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Abstract—Reinforcement Learning has rapidly evolved from
theoretical concepts to practical applications, particularly in
high-stakes fields such as autonomous driving, healthcare, and
logistics, enhancing both efficiency and decision-making capabil-
ities. However, as these applications engage with more complex
environments, they face significant challenges from adversarial
inputs. These inputs can jeopardize system reliability and safety
by inducing unpredictable and potentially hazardous decisions.
In this paper, we examine the vulnerability of reinforcement
learning systems to such adversarial threats by presenting our
novel mitigation approach. We introduce a concept referred to
as an imposter—carefully crafted adversarial noise added to
the state space that can, for instance, cause a Lunar Lander
to crash or a Bipedal Walker robot to lose balance. Our
approach leverages entropy, a measure of information content,
to differentiate genuine data from adversarial noise effectively.
We assess the efficacy of this method through the evaluation of
different entropy measures: single entropy, joint entropy, and
Kullback-Leibler divergence, across two practical case studies
involving the Lunar Lander and the Bipedal Walker robot.
The results demonstrate that the entropy metric is particularly
effective in detecting and eliminating imposter features, thereby
preserving the integrity and safety of critical missions.

Index Terms—Imposter, Reinforcement Learning, Robotics

I. INTRODUCTION

Reinforcement learning (RL) systems have gained signifi-
cant attention due to its versatile capabilities. These systems
excel in optimizing decision-making processes across a variety
of applications, such as autonomous driving, robotics, financial
trading, and healthcare management. Despite these advantages,
RL systems are susceptible to adversarial attacks [1, 2]. In
autonomous vehicles, for example, real-time decisions such as
lane changes, traffic signal interpretation, and pedestrian inter-
actions rely on sensory data that is vulnerable to adversarial
interference—specifically, noise crafted by malicious actors to
induce erroneous behavior. While RL systems are designed
to handle noisy sensorial inputs, they are not resilient against
adversarial noise [3, 4], which is deliberately crafted to exploit
system vulnerabilities. For example, a malicious attacker could
manipulate data from sensors like LiDAR, obscuring real
obstacles and creating non-existent ones. These manipulated
decisions can lead to dangerous outcomes, including colli-
sions, road accidents, and damage to infrastructure. Therefore,
achieving resilience against adversarial attacks require a de-
fensive framework tailored to the unique characteristics of the
system.

In this paper, we address adversarial attacks on the obser-
vation space of an RL system. We propose a novel entropy-
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Fig. 1: Overview of the proposed framework: Adversarial
noise (imposter features) is injected into the RL environment,
compromising the feature distribution. This distribution is
divided into training and testing sets, both containing original
and imposter features. The training set is processed by an
entropy-based algorithm to identify and learn from imposter
features. The trained model is then evaluated on the testing
set to assess its accuracy in detecting imposter features.

based framework that detects and removes imposter features
by harnessing the inherent uncertainty in the feature space.
The framework illustrated in Figure 1 begins with the injection
of adversarial noise (imposter features) into the environment,
which disrupts the feature distribution by introducing false data
points. This disruption can lead to incorrect decision-making
by the RL model, assessed by observing significant devia-
tions in the agent’s performance metrics, such as unexpected
fluctuations in mean return or increased standard deviation
indicating instability. The disrupted feature distribution is
split into training and testing sets, both containing original
and imposter features. The training set is processed by the
entropy-based learning algorithm, which leverages entropy
measures and other metrics to differentiate between genuine
and imposter features. The algorithm calculates the entropy of
each feature, identifying those with higher entropy as potential
imposters. By iteratively learning the algorithm updates the
weights of the features based on the information metrics. The
trained model is then evaluated with a testing set to measure
its accuracy in identifying imposter features.



For evaluation, we examine the effectiveness of the pro-
posed framework using various entropy metrics, including
single entropy, joint entropy, and Kullback-Leibler divergence,
through two case studies: the Bipedal Walker and the Lu-
nar Lander. The Bipedal Walker involves a 4-joint walker
robot navigating an environment, while the Lunar Lander
simulates an agent learning to land safely on the moon’s
surface using eight feature states. We simulate adversarial
attacks by injecting imposter features into the observation
space in both scenarios, demonstrating how our entropy-based
framework identifies imposter features and restores the agent’s
performance. Although our experiments focus on specific
scenarios, the fundamental concepts of the framework—using
entropy and other information metrics to measure feature
uncertainty—are adaptable and scalable across various RL
applications. This approach aims to enhance the robustness
and reliability of RL systems.

