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Scientific Significance Statement

This work presents an unprecedented high spatial resolution dataset of stable carbon isotope of dissolved inorganic
carbon (δ13C-DIC) from the North Atlantic Ocean. Comprising over 3500 δ13C-DIC measurements from the 2023 Global
Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) A16N cruise, this dataset represents a sevenfold
increase in sampling density compared to typical Atlantic Ocean GO-SHIP cruises over the past three decades. Remark-
ably, 75% of the δ13C-DIC measurements were conducted at sea using an innovative combination of CO2 extraction tech-
nology and cavity ring-down spectroscopy. This approach enables high-resolution coverage, at-sea analysis, and reliable
analytical precision, along with substantial improvements in operational flexibility and cost efficiency compared to con-
ventional isotope ratio mass spectrometry methods. The resulting dataset is expected to advance the scientific
community’s ability to quantify, validate, and model the ocean’s role in anthropogenic CO2 uptake and storage,
addressing a fundamental need in climate change research.

Abstract
The stable isotope ratio of dissolved inorganic carbon (δ13C-DIC) is a valuable tracer for investigating carbon
cycling in aquatic environments. However, its potential remains underutilized due to limited data availability.
Fewer than 15% of cruise samples are analyzed for δ13C-DIC, as isotope analysis using isotope ratio mass spec-
trometry is labor-intensive and restricted to onshore laboratories. We present over 3500 δ13C-DIC measure-
ments from the 2023 Global Ocean Ship-based Hydrographic Investigations Program A16N cruise in the North
Atlantic. Notably, three-quarters of these measurements were conducted onboard using a CO2 extraction device
coupled with cavity ring-down spectroscopy, a more efficient and cost-effective method. This extensive dataset
provides δ13C-DIC values with spatial resolution comparable to other ocean carbonate chemistry and
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biogeochemical parameters. This dataset supports improved quantification of anthropogenic CO2 uptake and
storage, and may facilitate the development of algorithms to estimate δ13C-DIC in under sampled regions.

Background and motivation
The ocean has absorbed 25–30% of anthropogenic CO2 since

the Industrial Revolution, helping mitigate global warming but
also contributing to ocean acidification, which harms marine
ecosystems (DeVries 2022; Doney et al. 2020; Friedlingstein
et al. 2023; Le Quéré et al. 2009; Sabine et al. 2004). While the
ocean’s carbon uptake is steadily increasing, the subpolar North
Atlantic is particularly important (Pérez et al. 2010; Sabine
et al. 2004) because deep convection in this region enables the
Atlantic to store twice as much anthropogenic carbon per unit
area as the Pacific (DeVries et al. 2017; Gruber et al. 2019; Quay
et al. 2007). However, decadal variations in carbon uptake have
been observed, driven by changes in ocean circulation (DeVries
et al. 2017), which can lead to differing findings depending on
the study’s period and methods (Wanninkhof et al. 2010;
Woosley et al. 2016). A key challenge is detecting small decadal
anthropogenic changes in dissolved inorganic carbon (DIC)
against large natural background variations, even with long-term
observations (Carter et al. 2019).

The 13C/12C isotope ratio of DIC, expressed as δ13C-DIC, is
an independent and potentially more effective tracer of car-
bon sources and biogeochemical processes than DIC. Fossil
fuel combustion releases 13C-depleted CO2 into the atmo-
sphere, lowering δ13C-DIC as ocean absorbs this anthropo-
genic CO2—a phenomenon known as the Suess effect
(Keeling 1979). δ13C-DIC is a valuable tracer for regional
13C-DIC inventory changes and air–sea 13CO2 flux (Lynch-
Stieglitz et al. 1995), providing insights into the net addition
or removal of anthropogenic CO2 via lateral transport (Quay
et al. 2007). The δ13C-DIC also offers an alternative method to
compare contemporary air-sea CO2 flux with anthropogenic
CO2 fluxes, helping reconcile differences between observa-
tions and carbon cycle models (Quay et al. 2017). Beyond air-
sea exchange, anthropogenic δ13C-DIC change and its ratio to
anthropogenic CO2 change are useful tracers for assessing the
impact of water mass mixing on anthropogenic CO2 distribu-
tion, particularly at mid- to high-latitudes (Humphreys
et al. 2015; Ko and Quay 2020; Sonnerup and Quay 2012). In
regions where deep-water, mode, and intermediate water for-
mation drive the spatial distribution of anthropogenic CO2, as
any proposed mixing scenario must account for both δ13C-
derived and the DIC-derived anthropogenic CO2 changes,
δ13C-DIC data provide additional constraints to refine possible
mixing pathways. Furthermore, the δ13C-DIC can be a valu-
able metric for evaluating biological production (Quay 2023;
Quay et al. 2020; Yang et al. 2019), which typically tends to
elevate sea surface δ13C-DIC levels, and for examining carbon
cycling across the land-ocean interface (Alling et al. 2012;
Samanta et al. 2015).

