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Abstract—Reinforcement Learning has rapidly evolved from
theoretical concepts to practical applications, particularly in
high-stakes fields such as autonomous driving, healthcare, and
logistics, enhancing both efficiency and decision-making capabil-
ities. However, as these applications engage with more complex
environments, they face significant challenges from adversarial
inputs. These inputs can jeopardize system reliability and safety
by inducing unpredictable and potentially hazardous decisions.
In this paper, we examine the vulnerability of reinforcement
learning systems to such adversarial threats by presenting our
novel mitigation approach. We introduce a concept referred to
as an imposter—carefully crafted adversarial noise added to
the state space that can, for instance, cause a Lunar Lander
to crash or a Bipedal Walker robot to lose balance. Our
approach leverages entropy, a measure of information content,
to differentiate genuine data from adversarial noise effectively.
We assess the efficacy of this method through the evaluation of
different entropy measures: single entropy, joint entropy, and
Kullback–Leibler divergence, across two practical case studies
involving the Lunar Lander and the Bipedal Walker robot.
The results demonstrate that the entropy metric is particularly
effective in detecting and eliminating imposter features, thereby
preserving the integrity and safety of critical missions.

Index Terms—Imposter, Reinforcement Learning, Robotics

I. INTRODUCTION

Reinforcement learning (RL) systems have gained signifi-

cant attention due to its versatile capabilities. These systems

excel in optimizing decision-making processes across a variety

of applications, such as autonomous driving, robotics, financial

trading, and healthcare management. Despite these advantages,

RL systems are susceptible to adversarial attacks [1, 2]. In

autonomous vehicles, for example, real-time decisions such as

lane changes, traffic signal interpretation, and pedestrian inter-

actions rely on sensory data that is vulnerable to adversarial

interference—specifically, noise crafted by malicious actors to

induce erroneous behavior. While RL systems are designed

to handle noisy sensorial inputs, they are not resilient against

adversarial noise [3, 4], which is deliberately crafted to exploit

system vulnerabilities. For example, a malicious attacker could

manipulate data from sensors like LiDAR, obscuring real

obstacles and creating non-existent ones. These manipulated

decisions can lead to dangerous outcomes, including colli-

sions, road accidents, and damage to infrastructure. Therefore,

achieving resilience against adversarial attacks require a de-

fensive framework tailored to the unique characteristics of the

system.

In this paper, we address adversarial attacks on the obser-

vation space of an RL system. We propose a novel entropy-

Fig. 1: Overview of the proposed framework: Adversarial

noise (imposter features) is injected into the RL environment,

compromising the feature distribution. This distribution is

divided into training and testing sets, both containing original

and imposter features. The training set is processed by an

entropy-based algorithm to identify and learn from imposter

features. The trained model is then evaluated on the testing

set to assess its accuracy in detecting imposter features.

based framework that detects and removes imposter features

by harnessing the inherent uncertainty in the feature space.

The framework illustrated in Figure 1 begins with the injection

of adversarial noise (imposter features) into the environment,

which disrupts the feature distribution by introducing false data

points. This disruption can lead to incorrect decision-making

by the RL model, assessed by observing significant devia-

tions in the agent’s performance metrics, such as unexpected

fluctuations in mean return or increased standard deviation

indicating instability. The disrupted feature distribution is

split into training and testing sets, both containing original

and imposter features. The training set is processed by the

entropy-based learning algorithm, which leverages entropy

measures and other metrics to differentiate between genuine

and imposter features. The algorithm calculates the entropy of

each feature, identifying those with higher entropy as potential

imposters. By iteratively learning the algorithm updates the

weights of the features based on the information metrics. The

trained model is then evaluated with a testing set to measure

its accuracy in identifying imposter features.
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For evaluation, we examine the effectiveness of the pro-

posed framework using various entropy metrics, including

single entropy, joint entropy, and Kullback-Leibler divergence,

through two case studies: the Bipedal Walker and the Lu-

nar Lander. The Bipedal Walker involves a 4-joint walker

robot navigating an environment, while the Lunar Lander

simulates an agent learning to land safely on the moon’s

surface using eight feature states. We simulate adversarial

attacks by injecting imposter features into the observation

space in both scenarios, demonstrating how our entropy-based

framework identifies imposter features and restores the agent’s

performance. Although our experiments focus on specific

scenarios, the fundamental concepts of the framework—using

entropy and other information metrics to measure feature

uncertainty—are adaptable and scalable across various RL

applications. This approach aims to enhance the robustness

and reliability of RL systems.

