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Integration of spatial and single-cell data 
across modalities with weakly linked features

Shuxiao Chen    1,7, Bokai Zhu2,3,7, Sijia Huang1, John W. Hickey3, Kevin Z. Lin    4, 
Michael Snyder    5, William J. Greenleaf    5, Garry P. Nolan    2,3,8  , 
Nancy R. Zhang    1,8   & Zongming Ma    6,8 

Although single-cell and spatial sequencing methods enable simultaneous 
measurement of more than one biological modality, no technology can 
capture all modalities within the same cell. For current data integration 
methods, the feasibility of cross-modal integration relies on the existence 
of highly correlated, a priori ‘linked’ features. We describe matching 
X-modality via fuzzy smoothed embedding (MaxFuse), a cross-modal data 
integration method that, through iterative coembedding, data smoothing 
and cell matching, uses all information in each modality to obtain 
high-quality integration even when features are weakly linked. MaxFuse 
is modality-agnostic and demonstrates high robustness and accuracy in 
the weak linkage scenario, achieving 20~70% relative improvement over 
existing methods under key evaluation metrics on benchmarking datasets. 
A prototypical example of weak linkage is the integration of spatial 
proteomic data with single-cell sequencing data. On two example analyses 
of this type, MaxFuse enabled the spatial consolidation of proteomic, 
transcriptomic and epigenomic information at single-cell resolution on  
the same tissue section.

Recent technological advances have enabled analyses of the proteome 
and metabolome1,2, transcriptome3 and various aspects of the epi-
genome such as methylation4, histone modification5–7 and chroma-
tin accessibility5,8 within individual cells. In addition to technologies 
operating on dissociated single cells, rapid progress has been made 
on the in situ measurement of transcriptome9, proteome10–14, epig-
enome15 and other modalities on tissue sections at single-cell or close 
to single-cell resolution, retaining the spatial context. To harness the 
new technologies and growing data resources for biological discovery, 
a primary challenge is the reliable integration of data across modali-
ties. Cross-modal integration, also referred to as ‘diagonal integra-
tion’16,17, is the alignment of single cells or spatial spots across datasets 
where different features (or modalities) are profiled in each dataset.  

This cross-modal integration step underpins many types of downstream 
analyses, and its importance is evident in the myriad methods that have 
already been developed to tackle such tasks18–24.

Despite the progress, key limitations still hinder reliable 
cross-modal integration, as highlighted by recent surveys16,17,25. A key 
factor limiting the accuracy of existing methods is the strength of 
linkage between modalities, as we define below. A feature is ‘linked’ 
between two modalities if it was measured in, or can be predicted by, 
both modalities. In the terminology of refs. 16,17, these linked fea-
tures can serve as ‘anchors’ for integration. For example, to integrate 
single-cell assay for transposase-accessible chromatin sequencing 
(scATAC-seq) and single-cell RNA sequencing (scRNA-seq) data, most 
existing methods predict the ‘activity’ for each gene in each cell of the 
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a small antibody panel and the other is RNA expression over the whole 
transcriptome, the two all-feature matrices have drastically different 
numbers of columns, one being the number of proteins in the panel 
and the other being the number of genes in the transcriptome; the 
linked-feature matrices, on the other hand, have an equal number of 
columns, where each column in the protein matrix is one protein and 
its corresponding column in the RNA linked-feature matrix is its coding 
gene. When the number of cells is large, we recommend aggregating 
cells with similar features into meta-cells, as described in the Methods, 
before applying MaxFuse. In that case, each row in the above matrices 
would represent a meta-cell. The procedure below does not depend 
on whether single cells or meta-cells are used, and thus we will refer 
to each row as a ‘cell’.

During stage 1 of the MaxFuse pipeline, cell–cell similarities are 
identified within each modality and initial cross-modal matching of 
cells is performed. This stage consists of three major steps (Fig. 1a). 
In step 1, for each modality, we use all features to compute a fuzzy 
nearest-neighbor graph connecting all cells measured in that modal-
ity. This graph, by utilizing the information in all features, provides 
the best possible summary of the cell–cell similarity for the given 
modality. In particular, cells that are close in this graph should have 
comparable values for their linked features. Thus, in step 2, MaxFuse 
boosts the signal-to-noise ratio in the linked features within each 
modality by shrinking their values, for each cell, towards the cell’s 
graph-neighborhood average. We call this step ‘fuzzy smoothing’. In 
step 3, MaxFuse computes distances between all cross-modal cell pairs 
based on the smoothed, linked features and applies linear assignment32 
on the cross-modal pairwise distances to obtain an initial matching 
of cells. The initial matching serves as the starting point for stage 2.

Stage 2 of MaxFuse improves cross-modal cell matching quality by 
iterating the sequence of joint embedding, fuzzy smoothing and linear 
assignment steps (Fig. 1b). Starting with the initial matches obtained 
in stage 1, in each iteration, MaxFuse first learns a linear joint embed-
ding of cells across modalities by computing a canonical correlation 
based on all features of the cross-modal matched cell pairs. Then, 
coordinates of this joint embedding are treated as new linked features 
of each modality and fuzzy smoothing is applied on them based on 
the all-feature nearest-neighbor graphs computed in stage 1. Finally, 
MaxFuse updates the cell-matching across modalities by applying 
linear assignment on the pairwise distances of these fuzzy-smoothed 
joint embedding coordinates. The resulting matching is used to start 
the next iteration. Matching quality improves with each iteration until 
available information in all features, and not just the linked features, 
has been used.

In stage 3, MaxFuse processes the last cross-modal cell matching 
from stage 2 and produces final outputs. First, MaxFuse screens the 
matched pairs from the last iteration, retaining high-quality matches 
as pivots. The pivots are used in two complementary ways: (1) they are 
used one last time to compute a final joint embedding of all cells in both 
modalities; (2) for any unmatched cell in either modality, its closest 
neighbor within the same modality that belongs to a pivot is identified 
and, as long as its distance to this neighbor is below a threshold, the 
match in the pivot is propagated to the cell. Thus, the final output of 
MaxFuse has two components: (1) a list of matched pairs across modali-
ties, and (2) a joint embedding of all cells in both modalities. See the 
Methods for more MaxFuse algorithm details.

Integration of transcriptome and targeted protein data
We benchmarked MaxFuse on a cellular indexing of transcriptomes 
and epitopes sequencing (CITE-seq) dataset33 that included measure-
ments of 228 protein markers and whole transcriptome on peripheral 
blood mononuclear cells (PBMCs). For comparison, we also applied 
four state-of-the-art integration methods, Seurat (V3) (ref. 24), Liger22, 
Harmony20 and BindSC34, to this same dataset. Protein names were con-
verted to RNA names manually to link the features between datasets.  

scATAC-seq data based on the accessibility of the gene’s surrounding 
chromatin; then, each gene’s ATAC activity can be ‘linked’ to its RNA 
expression, thus mapping cells from the two datasets into the same 
feature space. Similarly, between RNA and protein assays, the abun-
dance of each protein can be ‘linked’ to the expression of its coding 
gene in the RNA assay.

Most existing methods are designed for scenarios where there is a 
large number of linked features that also exhibit strong cross-modality 
correlations, a situation that we refer to as ‘strong linkage’. For example, 
between scRNA-seq and scATAC-seq, every gene in the genome can be 
linked, and the correlation between gene activity and RNA expression 
is often high enough for enough genes to allow for precise integra-
tion18,19,22. To achieve strong linkage, some methods attempt to learn a 
mapping from the features of one modality to the features of the other 
modality through a ‘training set’ consisting of data obtained when both 
modalities are simultaneously observed in each cell/spot23,26. While 
this strategy may be applicable towards the integration of data from 
biological systems that are similar to the training set, it is questionable 
how well it can generalize to unseen systems.

Cross-modality integration in scenarios of weak linkage, where 
the number of linked features is small and/or the between-modality 
correlation for the linked features is weak, is especially challenging. 
A prototypical example of weak linkage is between targeted protein 
assays14,27 and transcriptome or epigenome assays such as scRNA-seq 
or scATAC-seq. Such scenarios are becoming extremely common as 
spatial proteomic technologies have been widely adopted10–14, and 
complementing RNA and ATAC sequencing to achieve more complete 
tissue characterization28–31. We will reveal, through comprehensive 
benchmarks, the limitations of existing state-of-the-art methods in 
such difficult cases.

To address these limitations, we developed a method that we call 
MaxFuse, a model-free, adaptable method that can accurately integrate 
data across weakly linked modalities. We systematically benchmarked 
the performance of MaxFuse across single-cell protein, RNA and chro-
matin accessibility multiome ground-truth datasets. Across a wide 
variety of datasets, MaxFuse has superior performance compared 
with other state-of-the-art integration methods. Although the largest 
improvements in accuracy were observed under weak linkage, under 
strong linkage MaxFuse was comparable to the current best method 
in integration performance with substantial improvement in speed.

We further demonstrate the analyses enabled by MaxFuse with 
two examples. First, in the integration of scRNA-seq and CODEX multi-
plexed in situ protein profiling data from the human tonsil, we showed 
that MaxFuse identified correct spatial gradients in the RNA expres-
sion of genes not included in the 46-marker protein panel. Second, 
MaxFuse was applied to an atlas-level integration of spatial proteomic 
and single-cell sequencing datasets31. We demonstrate how to per-
form tri-modal integration of CODEX, single-nucleus RNA sequencing 
(snRNA-seq) and single-nucleus ATAC sequencing (snATAC-seq) data 
that revealed spatial patterns of RNA expression and transcription 
factor binding site accessibility at single-cell resolution. We have imple-
mented MaxFuse as a Python package which is freely available to the 
public at https://github.com/shuxiaoc/maxfuse.