To fully utilize δ13C-DIC as a powerful tool in ocean carbon
research, expanded data coverage is desirable, particularly for
improving spatial resolution and enabling regional-to-global
syntheses. However, the application of δ13C-DIC is limited by
analytical constraints. Traditional δ13C-DIC measurements
require preserving water samples and analyzing them using
isotope ratio mass spectrometry (IRMS) in shore-based labora-
tories. While highly precise and accurate, this method is
labor-intensive and unsuitable for at-sea analysis, restricting
sample processing capacity and limiting the ability to capture
spatiotemporal variability and long-term trends. To overcome
this challenge, we developed a precise, rapid, and field-
deployable method for δ13C-DIC analysis by integrating a CO2

extraction device with a cavity ring-down spectroscopy
(CRDS) CO2 isotope analyzer (Deng et al. 2022; Su et al. 2019;
Sun et al. 2024). The onboard CRDS system enables δ13C-DIC
measurements with minimal sample preparation and reduced
logistical burden, offering a cost-effective alternative to con-
ventional shore-based isotope ratio mass spectrometry analy-
sis. Most recently, we improved the analytical uncertainty of
the δ13C-DIC to 0.03‰ by increasing sample injection vol-
umes and implementing an extensive calibration and quality
control protocol using in-house NaHCO3 standards. This
improvement enabled high-precision measurements during
extended oceanic cruises along the North American eastern
margin in summer 2022 (Sun et al. 2024).

The δ13C-DIC is listed as an essential ocean variable (EOV)
by the Global Ocean Observation System. To collect a high
spatial resolution δ13C-DIC dataset and assess the spatial and
temporal changes of the anthropogenic CO2 uptake and stor-
age in the North Atlantic Ocean, we participated in the 2023
A16N cruise, part of the Global Ocean Ship-based Hydro-
graphic Investigations Program (GO-SHIP). For this cruise
effort, more than 3500 δ13C-DIC samples were analyzed,
achieving spatial coverage comparable to other GO-SHIP Level
1 parameters such as DIC concentration analyzed via coulom-
etry at sea (Johnson 1992; Johnson et al. 1999; O’Sullivan and
Millero 1998). This work marks the first large-scale effort to
collect δ13C-DIC data on board ships of any oceanographic
expedition in open oceans. We compiled a record of the
cruises with δ13C-DIC observations in the North Atlantic
Ocean from 1981 to 2023 (Fig. 1a). Prior to our measure-
ments, only 8755 δ13C-DIC samples had been collected across
79,287 observation points (Fig. 1b), accounting for just 11%
of the total dataset. Our dataset significantly enhances the
spatial resolution of δ13C-DIC observations, providing a criti-
cal foundation for improving estimates of anthropogenic CO2

uptake and evaluating ocean carbon cycle models.
This dataset is published as a standalone Data Article to

promote its visibility, transparency, and reuse within the
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broader biogeochemistry and ocean modeling communities.
In addition to the dataset itself, we provide a rigorous quality
assurance protocol, a crossover analysis with historical δ13C-
DIC observations, and recommendations for data use. This
effort also serves as a proof-of-concept for large-scale δ13C-DIC
data collection using CRDS within the GO-SHIP framework.
In addition, subsequent deployments have been carried out
(e.g., A13.5 in 2024 and I09 in 2025), and more are planned
(e.g., A16S and P16N), which together are expected to sub-
stantially increase the global spatial coverage of δ13C-DIC
observations. By reducing per-sample analysis costs and
enabling shipboard high-frequency measurements, this
approach improves data accessibility and supports future
applications such as machine-learning-based reconstructions
and model-data integration for carbon cycle research.