II. RELATED WORK

This section briefly reviews recent feature selection methods
in RL and compares them with the proposed entropy-based
approach. We also overview the latest defense mechanisms
against adversarial attacks in RL.

A. Feature Selection in Reinforcement Learning

Feature selection is critical for effective learning in RL,
but it poses challenges due to the complex and non-linear
relationships between states and rewards. Traditional strategies
like dimensionality reduction through basis functions [5] and
linear models for value function approximation [6, 7] are
designed for specific RL algorithms, such as policy itera-
tion. These methods often struggle in other contexts due
to indirect state-reward dependencies and the computational
intensity required to evaluate these relationships. Innovative
approaches have been developed to address these challenges.
For instance, [8, 9] propose methods that select features inde-
pendently of the learning processes but encounter difficulties
in assessing state-reward dependencies. Techniques that use
conditional mutual information [10] attempt to manage these
dependencies, but their effectiveness depends heavily on the
accuracy of estimation methods like Least-Squares Mutual
Information (LSMI) [11]. Inaccuracies in these estimations
can lead to biased or unreliable feature selection outcomes.
In contrast, the proposed entropy-based framework measures
uncertainty within the feature distribution, allowing for precise
identification and removal of imposter features without relying
on approximations.

B. Adversarial Attacks in Reinforcement Learning

Adversarial attacks on RL algorithms like Q-learning, DQN,
and A3C significantly impair decision-making by manip-
ulating Q-values, exploiting neural network vulnerabilities,
and altering value gradients [12, 13, 14]. Specific Time-
Step Attack strategies guide agents towards undesired states
[15]. Although adversarial training enhances robustness by
integrating adversarial examples [16, 17], these methods often

lack generalizability across different attack vectors. Kos et
al. reveal significant weaknesses in deep RL policies under
small perturbations [18]. Lin et al. demonstrate RL agents’
vulnerability to various adversarial tactics, leading to degraded
performance in complex environments [19]. Behzadan et al.
present adversarial models in autonomous vehicle simula-
tions, showing how attacks can compromise vehicle safety
by causing erratic behaviors, emphasizing real-world attack
implications [20]. Recent studies on detecting false data
injection attacks using machine learning highlight advanced
feature selection techniques. For example, feature selection
and oversampling balance class distributions and enhance
feature relevance, while sparse Bayesian learning [21, 22, 23]
identifies the most informative features to reduce compu-
tational complexity. These approaches emphasizes selecting
relevant features to enhance detection accuracy. Complement-
ing existing approaches, the proposed entropy-based feature
selection framework offers a key advantage by quantifying
uncertainty across the feature distribution. This allows for pre-
cise identification and removal of misleading features without
relying on specific attack models, providing a scalable and
adaptable solution for various RL applications. It effectively
defends against a broad range of adversarial threats, including
sensor spoofing and environmental noise.

III. METHODOLOGY
A. Imposter Injection

Imposter features following Gaussian noise are injected into
the observation space to challenge the agent’s learning. These
imposters introduce noise, disrupting the agent’s decision-
making process and affecting its expected reward.

Gaussian and Uniform Noise Injection. To simulate
variations in the agent’s learning, we inject noise into the
observation space. This noise takes two forms: Gaussian noise,
which follows a normal distribution defined by a mean (u)
and standard deviation (o), and uniform noise, which spreads
evenly across a range. Mathematically, the Gaussian noise n
added to an imposter feature s can be expressed as: n ~
N (u,0?), where N(u,0?) represents a normal distribution
with mean y and variance 0. For an injected feature defined
between the maximum bounds, uniform noise is incorporated,
represented as u ~ U(a,b), where U(a,b) denotes a uniform
distribution with lower bound a and upper bound b, resulting in
the imposter feature s’ = s + u. Mathematically, an imposter
feature appends the original state space S, represented as a
set of states {s1,$2,...,5,}. By appending a new imposter
feature s’, the original state space is modified S’ = SU s’ to
accommodate for the new imposter feature. Then, the presence
of imposter features affects the agent’s state space (5), policy
(m), and immediate reward function (R).

