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% Check for updates Although single-cell and spatial sequencing methods enable simultaneous

measurement of more than one biological modality, no technology can
capture all modalities within the same cell. For current data integration
methods, the feasibility of cross-modal integration relies on the existence
of highly correlated, a priori ‘linked’ features. We describe matching
X-modality via fuzzy smoothed embedding (MaxFuse), a cross-modal data
integration method that, through iterative coembedding, data smoothing

and cell matching, uses all information in each modality to obtain
high-quality integration even when features are weakly linked. MaxFuse

is modality-agnostic and demonstrates high robustness and accuracy in
the weak linkage scenario, achieving 20-70% relative improvement over
existing methods under key evaluation metrics on benchmarking datasets.
A prototypical example of weak linkage is the integration of spatial
proteomic data with single-cell sequencing data. On two example analyses
of this type, MaxFuse enabled the spatial consolidation of proteomic,
transcriptomic and epigenomic information at single-cell resolution on
the same tissue section.

Recent technological advances have enabled analyses of the proteome
and metabolome'?, transcriptome® and various aspects of the epi-
genome such as methylation®, histone modification®” and chroma-
tin accessibility>® within individual cells. In addition to technologies
operating on dissociated single cells, rapid progress has been made
on the in situ measurement of transcriptome’, proteome'® ™, epig-
enome” and other modalities on tissue sections at single-cell or close
to single-cell resolution, retaining the spatial context. To harness the
new technologies and growing data resources for biological discovery,
aprimary challenge is the reliable integration of data across modali-
ties. Cross-modal integration, also referred to as ‘diagonal integra-
tion”*", isthe alignment of single cells or spatial spots across datasets
where different features (or modalities) are profiled in each dataset.

This cross-modalintegration step underpins many types of downstream
analyses, anditsimportanceisevidentinthe myriad methods that have
already been developed to tackle such tasks'® .

Despite the progress, key limitations still hinder reliable
cross-modal integration, as highlighted by recent surveys'®”*. A key
factor limiting the accuracy of existing methods is the strength of
linkage between modalities, as we define below. A feature is ‘linked”
between two modalities if it was measured in, or can be predicted by,
both modalities. In the terminology of refs. 16,17, these linked fea-
tures can serve as ‘anchors’ for integration. For example, to integrate
single-cell assay for transposase-accessible chromatin sequencing
(scATAC-seq) and single-cell RNA sequencing (scRNA-seq) data, most
existingmethods predict the ‘activity’ for each geneineach cell of the
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SsCATAC-seq data based on the accessibility of the gene’s surrounding
chromatin; then, each gene’s ATAC activity can be ‘linked’ to its RNA
expression, thus mapping cells from the two datasets into the same
feature space. Similarly, between RNA and protein assays, the abun-
dance of each protein can be ‘linked’ to the expression of its coding
genein the RNA assay.

Most existing methods are designed for scenarios where thereisa
large number of linked features that also exhibit strong cross-modality
correlations, asituationthat we refer to as ‘strong linkage’. For example,
between scRNA-seqand scATAC-seq, every gene in the genome canbe
linked, and the correlation between gene activity and RNA expression
is often high enough for enough genes to allow for precise integra-
tion'"*?2, To achieve strong linkage, some methods attempt tolearna
mapping fromthe features of one modality to the features of the other
modality through a‘training set’ consisting of data obtained when both
modalities are simultaneously observed in each cell/spot®*. While
this strategy may be applicable towards the integration of data from
biological systemsthat are similar to the training set, itis questionable
how well it can generalize to unseen systems.

Cross-modality integration in scenarios of weak linkage, where
the number of linked features is small and/or the between-modality
correlation for the linked features is weak, is especially challenging.
A prototypical example of weak linkage is between targeted protein
assays'*” and transcriptome or epigenome assays such as sSCRNA-seq
or scATAC-seq. Such scenarios are becoming extremely common as
spatial proteomic technologies have been widely adopted’*™, and
complementing RNA and ATAC sequencingto achieve more complete
tissue characterization®~*', We will reveal, through comprehensive
benchmarks, the limitations of existing state-of-the-art methods in
such difficult cases.