II. RELATED WORK

This section briefly reviews recent feature selection methods

in RL and compares them with the proposed entropy-based

approach. We also overview the latest defense mechanisms

against adversarial attacks in RL.

A. Feature Selection in Reinforcement Learning

Feature selection is critical for effective learning in RL,

but it poses challenges due to the complex and non-linear

relationships between states and rewards. Traditional strategies

like dimensionality reduction through basis functions [5] and

linear models for value function approximation [6, 7] are

designed for specific RL algorithms, such as policy itera-

tion. These methods often struggle in other contexts due

to indirect state-reward dependencies and the computational

intensity required to evaluate these relationships. Innovative

approaches have been developed to address these challenges.

For instance, [8, 9] propose methods that select features inde-

pendently of the learning processes but encounter difficulties

in assessing state-reward dependencies. Techniques that use

conditional mutual information [10] attempt to manage these

dependencies, but their effectiveness depends heavily on the

accuracy of estimation methods like Least-Squares Mutual

Information (LSMI) [11]. Inaccuracies in these estimations

can lead to biased or unreliable feature selection outcomes.

In contrast, the proposed entropy-based framework measures

uncertainty within the feature distribution, allowing for precise

identification and removal of imposter features without relying

on approximations.

B. Adversarial Attacks in Reinforcement Learning

Adversarial attacks on RL algorithms like Q-learning, DQN,

and A3C significantly impair decision-making by manip-

ulating Q-values, exploiting neural network vulnerabilities,

and altering value gradients [12, 13, 14]. Specific Time-

Step Attack strategies guide agents towards undesired states

[15]. Although adversarial training enhances robustness by

integrating adversarial examples [16, 17], these methods often

lack generalizability across different attack vectors. Kos et

al. reveal significant weaknesses in deep RL policies under

small perturbations [18]. Lin et al. demonstrate RL agents’

vulnerability to various adversarial tactics, leading to degraded

performance in complex environments [19]. Behzadan et al.

present adversarial models in autonomous vehicle simula-

tions, showing how attacks can compromise vehicle safety

by causing erratic behaviors, emphasizing real-world attack

implications [20]. Recent studies on detecting false data

injection attacks using machine learning highlight advanced

feature selection techniques. For example, feature selection

and oversampling balance class distributions and enhance

feature relevance, while sparse Bayesian learning [21, 22, 23]

identifies the most informative features to reduce compu-

tational complexity. These approaches emphasizes selecting

relevant features to enhance detection accuracy. Complement-

ing existing approaches, the proposed entropy-based feature

selection framework offers a key advantage by quantifying

uncertainty across the feature distribution. This allows for pre-

cise identification and removal of misleading features without

relying on specific attack models, providing a scalable and

adaptable solution for various RL applications. It effectively

defends against a broad range of adversarial threats, including

sensor spoofing and environmental noise.

III. METHODOLOGY

A. Imposter Injection

Imposter features following Gaussian noise are injected into

the observation space to challenge the agent’s learning. These

imposters introduce noise, disrupting the agent’s decision-

making process and affecting its expected reward.

Gaussian and Uniform Noise Injection. To simulate

variations in the agent’s learning, we inject noise into the

observation space. This noise takes two forms: Gaussian noise,

which follows a normal distribution defined by a mean (µ)

and standard deviation (σ), and uniform noise, which spreads

evenly across a range. Mathematically, the Gaussian noise n

added to an imposter feature s can be expressed as: n ∼
N (µ, σ2), where N (µ, σ2) represents a normal distribution

with mean µ and variance σ2. For an injected feature defined

between the maximum bounds, uniform noise is incorporated,

represented as u ∼ U(a, b), where U(a, b) denotes a uniform

distribution with lower bound a and upper bound b, resulting in

the imposter feature s′ = s+ u. Mathematically, an imposter

feature appends the original state space S, represented as a

set of states {s1, s2, . . . , sn}. By appending a new imposter

feature s′, the original state space is modified S′ = S ∪ s′ to

accommodate for the new imposter feature. Then, the presence

of imposter features affects the agent’s state space (S), policy

(π), and immediate reward function (R).