Data description
This dataset comprises δ13C-DIC measurements collected

along transect A16N in the Atlantic Ocean aboard the National
Oceanic and Atmospheric Administration Ship Ronald H. Brown
during the 2023 GO-SHIP expedition. This cruise reoccupied the
A16N line, previously surveyed in 1993, 2003, and 2013. The
transect, ran from south to north, was divided into two legs. Leg
1 (EXPOCODE 33RO20230306) departed Port Saupe, Brazil, on
February 6 and arrived in Rota, Spain, on March 7. Leg
2 (EXPOCODE 33RO20230413) started in Rota, Spain, on April
13 and ended in Reykjavík, Iceland on May 9. The locations of
the 150 sampling stations occupied during the cruise are shown
in Fig. 2. Cruise reports and related datasets—including salinity,
dissolved oxygen, chlorofluorocarbons, sulfur hexafluoride, DIC,
dissolved organic carbon, total alkalinity, pH, and carbon

Fig. 1. (a) Map of all stations with stable isotopic composition of dissolved inorganic carbon (δ13C-DIC) data and (b) annual collection of total observa-
tion points and δ13C-DIC samples in the North Atlantic Ocean from 1981 to 2023. The dataset shown in this figure expands on Becker et al. (2016),
which compiled 6820 δ13C-DIC samples from 32 cruises (1981–2014), by incorporating 13 additional cruises, including key transects A16N, A20, and
A22, using data from Carbon Hydrographic Data Office (CLIVAR and Carbon Hydrographic Data Office), Ocean Carbon and Acidification Data System,
and Global Ocean Data Analysis Project to enhance spatial and temporal coverage.

Fig. 2. Map of the 150 sampling stations occupied during the GO-SHIP
A16N cruise in 2023.
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isotopes—are available on the CLIVAR and Carbon Hydrographic
Data Office website (https://cchdo.ucsd.edu/).

The dataset is in comma-separated value (csv) format
and hosted by the Biological and Chemical Oceanography
Data Management Office. Each entry includes the expedition
code (EXPOCODE), section ID, sampling date and time
(ISO_DateTime_UTC, ISO 8601 format) recorded in Coordi-
nated Universal Time (UTC) following the ISO 8601 format,
station and Niskin bottle numbers, sampling location (latitude
and longitude, decimal degrees), water depth (meters), δ13C-
DIC values (DELC13, per mil) relative to the Vienna PeeDee
Belemnite standard, and quality flags (DELC13_FLAG) indicat-
ing measurement reliability (2 = acceptable; 3 = questionable;
6 = median of replicates; 9 = missing value) (Jiang et al. 2022).
The dataset comprises 3539 data points, of which 3460 con-
firmed (flagged 2 or 6) through quality assurance/control proce-
dures detailed in the following sections. This indicates that
approximately 98% of the tripped Niskin bottles have a
corresponding validated δ13C-DIC value. The δ13C-DIC values
range from �0.14‰ to 1.36‰, spanning depths from 0 to
6000 m and latitudes from 6� S to 63.3� N, offering extensive
spatial and depth coverage for δ13C-DIC analysis.

Methods
Sample collection

During the cruise, discrete seawater samples for δ13C-DIC
measurements were drawn from a profiling conductivity, tem-
perature, and depth (CTD) insturment paired with rosette
Niskin bottles into cleaned 250-mL borosilicate glass bottles, fol-
lowing protocols from the PICES Special Publication, Guide to Best
Practices for Ocean CO2 Measurements (Dickson et al. 2007). Each
glass bottle was rinsed three times, filled from the bottom, and
allowed to overflow by one bottle volume. Once brought into
the cabin, 1 mL of seawater was removed from each bottle to
accommodate thermal expansion, and 50 μL of saturated HgCl2
solution was added within an hour to halt biological activity.
Bottles were sealed with glass stoppers lightly coated with
Apiezon-L grease, secured with rubber bands and clips. Samples
were stored in open boxes for at least 8 h to reach room temper-
ature before analysis or kept in coolers for later measurement.

During the 56-d expedition, a total of 3825 discrete water
samples were collected from 150 CTD casts for δ13C-DIC analysis.
Samples were drawn from all Niskin bottles at multiple depths,
with two to three replicates typically collected from the surface,
oxygen minimum zone, and bottom rosette bottles to evaluate
measurement consistency. These replicates were analyzed at dif-
ferent times to assess reproducibility. Among all samples, 2875
(75%) were analyzed onboard using CRDS, while the remaining
samples were preserved and analyzed ashore within 3 months.