Results
Cross-modality matching via iterative smoothed embedding
The input to MaxFuse are data from two modalities in the form of two 
pairs of matrices (Fig. 1a). For convenience, we can call the two modali-
ties Y and Z. First, we have a pair of cell-by-feature matrices that contain 
all measured features in each modality. In addition, we represent the 
initial knowledge about the linkage between the two modalities as 
another pair of cell-by-feature matrices whose columns have one-to-one 
correspondences. To distinguish between these two pairs of matrices, 
we call the former all-feature matrices and the latter linked-feature 
matrices. For example, when one modality is protein abundance over 
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In each repetition of our experiment, we randomly subsampled 10,000 
cells and applied all methods, and assessed using the benchmarking 
criteria to be described below. We performed five such repetitions and 
averaged the criteria across repetitions. For all integration methods, 
we masked the known cell–cell matching between the protein and 
RNA modalities, and then used the known matching for assessment.

Methods were assessed using six different criteria that measure 
both cell-type-level label transfer accuracy as well as cell-level match-
ing accuracy. Two criteria were used to judge cell-type-level label 
transfer accuracy. Cells were annotated at two levels of granularity 
(from ref. 33): level 1, which differentiates between eight major cell 
types; and level 2, a finer classification which differentiates between 
31 cell types. The proportions of matched pairs that shared the same 
label at both annotation levels were reported, with higher propor-
tions indicating higher matching quality. Two criteria assessed the 
quality of cross-modal joint embedding of cells. A high-quality joint 
embedding should preserve biological signal, as reflected by the separa-
tion of known cell types, while mixing the two modalities as uniformly 
as possible. Usually, there is a trade-off between these two goals. To 
aggregate quality assessments of biological signal preservation and 
modality mixing, we calculated F1 scores based on average silhou-
ette width (slt_f1) and on adjusted Rand index (ari_f1), as proposed in  
ref. 35. For both criteria, higher F1 indicates a better embedding. The fifth 
criterion, Fraction Of Samples Closer Than True Match (FOSCTTM)19,36,37, 
was used to quantify the quality of joint embedding at single-cell reso-
lution. For each cell, we computed the fraction of cells in the other 
modality that is closer than its true match in the joint embedding space. 
FOSCTTM is the average of this fraction over all cells in both modalities. 
The lower the value of this score, the closer the true matches are in the 
joint embedding, and, hence, the better the joint embedding. The last 
criterion is Fraction Of Samples whose true matches are among their 
K-Nearest Neighbors (FOSKNN) in the joint embedding space. For any 
given k ≥ 1, the higher this proportion, the better the joint embedding. 
For precise definitions of these criteria, see the Methods.

Based on all these criteria, MaxFuse was superior by a sizable 
margin (Fig. 2a). Importantly, MaxFuse resulted in accurate cell match-
ing across weakly linked modalities (for example, level 1 accuracy 
93.9%, better by over 7% in absolute scale than the second best method 
(Extended Data Fig. 1)). The Uniform Manifold Approximation and 
Projection (UMAP) plots calculated based on the postintegration 
embedding from respective methods (Fig. 2b and Extended Data Fig. 1),  
colored by modality and by level 2 cell-type annotation, showed that 
MaxFuse achieved both better mixing of the two modalities (left panel) 
and better preservation of biological signals (right panel). For example, 
a clearly resolved trajectory of B cell subtypes (B naive, intermediate 
and memory cells) was apparent after MaxFuse integration but not 
after integration by other methods.

It is common to have an antibody panel that is of substantially 
smaller size than 228, especially for spatial proteomic datasets. To bench-
mark the performance of MaxFuse against existing methods with smaller 
antibody panels, we ordered the proteins according to their importance 
for differentiating cell types (see the Methods for details). We repeated 
the matching and integration process with the top 100, 50 and 30 most 
important proteins used in the matching and integration process. With 
each panel size, we ran the experiment over five independent repetitions 
with 10,000 randomly subsampled cells, and averaged the cell-type 
annotation matching accuracy (level 1 and level 2), FOSCTTM and FOS-
KNN scores across repetitions (Fig. 2c). Regardless of panel size, MaxFuse 
consistently outperformed other methods. Additionally, MaxFuse suc-
cessfully mitigated the effect of reduced panel size on integration qual-
ity: even when the antibody panel size was reduced to 30, MaxFuse had 
approximately 90% accuracy for level 1 annotation, whereas accuracy 
of the other methods ranged from around 15% to 75% (Extended Data  
Fig. 2). With a reduced panel of 30 antibodies, the integrated UMAP 
embedding38 produced by other methods blurred the distinction 
between cell types, whereas MaxFuse embedding still accurately cap-
tured the subtle structure of highly granular cell subtypes, such as the 
B cell subpopulations (Fig. 2d and Extended Data Fig. 2).
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Fig. 1 | Overview of MaxFuse pipeline. a, The input consists of two pairs of 
matrices. The first pair consists of all features from each modality, and the 
second pair consists of only the linked features. MaxFuse uses all features within 
each modality to create a nearest-neighbor graph (that is, all-feature NN-graph) 
for cells in that modality. Fuzzy smoothing induced by the all-feature NN-graph is 
applied to the linked features in each modality. Cross-modal cell matching based 
on the smoothed linked features initializes the iterations in b. b, In each iteration, 
MaxFuse starts with a list of matched cell pairs. A cross-modal cell pair is called 
a pivot. MaxFuse learns canonical correlation analysis (CCA) loadings over all 
features from both modalities based on these pivots. These CCA loadings allow 
the computation of CCA scores for each cell (including cells not in any pivot), 
which are used to obtain a joint embedding of all cells across both modalities.  

For each modality, the embedding coordinates then undergo fuzzy smoothing 
based on the modality-specific all-feature NN-graphs (obtained in a). Next,  
the smoothed embedding coordinates are supplied to a linear assignment 
algorithm that produces an updated list of matched pairs to start the next 
iteration. c, After iterations end, MaxFuse screens the final list of pivots to remove 
low-quality matches. The retained pairs are called refined pivots. Within each 
modality, any cell that is not part of a refined pivot is connected to its nearest 
neighbor that belongs to a refined pivot and is matched to the cell from the  
other modality in this pivot. This propagation step results in a full matching. 
MaxFuse further learns the final CCA loadings over all features from both 
modalities based on the refined pivots. The resulting CCA scores give the  
final joint embedding coordinates.
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In addition, we evaluated the impact of tuning parameter choice 
on MaxFuse integration results using ground-truth CITE-seq PBMC 
data. The investigated tuning parameters include matrix singular 
value decomposition components used for different modalities, 
smoothing weights used during initialization and refinement, num-
ber of refinement iterations, dimension for final canonical correlation 
analysis (CCA) embedding, filtering percentages on pivot and on full 
matching, meta-cell size and nearest-neighbor graph neighborhood 
size. Benchmarking on both the full panel of 228 antibodies and a 

reduced panel of the 50 most informative antibodies revealed that 
MaxFuse performance was robust with respect to the investigated 
tuning parameters (Extended Data Figs. 3 and 4 and Supplementary 
Figs. 1 and 2). Furthermore, we assessed the performance of MaxFuse 
when certain cell subpopulations were absent from one modality. 
Benchmark tests considering three different missing cell subpopu-
lations in protein modality showed that MaxFuse was robust with 
respect to mismatch of cell populations between the two modalities 
(Supplementary Table 5).
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Fig. 2 | Benchmarking of MaxFuse and other integration methods on 
ground-truth CITE-seq PBMC data. a, Matching and integration performance 
of MaxFuse and other methods on CITE-seq PBMC dataset with the full antibody 
panel (228 antibodies). The barplot and the line plot show mean value with the 
error bar or shadow area covering 95% CI on both sides, from n = 5 randomly 
subsampled cell batches. b, UMAP visualization of MaxFuse and Seurat (V3) 
integration results of CITE-seq PBMC dataset with the full panel, colored by 
modality (left) or cell type (right). c, Matching and integration performance of 
MaxFuse and other methods on CITE-seq PBMC dataset with reduced antibody 
panels (full 228 antibodies or the most informative 100, 50 or 30 antibodies.) 

For each method, the line indicates mean value with the shadow area covering 
95% CI on both sides, from n = 5 randomly subsampled cell batches. d, UMAP 
visualization of MaxFuse and Seurat (V3) integration results of CITE-seq PBMC 
dataset with the 30 most informative of the original 228 antibodies, colored 
by modality (left) or cell type (right). 95% CI, 95% confidence interval; cDC, 
classical dendritic cells; CTL, cytotoxic T lymphocytes; gDT, gamma delta  
T cells; KNN, k-nearest neighbors; MAIT, mucosal-associated invariant T cells; 
NK, natural killer cells; pDC, plasmacytoid dendritic cells; TM, T memory cells; 
Treg, T regulatory cells.
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Benchmarking on multiple ground-truth multiome modalities
We further benchmarked MaxFuse on four additional single-cell multi-
ome datasets. The first was a CITE-seq dataset of human bone marrow 
mononuclear cells that provides cell-matched measurements of the 
full transcriptome along with an antibody panel of size 25 (ref. 33). The 
second was an Ab-seq dataset, also of bone marrow mononuclear cells, 
with an antibody panel of size 97 and the whole transcriptome39. The 
third was an ATAC with select antigen profiling sequencing (ASAP-seq) 
PBMC dataset40 with 227 antibodies and the whole epigenome meas-
ured in ATAC fragments. The fourth was a transcription, epitopes, and 
accessibility sequencing (TEA-seq) PBMC dataset41 where we focused 
on the simultaneous measurements of 46 antibodies and the whole 

epigenome measured in ATAC fragments. Together, these datasets 
represent a diverse collection of measurement technologies over dif-
ferent modality pairs. We benchmarked the performance of MaxFuse 
against Seurat (V3), Liger, Harmony and BindSC on these datasets. For 
datasets with simultaneous RNA and protein features, we linked each 
protein to its coding gene. For datasets with simultaneous ATAC and pro-
tein measurements, we linked each protein to the gene activity score42 
computed from the ATAC fragments mapping near its coding gene. The 
known cell–cell correspondences across modalities were masked in the 
integration stage for all methods, but used afterwards for evaluation.