State Space Expansion. The state space expands from S

to S′ = S ∪ s′. This change is reflected in the probability dis-

tribution of the agent’s policy. In policy-based RL algorithms

like PPO, the agent’s policy, typically denoted by π(s′, a),
maps states to actions and is iteratively updated to maximize

expected return.
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Expected Return. The reward function, R(s, a), assigns

values to state-action pairs, representing the immediate reward

obtained when taking action a in state s. To incorporate

rewards from imposter features, we extend the original reward

function as follows:

Rtotal = R(s, a) +R(s′, a). (1)

Equation. 1 assumes that the total reward is a cumulative

measure of the rewards from both original and imposter

features. When an agent encounters an imposter feature, it

experiences an additional reward (or penalty R(s′, a)). This

combined reward reflects the agent’s interaction with both the

original and manipulated parts of the state space. The reward

R(s′, a) obtained from encountering the imposter feature in-

centivizes the agent to adapt its policy. Summing these rewards

over time gives the total expected return J(θ):

J(θ) = E

[

T
∑

t=0

Rtotal(st, at)

]

(2)

The expected return J(θ) is defined as the expected sum

of rewards over a time horizon T . By incorporating the total

reward Rtotal into this equation, we account for the impact

of imposter features on the overall performance of the agent.

This helps in analyzing how the presence of imposter features

influences the agent’s learning and decision-making process.

Here Rtotal(s, a) is the combined reward obtained when

taking action a in state s. The inclusion of high positive

rewards from imposter features can inflate the expected return

J(θ), potentially leading to a stronger bias towards exploiting

these features. Conversely, high negative rewards may cause

the agent to become overly cautious, avoiding imposter fea-

tures and hindering exploration. As a result, the injection of

imposter features creates significant fluctuations in the learning

process, making it harder for the agent to converge to an

optimal policy. Frequent encounters with imposter features can

lead to disruptive and unstable behavior, making it difficult

for the agent to focus on learning from original states and

ultimately wasting computational resources.

To quantify the impact of increasing imposter features on

the learning process, we analyze the change in the expected

return J(θ) before and after their introduction. Let ∆J be the

deviation between the expected return in the original scenario

and the expected return when incorporating imposter features.

∆J = Jimposters(θ)− Joriginal(θ) (3)

We define two thresholds: ∆Jpos and ∆Jneg, which cor-

respond to significant positive and negative deviations in

the agent’s expected return, respectively. These thresholds

are determined based on the standard deviations observed in

the agent’s performance during successful episodes. When

∆J > ∆Jpos, it indicates a significant expected return from

the imposter features, surpassing the positive threshold ∆Jpos.

Conversely, when ∆J < ∆Jneg, it denotes a notable expected

return decrease due to imposters, falling below the negative

threshold ∆Jneg. These thresholds are determined based on the

standard deviations of the agent’s performance in successful

episodes. Specifically, we set ∆Jpos and ∆Jneg to values that

reflect significant deviations from the mean expected return,

considering the variability in the agent’s performance metrics.

B. Learning to Detect Imposter Features

In this subsection, we detail our entropy-based framework

designed to identify and eliminate imposter features from the

observation space. The Shannon’s entropy [24] is popular in

feature selection. Here, we compute the entropy of the feature

state distribution to identify and eliminate imposter features.

Entropy quantifies the uncertainty in data, which, in our case,

is used to analyze the uncertainty introduced by imposter

features in an RL environment. The entropy (H) of a discrete

random variable X with possible values x1, x2, .., xn and a

probability mass function P (X) is defined as:

H(X) = −
n
∑

i=1

P (xi) logP (xi). (4)

The feature selection algorithm uses the following linear

relationship between features and labels:

w1(µ) + w2(H(s)− µ) + β = y. (5)

Here H(s) represents the entropy value (central tendency)

for a given state s, while µ denotes the average entropy for

the feature state distribution. These values help evaluate the

variability and informativeness of the feature state distribution,

aiding in feature selection. Additionally, y ∈ [−1, 1] serves as

the label indicating whether a feature state is an imposter (1)

or an original state (-1). To determine the significance of each

feature in label prediction, the weights w1, w2, β are learned

during a training process. This training involves solving for

the weights that minimize the discrepancy between predicted

and actual labels.

• Entropy H(s): Measures (Eqn. 4) the uncertainty of each

feature state s

• Average Entropy µ: Central tendency of the feature state

distribution.

• Labels y ∈ [−1, 1]: Classifies feature states, with discrete

values 1 denoting imposter and −1 for original states.