δ13C-DIC measurement
The δ13C-DIC analytical system comprises a Picarro

G2131-i Isotope and Gas Concentration CRDS Analyzer and

an AS-D1 δ13C-DIC Analyzer (Apollo SciTech). The system’s
automated functionality based on a 20-valve pump supports
loading up to 18 samples at one time and unattended
operation for over 12 h (Sun et al. 2024). To maximize our
δ13C-DIC measurement capacity, two analytical systems were
operated simultaneously onboard. With 2–4 repeats for sample
analysis, each system can process over 30 samples per day.

We calibrated the system using multiple in-house NaHCO3

standard solutions with pre-calibrated δ13C-DIC values ranging
from �4‰ to 2‰. These in-house standards were prepared,
and the δ13C-DIC values were verified by the University of
California Davis Stable Isotope Facility with the headspace equil-
ibration technique (Atekwana and Krishnamurthy 1998). A
detailed description of the in-house standards preparation and
the analytical procedure can be found in Sun et al. (2024).
Briefly, for sample analysis, seawater samples mixed with acid
brine were injected at a controlled speed into the reactor to liber-
ate all DIC. The generated CO2 was carried by CO2-free air to
the CRDS analyzer, which measured CO2 concentration and
δ13C-CO2 values at 1 Hz for � 500 s. The cycle ended when CO2

levels stabilized, with each measurement lasting � 13 min. Each
sample underwent at least two and up to four consecutive mea-
surements. A relative standard deviation threshold of 0.06
between replicate measurements was used onboard as a quality
control criterion to determine whether a third or fourth mea-
surement was required. This threshold ensures high reproduc-
ibility but is distinct from the absolute analytical precision
established through repeated testing of the same sample. The
final δ13C-DIC value was reported as an average of two measure-
ments meeting precision criteria.

The lack of reliable commercial reference materials for sea-
water δ13C-DIC measurements presents challenges for ensuring
shipboard analytical precision and accuracy. However, recent
studies by Cheng et al. (2019) and Sun et al. (2024) have vali-
dated the certified reference materials from Scripps Institute of
Oceanography (Dickson et al. 2007) as reliable liquid standards
for seawater δ13C-DIC analysis. During the analytical period,
we randomly included certified reference material Batches
#197, #199, #201, #202, and #206 as quality checks. Though
repeated measurements from the same certified reference mate-
rials bottle may lead to seawater CO2 loss and affect δ13C-DIC
values, the standard deviations across these batches (0.05–
0.07‰, Table 1) indicate the consistent performance and sta-
bility of our analytical system throughout the period.

Based on our previous evaluation (Sun et al. 2024), the ana-
lytical uncertainty of the δ13C-DIC method was estimated to be
0.03‰ (1σ) during shipboard operation, based on repeated
measurements and comprehensive uncertainty analysis includ-
ing sampling, handling, instrument drift, and standard variabil-
ity. In the present dataset, 320 pairs of duplicate samples were
analyzed to evaluate the internal reproducibility, yielding δ13C-
DIC values ranging from �0.07‰ to 1.35‰. The distribution
of absolute differences between replicate measurements is
shown in Fig. 3, where over 70% of replicate pairs differed by
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less than 0.08‰, indicating good reproducibility under opera-
tional conditions. After excluding eight pairs with an absolute
difference greater than 0.2‰ (likely due to sampling or
handling artifacts), the remaining 312 pairs exhibited a mean
absolute difference of 0.06‰ and a standard deviation of
0.07‰ for the pairwise differences. This corresponds to a
single-measurement uncertainty of 0.05‰ (1σ), consistent
with the method’s reported precision under operational condi-
tions. For samples measured only once (quality flag = 2), this
uncertainty is assigned. For samples with multiple replicates
(quality flag = 6), the propagated uncertainty of the average
value is estimated to be approximately 0.04‰ (1σ).

Technical validation
The technical validation and quality assurance/control pro-

cess involved two key steps. First, to minimize potential biases
in δ13C-DIC data at each station, measurements from deep-
water samples (1800–4200 m) were selected. These samples

were chosen because they are less affected by air-sea gas
exchange, anthropogenic carbon processes, and upper-layer
interactions, making them relatively stable (Becker et al. 2016;
Cheng et al. 2019; Lauvset and Tanhua 2015; Tanhua
et al. 2010). To ensure consistency, the data were interpolated
to fixed depths (2000, 2250, 2500, …, 4000 m) and compared
across adjacent stations to detect anomalies. Stations with
δ13C-DIC values deviating by more than 0.07‰ from neigh-
boring stations were flagged for further manual inspection to
determine if the differences were statistically significant.
Cross-checks were conducted based on the analysis of refer-
ence standards, as outlined in “Methods” section, to deter-
mine if systematic bias corrections were necessary for any
station. This process led to an offset adjustment of �0.07‰
to Sta. 81 to correct an identified discrepancy.