We compared the performances of MaxFuse and the other 
four methods on these datasets based on cell-type annotation 

a

0.4

0.6

0.8

1.0

0

0.1

0.2

0.3

0

0.05

0.10

0.48

0.50

0.52

0.54

0.56

0.525 0.550 0.575 0.600 0.625

0.44

0.48

0.52

0.56

0.50 0.55 0.60

0.46

0.48

0.50

0.52

0.54

0.50 0.55 0.60

0.450

0.475

0.500

0.525

0.55 0.60

ASAP-seq
Protein + ATAC
227 markers

CITE-seq (BMC) Ab-seq (BMC) ASAP-seq (PBMC) TEA-seq (PBMC)

b

BM

PBMC
TEA-seq
Protein + ATAC
46 markers

CITE-seq
Protein + RNA
25 markers
Ab-seq
Protein + RNA
97 markers

MaxFuse

Seurat V3

Liger

Harmony
BindSC

CITE
-se

q

cell t
yp

es: 
8

Ab-se
q

cell t
yp

es: 
14

ASAP-s
eq

cell t
yp

es: 
8

TE
A-se

q

cell t
yp

es: 
8

Cell-type matching accuracy FOSCTTM FOSKNN 
(k = 1/200 dataset size)

CITE
-se

q

Ab-se
q

ASAP-s
eq

TE
A-se

q

* Smaller is better

CITE
-se

q

Ab-se
q

ASAP-s
eq

TE
A-se

q

Si
lh

ou
et

te
 F

1 

ARI F1

CITE-seq BM

Si
lh

ou
et

te
 F

1 

ARI F1
Si

lh
ou

et
te

 F
1 

ARI F1

Si
lh

ou
et

te
 F

1 

ARI F1

Ab-seq BM ASAP-seq PBMC TEA-seq PBMC

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1

U
M

AP
 2

UMAP 1
U

M
AP

 2

B
CD4 T
CD8 T

DC
Monocyte
NK

OtherT
Progenitor

Protein
RNA

B
DC
EMP

MPP
Myetocyte
CD4 mem

CD8 mem
Monocyte
B naive

CD4 naive
CD8 naive
NK

B prog B trans

Protein
RNA

Protein
ATAC

B
CD4 mem
CD8 mem

Monocyte
CD4 naive
CD8 naive

NK
OtherT

Protein
ATAC

B
CD4 mem
CD4 naive

CD8 e�
CD8 mem
CD8 naive

Monocyte
NK

* Larger is better * Larger is better
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visualization of MaxFuse integration results for the four ground-truth multiome 
datasets, colored by modality (top panel) and cell type (bottom panel). BM, bone 
marrow; DC, dendritic cells; EMP, erythro-myeloid progenitors; mem, memory; 
prog, progenitor; trans, transitional.
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matching accuracy, FOSCTTM, FOSKNN (k set as 1/200 dataset size),  
Silhouette F1 score and Adjusted Random Index (ARI) F1 score. Over-
all, MaxFuse outperformed other methods, often by a sizable margin  
(Fig. 3a and Supplementary Figs. 3–6). UMAPs of MaxFuse cross-modal 
joint embeddings for each dataset are shown in Fig. 3b. Across the 
integration scenarios, MaxFuse mixed different modalities well in 
joint embeddings while retaining separation between cell types. Com-
pared with UMAPs of joint embeddings produced by other methods, 
MaxFuse consistently achieves substantial improvements (Fig. 3b and 
Supplementary Figs. 3–6).

We also considered integration of scRNA-seq and scATAC-seq 
data. This is a representative example of integrating strongly linked 
modalities for which multiple methods have demonstrated feasibil-
ity18,19,22. It has been shown in ref. 43 that, in terms of cell population 
structure, the information shared across RNA and ATAC is much higher 
than the information shared between RNA and protein for commonly 
used targeted protein panels. Thus, RNA and ATAC data have stronger 
linkage and should be easier to integrate. We benchmarked MaxFuse 
against state-of-the-art methods (Maestro44, scJoint45 and scGLUE19) 
that are specific for RNA–ATAC integration on four public multiome 
datasets that simultaneously measured the chromatin accessibility 
and transcriptome expression for each cell: cells from human PBMCs46, 
cells from embryonic mouse brain at day 18 postconception46, cells 
from developing human cerebral cortex47 and cells from human retina48 
(Extended Data Fig. 5a). The integration quality criteria described in 
the previous subsection were used to assess all methods. MaxFuse 
achieved best or close-to-best integration performance among the 
tested methods, and was comparable to scGLUE (Extended Data  
Fig. 5c–f). However, MaxFuse is computationally much faster than 
scGLUE. For example, for the integration of a dataset of 20,000 cells, 
MaxFuse completed within 5 min on a MacBook Pro laptop with M1 
Max CPU, while scGLUE took hours to complete the job on the same 
platform. Even with CUDA GPU acceleration, scGLUE still used around 
30 min to finish on a computing platform with dual Intel i9-10980XE 
CPUs and dual NVIDIA Quadro RTX 8000 GPUs (Extended Data Fig. 5b).

MaxFuse enables information-rich spatial pattern discovery
MaxFuse is motivated by scenarios where the signal-to-noise ratio in 
the cross-modal linked features is low. Weak linkages are especially 
common in spatial-omic data types due to technical limitations. For 
example, high-resolution spatial proteomic methods such as CODEX, 
MIBI-TOF, IMC and CosMx SMI can profile, at subcellular resolution, a 
panel of 30–100 proteins10–13. Integration of such spatial proteomics 
datasets with single-cell transcriptomic and epigenomic datasets of the 
same tissue is often of interest, but is particularly challenging due to 
the small number of markers in the spatial dataset and the weak linkage 
between modalities which is caused by both biological and techni-
cal differences. To test MaxFuse on this type of cross-modal integra-
tion, we evaluated its performance on integrating a CODEX multiplex 

imaging dataset obtained using 46 markers49 with scRNA-seq data50 of 
human tonsils from two separate studies (Fig. 4a). MaxFuse produced 
an embedding that integrated the two modalities while preserving the 
cell population structure (Fig. 4b).

Based on the predescribed benchmarking metrics, MaxFuse is the 
only method capable of integrating spatial proteomic and scRNA-seq 
data. Seurat (V3), Liger, BindSC and Harmony failed to produce an 
embedding that integrates the two modalities while preserving the 
cell population structure (Fig. 4b and Extended Data Fig. 6). Evaluation 
results based on cell-type matching accuracy are consistent with evalu-
ation results based on the joint embedding. At the level of the six major 
cell types presented in the tissue, MaxFuse achieved high label transfer 
accuracy (93.3%), while the other methods failed to preserve cell-type 
distinctions (40–60%; Fig. 4b and Extended Data Fig. 6).

To assess whether MaxFuse preserves subtle spatial variations 
within a cell type that are captured by CODEX, we manually deline-
ated the boundaries of each individual germinal center (GC) from 
the CODEX tonsil images based on CD19, CD21 and Ki67 protein 
expression patterns. We then extended outward or inward from 
these boundaries, with each step covering roughly one layer of cells 
(one step = 30 pixels erosion/dilation) (Fig. 4c). For each layer of 
cells, we calculated the average counts of specific genes, based on 
the scRNA-seq cells matched to CODEX cells in that layer. We then 
asked if known position-specific gene expression patterns relative 
to the GC boundary are recovered in the integrated scRNA-seq data. 
Indeed, MaxFuse was able to reconstruct the spatial pattern of the GC 
from disassociated transcriptomic data (Fig. 4d,e): for GC-specific 
transcripts BCL6, AICDA and FOXP1 (refs. 51–53) which relate to GC 
functionality, we observed high expression within the boundary 
and a sharp drop in expression after passing the boundary layer;  
for transcripts related to B cell memory, CCR6, BANK1 and FCER2 
(refs. 53–55), which should be enriched in B cells exiting from the 
GC, we indeed saw a gradual increase outside of the GC and then 
a quick decrease as the layer fully expanded into the T cell region; 
and finally for T cell-related transcripts, for example CD4, GATA3 
and CD3 (ref. 56), we indeed saw a rapid increase outside of the GC 
boundary but no expression within. In comparison, the integration 
produced by other methods did not accurately reconstruct the GC 
spatial pattern (Supplementary Fig. 7). Except for CD3 and CD4, 
none of the other seven transcripts had its corresponding protein 
measured in the CODEX panel. We also followed with experimental 
validation via RNAscope, where we observed consistent spatial pat-
terns of AICDA and CCR6 in human tonsil, as predicted by MaxFuse 
integration (Extended Data Fig. 7).

