Let 7(x) = ¢*/(1 + e*), so we have

/(x) = e~ 1 <l
' (x -.
(1+ex)2 eX+eX+2 7 4

Thus, by the mean value theorem,

n(a)-n(b)| 1
T’ =|n"(c)] < e

where c is some constant between a and b. Therefore,

1
In(x"y) - 7T(JCT7/0)|2 < 1—6|XT7 —xT70|2- o
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A.8. Case of finite dimension

For the finite-dimensional case p = O(1), one can use Taylor expansion around the true
parameter 6 to achieve results analogous to Lemma 3.2, under common regularity conditions
[22, 42]. The remaining steps are similar to those in the high-dimensional case. Since the
proof of the finite-dimensional case is straightforward, throughout the paper we focus on
elaborating the proof when p is infinite.

Additionally, we can also see that when p = O(1), one can extend the parameters by
including infinitely many zeros, allowing the same procedure of the high-dimensional case to
be applicable.

Appendix B: Additional simulation results
B.1. High correlation settings

In this subsection, we conduct additional experiments to assess the impact of higher correla-
tions under both pairwise correlation settings and autoregressive correlation settings.

B.1.1. Pairwise correlation setting

We first consider the same settings as in Section 4.1 with n = 200. We increase the pairwise
correlation p among the active prognostic or predictive covariates to {0.7, 0.8}, while keeping
the pairwise correlations among inactive covariates and between active and inactive covariates
fixed at 0.25. The results of variable selection performance are summarized in Table 6.

Table 6
Variable selection results in structured logistic-normal mixture settings with n = 200 and different values of
pairwise covariate correlation p.

1B I

P P TP TP,FPI=1IgI>logls =1y TP TP, FP I=1o 1> Io I, = Io
025 4 4 0 1 1 1 380381032 060 080 081
0o 07 4 40 111 339344057 033 048 049
08 398 4 0 098 098 1 2933.06081 0.13 024 027
025 4 4 0 1 1 1 365365042 047 065 066
so0 07 399 4 0099 099 1 283302054 014 020 029
08 3.60 4 0 0.64 064 1 230265065 002 005 0.11

We observe that prognostic variable selection shows robustness to increasing correlations.
When p = 0.7, the impact on the results is minimal, even in the high-dimensional setting with
p = 500. When p increases to 0.8, our method still identifies more than half of the active
covariates without false discoveries in the case of p = 500 and achieves perfect ranking in
variable importance with TP, = 4.

Predictive variable selection exhibits greater sensitivity to increasing correlation compared
to prognostic selection, particularly in high-dimensional settings. The performance remains
robust at p = 0.7, but deteriorates as correlation increases further. At the higher level of
p = 0.8, TP declines and FP increases, suggesting that in the logistic model, some highly
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Fig 4. Post-burnin trace plots for an active predictive covariate and an inactive predictive covariate under different
values of pairwise correlation p between active covariates.

correlated active covariates may be overlooked, making it more difficult to accurately identify
the true predictive variables.

To assess the impact of high correlation on MCMC convergence, we evaluate the mix-
ing behavior of the Gibbs sampler under different pairwise correlation levels among active
covariates, p € 0.25,0.7, 0.8, by examining trace plots and the effective sample size (ESS).

Since correlation primarily affects predictive covariates rather than prognostic covariates,
our analysis focuses on the trace plots of the regression coefficients associated with the
predictive covariates. We illustrate the MCMC mixing behavior using a representative trial
under the same settings as in Section 4.1 with n = 200 and p = 100. Figure 4(a)-(c) presents
the trace plots using every 50th iteration from a total of 15000 samples after the burn-in period
for one active predictive covariate, while Figure 4(d)-(f) shows the trace plots for one inactive
predictive covariate across different correlation levels.

The trace plots reveal a deterioration in convergence as p increases. For the active predictive
covariate, the sampler mixes well when p = 0.25. However, as p increases to 0.8, the trace
shows more frequent and prolonged visits to 0, suggesting that the sampler becomes more
prone to switching the variable’s inclusion status. For the inactive predictive covariate, the
trace plots remain concentrated around zero across all levels of p as expected.

We further examine the impact of covariate correlation on MCMC convergence by com-
puting the ESS across all prognostic and predictive covariates under different values of p, as
summarized in Table 7. For prognostic covariates, the ESS remains notably high. For predictive
covariates, the ESS is lower with more variation due to the additional complexity introduced by
subgroup modeling. Overall, the ESS values for both components are satisfactory, indicating
good mixing behavior of the Gibbs sampler regardless of the correlation.
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Table 7
Averaged effective sample sizes with standard errors across all prognostic and predictive covariates under
different values of pairwise correlation p with n = 200, p = 100, and post-burnin length 15000.

e Prognostic Predictive
0.25 13591 (1909.96)  924.1 (589.66)
0.7 13090 (3501.48) 1151.1 (624.92)
0.8 12887 (3792.69) 1328.0(917.22)

Table 8
Variable selection results in structured logistic-normal mixture settings with n = 200 and different values of
autoregressive correlation p.