State Space Expansion. The state space expands from .S
to S’ = SUs'. This change is reflected in the probability dis-
tribution of the agent’s policy. In policy-based RL algorithms
like PPO, the agent’s policy, typically denoted by = (s, a),
maps states to actions and is iteratively updated to maximize
expected return.
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Expected Return. The reward function, R(s,a), assigns
values to state-action pairs, representing the immediate reward
obtained when taking action a in state s. To incorporate
rewards from imposter features, we extend the original reward
function as follows:

Riotal = R(Sa a) + R(Slv a)' (D

Equation. 1 assumes that the total reward is a cumulative
measure of the rewards from both original and imposter
features. When an agent encounters an imposter feature, it
experiences an additional reward (or penalty R(s’,a)). This
combined reward reflects the agent’s interaction with both the
original and manipulated parts of the state space. The reward
R(s',a) obtained from encountering the imposter feature in-
centivizes the agent to adapt its policy. Summing these rewards
over time gives the total expected return .J(6):

T
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The expected return J(#) is defined as the expected sum
of rewards over a time horizon 7. By incorporating the total
reward Ry, into this equation, we account for the impact
of imposter features on the overall performance of the agent.
This helps in analyzing how the presence of imposter features
influences the agent’s learning and decision-making process.

Here Rioui(s,a) is the combined reward obtained when
taking action a in state s. The inclusion of high positive
rewards from imposter features can inflate the expected return
J(0), potentially leading to a stronger bias towards exploiting
these features. Conversely, high negative rewards may cause
the agent to become overly cautious, avoiding imposter fea-
tures and hindering exploration. As a result, the injection of
imposter features creates significant fluctuations in the learning
process, making it harder for the agent to converge to an
optimal policy. Frequent encounters with imposter features can
lead to disruptive and unstable behavior, making it difficult
for the agent to focus on learning from original states and
ultimately wasting computational resources.

To quantify the impact of increasing imposter features on
the learning process, we analyze the change in the expected
return J (@) before and after their introduction. Let A.J be the
deviation between the expected return in the original scenario
and the expected return when incorporating imposter features.

J(0) =E

AJ = Jimposters (0) - Joriginal(o) 3)

We define two thresholds: AJp,s and AJye,, which cor-
respond to significant positive and negative deviations in
the agent’s expected return, respectively. These thresholds
are determined based on the standard deviations observed in
the agent’s performance during successful episodes. When
AJ > AJpes, it indicates a significant expected return from
the imposter features, surpassing the positive threshold AJpos.
Conversely, when AJ < AJpeg, it denotes a notable expected
return decrease due to imposters, falling below the negative

threshold AJy.. These thresholds are determined based on the
standard deviations of the agent’s performance in successful
episodes. Specifically, we set AJpos and AJye, to values that
reflect significant deviations from the mean expected return,
considering the variability in the agent’s performance metrics.

B. Learning to Detect Imposter Features

In this subsection, we detail our entropy-based framework
designed to identify and eliminate imposter features from the
observation space. The Shannon’s entropy [24] is popular in
feature selection. Here, we compute the entropy of the feature
state distribution to identify and eliminate imposter features.
Entropy quantifies the uncertainty in data, which, in our case,
is used to analyze the uncertainty introduced by imposter
features in an RL environment. The entropy (H) of a discrete
random variable X with possible values x1,xs,..,z, and a
probability mass function P(X) is defined as:

n

H(X)=-> P(x;)log P(z;). )

i=1

The feature selection algorithm uses the following linear
relationship between features and labels:

wi(p) +w2(H(s) —p) +B=y. 5)

Here H(s) represents the entropy value (central tendency)
for a given state s, while p denotes the average entropy for
the feature state distribution. These values help evaluate the
variability and informativeness of the feature state distribution,
aiding in feature selection. Additionally, y € [—1, 1] serves as
the label indicating whether a feature state is an imposter (1)
or an original state (-1). To determine the significance of each
feature in label prediction, the weights wy,ws, 5 are learned
during a training process. This training involves solving for
the weights that minimize the discrepancy between predicted
and actual labels.

« Entropy H(s): Measures (Eqn. 4) the uncertainty of each

feature state s
o Average Entropy p: Central tendency of the feature state

distribution.

o Labels y € [—1,1]: Classifies feature states, with discrete
values 1 denoting imposter and —1 for original states.
T
[wi wy B] [ H(s)—p 1]

We begin with a naive solution by directly solving the linear
equation: W =Y X —1. Here, X is a m X m non-zero matrix
containing feature information, and Y represents a vector of
imposter status labels.