Next, a spatial consistency check was performed for each
sampling point. This involved calculating the average δ13C-
DIC value of surrounding points and assessing whether any
individual points deviated significantly. This approach helped
identify and address outliers or anomalies in the dataset. A
secondary manual inspection was conducted for points with
large deviations. If the discrepancies remained unresolved, the
sample was assigned a flag value of 3 (Jiang et al. 2022).
Through this quality control process, 47 questionable mea-
surements were flagged.

Comparison with existing datasets
The A16N repeat hydrographic section has been occupied

multiple times since the 1980s, with expeditions conducted
in 1988–1990, 1993, 2003, and 2013. Among these, δ13C-DIC
measurements were taken during the 1993 (EXPOCODE
33MW19930704), 2003 (EXPOCODE 33RO20030604), and
2013 (EXPOCODE 33RO20130803) cruises, though the 2003
cruise was limited to surface observations. The 1993 δ13C-DIC
data were analyzed by the University of Washington (Quay’s
lab) using isotope ratio mass spectrometry, while the 2003
and 2013 measurements were conducted using isotope ratio
mass spectrometry by the National Ocean Sciences Accelerator
Mass Spectrometry facility also at Woods Hole Oceanographic
Institution. The number of valid δ13C-DIC data points, identi-
fied by flags of 2 or 6, was 526 in 1993, 38 in 2003, and
498 in 2013. In comparison, our 2023 δ13C-DIC dataset con-
tains 3460 valid values, nearly 7 times the density of previous
records (Fig. 4).

To assess data consistency, we compared the deep-water
δ13C-DIC values from 1993, 2013, and 2023 expeditions. The
δ13C-DIC measurements were interpolated onto a fixed depth
grid (0.5� � 50 m), and mean differences were calculated for
values below 2000 m. The average difference between the
2023 and 2013 datasets was 0.019‰, while the difference
between 2013 and 1993 was �0.023‰. Comparatively, the
mean difference between 2023 and 1993 was �0.004‰.

A crossover analysis was conducted with neighboring sta-
tions from the historical observations to further evaluate data

Table 1. Summary of the measured stable isotopic composition
of dissolved inorganic carbon (δ13C-DIC) in certified reference
materials (CRMs) from different batches.

CRM # Period
Number of
bottles δ13C-DIC (‰)

197 Legs 1 and 2 8 0.13 � 0.06 (n = 28)
199 Legs 1 and 2 8 0.97 � 0.05 (n = 36)
201 Leg 2 40 0.62 � 0.06 (n = 99)
202 Leg 1 20 0.56 � 0.07 (n = 48)
206 Onshore 14 0.89 � 0.07 (n = 68)

Fig. 3. Histogram of absolute stable isotopic composition of dissolved
inorganic carbon (δ13C-DIC) differences between pairs of duplicate
samples.
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consistency and reliability. This process objectively compares
deep-water data from different cruises within the same region
(Becker et al. 2016; Lauvset and Tanhua 2015; Tanhua
et al. 2010). For the 2023 A16N cruise, we combined Leg
1 (33RO20230306) and Leg 2 (33RO20230413) into a single
dataset. Crossover analyses were then performed along A16N for
the following cruise pairs: 1993 vs. 2023, and 2013 vs. 2023. To
identify crossover points, a maximum station separation of 2�

latitude was applied. At these locations, δ13C-DIC data from
depths greater than 2000 m were compared based on equal
potential density. Overall, the cruise pairs showed crossover sta-
tions with small weighted offsets, indicating good agreement
and consistent data across the years (Fig. 5). For A16N in 1993,
20 deep-water stations from cruise 33MW19930704 overlapped
with 120 stations from A16N in 2023, with a weighted offset of
0.012‰ � 0.06‰ (Fig. 5a). Between the 2013 and 2023 cruises,
19 and 122 deep-water stations overlapped, resulting in a
weighted offset of �0.016‰ � 0.05‰ (Fig. 5b).

Using 33MW19930704 as the core reference cruise, as
suggested by Becker et al. (2016), the offsets between cruises
range from �0.02‰ to 0.02‰, demonstrating good
consistency in δ13C-DIC measurements. Given these minimal
offsets, no adjustments are required for the 2023 cruises (both
33RO20230306 and 33RO20230413). These findings confirm
the overall reliability of δ13C-DIC data across all analyzed sam-
ples. However, we suspect that the 2013 δ13C-DIC data were
systematically too low by 0.02‰.