To address these limitations, we developed amethod that we call
MaxFuse, amodel-free, adaptable method that can accurately integrate
dataacross weakly linked modalities. We systematically benchmarked
the performance of MaxFuse across single-cell protein, RNA and chro-
matin accessibility multiome ground-truth datasets. Across a wide
variety of datasets, MaxFuse has superior performance compared
with other state-of-the-artintegration methods. Although the largest
improvements in accuracy were observed under weak linkage, under
strong linkage MaxFuse was comparable to the current best method
inintegration performance with substantial improvement in speed.

We further demonstrate the analyses enabled by MaxFuse with
two examples. First, inthe integration of scRNA-seq and CODEX multi-
plexedinsitu protein profiling data from the human tonsil, we showed
that MaxFuse identified correct spatial gradients in the RNA expres-
sion of genes not included in the 46-marker protein panel. Second,
MaxFuse was applied to an atlas-level integration of spatial proteomic
and single-cell sequencing datasets®. We demonstrate how to per-
formtri-modalintegration of CODEX, single-nucleus RNA sequencing
(snRNA-seq) and single-nucleus ATAC sequencing (snATAC-seq) data
that revealed spatial patterns of RNA expression and transcription
factor binding site accessibility at single-cell resolution. We have imple-
mented MaxFuse as a Python package which is freely available to the
public at https://github.com/shuxiaoc/maxfuse.

Results

Cross-modality matching via iterative smoothed embedding
The input to MaxFuse are data from two modalities in the form of two
pairs of matrices (Fig. 1a). For convenience, we can call the two modali-
ties Yand Z. First, we have a pair of cell-by-feature matrices that contain
all measured features in each modality. In addition, we represent the
initial knowledge about the linkage between the two modalities as
another pair of cell-by-feature matrices whose columns have one-to-one
correspondences. To distinguish between these two pairs of matrices,
we call the former all-feature matrices and the latter linked-feature
matrices. For example, when one modality is protein abundance over

asmallantibody panel and the other isRNA expression over the whole
transcriptome, the two all-feature matrices have drastically different
numbers of columns, one being the number of proteins in the panel
and the other being the number of genes in the transcriptome; the
linked-feature matrices, on the other hand, have an equal number of
columns, where each column in the protein matrix is one protein and
itscorresponding columnin the RNA linked-feature matrix is its coding
gene. When the number of cells is large, we recommend aggregating
cellswith similar features into meta-cells, as described in the Methods,
before applying MaxFuse. In that case, each row in the above matrices
would represent a meta-cell. The procedure below does not depend
on whether single cells or meta-cells are used, and thus we will refer
toeachrowasa cell.

During stage 1 of the MaxFuse pipeline, cell-cell similarities are
identified within each modality and initial cross-modal matching of
cells is performed. This stage consists of three major steps (Fig. 1a).
In step 1, for each modality, we use all features to compute a fuzzy
nearest-neighbor graph connecting all cells measured in that modal-
ity. This graph, by utilizing the information in all features, provides
the best possible summary of the cell-cell similarity for the given
modality. In particular, cells that are close in this graph should have
comparable values for their linked features. Thus, in step 2, MaxFuse
boosts the signal-to-noise ratio in the linked features within each
modality by shrinking their values, for each cell, towards the cell’s
graph-neighborhood average. We call this step ‘fuzzy smoothing’. In
step 3, MaxFuse computes distances between all cross-modal cell pairs
based onthe smoothed, linked features and applies linear assignment™
on the cross-modal pairwise distances to obtain an initial matching
of cells. The initial matching serves as the starting point for stage 2.

Stage 2 of MaxFuse improves cross-modal cell matching quality by
iterating the sequence of jointembedding, fuzzy smoothing and linear
assignment steps (Fig. 1b). Starting with the initial matches obtained
instagel, in eachiteration, MaxFuse first learns a linear joint embed-
ding of cells across modalities by computing a canonical correlation
based on all features of the cross-modal matched cell pairs. Then,
coordinates of this jointembedding are treated as new linked features
of each modality and fuzzy smoothing is applied on them based on
the all-feature nearest-neighbor graphs computed in stage 1. Finally,
MaxFuse updates the cell-matching across modalities by applying
linear assignment on the pairwise distances of these fuzzy-smoothed
joint embedding coordinates. The resulting matching is used to start
the nextiteration. Matching quality improves with eachiteration until
available information in all features, and not just the linked features,
hasbeen used.