P I
P P TP TP,FPI=1IgI > logls =1y TP TP, FP I=1o1>Io I, = Io
025 4 4 0 1 1 1 384381050 051 085 081
o 05 4 40 1 11 370370056 049 078 074
06 4 4 0 1 1 1 331344051 038 056 0.59
07 4 4 0 1 1 1 292318062 022 038 042
025 4 4 0 1 1 1 355368032 054 067 0.74
500 05 4 40 1 1 323334057 039 054 058
06 4 40 1 1 1 286306036 030 038 042
07 398 4 0 099 099 1 235271047 021 023 026

B.1.2. Autoregressive correlation setting

We also consider the case of autoregressive (AR) correlation structure where prognostic and
predictive covariates follow N(0,,X) with %;; = p!i=J1 exhibiting local dependencies rather
than uniform pairwise correlation. The results are summarized in Table 8.

Similar conclusions can be drawn from the results in Table 8. Prognostic variable selection
remains highly robust under the AR correlation setting, achieving perfect recovery across all
p values. In contrast, predictive variable selection is more affected by the AR correlation
structure, showing a gradual decline in true positives and an increase in false positives as p
increases. This indicates that higher correlation among neighboring covariates makes it more
challenging to distinguish true predictive variables from correlated noise, leading to reduced
exact recovery rates.

B.2. Prediction errors for traditional subgroup settings

In this section, we provide the subgroup prediction errors of the traditional subgroup settings
in addition to the results provided in Section 4.2. We only study settings S1 to S4 that have
latent subgroups. We estimate the subgroup prediction errors using independent testing data
with n = 5000. The generating procedure of the testing data is the same as that for the
training data. The subgroup prediction error is calculated as the rate of observations that are
misclassified into the wrong subgroup in our testing data. For our method, the classification for
the subgroup membership is based on the estimated model from training data with the cutoff
for the probability of the logistic model being 0.5. For tree-based methods, the classification
depends on the split of the first node trained from the training data. The results are averaged
based on the estimated models from 100 training trials.
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Table 9
Subgroup prediction error of traditional subgroup settings in Section 4.2. In (a), the settings are low-dimensional
with p = 20, while in (b) the settings are high-dimensional with p = 200.

(@) p=20 S1 S2 S3 S4

BVSA 0.0258 0.1055 0.1055 0.1313
MOB 0.1543 03115 0.2874 0.1323
FindIt 0.4904 0.2876  0.1505 0.3931
PRIM 0.0494 03282 0.3016 0.1429
SeqBT 0.2731 0.2364 0.2354 0.3149
GUIDE 0.0443 0.2265 0.2266 0.1327
(b) p =200 S1 S2 S3 S4

BVSA 0.0242 0.1058 0.1059 0.1279
MOB 0.0238 0.3015 0.2824  0.1295
PRIM 0.0321 0.2451 0.2205 0.1358
SeqBT 0.2570  0.2345 0.2370  0.2953
GUIDE 0.0837 0.2149 0.2134 0.1302

The results for low-dimensional settings with p = 20 are shown in (a) of Table 9. BVSA
outperforms all other methods in all the settings, demonstrating its capability in subgroup
prediction. The performance on subgroup identification in high-dimensional settings with
p = 200 is shown in (b) of Table 9. BVSA has the smallest prediction errors in settings S2, S3,
and S4, while in S1, its prediction error is also quite low compared to most other candidates,
again indicating that BVSA is effective and stable.

Appendix C: Additional real data results
C.1. Predictive performance evaluation

In this subsection, we assess the predictive performance of our method. We compute the
log predictive scores (LPS) on an independent test dataset following the formulation in [11].
Specifically, given a training dataset {(yi,zi,xi,ti)}?:f“, we adopt g-priors on the linear
coefficients B and the logistic coefficients y based on the selected model, and estimate the
posterior distributions using Gibbs sampling. Let £*) denote the posterior sample at the sth

iteration. The LPS on the testing dataset {((y;, zi, X, ti)}:‘:f‘ is computed as

. 1 Miest 1 S
LPS = - log | = N zixintin ZO ]
e 2218 |5 2,0 oot £

where § is the number of posterior samples and set as 3000 in our analysis.