We then compare the performance of this naive algorithm
with various machine learning methods, including Random
Forest, K-Nearest Neighbors, and Support Vector Machine.
These methods help us evaluate the effectiveness of our feature
selection algorithm across different models. The weights are

=y (6)
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Fig. 2: Top row: (a-d) show the Lunar Lander with 1, 2, 3, and 4 imposters (uniform noise) respectively, while (e) shows
the lander landing between the two flag posts. Bottom row: (f-i) show the Bipedal Walker with 1, 2, 4, and 8 imposters,
respectively, also injected with uniform noise, while (j) shows the walker robot reaching the other side.

Algorithm 1 Learning Weights W

1: Input: H(s) (feature information), s € S (state spaces), Y €
[—1,1] (imposter labels)

2: Output: wi, wa, B € W (learned weights)

3: W<+ 0 > Initialize weights to empty
4: if AJ < Adneg or AJ > AJpos then

5: X+ 0 > Initialize feature set
6: for s € S do > Iterate through each state
7: X« XU[p H(s)—p 1 }T > Update feature set
8: end for

9: W+ f(X,Y) > Compute learned weights
10: end if

11: return W > Return weights

learned through training each machine learning model to
classify the feature states accurately.

The pseudocode outlined in Algorithm 1 delineates the step-
wise execution of the feature selection algorithm, commencing
when the condition for AJ is met. It initializes an empty
set X for storing state features and iterates through each
state, updating X with pertinent feature information. Upon
completion of the iterations, the weights W (Equation 5) are
obtained, and the resultant values are returned. In addition,
we can replace the single entropy by the joint entropy or
Kullback-Leibler divergence to detect the imposter feature(s).

IV. EXPERIMENTAL RESULTS

In this section, we assess the efficacy of the entropy-based
framework in two popular environments, namely, the Lunar
Lander and Bipedal Walker.

A. Lunar Lander

Environment. The Lunar Lander environment in Gymna-
sium’s Box2D collection challenges RL agents to manage
complex dynamics and precise control. The action space

includes four discrete actions: do nothing, fire left engine, fire
main engine, and fire right engine. The observation space is
an 8-dimensional vector comprising the lander’s coordinates,
velocities, angle, angular velocity, and leg-ground contact
status. A successful episode achieves at least 200 (J) points.

Training. We train the Lunar Lander using the PPO [25] al-
gorithm for 200,000 steps. Imposter features are systematically
introduced into the observation space, starting with a single
imposter and increasing to two, three, and four imposters. This
results in significant fluctuations in the expected return .J, with
both declines and unrealistic performance boosts, highlighting
the exploitation of imposter features. For all injections, two
types of noise (uniform and Gaussian) are used. However,
only the two in-range imposter injections mimic the natural
variability within the environment, making it harder for the
agent to distinguish between genuine and imposter features,
thereby testing the robustness of the agent’s learning and
adaptation mechanisms.

Threshold. Thresholds were determined based on the goal
scores for the respective environments. In the Lunar Lander
environment, a score of 200 indicates a successful episode. To
evaluate performance degradation due to imposter features, we
set thresholds for AJps and AJy, based on observed standard
deviations from multiple successful runs (66.36 and 40). These
thresholds account for normal performance variability, with
Adpes = 300 and AJy, = 100, allowing us to detect
significant deviations caused by imposter features.

Impact of Imposter Features. When there are no imposter
features, the mean return during training is 1.121. With one
imposter injection, the mean return during training is 1.37.
For two imposters and three imposters injection, the mean
return drops to -6.74 and -10.53 during training, respectively.
These significant fluctuations in return suggest the instability
in training. This reflects the failure cases of Lunar Lander as



TABLE I: Evaluation on Lunar Lander: Accuracy of methods
in detecting imposter features using different metrics.

TABLE II: Evaluation on Bipedal Walker: Accuracy of meth-
ods in detecting imposter features using different metrics.