Instage 3, MaxFuse processes the last cross-modal cell matching
from stage 2 and produces final outputs. First, MaxFuse screens the
matched pairs from the last iteration, retaining high-quality matches
as pivots. The pivots are used in two complementary ways: (1) they are
used one last time to compute afinal joint embedding of all cellsinboth
modalities; (2) for any unmatched cell in either modality, its closest
neighbor withinthe same modality that belongs to a pivotis identified
and, as long as its distance to this neighbor is below a threshold, the
match in the pivot is propagated to the cell. Thus, the final output of
MaxFuse has two components: (1) alist of matched pairs across modali-
ties, and (2) a joint embedding of all cells in both modalities. See the
Methods for more MaxFuse algorithm details.

Integration of transcriptome and targeted protein data

We benchmarked MaxFuse on a cellular indexing of transcriptomes
and epitopes sequencing (CITE-seq) dataset® thatincluded measure-
ments of 228 protein markers and whole transcriptome on peripheral
blood mononuclear cells (PBMCs). For comparison, we also applied
four state-of-the-artintegration methods, Seurat (V3) (ref. 24), Liger®,
Harmony” and BindSC*, to this same dataset. Protein names were con-
verted to RNA names manually to link the features between datasets.
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Fig.1| Overview of MaxFuse pipeline. a, The input consists of two pairs of
matrices. The first pair consists of all features from each modality, and the
second pair consists of only the linked features. MaxFuse uses all features within
each modality to create a nearest-neighbor graph (that s, all-feature NN-graph)
for cells in that modality. Fuzzy smoothing induced by the all-feature NN-graph is
applied to the linked features in each modality. Cross-modal cell matching based
onthe smoothed linked features initializes theiterationsinb. b, In eachiteration,
MaxFuse starts with a list of matched cell pairs. A cross-modal cell pair is called
apivot. MaxFuse learns canonical correlation analysis (CCA) loadings over all
features from both modalities based on these pivots. These CCA loadings allow
the computation of CCA scores for each cell (including cells not in any pivot),
whichare used to obtain a joint embedding of all cells across both modalities.

For each modality, the embedding coordinates then undergo fuzzy smoothing
based on the modality-specific all-feature NN-graphs (obtained in a). Next,

the smoothed embedding coordinates are supplied to alinear assignment
algorithm that produces an updated list of matched pairs to start the next
iteration. c, After iterations end, MaxFuse screens the final list of pivots to remove
low-quality matches. The retained pairs are called refined pivots. Within each
modality, any cell that is not part of a refined pivot is connected to its nearest
neighbor that belongs to a refined pivot and is matched to the cell from the
other modality in this pivot. This propagation step results in a full matching.
MaxFuse further learns the final CCA loadings over all features from both
modalities based on the refined pivots. The resulting CCA scores give the

final jointembedding coordinates.

Ineachrepetition of our experiment, we randomly subsampled 10,000
cells and applied all methods, and assessed using the benchmarking
criteriatobe described below. We performed five such repetitions and
averaged the criteria across repetitions. For all integration methods,
we masked the known cell-cell matching between the protein and
RNA modalities, and then used the known matching for assessment.

Methods were assessed using six different criteria that measure
both cell-type-level label transfer accuracy as well as cell-level match-
ing accuracy. Two criteria were used to judge cell-type-level label
transfer accuracy. Cells were annotated at two levels of granularity
(fromref. 33): level 1, which differentiates between eight major cell
types; and level 2, a finer classification which differentiates between
31 cell types. The proportions of matched pairs that shared the same
label at both annotation levels were reported, with higher propor-
tions indicating higher matching quality. Two criteria assessed the
quality of cross-modal joint embedding of cells. A high-quality joint
embedding should preserve biological signal, asreflected by the separa-
tion of known cell types, while mixing the two modalities as uniformly
as possible. Usually, there is a trade-off between these two goals. To
aggregate quality assessments of biological signal preservation and
modality mixing, we calculated F; scores based on average silhou-
ette width (slt_f1) and on adjusted Rand index (ari_f1), as proposed in
ref. 35. For both criteria, higher F;indicates abetter embedding. The fifth
criterion, Fraction Of Samples Closer Than True Match (FOSCTTM)'*3¢%,
was used to quantify the quality of joint embedding at single-cell reso-
lution. For each cell, we computed the fraction of cells in the other
modality thatis closer thanits true matchin the jointembedding space.
FOSCTTMisthe average of this fraction over all cellsinboth modalities.
The lower the value of this score, the closer the true matches are in the
jointembedding, and, hence, the better the joint embedding. The last
criterion is Fraction Of Samples whose true matches are among their
K-Nearest Neighbors (FOSKNN) in the joint embedding space. For any
givenk > 1, the higher this proportion, the better the joint embedding.
For precise definitions of these criteria, see the Methods.