Furthermore, MaxFuse can be utilized for automated cell-type 
annotation of CODEX cells, given that the scRNA-seq data to be 
matched are annotated. We evaluated the automated annotations on 
all CODEX cells produced by MaxFuse, comparing them with those 
generated by two cutting-edge CODEX cell-type annotation methods, 

Fig. 4 | MaxFuse enables information-rich spatial pattern discovery.  
a, Schematic of integration of CODEX data from Kennedy-Darling et al.49  
(upper panel), with scRNA-seq data from King et al.50 (lower panel) obtained 
from human. b, UMAP visualization of MaxFuse integration of tonsil CODEX and 
scRNA-seq data, colored by modality (upper panel) and cell type (lower panel). 
c, Metrics (cell-type matching accuracy, Silhouette F1 score and ARI F1 score) 
evaluating performance for MaxFuse and other methods. Five batches of CODEX 
and scRNA-seq cells (10,000 scRNA-seq cells and 30,000 CODEX cells in each 
batch) were randomly sampled and used for benchmarking for all methods. The 
barplot of cell-type matching accuracy shows mean value with 95% CI for each 
method, with raw values from five random samples plotted as dots. d, Illustration 
of cell layers extending inwards/outwards from the GC boundary. Each layer 
consisted of 30 pixels (~11 μm). A total of ten layers extending in each direction 
were examined. e, Average messenger RNA counts (linked by MaxFuse) across 
cells in each layer plotted versus the position of the layer in reference to the 

GC boundary (inward on the left of boundary, outward on the right). Expected 
expression profiles relative to the GC boundary are shown to the right of each 
group of three transcripts. Each line indicates mean value with the shadow area 
covering 95% CI for the mean at each position. Except for CD3 and CD4, none of 
the other seven reported transcripts had its corresponding protein measured in 
the CODEX panel. f, Benchmarking of MaxFuse and other methods for cell-type 
annotation on human tonsil CODEX data49,50. Automated annotations were 
compared with human-expert annotations of human tonsil CODEX data. Left, 
MaxFuse cell-type annotation of CODEX cells by label transfer of matched human 
tonsil scRNA-seq cells. Middle, CELESTA57 cell-type annotation by using CODEX 
protein expression levels and previous knowledge on marker expression and 
cell population information. Right, Astir58 cell-type annotation by using CODEX 
protein expression levels and previous knowledge on marker expression and cell 
population information. Acc, accuracy; DC, dendritic cells.

http://www.nature.com/naturebiotechnology


Nature Biotechnology | Volume 42 | July 2024 | 1096–1106 1102

Article https://doi.org/10.1038/s41587-023-01935-0

CELESTA57 and Astir58. This comparison was benchmarked against 
annotations made by human experts. MaxFuse achieved an annota-
tion accuracy of nearly 90%, substantially improving upon these two 
methods for direct annotation of CODEX data, which had accuracy 
within the 70–75% range (Fig. 4f).

Tri-modal atlas-level integration with MaxFuse
In the consortium-level effort to generate a comprehensive atlas across 
different regions of the human intestine, colon and small bowel tis-
sues from healthy human donors were collected and systematically 
profiled by CODEX, snRNA-seq and snATAC-seq31. We applied MaxFuse 
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to the integration of these three datasets obtained from analyses of 
colon (Fig. 5a), with the goal of constructing high-resolution spatial 
maps of full transcriptome RNA expression and transcription factor 
binding accessibility. We first conducted pairwise alignment of cells 

between protein (CODEX) and RNA (snRNA-seq), and cells between 
RNA (snRNA-seq) and ATAC (snATAC-seq), as previously described. The 
two sets of bimodal cell-pairing pivots were then ‘chained’ together, 
with the pivot cells in the RNA modality serving as the intermediary. 
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This ‘chaining’ created a set of pivots linking all three modalities: pro-
tein, RNA and ATAC. Subsequently, we used these pivots to calculate 
a tri-omic embedding via generalized CCA (gCCA)21 59. This allowed 
calculation of a joint embedding of the three modalities (Fig. 5b). The 
MaxFuse integration preserved distinctions between major cell types, 
and modalities were mixed within each cell type. See Supplementary 
Fig. 8 for a comparison between using RNA and using ATAC as the base-
line (intermediary) modality. Additionally, the design of batching in 
MaxFuse allowed the integration of atlas-level datasets with limited 
time and space resources (Extended Data Fig. 8).

Effectively, the MaxFuse integration produced a joint profile of 
protein abundance, RNA expression and chromatin accessibility at 
single-cell spatial resolution on the same tissue section. To confirm the 
validity of this tri-modal integration, we inspected whether CODEX’s 
protein abundance aligned spatially with the expression and chromatin 
activity of the protein-coding gene, the spatial measurements of the 
latter two modalities imputed based on the MaxFuse integration. In 
one example, the protein expression, RNA expression and gene activ-
ity of CD163 were, as expected for this macrophage marker, uniquely 
enriched in the macrophage cell cluster (Fig. 5c, top row). Further-
more, protein, RNA and ATAC activities of this gene all localized to the 
same spatial positions on the tissue section (Fig. 5c, bottom row). See 
Extended Data Fig. 9 for additional examples.

With the integration of the snATAC-seq and CODEX data, we 
were able to map the spatial enrichment of transcription factor 
binding site accessibility. For each transcription factor, we first 
computed a motif enrichment score for each cell in the snATAC-seq 
data using chromVAR60, and then the scores were transferred to the 
CODEX spatial positions based on the MaxFuse integration. Figure 5d  
shows such spatial profiles for three transcription factors. Binding 
motifs of IRF4, a key regulator in immune cell differentiation61, had 
increased accessibility in the immune-enriched compartments of 
the mucosa and submucosa layers31. Binding motifs of KLF4, known 
to be required for the terminal differentiation of goblet cells62, had 
heightened accessibility in the colonic crypts of the mucosa layer 
where goblet cells mature. Finally, binding motifs of SRF, a master 
regulator of smooth muscle gene expression63, had heightened acces-
sibility in neighborhoods that are enriched for smooth muscle cells. 
In addition, we performed the same analysis on the HUBMAP data 
collected on small bowel and MaxFuse showed consistent results 
(Extended Data Fig. 10).

Additional benchmarking of MaxFuse
We further compared the integration quality within MaxFuse results, 
across different smoothing schemes (Supplementary Fig. 9), and 
between pivot and nonpivot cells (Supplementary Fig. 10 and Supple-
mentary Table 1). We validated the improved gene imputation accuracy 
by MaxFuse-enabled matching in a ground-truth multiome dataset, 
using targeted proteomic features to predict transcript expression 
at single-cell level (Supplementary Fig. 11). One important potential 
application of MaxFuse is imputing unmeasured features (for exam-
ple, transcripts) in spatial proteomic datasets. We benchmarked the 
effect on integration quality of sequentially reduced antibody panel 
sizes (Supplementary Fig. 12) and the area-level gene imputation 

correlation by artificially dropping protein features in CODEX data 
(Supplementary Fig. 13).

Discussion
Most existing methods for cross-modal data integration were devel-
oped for integration across strongly linked modalities, and their per-
formances decay significantly as the strength of cross-modal linkage 
weakens. MaxFuse is motivated by and focuses on the challenging 
case of weak linkage, which has become increasingly common as many 
emerging study designs include spatial data with targeted marker pan-
els to be collected jointly with single-cell sequencing data.

MaxFuse relies on two key processes to overcome weak linkage. 
The first is a ‘fuzzy smoothing’ procedure that denoises the linked 
features by moving their values towards their graph-smoothed values, 
with the graph determined by all features. The second is an itera-
tive refinement procedure that improves the cross-modal matching 
through iterative cycles of coembedding, graph-smoothing and 
matching. This ensures that information from all features, in both 
modalities, is used to generate the final matching. We demonstrated 
that MaxFuse substantially improves upon state-of-the-art methods, 
achieving accurate integration of data from targeted protein assays 
with data from transcriptome- and epigenome-level assays. The appli-
cability of MaxFuse is general. For strong linkage scenarios, MaxFuse 
accuracy was comparable to scGLUE, a state-of-the-art method based 
on deep learning, but at a considerably lower computational cost. 
In addition, when joint embedding coordinates from other integra-
tion methods are available, these coordinates could serve as linked 
features in MaxFuse. The light computation architecture and the 
flexibility in incorporating domain knowledge and existing integra-
tion results make the MaxFuse framework applicable to a wide range 
of cross-modal integration tasks.
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Methods
The MaxFuse pipeline
Input preparation. Consider a pair of datasets, Y ∈ ℝNy×py  and  
Z ∈ ℝNz×pz, from two modalities (termed Y-modality and Z-modality for 
exposition convenience), with each row corresponding to a cell and 
each column a feature. In the ensuing discussion, we treat Y as the 
modality with a higher signal-to-noise ratio. For concreteness, one can 
think of Y as an snRNA-seq dataset and Z as a CODEX dataset. Suppose 
there are two known functions, fy ∶ ℝpy → ℝs  and fz ∶ ℝpz → ℝs , such 
that fy(y) predicts the values of fz(z) in a cell if the measured values 
under Y-modality are y in that cell and those under Z-modality are z. 
For any matrix A with py columns, let fy(A) denote the matrix with s 
columns and the same number of rows as A, obtained from applying fy 
on each row of A and stacking the outputs as row vectors. For any  
matrix B with pz columns, fz(B) is analogously defined. We define 
Y∘ = fy(Y) ∈ ℝNy×s and Z∘ = fz(Z) ∈ ℝNZ×s. In the snRNA-seq versus CODEX 
example, if one has a crude prediction for a subset S (with size |S| = s) 
of the proteins, then fz(z) = zS returns the subvector indexed by S while 
fy(y) = ẑS predicts the observed CODEX values for these proteins based 

on transcriptomic information of a cell. In summary, we start with a 
pair of original datasets (Y, Z) and a pair of datasets (Y∘, Z∘), where the 
columns of the latter have one-to-one correspondence based on 
domain knowledge. The columns of Y∘ and Z∘ can be learned feature-wise 
prediction functions, as described above, or learned coembedding 
coordinates from some model trained on multi-omics data.