Methods Entropy Joint Entropy KL Methods Entropy Joint Entropy KL
Naive (Linear regression) 94.00 80.54 60.32 Naive (Linear regression) 95.00 88.56 83.45
Random Forest 97.05 95.06 79.62 Random Forest 93.33 92.50 90.78
KNN (K = 5) 94.11 91.35 76.54 KNN (K = 5) 95.55 96.00 95.55
SVM 91.11 75.92 69.13 SVM 97.77 95.77 95.77

visualized in Figure 2 (b, c, d). indicating poor training due to
negative returns. Overall, imposter features worsen the training
process. Negative returns make the agent overly cautious,
while positive returns lead to exploitation and misleadingly
high returns. These returns do not reflect actual landing skills
as evident in the visualization in 2 (b, c, d).

B. Bipedal Walker

Environment. The Bipedal Walker environment involves a
4-joint walker robot navigating an uneven terrain. The action
space includes continuous values controlling the hip and knee
joints of the robot. The observation space comprises the hull’s
angle, angular velocity, horizontal and vertical speed, joint
angles, and joint angular speeds. The goal is to navigate the
terrain efficiently without falling, and obtain 300 (.J) points in
1600 time steps for the normal version.

Training. We train the Bipedal Walker using the (Aug-
mented Random Search) ARS algorithm for 1000 iterations.
The thresholds for Bipedal Walker are set as AJpos = 96 and
AJheg = —1.97, based on observed performance variability.

Impact of Imposter Features. Similar to the Lunar Lander,
we also observed the return fluctuation in the training process.
This highlights the instability in training with the injection of
imposter features.

C. Evaluation on Imposter Detection

We use the entropy-based feature selection algorithm to
detect imposter features as outlined in Algorithm 1. The
approach is evaluated in both the Lunar Lander and Bipedal
Walker environments, with results summarized in I and II. The
accuracy of the entropy-based framework in detecting imposter
features is assessed using entropy, joint entropy (JE), and KL
Divergence across four methods: naive, Random Forest (RF),
K-Nearest Neighbors (KNN), and Support Vector Machine
(SVM).

In the Lunar Lander experiment, the RF method achieves
the highest accuracy of 97.05%, making it well suited for
complex and varied features for this environment (see Table
I), outperforming joint entropy at 95.06% and KL divergence
at 79.62%. This superior performance can be attributed to
entropy’s ability to capture the spread of values within a single
feature’s distribution, making it highly sensitive to anomalies
introduced by imposter features. This sensitivity allows the
method to effectively learn and identify these anomalies. We
see the SVM'’s poor performance, which might be associated
with Lunar Lander’s small dataset.

In contrast, joint entropy considers distributions of feature
pairs and captures their relationships. In the Lunar Lander
environment, most features had independent relationships with
the imposter features. However, there were instances where
the combined uncertainty between two genuine features was
higher than with an imposter feature. These joint entropy val-
ues can disrupt the framework’s learning process in identifying
imposter features, making it susceptible to misclassification of
the relationships with imposter features.

KL divergence performs comparatively poor in identifying
imposter features. The divergence interpretations shows little
to no overlap between the probability distributions of the
imposter features and the genuine features. However, this
similarity in divergence values is also observed among genuine
feature pairs, making it difficult for the methods to distinguish
imposter features effectively.

In the Bipedal Walker environment, the SVM method
achieves the highest accuracy with entropy at 97.77%, show-
ing its effectiveness in handling the Bipedal Walker’s high
dimensional feature space. This is followed closely by KNN
with an accuracy of 95.55% and at last the RF method,
which proved to be limited when handling more features. The
Naive algorithm exhibits lower performance across all metrics,
which can be attributed to the smaller dataset, particularly
when considering the 24 features of the Bipedal Walker.
Consequently, entropy consistently performs better than other
metrics in detecting imposters for both the Lunar Lander and
Bipedal Walker environment. Thus, it highlights the entropy’s
robustness and effectiveness for detecting imposter features in
different reinforcement learning scenarios.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigate the problem of imposter in-
jection in RL, with experimental results showing that entropy
effectively detects imposter features. The proposed framework
is applied in the Lunar Lander and Bipedal Walker environ-
ments, demonstrating its ability to observe imposter features
and assess their impact. Our study focuses on these two envi-
ronments with Gaussian and uniform noise, and future work
could explore other environments, noise types, and extend the
framework with additional information measures. In addition,
we plan to automate and optimize feature selection, enabling
the framework to dynamically adapt to relevant features in
different environments. By integrating the proposed approach
with existing safe RL methods, we seek to enhance the
efficiency, safety, and reliability of RL systems.
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