Based on all these criteria, MaxFuse was superior by a sizable
margin (Fig. 2a). Importantly, MaxFuse resulted in accurate cell match-
ing across weakly linked modalities (for example, level 1 accuracy
93.9%, better by over 7% in absolute scale than the second best method
(Extended Data Fig. 1)). The Uniform Manifold Approximation and
Projection (UMAP) plots calculated based on the postintegration
embedding fromrespective methods (Fig. 2b and Extended DataFig.1),
colored by modality and by level 2 cell-type annotation, showed that
MaxFuse achieved both better mixing of the two modalities (left panel)
andbetter preservation of biological signals (right panel). Forexample,
aclearly resolved trajectory of B cell subtypes (B naive, intermediate
and memory cells) was apparent after MaxFuse integration but not
after integration by other methods.

It is common to have an antibody panel that is of substantially
smaller size than 228, especially for spatial proteomic datasets. Tobench-
mark the performance of MaxFuse against existing methods with smaller
antibody panels, we ordered the proteins according to theirimportance
for differentiating cell types (see the Methods for details). We repeated
the matching and integration process with the top 100, 50 and 30 most
important proteins used inthe matching and integration process. With
eachpanelsize, weranthe experiment over fiveindependent repetitions
with 10,000 randomly subsampled cells, and averaged the cell-type
annotation matchingaccuracy (level 1and level 2), FOSCTTM and FOS-
KNNscores across repetitions (Fig. 2c). Regardless of panel size, MaxFuse
consistently outperformed other methods. Additionally, MaxFuse suc-
cessfully mitigated the effect of reduced panel size onintegration qual-
ity: even when the antibody panel size was reduced to 30, MaxFuse had
approximately 90% accuracy for level 1 annotation, whereas accuracy
of the other methods ranged from around 15% to 75% (Extended Data
Fig. 2). With areduced panel of 30 antibodies, the integrated UMAP
embedding®® produced by other methods blurred the distinction
between cell types, whereas MaxFuse embedding still accurately cap-
tured the subtle structure of highly granular cell subtypes, such as the
B cell subpopulations (Fig. 2d and Extended Data Fig. 2).
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Fig. 2| Benchmarking of MaxFuse and other integration methods on
ground-truth CITE-seq PBMC data. a, Matching and integration performance
of MaxFuse and other methods on CITE-seq PBMC dataset with the full antibody
panel (228 antibodies). The barplot and the line plot show mean value with the
error bar or shadow area covering 95% Cl on both sides, fromn = 5randomly
subsampled cell batches. b, UMAP visualization of MaxFuse and Seurat (V3)
integration results of CITE-seq PBMC dataset with the full panel, colored by
modality (left) or cell type (right). ¢, Matching and integration performance of
MaxFuse and other methods on CITE-seq PBMC dataset with reduced antibody
panels (full 228 antibodies or the most informative 100, 50 or 30 antibodies.)

reg

For each method, the line indicates mean value with the shadow area covering
95% Clon bothssides, from n =5 randomly subsampled cell batches. d, UMAP
visualization of MaxFuse and Seurat (V3) integration results of CITE-seq PBMC
dataset with the 30 most informative of the original 228 antibodies, colored
by modality (left) or cell type (right). 95% Cl, 95% confidence interval; cDC,
classical dendritic cells; CTL, cytotoxic T lymphocytes; gDT, gamma delta

T cells; KNN, k-nearest neighbors; MAIT, mucosal-associated invariant T cells;
NK, natural killer cells; pDC, plasmacytoid dendritic cells; TM, T memory cells;
T Tregulatory cells.