Meta-cell construction. To alleviate sparsity and to scale to large 
datasets, we start by constructing meta-cells. Let ny be the desired 
number of meta-cells. We first construct a nearest-neighbor graph of 
the rows of Y, apply Leiden clustering with an appropriate resolution 
level to obtain ny clusters and average over the rows within each cluster 
to obtain the features for each meta-cell. Consequently, we obtain 
Ym ∈ ℝny×py. Using this clustering structure (induced by Y), we can aver-
age feature vectors in Y∘ to obtain Y∘m ∈ ℝny×s. When desired, the same 
operation can be performed on the Z-modality to obtain Zm ∈ ℝnz×pz  
and Z∘m ∈ ℝnz×s. We recommend only constructing meta-cells for modali-
ties that allow cell state differentiation at fine granularity. For example, 
if Y-modality contains snRNA-seq data and Z-modality contains CODEX 
data, then we would usually recommend to construct meta-cells only 
in Y-modality. The choices of meta-cell size for analyses reported in 
this work are given in Supplementary Table 2. In addition, in Extended 
Data Figs. 3 and 4 and Supplementary Figs. 1 and 2, we benchmarked 
robustness of results with respect to meta-cell size. Meta-cell sizes of 
2–3 are optimal across the datasets we tested. After this curation step, 
we have two pairs of datasets, (Ym,Zm) and (Y∘m,Z∘m). The former pair can 
have completely distinct feature sets, while the latter pair must have 
matching feature sets with corresponding columns. In Fig. 1a, the 
former correspond to the pair of all-feature matrices, and the latter 
correspond to the pair of linked-feature matrices.

Fuzzy smoothing. Let GY ∈ {0, 1}ny×ny  be a nearest-neighbor graph of  
Ym where each row i is connected to kYi  rows that are closest in a chosen 
similarity measure, including itself. So row i of GY has kYi  entries equal 
to one and others zeros. In addition, all its diagonal entries are equal 
to one. Let 𝒜𝒜Y(Ym) = K−1Y GYYm  and 𝒜𝒜Y(Y∘m) = K−1Y GYY

∘
m  be locally averaged 

versions of Ym and Y∘m over GY, respectively, where KY = diag(kY1 ,… , kYny ). 
For a nearest-neighbor graph GZ, we define 𝒜𝒜Z(Zm)  and 𝒜𝒜Z(Z∘m)  in an 
analogous way. Finally, for any weight w ∈ [0, 1] and any matrices A and 
B with ny and nz rows, respectively, we define

𝒮𝒮Y(A;w) = wA + (1 −w)𝒜𝒜Y(A),

𝒮𝒮Z(B;w) = wB + (1 −w)𝒜𝒜Z(B).
(1)

In this way, we define Ỹ∘m = 𝒮𝒮Y(Y∘m;w0) and Z̃∘m = 𝒮𝒮Z(Z∘m;w0) with w0 ∈ [0, 1]. 
In Fig. 1a, these are matrices with smoothed Y-modality linked  
features and smoothed Z-modality linked features, respectively.  

See Supplementary Table 3 for a list of smoothing weights used in data 
analyses reported in this work.

Initial matching via linear assignment. As the columns in Ỹ∘m and in Z̃∘m 
have correspondences, we can compute an ny × nz distance matrix D∘ 
where D∘ij  measures the distance between the i-th row in Ỹ∘m and the j-th 
row in Z̃∘m after projecting to respective leading singular subspaces. We 
obtain an initial matching Π̂∘ as the solution to the linear assignment 
problem32,64:

minimize ⟨Π,D∘⟩

subject to Π ∈ {0, 1}ny×nz

∑
i
Πij ≤ 1, ∀j, ∑

j
Πij ≤ 1, ∀i,

∑
i, j
Πij = nmin.

(2)

Here, nmin = min{ny,nz} and, for two matrices A and B of the same size, 
〈A, B〉 = ∑i,jAijBij denotes the trace inner product. The linear assignment 
problem in equation (2) can be efficiently solved by relaxing the first 
constraint to Π ∈ [0, 1]ny×nz. The resulting linear program has the same 
solution as equation (2). The Python implementation we used is based 
on the shortest augmenting path approach summarized in ref. 65. The 
estimator Π̂∘ provides a relatively crude matching using only the infor-
mation provided by the previous knowledge encapsulated in fy and fz 
which link features in the two modalities. By definition, Π̂∘ gives nmin 
pairs of matched rows between the two modalities, which we call initial 
pivots.

Cross-modality joint embedding and iterative refinement. From 
matched pairs to joint embedding. An estimated matching Π̂ induces a 
cross-modality joint embedding of Ym  and Zm. Let Y r

m ∈ ℝny×ry  and 
Z r

m ∈ ℝnz×rz  collect the leading principal components of all features  
(that is, Ym and Zm) in the two modalities, respectively. Here, the numbers 
of principal components to retain, that is, ry and rz, are chosen based 
on data. For any matrix A, let [A]i⋅ denote its i-th row. Suppose 
{(iℓ, i′ℓ) ∶ ℓ = 1,… ,nmin} are the matched pairs specified by Π̂. We perform 
CCA on data pairs

{([Y r
m ]iℓ⋅, [Z

r
m ]i′ℓ⋅) ∶ ℓ = 1,… ,nmin}

to obtain the leading rcc loading vectors for either modality, collected 
as the columns of Ĉy = Ĉy(Π̂)  and Ĉz = Ĉz(Π̂) , respectively. The joint 
embedding induced by Π̂ is then Ycc

m = Y r
m Ĉy ∈ ℝny×rcc  and Zcc

m =
Zr

mĈz ∈ ℝnz×rcc, the predicted canonical correlation (CC) scores of Yr
m and 

Zr
m, respectively.

Iterative refinement. Let Π̂(0) = Π̂∘ be the initial matching obtained 
from equation (2). We fix a weight w1 ∈ [0, 1] and the embedding dimen-
sion rcc, and we refine the estimated matching by iterating the following 
steps for t = 1, …, T:

	(1)	 Compute joint embedding {Y cc,(t)
m ,Z cc,(t)

m } induced by Π̂(t−1);
	(2)	 Apply fuzzy smoothing on joint embedding: 

Ỹ cc,(t)
m = 𝒮𝒮Y(Y cc,(t)

m ,w1), Z̃ cc,(t)
m = 𝒮𝒮Z(Z cc,(t)

m ,w1);
	(3)	 Calculate a distance matrix D(t) ∈ ℝny×nz  where D(t)ij  measures the 

distance between [Ỹcc,(t)
m ]i⋅ and [Z̃cc,(t)

m ]j⋅, and obtain a refined 
matching Π̂(t) by solving equation (2) in which D∘ is replaced 
with D(t).

Figure 1b illustrates the foregoing refinement iteration.

Propagation of matching and postprocessing. For downstream 
analyses, one would often like to find for each cell in Y a match in Z, or 
vice versa, and sometimes both ways. In addition, one often wants joint 
embedding of cells across different modalities in a common space. We 
now describe how MaxFuse achieves these goals.
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Filtering and final joint embedding. Upon obtaining the matched 
pairs {(iℓ, i′ℓ) ∶ ℓ = 1,… ,nmin}  in Π̂(T), we rank them in descending order 
of D(T)iℓ i′ℓ

 and only retain the top 100 × (1 − α)% pairs, where α is a 
user-specified filtering proportion (with a default α = 0). The retained 
pairs are called refined pivots. Then, we fit a CCA using the refined 
pivots and the corresponding rows in Ym and Zm to get the associated 
CCA loading matrices Ĉe

y ∈ ℝpy×re and Ĉe
z ∈ ℝpz×re. Here the positive inte-

ger re is a user-specified dimension for final joint embedding. Finally, 
the joint embedding of the full datasets is given by Ye = YĈe

y ∈ ℝNy×re   
and Ze = ZĈe

z ∈ ℝNz×re , respectively. In Fig. 1c, they correspond to  
the Y-modality embedding and Z-modality embedding matrices.