[

w1 w2 β
] [

µ H(s)− µ 1
]T

= y (6)

We begin with a naive solution by directly solving the linear

equation: W = Y X−1. Here, X is a m× n non-zero matrix

containing feature information, and Y represents a vector of

imposter status labels.

We then compare the performance of this naive algorithm

with various machine learning methods, including Random

Forest, K-Nearest Neighbors, and Support Vector Machine.

These methods help us evaluate the effectiveness of our feature

selection algorithm across different models. The weights are
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Fig. 2: Top row: (a-d) show the Lunar Lander with 1, 2, 3, and 4 imposters (uniform noise) respectively, while (e) shows

the lander landing between the two flag posts. Bottom row: (f-i) show the Bipedal Walker with 1, 2, 4, and 8 imposters,

respectively, also injected with uniform noise, while (j) shows the walker robot reaching the other side.

Algorithm 1 Learning Weights W

1: Input: H(s) (feature information), s ∈ S (state spaces), Y ∈
[−1, 1] (imposter labels)

2: Output: w1, w2, β ∈W (learned weights)
3: W ← ∅ ▷ Initialize weights to empty
4: if ∆J < ∆Jneg or ∆J > ∆Jpos then
5: X ← ∅ ▷ Initialize feature set
6: for s ∈ S do ▷ Iterate through each state

7: X ← X ∪
[

µ H(s)− µ 1
]

T

▷ Update feature set
8: end for
9: W ← fc(X,Y ) ▷ Compute learned weights

10: end if
11: return W ▷ Return weights

learned through training each machine learning model to

classify the feature states accurately.

The pseudocode outlined in Algorithm 1 delineates the step-

wise execution of the feature selection algorithm, commencing

when the condition for ∆J is met. It initializes an empty

set X for storing state features and iterates through each

state, updating X with pertinent feature information. Upon

completion of the iterations, the weights W (Equation 5) are

obtained, and the resultant values are returned. In addition,

we can replace the single entropy by the joint entropy or

Kullback–Leibler divergence to detect the imposter feature(s).

IV. EXPERIMENTAL RESULTS

In this section, we assess the efficacy of the entropy-based

framework in two popular environments, namely, the Lunar

Lander and Bipedal Walker.

A. Lunar Lander

Environment. The Lunar Lander environment in Gymna-

sium’s Box2D collection challenges RL agents to manage

complex dynamics and precise control. The action space

includes four discrete actions: do nothing, fire left engine, fire

main engine, and fire right engine. The observation space is

an 8-dimensional vector comprising the lander’s coordinates,

velocities, angle, angular velocity, and leg-ground contact

status. A successful episode achieves at least 200 (J) points.

Training. We train the Lunar Lander using the PPO [25] al-

gorithm for 200,000 steps. Imposter features are systematically

introduced into the observation space, starting with a single

imposter and increasing to two, three, and four imposters. This

results in significant fluctuations in the expected return J , with

both declines and unrealistic performance boosts, highlighting

the exploitation of imposter features. For all injections, two

types of noise (uniform and Gaussian) are used. However,

only the two in-range imposter injections mimic the natural

variability within the environment, making it harder for the

agent to distinguish between genuine and imposter features,

thereby testing the robustness of the agent’s learning and

adaptation mechanisms.

Threshold. Thresholds were determined based on the goal

scores for the respective environments. In the Lunar Lander

environment, a score of 200 indicates a successful episode. To

evaluate performance degradation due to imposter features, we

set thresholds for ∆Jpos and ∆Jneg based on observed standard

deviations from multiple successful runs (66.36 and 40). These

thresholds account for normal performance variability, with

∆Jpos = 300 and ∆Jneg = 100, allowing us to detect

significant deviations caused by imposter features.

Impact of Imposter Features. When there are no imposter

features, the mean return during training is 1.121. With one

imposter injection, the mean return during training is 1.37.

For two imposters and three imposters injection, the mean

return drops to -6.74 and -10.53 during training, respectively.

These significant fluctuations in return suggest the instability

in training. This reflects the failure cases of Lunar Lander as
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TABLE I: Evaluation on Lunar Lander: Accuracy of methods

in detecting imposter features using different metrics.

Methods Entropy Joint Entropy KL

Naive (Linear regression) 94.00 80.54 60.32
Random Forest 97.05 95.06 79.62
KNN (K = 5) 94.11 91.35 76.54
SVM 91.11 75.92 69.13

visualized in Figure 2 (b, c, d). indicating poor training due to

negative returns. Overall, imposter features worsen the training

process. Negative returns make the agent overly cautious,

while positive returns lead to exploitation and misleadingly

high returns. These returns do not reflect actual landing skills

as evident in the visualization in 2 (b, c, d).