In addition to LPS, we assess the effectiveness of the subgroup identification by evaluating
treatment effect heterogeneity. For each test sample, we compute a predicted subgroup score
using the estimated logistic component 7j; = xin/. Based on the median 7j,eq4, we divide the
testing dataset into the “low” subgroup with 7j; < 7eq and the “high” subgroup with 7j; > fimed.
Within each subgroup, we estimate the average treatment effect (ATE) by computing the
difference in adjusted outcomes between treated and untreated individuals:

o o )
ATE = - Z(yi—zf,b’)—n—o > i B),

i:t;=1 i:t;=0
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Table 10
Comparison of predictive performance and subgroup treatment effect.
Model LPS | Low Group ATE High Group ATE  ATE Group Difference T
Baseline 3.172 0.352 1.447 1.095
+Age (pred)  3.171 0.574 1.141 0.567
+Hispanic (prog) 3.174 0.349 1.436 1.087

where n; and ng are the numbers of treated and untreated subjects in the subgroup, respectively.
A large contrast between the estimated ATEs of the “low” and “high” subgroups suggests
that the model successfully identifies meaningful heterogeneity in treatment response, thereby
validating the subgroup discovery.

We conduct a comparison on the NSW dataset using the following three models: (1) the
baseline model that includes the set of variables selected by BVSA; (2) a modified model
that additionally includes Age in the predictive component; and (3) a modified model that
additionally includes Hispanic in the prognostic component.

For each model, we compute the LPS on a held-out testing dataset comprising 20% of the
observations, and estimate the subgroup treatment effects. The results are averaged over 100
independent trials and summarized in Table 10.

The results show that all three models achieve comparable LPS values, indicating similar
predictive accuracy on the test data. However, when Age is included in the predictive compo-
nent, the contrast between subgroup treatment effects becomes notably smaller. In contrast,
the baseline model identified by BVSA yields a clearer separation between the low and high
subgroups, suggesting more meaningful treatment effect heterogeneity. On the other hand,
including Hispanic in the prognostic component does not lead to improvement in either LPS
or subgroup contrast. The subgroup treatment effects remain nearly identical to the baseline
model, indicating that Hispanic may not provide additional explanatory power beyond the
selected covariates.

These findings support the effectiveness of BVSA in selecting variables. Including variables
with seemingly small effects does not necessarily improve model performance or subgroup
identification.

C.2. Prognostic and predictive illustration for ACTG320

In this section, we illustrate the roles of Lcd40 and Lrna0 in the structured models in Figure 5
and Figure 6, respectively. Patients are divided into high and low groups based on median
¢d40 and rna0, and we investigate the CD4 count change in different groups with or without
the interaction of treatment.

Our method chooses Lcd40 as an active variable in the prognostic model with a posterior
inclusion probability of 1, while Lrna0 is not included as a prognostic variable. We can observe
in (a) and (b) of Figure 5 that the CD4 count changes in high and low Lcd40 levels show
differential patterns. Their box plots do not overlap, and the estimated density curves have
two different peaks, which supports the choice of Lcd40 as prognostic. However, in (a) and
(b) of Figure 6, the CD4 count changes in high and low Lrna0 groups are similar, indicating
that Lrna0 does not have a direct effect on the CD4 count change. For the predictive part, our
method chooses both Lcd40 and Lrna0. From (c¢) and (d) of both Figure 5 and Figure 6, the
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Fig 5. Prognostic or predictive effects of the natural logarithm of baseline CD4 counts on the CD4 count change
at week 24 for ACTG320 study with the prognostic effect shown in (a) and (b), and the predictive effect shown in
(c) and (d).

(a) Box Plots of CD4 Change by High/Low Lrna0 (b) Densities of CD4 Change by High/Low Lrna0
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(c) Box Plots of CD4 Change by Treatment and High/Low Lrna0 (d) Densities of CD4 Change by Treatment and High/Low Lrna0
° @ High © — High 1
O Low g | I ---- Higho
g H 3 o Low 1
° 3 VY Low 0
s ; T g B
8 : F] : 3
: o : J— z
- = s
g | - 3 ; 8
¥ H : : El
8 o — —
g o . gl — S S
! T T T T S T T T T T T
High 1 High 0 Low 1 Low0 -400 -200 4 200 400 600

Fig 6. Prognostic or predictive effects of the logarithm of baseline HIV-1 RNA concentration with base 10 on
the CD4 count change at week 24 for ACTG320 study with the prognostic effect shown in (a) and (b), and the
predictive effect shown in (c) and (d).

treatment effects for high and low groups of patients are different. The treatment will show
more influence in the low Lcd40 group and the high Lrna0O group. These results validate that
the prognostic and predictive models are reasonably selected.