Inaddition, we evaluated the impact of tuning parameter choice
on MaxFuse integration results using ground-truth CITE-seq PBMC
data. The investigated tuning parameters include matrix singular
value decomposition components used for different modalities,
smoothing weights used during initialization and refinement, num-
ber of refinementiterations, dimension for final canonical correlation
analysis (CCA) embedding, filtering percentages on pivot and on full
matching, meta-cell size and nearest-neighbor graph neighborhood
size. Benchmarking on both the full panel of 228 antibodies and a

reduced panel of the 50 most informative antibodies revealed that
MaxFuse performance was robust with respect to the investigated
tuning parameters (Extended Data Figs. 3 and 4 and Supplementary
Figs.1and 2).Furthermore, we assessed the performance of MaxFuse
when certain cell subpopulations were absent from one modality.
Benchmark tests considering three different missing cell subpopu-
lations in protein modality showed that MaxFuse was robust with
respect to mismatch of cell populations between the two modalities
(Supplementary Table 5).
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Fig.3|Benchmarking of MaxFuse versus other integration methods across
multiple ground-truth data types. a, Four different multiome datasets,
generated by different technologies, were benchmarked. Cell-type matching
accuracy, FOSCTTM, FOSKNN (with k = 0.5% total cell counts of each dataset),
and ARl and Silhouette F1 were evaluated across all five methods. b, UMAP
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visualization of MaxFuse integration results for the four ground-truth multiome
datasets, colored by modality (top panel) and cell type (bottom panel). BM, bone
marrow; DC, dendritic cells; EMP, erythro-myeloid progenitors; mem, memory;
prog, progenitor; trans, transitional.

Benchmarking on multiple ground-truth multiome modalities
We further benchmarked MaxFuse on four additional single-cell multi-
ome datasets. The first was a CITE-seq dataset of human bone marrow
mononuclear cells that provides cell-matched measurements of the
full transcriptome along with an antibody panel of size 25 (ref. 33). The
second was an Ab-seq dataset, also of bone marrow mononuclear cells,
with an antibody panel of size 97 and the whole transcriptome™. The
third was an ATAC with select antigen profiling sequencing (ASAP-seq)
PBMC dataset* with 227 antibodies and the whole epigenome meas-
ured in ATAC fragments. The fourth was a transcription, epitopes, and
accessibility sequencing (TEA-seq) PBMC dataset* where we focused
on the simultaneous measurements of 46 antibodies and the whole

epigenome measured in ATAC fragments. Together, these datasets
represent a diverse collection of measurement technologies over dif-
ferent modality pairs. We benchmarked the performance of MaxFuse
against Seurat (V3), Liger, Harmony and BindSC on these datasets. For
datasets with simultaneous RNA and protein features, we linked each
proteintoits coding gene. For datasets with simultaneous ATAC and pro-
tein measurements, we linked each protein to the gene activity score*
computed from the ATAC fragments mappingnear its coding gene. The
known cell-cell correspondences across modalities were masked in the
integration stage for all methods, but used afterwards for evaluation.

We compared the performances of MaxFuse and the other
four methods on these datasets based on cell-type annotation
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matching accuracy, FOSCTTM, FOSKNN (k set as 1/200 dataset size),
Silhouette F1 score and Adjusted Random Index (ARI) F1score. Over-
all, MaxFuse outperformed other methods, often by a sizable margin
(Fig.3aand Supplementary Figs. 3-6). UMAPs of MaxFuse cross-modal
joint embeddings for each dataset are shown in Fig. 3b. Across the
integration scenarios, MaxFuse mixed different modalities well in
jointembeddings while retaining separation between cell types. Com-
pared with UMAPs of joint embeddings produced by other methods,
MaxFuse consistently achieves substantialimprovements (Fig. 3b and
Supplementary Figs. 3-6).

We also considered integration of scRNA-seq and scATAC-seq
data. This is a representative example of integrating strongly linked
modalities for which multiple methods have demonstrated feasibil-
ity’'°?, It has been shown in ref. 43 that, in terms of cell population
structure, theinformation shared across RNA and ATACis much higher
than the information shared between RNA and protein for commonly
used targeted protein panels. Thus, RNA and ATAC data have stronger
linkage and should be easier to integrate. We benchmarked MaxFuse
against state-of-the-art methods (Maestro**, scJoint* and scGLUE")
that are specific for RNA-ATAC integration on four public multiome
datasets that simultaneously measured the chromatin accessibility
and transcriptome expression for each cell: cells from human PBMCs*,
cells from embryonic mouse brain at day 18 postconception*’, cells
from developing human cerebral cortex*” and cells from human retina*®
(Extended Data Fig. 5a). The integration quality criteria described in
the previous subsection were used to assess all methods. MaxFuse
achieved best or close-to-best integration performance among the
tested methods, and was comparable to scGLUE (Extended Data
Fig. 5c-f). However, MaxFuse is computationally much faster than
scGLUE. For example, for the integration of a dataset 0f 20,000 cells,
MaxFuse completed within 5 min on a MacBook Pro laptop with M1
Max CPU, while scGLUE took hours to complete the job on the same
platform. Even with CUDA GPU acceleration, scGLUE stillused around
30 min to finish on a computing platform with dual Intel i9-10980XE
CPUs and dual NVIDIA Quadro RTX 8000 GPUs (Extended DataFig. 5b).