Using pivots to propagate matching. For each row index i ∈ {1, …, ny} 
in Y-modality that does not have a match in Z-modality, MaxFuse 
searches for the nearest neighbor of the i-th row in Ỹm = 𝒮𝒮Y(Ym;w0)   
that belongs to some refined pivot. Suppose the nearest neighbor is 
the ji-th row with a match j′i in Z-modality, then we call (i, j′i ) a matched 
pair obtained via propagation. We can optionally filter out any matched 
pair via propagation in which the nearest-neighbor distance between 
[Ỹm]i⋅ and [Ỹm]ji⋅ is above a user-specified threshold. The retained matched 
pairs compose the Y-to-Z propagated matching. This procedure is then 
repeated with the roles of Y- and Z-modalities switched to obtain the 
Z-to-Y propagated matching. Pooling all matched pairs from refined 
pivots and propagated matching together, we obtain a matching 
between meta-cells in Y-modality and those in Z-modality. Such a 
meta-cell-level matching defines a single-cell-level matching between 
the original datasets Y and Z by declaring (i, i′) a matched pair for 
1 ≤ i ≤ Ny, 1 ≤ i′ ≤ Nz  if the meta-cell that i belongs to is matched to the 
meta-cell that i′ belongs to.

Scoring and directional pruning of matching. For each single-cell- 
level matched pair (i, i′), we compute Pearson correlation between the 
i-th row of Ye and the i′-th row of Ze (that is, corresponding rows in final 
joint embedding) as its matching score. We use these matching scores 
to prune single-cell-level matching, with the direction of pruning speci-
fied by the user. Suppose the user wants to find for each cell in Z a match 
in Y (for example, Z is a CODEX dataset and Y snRNA-seq). Then for each 
cell index 1 ≤ i′ ≤ Nz , we first list all refined pivots and propagated 
matching pairs that contain i′. If the list is nonempty, we only retain the 
pair with the highest matching score. Otherwise, we declare no match 
for cell i′ in Z-modality. If the direction is reversed, we apply the forego-
ing procedure with the roles of Y and Z switched. Furthermore, if no 
directional pruning is desired, we just keep all refined pivots and post-
screening propagated matching pairs in the final single-cell matching. 
In Extended Data Figs. 3 and 4 and Supplementary Figs. 1 and 2, we 
benchmarked how evaluation metrics change with different choices 
of filtering proportions in propagation and in pruning. In Supplemen-
tary Table 4, we reported the filtering proportions used in the data 
analyses reported in this work. After filtering, propagation and poten-
tial pruning, the final list of matched pairs corresponds to the final 
matching in Fig. 1c.

Systematic benchmarking on ground-truth datasets
MaxFuse and other methods in comparison. MaxFuse was imple-
mented in Python, and the four methods used for comparison, Seurat 
V3, Harmony, Liger and BindSC, were implemented in R. All bench-
marking datasets were preprocessed in the same way for all methods, 
including filtering of low-quality cells, selection of highly variable 
genes and protein features to be used in integration, feature linkage 
scheme (for example, protein to their corresponding gene names) and 
normalization of raw observed values (except for Liger which required 
scaling without centering). We used the default tuning parameters in 
each method suggested by the respective tutorial, with the exception of 
BindSC, for which we used the separate set of parameters suggested for 
the integration of protein-related data by its method tutorial website. 
For MaxFuse, initial matching used features that are weakly linked (for 
example, protein CD4 and RNA CD4) and are smoothed by all-feature 

nearest-neighbor graphs. For refined matching, all features from both 
modalities were used (for example, all proteins and RNAs that are highly 
variable). For other methods in comparison, BindSC used both the 
weakly linked features and all features, whereas others only used the 
weakly linked features by design. The full details were recorded and can 
be reproduced, with code deposited to https://github.com/shuxiaoc/
maxfuse/tree/main/Archive.

Evaluation metrics. 

	(1)	 Cell-type matching accuracy: To evaluate the matching perfor-
mance for Seurat V3, Liger, Harmony and BindSC, we used the 
respective integration embedding vectors produced by each 
method. For these methods, for each cell in one modality, we 
regarded its nearest neighbor from the other modality under 
Pearson correlation distance in the embedding space as its 
match. For MaxFuse, we directly used matched pairs produced 
in the final result. For all methods, we use the same matching 
direction (for example, for each cell in CODEX data finding a 
matched cell in scRNA-seq data) for fair comparison. Accuracy of 
the matchings was measured by fraction of matched pairs with 
identical cell-type annotations. Details on cell-type annotation 
are given below in the description of each benchmarking dataset.

	(2)	 FOSCTTM: FOSCTTM was used to evaluate single-cell-level 
alignment accuracy on datasets with ground-truth 
single-cell-level pairing. The measure has been used previously 
in cross-modality alignment benchmarking tasks19,36,37. For such 
data, Ny = Nz = N, and FOSCTTM is defined as:

FOSCTTM = 1
2N (

N
∑
i=1

n(i)y
N +

N
∑
i=1

n(i)z
N ) ,

where for each i,n(i)y = ||{ j |d( yi, zj) < d( yi, zi)}||  with d a distance  
metric in the joint embedding space and for l = 1, …, N, yl and zl  
are the embedded vectors of the l-th cell with its measurements 
in Y- and Z-modality, respectively. The counts n(i)z , i = 1,… ,N , are 
defined analogously. A lower value of FOSCTTM indicates better 
integration performance.

	(3)	 FOSKNN: FOSKNN was used to evaluate single-cell-level align-
ment accuracy on datasets with ground-truth single-cell-level 
pairing. For such data, Ny = Nz = N. For any method in compari-
son, let {yi: i = 1, …, N} be the coordinates of cells in the joint 
embedding space from their Y-modality information, and let 
{zi: i = 1, …, N} be embedding coordinates from their Z-modality 
information. Then

FOSKNN = 1
2N (

N
∑
i=1

1(i)Ey,k +
N
∑
i=1

1(i)Ez,k)

where for i = 1,… ,N, 1(i)Ey,k  is the indicator of whether the k closest 
embedded vectors from Z-modality to yi includes zi. The quantity 
1(i)Ez,k  is defined analogously. A higher value of FOSKNN indicates 
better integration performance.

	(4)	 Silhouette F1 score: Silhouette F1 score has been used to 
simultaneously measure modality mixing and information pres-
ervation post integration process21,35. In brief, the F1 score was 
calculated by 2 ⋅ slt_mix ⋅ slt_clust/(slt_mix + slt_clust), where 
slt_mix is defined as one minus normalized Silhouette width 
with the label being modality index (two modalities); slt_clust is 
defined by the normalized Silhouette width with the label being 
cell-type annotations (for example, ‘CD4 T’, ‘CD8 T’, ‘B’ and so 
on). All Silhouette widths were computed using the silhouette 
function from R package cluster.

	(5)	 ARI F1 score: ARI F1 score has been used to jointly measure 
modality mixing and information preservation post integration 
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process21,35. The score was calculated in a similar way to Silhou-
ette F1 score, while the ARI was used instead of the Silhouette 
width. All ARI scores were computed using the function adjust-
edRandIndex in R package mclust.

CITE-seq PBMC dataset analysis. The CITE-seq data from human 
PBMCs with antibody panel of 228 markers were retrieved from Hao 
et al.33 and cell-type annotations (level 1: 8 cell types; and level 2: 31 cell 
types) were directly retrieved from the original annotation in ref. 33. For 
benchmarking purposes, five batches of cells, each with 10,000 cells, 
were randomly sampled from the original dataset and used for bench-
marking. The first 15 components of the embedding vectors produced 
by all methods were used for benchmarking metric calculation. The 
UMAP visualization of the integration process was also calculated with 
the first 15 components of the embedding vectors. For visualization 
purposes, the 31 cell types of level 2 annotation were manually binned 
into 20 cell types in the UMAP cell-type coloring.

For analyses with fewer antibodies, we ranked the importance of 
each individual antibody in the panel in terms of phenotyping con-
tribution. The importance score was calculated by training a random 
forest model (function randomForest in R package randomForest, 
with default parameters) using all antibodies to predict cell-type labels 
(annotation level 2), then a permutation feature importance test (func-
tion varImp with default parameters in R package caret) was performed 
on the trained model to acquire the importance scores. Then antibod-
ies were ranked by the importance scores, and four panels were used 
for the antibody dropping test: (1) full 228-antibody panel; (2) top 100 
most important antibodies; (3) top 50 most important antibodies; (4) 
top 30 most important antibodies.

CITE-seq bone marrow cell dataset analysis. The CITE-seq healthy 
human bone marrow cells (BMCs) data with an antibody panel of 25 
markers were retrieved from the R package SeuratData ‘bmcite’; these 
data were also reported by Hao et al.33. A total of 20,000 cells were ran-
domly sampled from the original dataset and used for benchmarking. 
The first 15 components of the embedding vectors produced by all 
methods were used for benchmarking metric calculation. The UMAP 
visualization of the integration process was also calculated with the 
first 15 components of the embedding vectors. The original cell-type 
annotation (lv2) from the R package was binned into eight populations, 
‘DC’, ‘progenitor’, ‘monocyte’, ‘NK’, ‘B’, ‘CD4 T’, ‘CD8 T’ and ‘Other T’, and 
used for benchmarking.

Abseq BMC dataset analysis. The Abseq healthy human BMC data 
with antibody panel of 97 markers and whole transcriptome sequenc-
ing were retrieved from Triana et al.39. All cells in the dataset (~13,000), 
except cells belonging to cell types with insufficient numbers of cells 
(<50 cells, annotated as ‘Doublet and Triplets’, ‘Early GMP’, ‘Gamma delta 
T cells’, ‘Immature B cells’, ‘Metaphase MPPs’, ‘Neutrophils’ in ref. 39),  
were included for integration. The remaining 14 cell types were used 
during benchmarking. The first 15 components of the embedding 
vectors produced by all methods were used for benchmarking metric 
calculation. The UMAP visualization of the integration process was 
also calculated with the first 15 components of the embedding vectors.