C.3. Sensitivity analysis of hyperparameters

In this subsection, we assess the sensitivity of our method to the choice of the hyperparameters
on the NSW dataset in Section 5.1. We vary key hyperparameters, including slab variances
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Table 11
Posterior inclusion probabilities for prognostic and predictive covariates under different values of
hyperparameters: (1g1,Ty1), (180, Ty0), and (qg. qy). When varying one group of hyperparameters, the others
are fixed at the values specified in (5).
@ 181 Ty Age Educ Black Hisp Marr RE75 Unemploy
Prog 0.015 0.014 0.722 0.081 0.036 1 0.031

08 08 Pred 0.274 0.525 0.258 0.190 0.187 0.149  0.154
1 1 Prog 0.010 0.010 0.656 0.075 0.025 1 0.025

Pred 0.245 0.715 0.189 0.142 0.180 0.149 0.114
’ ) Prog 0.006 0.005 0.463 0.046 0.015 1 0.008

Pred 0.188 0.733 0.074 0.147 0.097 0.096 0.112

b)) 180 TH0 Age Educ Black Hisp Marr RE75 Unemploy
Prog 0.010 0.010 0.656 0.075 0.025 1 0.025
Pred 0.245 0.715 0.189 0.142 0.180 0.149 0.114
Prog 0.012 0.012 0.682 0.065 0.026 1 0.024
Pred 0.212 0.592 0.217 0.211 0.155 0.205  0.150
Prog 0.009 0.009 0.586 0.055 0.017 1 0.018
Pred 0.153 0.477 0.120 0.106 0.087 0.107  0.092

(o) a8 9y Age Educ Black Hisp Marr RE75 Unemploy
Prog 0.008 0.008 0.590 0.055 0.021 1 0.015
Pred 0.170 0.524 0.098 0.122 0.099 0.111  0.097
Prog 0.010 0.010 0.656 0.075 0.025 1 0.025
Pred 0.245 0.715 0.189 0.142 0.180 0.149 0.114
Prog 0.014 0.014 0.758 0.085 0.038 1 0.031
Pred 0.315 0.656 0.235 0.214 0.197 0.200  0.192

0.007 0.007

0.01 0.01

0.02 0.02

0.15 0.15

0.20 0.20

0.25 0.25

(g1, 1), spike variances (7go, 7,0), and prior inclusion probabilities (gg, g, ), while keeping
the remaining hyperparameters fixed at the values specified in (5) to ensure a controlled
comparison. For each setting, we run five independent Gibbs sampling chains and report the
posterior inclusion probabilities of both prognostic and predictive covariates, averaged across
these runs.

For (71, 7y1), the results are presented in Table 11(a). For prognostic variable selection,
different choices of (7g1,7,1) do not affect the selection of RE75, which is consistently
identified with a posterior inclusion probability of 1. While the posterior inclusion probabilities
of other variables vary across different hyperparameter values, Black remains the second
highest probability with a substantial gap from the remaining covariates, indicating a stable
variable ranking despite changes in hyperparameter settings. For predictive variable selection,
Educ consistently has the highest inclusion probability across all settings. While the absolute
posterior inclusion probabilities of all covariates vary with different choices of (71, 7,1),
the relative rankings of variable importance remain largely stable, further demonstrating the
robustness of our method.

The results for (7g0, 7,0) and (gg, q,) are presented in Tables 11(b) and 11(c), respectively.
We observe similar patterns in these analyses, further supporting the conclusion that our
method is stable with respect to hyperparameter choices.
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Table 12
Variable selection results in structured logistic-normal mixture settings withmn = 200 and p = 0. (a) Results
under the same hyperparameter strategies on f3 and y, where spike hyperparameters (1gg, 7,0) or slab
hyperparameters (tg1, Ty1) are modified with multipliers 0.5 or 2. (b) Results under the separate hyperparameter
strategies on 8 and y, where slab hyperparameters tg or 7,1 are modified with multipliers 0.5 or 2.

(a)  Hyper P rr
p Spike Slab TP TP FP I =1g I D> Ig Iy =1y TP TPy FP I=Ip I > 1y Is =1y

xl x1 4 4 0 1 1 1 3.683.74034 055 0.69 0.74
x2 x1 4 4 0 1 1 1 3.693.72031 055 0.70 0.73
500 x0.5 x1 4 4 0 1 1 1 3.653.640.39 054 0.68 0.67
xl x2 4 4 0 1 1 1 3703.611.11 031 0.72 0.65
xl x054 4 0 1 1 1 3523680.10 0.51 0.56 0.68