MaxFuse enables information-rich spatial pattern discovery

MaxFuse is motivated by scenarios where the signal-to-noise ratio in
the cross-modal linked features is low. Weak linkages are especially
common in spatial-omic data types due to technical limitations. For
example, high-resolution spatial proteomic methods such as CODEX,
MIBI-TOF, IMC and CosMx SMI can profile, at subcellular resolution, a
panel of 30-100 proteins'®", Integration of such spatial proteomics
datasets with single-cell transcriptomic and epigenomic datasets of the
same tissue is often of interest, but is particularly challenging due to
the small number of markers inthe spatial dataset and the weak linkage
between modalities which is caused by both biological and techni-
cal differences. To test MaxFuse on this type of cross-modal integra-
tion, we evaluated its performance onintegrating a CODEX multiplex

imaging dataset obtained using 46 markers*’ with scRNA-seq data>® of
human tonsils from two separate studies (Fig. 4a). MaxFuse produced
anembedding thatintegrated the two modalities while preserving the
cell population structure (Fig. 4b).

Based onthe predescribed benchmarking metrics, MaxFuseis the
only method capable of integrating spatial proteomic and scRNA-seq
data. Seurat (V3), Liger, BindSC and Harmony failed to produce an
embedding that integrates the two modalities while preserving the
cell populationstructure (Fig. 4b and Extended Data Fig. 6). Evaluation
results based on cell-type matching accuracy are consistent with evalu-
ationresultsbased onthejointembedding. At the level of the six major
celltypes presented in the tissue, MaxFuse achieved high label transfer
accuracy (93.3%), while the other methods failed to preserve cell-type
distinctions (40-60%; Fig. 4b and Extended Data Fig. 6).

To assess whether MaxFuse preserves subtle spatial variations
within a cell type that are captured by CODEX, we manually deline-
ated the boundaries of each individual germinal center (GC) from
the CODEX tonsil images based on CD19, CD21 and Ki67 protein
expression patterns. We then extended outward or inward from
these boundaries, with each step covering roughly one layer of cells
(one step = 30 pixels erosion/dilation) (Fig. 4c). For each layer of
cells, we calculated the average counts of specific genes, based on
the scRNA-seq cells matched to CODEX cells in that layer. We then
asked if known position-specific gene expression patterns relative
tothe GCboundary arerecoveredintheintegrated scRNA-seq data.
Indeed, MaxFuse was able to reconstruct the spatial pattern of the GC
from disassociated transcriptomic data (Fig. 4d,e): for GC-specific
transcripts BCL6, AICDA and FOXPI (refs. 51-53) which relate to GC
functionality, we observed high expression within the boundary
and a sharp drop in expression after passing the boundary layer;
for transcripts related to B cell memory, CCR6, BANK1 and FCER2
(refs. 53-55), which should be enriched in B cells exiting from the
GC, we indeed saw a gradual increase outside of the GC and then
a quick decrease as the layer fully expanded into the T cell region;
and finally for T cell-related transcripts, for example CD4, GATA3
and CD3 (ref. 56), we indeed saw a rapid increase outside of the GC
boundary but no expression within. In comparison, the integration
produced by other methods did not accurately reconstruct the GC
spatial pattern (Supplementary Fig. 7). Except for CD3 and CD4,
none of the other seven transcripts had its corresponding protein
measured in the CODEX panel. We also followed with experimental
validation viaRNAscope, where we observed consistent spatial pat-
terns of AICDA and CCR6 in human tonsil, as predicted by MaxFuse
integration (Extended Data Fig. 7).