TEA-seq PBMC dataset analysis. The TEA-seq neutrophil-depleted 
human PBMC dataset was retrieved from Swanson et al.41 (GSM4949911). 
This dataset contains 46 antibodies and chromatin accessibility infor-
mation. Cell-type annotation was performed using R package Seurat 
(v.4) WNN-multi-modal clustering pipeline: function FindMultiModal-
Neighbors was run on the antibody-derived tags (ADT) assay principal 
component analysis (PCA) output (first 25 components) and the ATAC 
assay latent semantic indexing (LSI) output (first 2–50 components, 
calculated by R package Archr42). Subsequently, the function FindClus-
ters was used to generate unsupervised clustering (with parameters 

algorithm = 3, resolution = 0.2), followed by manual annotation. A total 
of eight populations were identified (‘Naive CD4’, ‘Mem CD4’, ‘Mono-
cyte’, ‘NK’, ‘Naive CD8’, ‘Mem CD8’, ‘Effector CD8’, ‘B’, ‘NK’), and the total 
number of cells was ~7,400. ADT expressions and gene activity scores 
(calculated by R package Archr42) were used as input for MaxFuse and 
other methods. Additionally, during matching refinement, MaxFuse 
used LSI reductions of the ATAC peaks (first 2–50 components) as fea-
tures for the ATAC modality. The first 15 components of the embedding 
vectors produced by all methods were used for benchmarking metric 
calculation. The UMAP visualization of the integration process was 
also calculated with the first 15 components of the embedding vectors.

ASAP-seq PBMC dataset analysis. The ASAP-seq healthy human 
PBMC data (CD28 and CD3 stim PBMC control group) with an anti-
body panel of 227 markers and chromatin accessibility information 
were retrieved from Mimitou et al.40 (GSM4732109 and GSM4732110). 
Cell-type annotation was performed using R package Seurat (v.4) 
WNN-multi-modal clustering pipeline: the function FindMultiModal-
Neighbors was run on ADT PCA (first 18 components) and ATAC LSI 
(2–40 components, calculated by R package Archr). Subsequently, 
the function FindClusters was used to generate unsupervised clus-
tering (with parameters algorithm = 3, resolution = 0.3), followed by 
manual annotation. A total of nine populations were identified (‘Naive 
CD4’, ‘Mem CD4’, ‘Monocyte’, ‘NK’, ‘Naive CD8’, ‘Mem CD8’, ‘B’, ‘Other 
T’, ‘dirt’), and ‘dirt’ was removed from subsequent analyses, resulting 
in about 4,400 cells used. ADT expressions and gene activity scores 
(calculated by R package Archr) were used as input for MaxFuse and 
other methods. Additionally, during matching refinement, MaxFuse 
used LSI reductions of the ATAC peaks (first 2–50 components) as fea-
tures for the ATAC modality. The first 15 components of the embedding 
vectors produced by all methods were used for benchmarking metric 
calculation. The UMAP visualization of the integration process was 
also calculated with the first 15 components of the embedding vectors.

MaxFuse on spatial-omics matching
CODEX and scRNA-seq human tonsil dataset analysis. CODEX 
multiplex imaging data of human tonsil tissues with a panel of 46 
antibodies were retrieved from Kennedy-Darling et al.49. Images from 
tonsil-9338 (region X2-8, Y7-15) were used. Whole-cell segmentation 
was performed with a local implementation of Mesmer66, with weights 
downloaded from: https://deepcell-data.s3-us-west-1.amazonaws.com/
model-weights/Multiplex_Segmentation_20200908_2_head.h5. Inputs 
of segmentation were DAPI (nuclear) and CD45 (membrane). Signals 
from the images were capped at 99.7th percentile, with prediction 
parameter model_mpp = 0.8. Cells smaller than 30 pixels or larger 
than 800 pixels were excluded. Signals from individual cells were then 
extracted, and scaled to the [0, 1] interval, with percentile cutoffs at 
0.5% (floor) and 99.5% (ceiling). Cell-type annotation was performed 
using R package Seurat clustering pipeline: the function FindNeighbors 
was run on CODEX protein PCA (first 15 components). Subsequently, 
the function FindClusters was used to generate unsupervised cluster-
ing (with parameter resolution = 1), followed by manual annotation. 
A total of ten populations were identified (‘B-CD22-CD40’, ‘B-Ki67’, 
‘Plasma’, ‘CD4 T’, ‘CD8 T’, ‘DC’, ‘Fibro/Epi’, ‘Vessel’, ‘Other’ and ‘Dirt’), 
and six populations (~180,000 cells in total) were used in subsequent 
analyses (‘B-CD22-CD40’, ‘B-Ki67’, ‘Plasma’, ‘CD4 T’, ‘CD8 T’ and ‘DC’).

scRNA-seq data of dissociated human tonsil cells were retrieved 
from King et al.50. The preprocessing and cell typing steps were done 
in the R package Seurat, following the description presented in ref. 50. 
In brief, tonsil cells (‘t1’, ‘t2’ and ‘t3’) were merged, then filtered by the 
criteria nFeature_RNA > 200 & nFeature_RNA < 7500 & percent.mt < 20, 
and subsequently values were normalized by the function SCTrans-
form. Harmony batch correction was performed for different tonsils 
for clustering only, with the function RunHarmony. Unsupervised clus-
tering was performed by the function FindNeighbors with Harmony 

http://www.nature.com/naturebiotechnology
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4949911
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4732109
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4732110
https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5
https://deepcell-data.s3-us-west-1.amazonaws.com/model-weights/Multiplex_Segmentation_20200908_2_head.h5


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01935-0

embedding (1–27 dimensions) and function FindClusters with resolu-
tion = 0.5. A total of eight populations were defined (‘B-CD22-CD40’, 
‘B-Ki67’, ‘circulating B’, ‘Plasma’, ‘CD4 T’, ‘CD8 T’, ‘DC’, ‘Other’), and six 
populations (~13,000 cells in total) were used in subsequent analyses 
(‘B-CD22-CD40’, ‘B-Ki67’, ‘Plasma’, ‘CD4 T’, ‘CD8 T’ and ‘DC’).

Boundaries of GCs from the CODEX images were drawn manually, 
and dilation and erosion from the boundary was performed with the 
Python package skimage, with functions morphology.binary_dila-
tion and morphology.disk. Ten layers inward and ten layers outward 
from the boundary (each layer = 30 pixels; resolution: 376 nm per 
pixel) were performed, respectively. Cells were assigned to each layer 
based on locations of centroids. The RNA expression levels from each 
layer, based on the averaged CODEX-matched scRNA-seq cells, were 
plotted with the R package ggplot2. The UMAP visualization of the 
integration process was calculated with the first 15 components of 
the embedding vectors.

HUBMAP atlas: tri-modal human intestine dataset analysis. CODEX 
multiplex imaging (48 markers), snRNA-seq and snATAC-seq data 
of healthy human intestine cells were acquired from Hickey et al.31. 
For CODEX, samples ‘B005_SB’ and ‘B006_CL’ were used, while for 
snRNA-seq and snATAC-seq, single-ome sequencing data of four 
donors (‘B001’, ‘B004’, ‘B005’, ‘B006’) from the study were used. Cells 
annotated as ‘B cells’, ‘T cells’, ‘Endothelial’, ‘Enteroendocrine’, ‘Goblet’, 
‘Mono_Macrophages’, ‘Plasma’, ‘Smooth muscle’ and ‘Stroma’ were 
selected for the integration process. Cell counts for each modality 
used for MaxFuse were: CODEX ~100,000 (small bowel) and ~70,000 
(colon); snRNA-seq ~32,000 (small bowel) and ~16,000 (colon); 
snATAC-seq ~28,000 (small bowel) and ~21,000 (colon). CODEX 
protein expressions, snRNA-seq RNA expressions, snATAC-seq gene 
activity scores and LSI scores (calculated with R package Archr) were 
used as MaxFuse input (RNA expressions, gene activity scores and LSI 
scores were batch-corrected by Harmony20, based on patient ID). The 
matching and integration processes were done on colon and small 
bowel samples, respectively.

Pairwise MaxFuse alignments of cells between protein (CODEX) 
and RNA (snRNA-seq), and of cells between RNA (snRNA-seq) and ATAC 
(snATAC-seq), were performed. Refined pivots from the two bimodal 
alignments were chained together by using the pivot cells in the RNA 
modality as the intermediary, resulting in a list of tri-modal pivots 
linking all three modalities. Subsequently, we used these pivots to 
calculate a tri-omic embedding via gCCA21,59. In particular, we used the 
gCCA formulation and algorithm described in ref. 21.