(b) Slab 1B Iz
p 1 Ty TPTPFPI=IyI>Igly=1y TP TP, FP I=1y1>1Iy I, =1

xl x1 4 4 0 1 1 1 3.683.74034 055 0.69 0.74
x05 x1 4 4 0 1 1 1 3.69371036 054 0.71 0.73
xl x054 4 0 1 1 1 3543680.13 053 0.57 0.68
500 x0.5 x0.5 4 4 0 1 1 1 3523680.10 0.51 0.56 0.68
x2 x1 4 4 0 1 1 1 3.723.76 0.30 0.61 0.73 0.76
xl x2 4 4 0 1 1 1 373367091 036 0.75 0.69
X2 x2 4 4 0 1 1 1 3.703611.11 031 0.72 0.65

Appendix D: Sensitivity analysis
D.1. Sensitivity analysis of spike-and-slab variances

As noted in [19], continuous spike-and-slab priors are sensitive to the choice of variances,
making prior calibration an essential consideration in Bayesian variable selection. To assess
their sensitivity, we first conduct an analysis where we simultaneously adjust the variance
hyperparameters in both the linear and logistic components. Specifically, we scale the spike
or slab variances by multipliers of 0.5 or 2, and examine the impact on variable selection.
The results under the same settings in Section 4.1 with n = 200 from 100 random trials are
summarized in Table 12(a). We present the results with p = 0, while the results with p = 0.25
show similar patterns.

We have the following three observations. First, for the linear part, the results on B are
perfect across all settings, indicating that the linear part is not sensitive to the choice of
(1, Ty1) and (7go, T0) Within a reasonable range. Second, for the logistic part, the variation
in spike variances (7go, 7,0) does not significantly affect the variable selection results for
predictive covariates. Third, for the logistic part, the choice of slab variance (71, 7,1) exhibits
a trade-off between true positives and false positives. Smaller slab variances lead to a more
conservative selection on 7y, while larger values may increase the false positives.

Based on these observations, we find that when applying the same hyperparameter settings
for B and y, the overall variable selection performance remains stable within reasonable
variations. However, we also observe that the selection on y is more sensitive to the scales of
slab variances (71, 7,1) than that on 8. This suggests that the linear and logistic components
may operate on different scales of (71, 7,1) and could benefit from separate calibration
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Table 13
Variable selection results in structured logistic-normal mixture settings with n = 200 and p = 0. Prior inclusion
probabilities qg and q, are modified with multipliers 0.5 or 2.

Prior 1B I
qg qy TPTPyFPI=IyI>Iyly=1y TP TPy, FP I=1y1> 1yl =1

xl x1 4 4 0 1 1 1 3.893.890.36 0.63 0.89 0.89
x05 x1 4 4 0 1 1 1 3.893.880.33 0.63 0.89 0.88
xl x054 4 0 1 1 1 3.823.870.05 0.81 0.82 0.87
100 x0.5x05 4 4 0 1 1 1 3.813.890.07 0.79 0.82 0.89
x2 x1 4 4 0 1 1 1 3.893.890.32 0.66 0.89 0.89
xl x2 4 4 0 1 1 1 3.993.882.34 0.09 099 0.88
X2 x2 4 4 0 1 1 1 4.00 3.86 2.42 0.09 1.00 0.86
xl x1 4 4 0 1 1 1 3.683.74 0.34 0.55 0.69 0.74
x05 x1 4 4 0 1 1 1 3.68 3.70 0.27 0.55 0.69 0.70
xl X054 4 0 1 1 1 3.643.730.18 0.58 0.68 0.73
500 x0.5x05 4 4 0 1 1 1 3.603.70 0.20 0.56 0.65 0.71
x2 xI 4 4 0 1 1 1 3.703.69 0.33 0.57 0.70 0.69
xl x2 4 4 0 1 1 1 3.693.620.63 043 0.70 0.64
x2 x2 4 4 0 1 1 1 3.743.68 0.64 0.40 0.76 0.69

strategies. Therefore, we further investigate the individual impact of 781 and 7,1 by modifying
them separately, and the corresponding results are presented in Table 12(b).

From Table 12(b), we observe that the results are not sensitive to the change of g1, while
the trade-off between true positives and false positives is primarily influenced by the choice of
7,1. This observation underscores the necessity of distinct prior calibration for the linear and
logistic components in practical applications. Proper calibration of 7,1 is particularly crucial
for guaranteeing robust variable selection on predictive covariates, especially in challenging
scenarios involving high dimensionality and potential model misspecification.

D.2. Sensitivity analysis of prior inclusion probabilities

In this subsection, we examine the choice of prior inclusion probabilities gg and g, by applying
a similar sensitivity analysis under the same settings in Section 4.1 with n = 200. Specifically,
we scale each of these probabilities by multipliers of 0.5 or 2 separately to assess their impact
on variable selection performance. The results from 100 random trials are summarized in
Table 13.