Furthermore, MaxFuse can be utilized for automated cell-type
annotation of CODEX cells, given that the scRNA-seq data to be
matched are annotated. We evaluated the automated annotations on
all CODEX cells produced by MaxFuse, comparing them with those
generated by two cutting-edge CODEX cell-type annotation methods,

Fig. 4 |MaxFuse enables information-rich spatial pattern discovery.

a, Schematic of integration of CODEX data from Kennedy-Darling et al.*’

(upper panel), with scRNA-seq data from King et al.*° (lower panel) obtained
from human. b, UMAP visualization of MaxFuse integration of tonsil CODEX and
scRNA-seq data, colored by modality (upper panel) and cell type (lower panel).

¢, Metrics (cell-type matching accuracy, Silhouette F1score and ARI F1score)
evaluating performance for MaxFuse and other methods. Five batches of CODEX
and scRNA-seq cells (10,000 scRNA-seq cells and 30,000 CODEX cells in each
batch) were randomly sampled and used for benchmarking for all methods. The
barplot of cell-type matching accuracy shows mean value with 95% Cl for each
method, with raw values from five random samples plotted as dots. d, lllustration
of cell layers extending inwards/outwards from the GC boundary. Each layer
consisted of 30 pixels (-11 pm). A total of ten layers extending in each direction
were examined. e, Average messenger RNA counts (linked by MaxFuse) across
cellsineach layer plotted versus the position of the layer in reference to the

GCboundary (inward on the left of boundary, outward on the right). Expected
expression profiles relative to the GC boundary are shown to the right of each
group of three transcripts. Each line indicates mean value with the shadow area
covering 95% Cl for the mean at each position. Except for CD3and CD4, none of
the other seven reported transcripts had its corresponding protein measured in
the CODEX panel. f, Benchmarking of MaxFuse and other methods for cell-type
annotation on human tonsil CODEX data***°. Automated annotations were
compared with human-expert annotations of human tonsil CODEX data. Left,
MaxFuse cell-type annotation of CODEX cells by label transfer of matched human
tonsil scRNA-seq cells. Middle, CELESTA® cell-type annotation by using CODEX
protein expression levels and previous knowledge on marker expression and
cell population information. Right, Astir*® cell-type annotation by using CODEX
protein expression levels and previous knowledge on marker expression and cell
population information. Acc, accuracy; DC, dendritic cells.
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CELESTA® and Astir*®. This comparison was benchmarked against
annotations made by human experts. MaxFuse achieved an annota-
tion accuracy of nearly 90%, substantially improving upon these two
methods for direct annotation of CODEX data, which had accuracy
within the 70-75% range (Fig. 4f).

Tri-modal atlas-level integration with MaxFuse

Inthe consortium-level effort to generate acomprehensive atlas across
different regions of the human intestine, colon and small bowel tis-
sues from healthy human donors were collected and systematically
profiled by CODEX, snRNA-seq and snATAC-seq”. We applied MaxFuse
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to the integration of these three datasets obtained from analyses of  between protein (CODEX) and RNA (snRNA-seq), and cells between
colon (Fig. 5a), with the goal of constructing high-resolution spatial RNA (snRNA-seq) and ATAC (snATAC-seq), as previously described. The
maps of full transcriptome RNA expression and transcription factor  two sets of bimodal cell-pairing pivots were then ‘chained’ together,
binding accessibility. We first conducted pairwise alignment of cells  with the pivot cells in the RNA modality serving as the intermediary.
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Fig. 5| MaxFuse enables tri-modal integration with HUBMAP data.

a, Overview of CODEX, snRNA-seq and snATAC-seq single-cell human intestine
data from the HUBMAP consortium (left). Representative cell-type locations
based on CODEX data (right). Colon and small bowel data were integrated by
MaxFuse, respectively, and this figure shows part of the colon data (CODEX data
from one donor; snRNA-seq and snATAC-seq data from four donors). b, UMAP
visualization of the tri-modal integration embedding produced by MaxFuse,
colored by modality: protein, RNA and ATAC (left panel) and colored by cell
type (right panel). ¢, Upper row, UMAP visualization of CODEX cells based on

the integration embedding, overlaid with CD163 protein expression (from
CODEX cells themselves, left panel), CD163 mRNA expression (from matched
snRNA-seq cells, middle panel) and CDI163 gene activity score (from matched
snATAC-seq cells, right panel). Lower row, spatial locations of CODEX cells based
onx-ypositions of centroids, overlaid with the same expression features as in
the corresponding panels of the upper row. d, Spatial locations of CODEX cells
based onx-y positions of centroids, overlaid with the transcription factor motif
enrichment scores (Z-scores, calculated by chromVAR®’), based on their matched
snATAC-seq cells. TF, transcription factor.