The UMAP visualization of the tri-modal integration was calculated 
with the first 15 components of the embedding vectors (gCCA scores in 
this case). Embeddings of CODEX cells were overlaid with their protein 
expressions, or their matched cells’ RNA expressions, or gene activity 
scores. Spatial locations of these expression values and scores were 
plotted based on CODEX cells’ x–y centroid locations. Additionally, we 
showed spatial locations of transcription factor motif enrichment scores 
(Z-score) of CODEX cells, based on their matched snRNA-seq cells, which 
were calculated by the R package chromVAR60. All values were capped 
between 5% and 95% quantiles for visualization purposes during plotting.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data used in this manuscript are publicly available. The links are 
listed here: CITE-seq PBMC from Hao et al.33: https://atlas.fredhutch.
org/data/nygc/multimodal/pbmc_multimodal.h5seurat; CITE-seq 
BMC from Hao et al.33: https://satijalab.org/seurat/articles/multi-
modal_reference_mapping.html (file: ‘bmcite’ with ’SeuratData’); 
Ab-seq BMC from Triana et al.39: https://figshare.com/articles/dataset/

Expression_of_97_surface_markers_and_RNA_transcriptome_wide_
in_13165_cells_from_a_healthy_young_bone_marrow_donor/13397987; 
TEA-seq PBMC from Swanson et al.: ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSM4949911; ASAP-seq PBMC from Mimitou et al.40: 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156473 
(GSM4732109 and GSM4732110); CODEX tonsil from Kennedy et al.49: 
https://onlinelibrary.wiley.com/doi/10.1002/eji.202048891; scRNA-seq 
tonsil from King et al.50: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE165860 (tonsil 1a, 1b, 2a, 2b, 3a, 3b); Multiome 
(scRNA-seq and scATAC-seq) retina from Wang et al.48: https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5866073; Multiome 
(scRNA-seq and scATAC-seq) PBMC from 10x Genomics datasets46: 
https://www.10xgenomics.com/resources/datasets (PBMC from a 
Healthy Donor - Granulocytes Removed Through Cell Sorting (10k)); 
Multiome (scRNA-seq and scATAC-seq) mouse E18 from 10x Genom-
ics datasets46: https://www.10xgenomics.com/resources/datasets 
(Fresh Embryonic E18 Mouse Brain (5k)); Multiome (scRNA-seq and 
scATAC-seq) cerebral cortex from Trevino et al.47: https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE162170 (multiome samples).

Code availability
All code used in this study, including the MaxFuse software and the 
analysis code, can be found at https://github.com/shuxiaoc/maxfuse.
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Extended Data Fig. 1 | Benchmarking on ground-truth CITE-seq PBMC data with all 228 antibodies from Hao et al.33. (A) UMAP visualization of Liger, Harmony, 
and BindSC integration results, colored by modality (upper panel) or level 2 cell types (lower panel). (B) Cell matching accuracy results (cell type level 1) of different 
methods.
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Extended Data Fig. 2 | Benchmarking on ground-truth CITE-seq PBMC data with top 30 antibodies from Hao et al.33. (A) UMAP visualization of Liger, Harmony, 
and BindSC integration results, colored by modality (upper panel) or level 2 cell types (lower panel). (B) Cell matching accuracy results (cell type level 1) of different 
methods.
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Extended Data Fig. 3 | Benchmarking of robustness to tuning parameters 
in MaxFuse integration on CITE-seq PBMC with all 228 antibodies from Hao 
et al.33, evaluated by matching accuracy at two levels. (A) Matching accuracy 
(cell type level 1) versus a range of SVD components for different modalities, 
smoothing weights during initialization and refinement, filtering percentages 
on pivot and on full matching, number of iterations, final CCA embedding 
dimensions, meta-cell size, and NN-graph neighborhood size. Line indicates 

mean value and shadow indicates 95% CI on both sides. (B) Matching accuracy 
(cell type level 2) versus a range of SVD components for different modalities, 
smoothing weights during initialization and refinement, filtering percentages 
on pivot and on full matching, number of iterations, final CCA embedding 
dimensions, meta-cell size, and NN-graph neighborhood size. Line indicates 
mean value and shadow indicates 95% CI on both sides.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-023-01935-0

Extended Data Fig. 4 | Benchmarking of robustness to tuning parameters 
in MaxFuse integration on CITE-seq PBMC with all 228 antibodies from Hao 
et al.33, evaluated by FOSCTTM and FOSKNN. (A) FOSCTTM scores versus a 
range of SVD components for different modalities, smoothing weights during 
initialization and refinement, filtering percentages on pivot and on full matching, 
number of iterations, final CCA embedding dimensions, meta-cell size, and 

NN-graph neighborhood size. Line indicates mean value and shadow indicates 
95% CI on both sides. (B) FOSKNN scores versus a range of SVD components for 
different modalities, smoothing weights during initialization and refinement, 
filtering percentages on pivot and on full matching, number of iterations, final 
CCA embedding dimensions, meta-cell size, and NN-graph neighborhood size. 
Line indicates mean value and shadow indicates 95% CI on both sides.
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Extended Data Fig. 5 | Benchmarking of MaxFuse on ground-truth strongly 
linked modalities against modality specialized methods. (A) Four ground-
truth scRNA/scATAC multiome datasets used for the benchmarking of MaxFuse 
against specialized methods for scRNA/scATAC integration tasks (scGLUE, 
scJoint and Maestro). (B) Runtime benchmark on Retina data48 with different 
subsample sizes (2,500, 5,000, 10,000, and 20,000 cells). Methods with 
GPU option (scJoint and scGLUE) were tested under both CPU-only and GPU 
modes. MaxFuse, scJoint (CPU-only), and scGLUE (CPU-only) experiments were 
performed on a MacBook Pro with M1 Max CPU. scJoint (GPU) and scGLUE (GPU) 
experiments were performed on a Linux workstation with dual Intel i9-10980XE 

CPUs and dual NVIDIA Quadro RTX 8000 GPUs. Due to M1 silicon incompatibility, 
Maestro experiments were performed on a Linux workstation with dual Intel i9-
10980XE CPUs and dual NVIDIA Quadro RTX 8000 GPUs. The reported Maestro 
runtimes were calibrated against scJoint runtimes on both computing platforms 
to ensure fair comparison. Line indicates mean value and shadow indicates 95% CI 
on both sides. (C) Cell matching accuracy (cell type level) of different methods on 
the four datasets. (D) FOSCTTM scores of different methods on the four datasets. 
(E) FOSKNN scores of different methods on the four datasets. (F) Silhouette 
F1 scores (y axis) and ARI F1 scores (x axis) of joint embeddings produced by 
different methods on the four datasets.
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Extended Data Fig. 6 | Benchmarking on human tonsil CODEX and scRNA-seq data from Kennedy-Darling et al.49 and King et al.50. (A) UMAP visualization of 
Seurat, Liger, Harmony, and BindSC integration results, colored by modality (upper panel) or cell types (lower panel). (B) Cell matching accuracy results (cell type level) 
of different methods.
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Extended Data Fig. 7 | Experimental validation of MaxFuse predicted mRNA 
spatial expression pattern. RNAscope was performed on fresh-frozen human 
tonsil tissue to validate the spatial expression pattern of AICDA and CCR6. The 
top row demonstrates MaxFuse predicted mRNA spatial expression patterns 
of AICDA and CCR6 (taken from Fig. 4E). Three representative germinal centers 

were shown in the second to the fourth row, with the red line indicating germinal 
center boundary and the white line indicating CCR6 boundary. Within each row, 
from left to right: nucleus (DAPI) channel, AICDA RNAscope channel, and CCR6 
RNAscope channel. Only 3 representative GCs were shown in the figure due to the 
limitation of space. The conclusion was made by validating > 20 individual GCs.

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 8 | Benchmarking of MaxFuse run time and memory usage 
on integrating large datasets. (A) Run time and peak memory usage of MaxFuse 
on large spatial proteomic-related integration (with batching): HUBMAP colon 
CODEX & snRNA-seq31 integration where up to 2 million CODEX cells were tested. 

In all settings, around 18,000 snRNA-seq cells were used. (B) Run time and 
peak memory usage of MaxFuse without batching (top row) and with batching 
(bottom row), tested on randomly sampled subsets of different sizes from the 
CITE-seq PBMC data33.

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Additional markers showing consistent expression 
patterns across tri-modalities for Fig. 5. (A) Upper row: UMAP visualization of 
CODEX cells based on the integration embedding, overlaid with MUC2 protein 
expression (from CODEX cells themselves, left panel), MUC2 RNA expression 
(from matched snRNA-seq cells, middle panel), MUC2 gene activity score (from 
matched snATAC-seq cells, right panel). Lower row: Spatial locations of CODEX 
cells based on their centroids’ x-y positions, overlaid with the same expression 

features as in the corresponding panels of the upper row. (B) Upper row: UMAP 
visualization of CODEX cells based on the integration embedding, overlaid with 
aSMA protein expression (from CODEX cells themselves, left panel), ACTA2 RNA 
expression (from matched snRNA-seq cells, middle panel), ACTA2 gene activity 
score (from matched snATAC-seq cells, right panel). Lower row: Spatial locations 
of CODEX cells based on their centroids’ x-y positions, overlaid with the same 
expression features as in the corresponding panels of the upper row.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Tri-modal integration with MaxFuse on HUBMAP 
small bowel data. (A) Representative cell type spatial locations on CODEX 
HUBMAP small bowel tissue. (B) UMAP visualization of the tri-modal integration 
embedding produced by MaxFuse, colored by modality: Protein, RNA and 
ATAC (left panel) and colored by cell type (right panel). (C) Upper row: UMAP 
visualization of CODEX cells based on the integration embedding, overlaid with 
CD163 protein expression (from CODEX cells themselves, left panel), CD163 

RNA expression (from matched snRNA-seq cells, middle panel), CD163 gene 
activity score (from matched snATAC-seq cells, right panel). Lower row: Spatial 
locations of CODEX cells based on their centroids’ x-y positions, overlaid with the 
same expression features as in the corresponding panels of the upper row. (D) 
Spatial locations of CODEX cells based on their centroids’ x-y positions, overlaid 
with the transcription factor motif enrichment scores (Z-scores, calculated by 
chromVAR60), based on their matched snATAC-seq cells.
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