Based on the results in Table 13, we observe the following key findings regarding the
sensitivity of prior inclusion probabilities gg and g, . First, the results for 8 remain highly
stable across different values of gg. Second, the results for y exhibit an expected trade-off
between true positives and false positives. A larger g, increases the number of selected
variables, leading to higher true positives and false positives, particularly when p = 500.
This highlights the need for calibration of g, in predictive variable selection. Third, despite
variations in g,,, TP, and Iy = I for I” remain stable, suggesting that the ranking ability of
the model remains largely unaffected within a reasonable range of hyperparameter choices.

We conclude from these results that, while theoretically the same order of gg and g,
guarantees model selection and parameter estimation consistency, empirically they can be



2914 R. Zhang et al.

Table 14
Sensitivity to 0'(2,, agp, and by.
(a)ag=2and by =1
TP TPy FP I=1y IDIy Is=1

o2=1 IF 4 4 0 1 1 1
I’ 386 387 025 0.7 087 087

o2=2 1B 4 4 0 1 1 1
I 3.86 3.86 029 067 087 0.86

o2=3 1B 4 4 0 1 1 1

I 3.87 386 032 0.66 0.88 0.86
(b)o2 =landbg=1
TP TPy FP I=1Iy 1>l Is =1

ap=1 1B 4 4 0 1 1 1
I 387 387 03 066 088 0.87

ap=2 1B 4 4 0 1 1 1
I 384 387 03 065 085 087

ap=3 I 4 4 0 1 1 1

Y 386 387 03 064 087 0.87
(c)o2 =landay=2
TP TPy FP I=1y Io1y Is=1p

bo=1 IF 4 4 0 1 1 1
I 384 387 03 065 085 0.87

bo=2 B 4 4 0 1 1 1
1Y 385 387 03 067 086 087

bp=3 B 4 4 0 1 1 1

I 3.85 385 029 0.66 086 0.86

calibrated differently to achieve improved finite-sample performance. Specifically, while gg
remains robust across different values, g, requires careful tuning to prevent excessive false
positives.

D.3. Sensitivity analysis of other hyperparameters

In this section, we explore the sensitivity of our methods to other hyperparameters in the
assigned weak informative prior distributions. To be specific, we investigate the influence of
(7(2, in the priors of a1 and @, as well as aq and by in the prior of o,. We consider the setting
with p = 100 and p = 0 in Section 4.1 with n = 200.

For 0'3, we fix ap = 2 and by = 1 and consider a range of 0',21 € {1,2,3}. The variable
selection results are presented in Table 14(a). All measures do not vary much, especially for
variable importance ranking, indicating that BVSA is not sensitive to the choice of 2.

Similarly, we consider ag € {1, 2,3} with fixed (7(2, =1and by =1 and by € {1,2,3} with
fixed O'(Zl = 1 and ag = 2. The results are reported in Table 14(b) and Table 14(c), respectively,
indicating our method is robust to the choices of the hyperparameters.

D.4. Sensitivity analysis of initialization

In this subsection, we examine the sensitivity of our method to initialization. In our approach,
the Gibbs sampler is randomly initialized by drawing samples from the prior distributions. To
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Table 15
Variable selection results in structured logistic-normal mixture settings with n = 200 and p = 0. “Prior”:
initialization by random sampling according prior distributions; “EM-r”: initialization via random active
variable selection and EM algorithm; “EM-s”: initialization via active variable selection by lasso and GUIDE
[27] and EM algorithm.

8 r
TPTPs FPI=IgID>IyIy=1y TP TPy FP I=1y1> 1y Is =1y

p Init

Prior 4 4 0 1 1 1 3.893.890.36 0.63 0.89 0.89
100 EMr 4 4 0 1 1 1 3.883.90 0.33 0.64 0.88 0.90
EM-s 4 4 0 1 1 1 3.873.900.34 0.62 0.87 0.90
Prior 4 4 0 1 1 1 3.68 3.74 0.34 0.55 0.69 0.74
500 EMr 4 4 0 1 1 1 3.67 3.670.35 0.50 0.69 0.68
EM-s 4 4 0 1 1 1 3.673.70 0.33 0.54 0.68 0.70

further assess the impact of initialization, we consider two alternative EM-based initialization
strategies:

e EM-r: We randomly select active prognostic and predictive covariates, with the size
determined as min(30,0.2pz) and min(30, 0.2px), respectively. Using this subset of
covariates, we estimate the initial model parameters via the EM algorithm on this selected
low-dimensional model.

e EM-s: We apply a tree-based method, GUIDE [27], to select predictive covariates, and
use LASSO to select prognostic covariates. The EM algorithm is then used to estimate
initial model parameters based on the selected variables.

We compare the performance of these three initialization strategies under the same settings
as in Section 4.1 with n = 200. Specifically, we evaluate their impact on variable selection
and convergence behavior of the Gibbs sampler.