Data use and recommendations for reuse
The δ13C-DIC serves as a sensitive indicator of carbonate

system dynamics. Its distribution in the ocean reflects various
processes, including air–sea CO2 exchange, biological produc-
tion and respiration, water mass mixing, and the formation or
dissolution of calcium carbonate minerals (Alling et al. 2012;
Körtzinger et al. 2003; Quay et al. 2017).

One key application of δ13C-DIC dataset is investigating the
disequilibrium between atmospheric CO2 and the dissolved

carbon pool in seawater. The δ13C-DIC helps quantify the air-
sea 13CO2 flux and explore the factors driving air-sea δ13C dis-
equilibrium (Quay et al. 2017, 2007; Tans et al. 1993). Addi-
tionally, δ13C-DIC has been widely used to estimate the oceanic
uptake of anthropogenic CO2 through various approaches,
including back-calculation (Körtzinger et al. 2003; Olsen and
Ninnemann 2010; Sonnerup et al. 1999), regression-based
methods (Ko and Quay 2020; Olsen et al. 2006; Quay
et al. 2007, 2003; Sonnerup et al. 2000), and carbon budgeting
(Heimann and Maier-Reimer 1996; Quay et al. 1992;
Tans et al. 1993).

The δ13C-DIC dataset functions as a useful resource for esti-
mating net community production. This is driven by distinct
isotopic patterns in biological processes—photosynthesis at the
sea surface enriches the water with a more positive δ13C signal,
while sinking organic matter releases a highly negative δ13C
signal into subsurface waters. Unlike dissolved oxygen-based
assessments, δ13C-DIC provides a longer-term perspective on
biological pump productivity, offering insights into carbon
cycling over extended timescales (Quay 2023; Quay et al. 2020,
2009; Quay and Stutsman 2003; Yang et al. 2019).

Furthermore, incorporating δ13C-DIC data provides observa-
tional benchmarks for evaluating and constraining ocean bio-
geochemical models. By integrating these measurements into
biogeochemical models, researchers can better understand the
processes that regulate carbon uptake, storage, and export in
the ocean (Claret et al. 2021; Schmittner et al. 2013; Sonnerup
and Quay 2012). Additionally, analyzing δ13C-DIC variations
alongside DIC changes provides a powerful approach for identi-
fying carbon sources and distinguishing between biological
and physical influences on carbon cycling in both the global
open ocean (Eide et al. 2017a, 2017b; Gruber et al. 1999) and
coastal systems (Alling et al. 2012; Chen et al. 2022; Deng
et al. 2022; Quiñones-Rivera et al. 2022; Su et al. 2019).

For example, Ouyang et al. (2024) used δ13C-DIC to differ-
entiate marine and terrestrial carbon inputs in Pacific Winter
Water in the western Arctic Ocean. Similarly, Su et al. (2020)

Fig. 4. The distribution of stable isotopic composition of dissolved inorganic carbon (δ13C-DIC) along A16N in 2023, 2013, and 1993 (from left
to right).
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applied δ13C-DIC measurements in the Chesapeake Bay to quan-
tify the role of aerobic respiration and sulfate reduction in driving
carbonate system dynamics, demonstrating that eutrophication-
stimulated primary production largely fuels oxygen depletion.
These case studies highlight the versatility of δ13C-DIC in tracing
carbon transformations across diverse marine environments,
improving our understanding of both anthropogenic and natural
influences on ocean biogeochemistry.

Our high-resolution δ13C-DIC dataset allows for detailed
analysis of fine-scale variations in carbon cycling and biological
production. It is essential for improving global understanding
of oceanic carbon cycling and refining estimates of oceanic bio-
logical production and terrestrial carbon export. Moreover, our
δ13C-DIC measurements exhibit a high precision and strong
consistency with historical records, ensuring the reliability and
comparability of the dataset. Given its accuracy, this dataset
can serve as a valuable training set for machine learning appli-
cations, enabling the fitting, prediction, and reconstruction of
δ13C-DIC values for earlier cruises lacking direct measurements
but containing other relevant variables. This approach has the
potential to greatly expand the spatial and temporal coverage
of δ13C-DIC data, further improving our ability to assess oce-
anic carbon dynamics and anthropogenic CO2 uptake in the
future including the evaluation of the efficacy of marine carbon
dioxide removal effort if it is scaled up in future decades.
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