B. Bipedal Walker

Environment. The Bipedal Walker environment involves a

4-joint walker robot navigating an uneven terrain. The action

space includes continuous values controlling the hip and knee

joints of the robot. The observation space comprises the hull’s

angle, angular velocity, horizontal and vertical speed, joint

angles, and joint angular speeds. The goal is to navigate the

terrain efficiently without falling, and obtain 300 (J) points in

1600 time steps for the normal version.

Training. We train the Bipedal Walker using the (Aug-

mented Random Search) ARS algorithm for 1000 iterations.

The thresholds for Bipedal Walker are set as ∆Jpos = 96 and

∆Jneg = −1.97, based on observed performance variability.

Impact of Imposter Features. Similar to the Lunar Lander,

we also observed the return fluctuation in the training process.

This highlights the instability in training with the injection of

imposter features.

C. Evaluation on Imposter Detection

We use the entropy-based feature selection algorithm to

detect imposter features as outlined in Algorithm 1. The

approach is evaluated in both the Lunar Lander and Bipedal

Walker environments, with results summarized in I and II. The

accuracy of the entropy-based framework in detecting imposter

features is assessed using entropy, joint entropy (JE), and KL

Divergence across four methods: naive, Random Forest (RF),

K-Nearest Neighbors (KNN), and Support Vector Machine

(SVM).

In the Lunar Lander experiment, the RF method achieves

the highest accuracy of 97.05%, making it well suited for

complex and varied features for this environment (see Table

I), outperforming joint entropy at 95.06% and KL divergence

at 79.62%. This superior performance can be attributed to

entropy’s ability to capture the spread of values within a single

feature’s distribution, making it highly sensitive to anomalies

introduced by imposter features. This sensitivity allows the

method to effectively learn and identify these anomalies. We

see the SVM’s poor performance, which might be associated

with Lunar Lander’s small dataset.

TABLE II: Evaluation on Bipedal Walker: Accuracy of meth-

ods in detecting imposter features using different metrics.

Methods Entropy Joint Entropy KL

Naive (Linear regression) 95.00 88.56 83.45
Random Forest 93.33 92.50 90.78
KNN (K = 5) 95.55 96.00 95.55
SVM 97.77 95.77 95.77

In contrast, joint entropy considers distributions of feature

pairs and captures their relationships. In the Lunar Lander

environment, most features had independent relationships with

the imposter features. However, there were instances where

the combined uncertainty between two genuine features was

higher than with an imposter feature. These joint entropy val-

ues can disrupt the framework’s learning process in identifying

imposter features, making it susceptible to misclassification of

the relationships with imposter features.

KL divergence performs comparatively poor in identifying

imposter features. The divergence interpretations shows little

to no overlap between the probability distributions of the

imposter features and the genuine features. However, this

similarity in divergence values is also observed among genuine

feature pairs, making it difficult for the methods to distinguish

imposter features effectively.

In the Bipedal Walker environment, the SVM method

achieves the highest accuracy with entropy at 97.77%, show-

ing its effectiveness in handling the Bipedal Walker’s high

dimensional feature space. This is followed closely by KNN

with an accuracy of 95.55% and at last the RF method,

which proved to be limited when handling more features. The

Naive algorithm exhibits lower performance across all metrics,

which can be attributed to the smaller dataset, particularly

when considering the 24 features of the Bipedal Walker.

Consequently, entropy consistently performs better than other

metrics in detecting imposters for both the Lunar Lander and

Bipedal Walker environment. Thus, it highlights the entropy’s

robustness and effectiveness for detecting imposter features in

different reinforcement learning scenarios.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigate the problem of imposter in-

jection in RL, with experimental results showing that entropy

effectively detects imposter features. The proposed framework

is applied in the Lunar Lander and Bipedal Walker environ-

ments, demonstrating its ability to observe imposter features

and assess their impact. Our study focuses on these two envi-

ronments with Gaussian and uniform noise, and future work

could explore other environments, noise types, and extend the

framework with additional information measures. In addition,

we plan to automate and optimize feature selection, enabling

the framework to dynamically adapt to relevant features in

different environments. By integrating the proposed approach

with existing safe RL methods, we seek to enhance the

efficiency, safety, and reliability of RL systems.
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