For variable selection, as indicated in Table 15, the choice of initialization has a small
impact on the selection performance.

We investigate the impact on mixing of the sampler using trace plots and effective sample
size (ESS). We take one representative trial under p = 100 as an example. We present the
trace plots using every 50th iteration from a total of 15000 samples after the burn-in period
for different initialization methods (Prior, EM-r, EM-s) across different variable categories in
Figure 7. The trace plots exhibit a high degree of consistency across all settings, indicating
that our approach achieves stable mixing regardless of the initialization strategy.

We further present the averaged ESS across all prognostic and predictive covariates for
different initialization methods in Table 16. The results indicate that the prognostic covariates
consistently achieve high ESS values across all initialization methods, suggesting stable and
efficient sampling. For the predictive covariates, while the ESS values are lower due to the
challenge from subgroup modeling, they remain comparable across different initializations.
These results reinforce the robustness of our approach to initialization choices.

D.5. Sensitivity analysis of model misspecification

In this subsection, we investigate the robustness of our method to two types of model mis-
specification: (1) misspecification in the subgroup membership structure; (2) misspecification
in the noise distribution of the linear model.
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Fig 7. Trace plots for different initialization methods (Prior, EM-r, EM-s) across different variable categories.

Table 16
Averaged effective sample sizes with standard errors across all prognostic and predictive covariates for different
initialization methods (Prior, EM-r, EM-s) with n = 200, p = 100, p = 0, and post-burnin length 15000.

Init Prognostic Predictive
Prior 14016 (1752.04) 1412.7 (606.62)
EM-r 13831 (1682.09) 1392.8 (561.98)
EM-s 13893 (1602.60) 1350.1 (685.41)

For the first type of misspecification, we have conducted extensive experiments to evaluate
its impact under traditional rule-based subgroup settings in Section 4.2, where our method
exhibits strong robustness. We further consider the scenario where the subgroup membership
structure follows a probit link function and summarize the results in Table 17.

The results demonstrate that prognostic variable selection remains highly stable, achieving
perfect recovery of the true set under the probit link case. Moreover, predictive variable
selection is also robust to link function misspecification, with only minimal variations. These
findings indicate that our method effectively adapts to different link functions, demonstrating
strong robustness to subgroup membership structure misspecification.

For the second type of misspecification, we consider scenarios where the assumed normal
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Table 17
Variable selection results in structured logistic-normal mixture settings with n = 200 and p = 0. Probit link
function is considered as an example of subgroup membership structure misspecification.

B I

P Lk s Fp T =g T o5 lo .=l TP TP, FP I=1ly 15 Iy 1, =1Io
Logit 4 4 0 1 1 1 3.89389036 0.63 089 0.89
Probit 4 4 0 1 1 1 3.883.92026 0.70 0.88 0.92

oo Logit 4 & 0 T 1 I 3.683.74034 055 069 074
Probit 4 4 0 1 1 1 368373025 0.63 068 0.73
Table 18

Variable selection results in structured logistic-normal mixture settings with n = 200 and p = 0. Different noise
distributions are considered, including the standard normal distribution and Student’s t distribution with degrees

of freedom of 2 or 3.
p Noise IF r
TPTP, FPI=1pID>IlgyIy=1y TP TPy FP I=1y 1> 1yIls =1

NO,1) 4 4 0 1 1 1 3.893.890.36 0.63 0.89 0.89
100 t(3) 4 4 0 1 1 1 3.883.890.36 0.61 0.88 0.89
t2) 4 4 0 1 1 1 3.883.880.36 0.61 0.88 0.88
N(,1) 4 4 0 1 1 1 3.68 3.74 0.34 0.55 0.69 0.74
500 t(3) 4 4 0 1 1 1 3.663.71 0.30 0.56 0.68 0.72
t2) 4 4 0 1 1 1 3.733.740.29 0.57 0.73 0.74

distribution of the noise term in the response model differs from the true data-generating
process. Specifically, we allow the true noises to follow a heavy-tailed distribution, including
Student’s t-distributions with degrees of freedom 2 or 3. To evaluate the impact of such
misspecification, we conducted experiments under the same settings as Section 4.1 with
n = 200. The results are summarized in Table 18.

We observe that prognostic variable selection is highly stable across different noise distri-
butions. The prognostic selection performance remains perfect even in the #(2) noise case,
where the noise distribution has heavier tails. Similarly, predictive variable selection is insen-
sitive to the noise distribution misspecification. These results confirm the robustness of our
method under deviations from the normality assumption.

Appendix E: Critical evaluation

In our simulation studies in Section 4.2, we primarily compare BVSA with tree-based methods,
such as GUIDE [27] and MOB [39]. These methods are particularly well-suited for traditional
rule-based subgroup settings, where the subgroup membership follows a predefined splitting
structure. Unlike BVSA, they directly model subgroup boundaries using recursive partitioning,
rather than relying on a global parametric model.

Despite our results in Section 4.2 demonstrating that BVSA remains robust in such misspec-
ified settings, we did not examine the impact of high correlation among predictive covariates
in rule-based settings. Since all covariates enter the model simultaneously, BVSA is sensitive
to high correlation. Additionally, high correlation can create difficulties with convergence.
As a result, BVSA may select redundant or irrelevant variables, leading to decreased true
positives and increased false positives. In contrast, tree-based methods divide the data into
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Table 19
Predictive variable selection results in rule-based subgroup settings with n = 200 and various pairwise covariate
correlations.

p p Method TP TPy FP I=1y IDIly Is=1
BVSA 198 2.53 0.09 0.19 020 0.54

MOB 2.69 2.69 0.07 0.67 0.69 0.67

0.5 PRIM 271 2.58 0.62 051 0.74 0.52
SeqBT 249 249 0.02 054 056 0.54

GUIDE 2.67 2.67 033 048 0.67 0.46

BVSA 1.76 241 0.10 0.10 0.12 043

MOB 2.60 2.60 0.09 0.58 0.60 0.58

20 06 PRIM 271 252 094 037 0.75 0.38
SeqBT 2.41 241 0.04 046 050 0.46

GUIDE 2.57 2.56 035 044 057 040

BVSA 142 2.14 0.08 0.03 0.03 0.26

MOB 2.39 239 0.11 0.37 0.39 0.37

0.7 PRIM 255 235 096 0.27 0.59 0.27
SeqBT 2.14 2.14 0.05 0.26 0.28 0.26

GUIDE 2.40 244 046 023 041 0.17

BVSA 177 1.99 1.15 0.07 0.16 0.18

MOB 2.52 252 0.04 052 052 052

05 PRIM 1.82 1.77 092 0.12 0.15 0.12
SeqBT 2.55 2.55 0.06 0.56 0.60 0.56

GUIDE 240 237 031 031 041 0.30

BVSA 158 1.69 1.17 0.02 0.03 0.03

MOB 244 244 0.10 044 044 044

200 0.6 PRIM 1.70 1.55 1.84 0.08 0.11 0.08
SeqBT 236 2.36 0.12 037 041 0.37

GUIDE 224 221 049 0.17 025 0.17

BVSA 1.17 1.56 095 O 0.03 0.01

MOB 2.13 2.13 022 0.14 0.14 0.14

0.7 PRIM 155 135 224 O 0 0
SeqBT 2.21 2.21 0.13 0.24 030 0.24

GUIDE 2.07 2.06 0.63 0.06 0.08 0.05

subgroups hierarchically based on individual variable thresholds. Even if two variables are
highly correlated, a tree-based approach will typically only use one of them in a given split.
This structure makes tree-based methods less sensitive to correlation, while BVSA’s global
logistic model is more susceptible to the selection of highly correlated inactive variables.

To assess the limitations of BVSA, we conduct simulations under the rule-based subgroup
settings with high pairwise correlations among predictive covariates. Specifically, we generate
data based on the following model:

Y=1- 1.521 +2ZQ —2.5Z3 +3Z4+4OIXI(X1 > —l,X3 < 1,X5 < 0.5) + €,

where both Z and X follow multivariate normal distributions with varying pairwise correlation
levels p € {0.5,0.6,0.7}. We consider p = 2p| = 2p, with p € {20,200} and compare BVSA
with tree-based methods, including MOB [39], PRIM [8], SeqBT [17], and GUIDE [27]. The
results from 100 random trials are summarized in Table 19.
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When p = 20, our method exhibits a conservative behavior in variable selection, with both
low TP and low FP, whereas tree-based methods identify most of the active covariates. As
p increases, the performance of BVSA deteriorates, reflected in a decline in TP and reduced
exact recovery of the true predictive set. Despite these limitations, BVSA maintains TP values
that are comparable to those of tree-based methods, demonstrating its robustness in ranking
variable importance even under high correlation. When p = 200, BVSA’s performance further
deteriorates in the misspecified setting under high dimensionality and strong correlation,
highlighting the challenge of identifying true predictive covariates when all variables are jointly
handled in the regression model. Our method becomes more susceptible to selecting redundant
covariates, leading to an increase in FP. In contrast, most tree-based methods demonstrate
greater robustness. Notably, MOB and SeqBT maintain stable TP values, showcasing their
ability to select relevant covariates despite strong correlation. These findings validate the key
limitation of BVSA in rule-based settings with highly correlated predictive covariates.
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