This ‘chaining’ created a set of pivots linking all three modalities: pro-
tein, RNA and ATAC. Subsequently, we used these pivots to calculate
atri-omic embedding via generalized CCA (gCCA)**. This allowed
calculation of ajoint embedding of the three modalities (Fig. 5b). The
MaxFuseintegration preserved distinctions between major cell types,
and modalities were mixed within each cell type. See Supplementary
Fig.8foracomparison between using RNA and using ATAC as the base-
line (intermediary) modality. Additionally, the design of batching in
MaxFuse allowed the integration of atlas-level datasets with limited
time and space resources (Extended Data Fig. 8).

Effectively, the MaxFuse integration produced a joint profile of
protein abundance, RNA expression and chromatin accessibility at
single-cell spatial resolution on the same tissue section. To confirm the
validity of this tri-modal integration, we inspected whether CODEX’s
protein abundance aligned spatially with the expressionand chromatin
activity of the protein-coding gene, the spatial measurements of the
latter two modalities imputed based on the MaxFuse integration. In
oneexample, the protein expression, RNA expression and gene activ-
ity of CD163 were, as expected for this macrophage marker, uniquely
enriched in the macrophage cell cluster (Fig. Sc, top row). Further-
more, protein, RNA and ATAC activities of this gene all localized to the
same spatial positions on the tissue section (Fig. 5c, bottom row). See
Extended Data Fig. 9 for additional examples.

With the integration of the snATAC-seq and CODEX data, we
were able to map the spatial enrichment of transcription factor
binding site accessibility. For each transcription factor, we first
computed amotifenrichmentscore for each cell in the snATAC-seq
datausing chromVAR®’, and then the scores were transferred to the
CODEX spatial positions based on the MaxFuse integration. Figure 5d
shows such spatial profiles for three transcription factors. Binding
motifs of IRF4, a key regulator in immune cell differentiation®, had
increased accessibility in the immune-enriched compartments of
the mucosa and submucosa layers®. Binding motifs of KLF4, known
to be required for the terminal differentiation of goblet cells®>, had
heightened accessibility in the colonic crypts of the mucosa layer
where goblet cells mature. Finally, binding motifs of SRF, a master
regulator of smooth muscle gene expression®, had heightened acces-
sibility in neighborhoods that are enriched for smooth muscle cells.
In addition, we performed the same analysis on the HUBMAP data
collected on small bowel and MaxFuse showed consistent results
(Extended DataFig. 10).

Additional benchmarking of MaxFuse

We further compared the integration quality within MaxFuse results,
across different smoothing schemes (Supplementary Fig. 9), and
between pivot and nonpivot cells (Supplementary Fig.10 and Supple-
mentary Table1). We validated theimproved gene imputation accuracy
by MaxFuse-enabled matching in a ground-truth multiome dataset,
using targeted proteomic features to predict transcript expression
at single-cell level (Supplementary Fig. 11). One important potential
application of MaxFuse is imputing unmeasured features (for exam-
ple, transcripts) in spatial proteomic datasets. We benchmarked the
effect on integration quality of sequentially reduced antibody panel
sizes (Supplementary Fig. 12) and the area-level gene imputation

correlation by artificially dropping protein features in CODEX data
(Supplementary Fig.13).

Discussion
Most existing methods for cross-modal data integration were devel-
oped for integration across strongly linked modalities, and their per-
formances decay significantly as the strength of cross-modal linkage
weakens. MaxFuse is motivated by and focuses on the challenging
case of weak linkage, which has becomeincreasingly common as many
emergingstudy designsinclude spatial data with targeted marker pan-
elstobe collected jointly with single-cell sequencing data.

MaxFuse relies on two key processes to overcome weak linkage.
The first is a ‘fuzzy smoothing’ procedure that denoises the linked
features by moving their values towards their graph-smoothed values,
with the graph determined by all features. The second is an itera-
tive refinement procedure that improves the cross-modal matching
through iterative cycles of coembedding, graph-smoothing and
matching. This ensures that information from all features, in both
modalities, is used to generate the final matching. We demonstrated
that MaxFuse substantially improves upon state-of-the-art methods,
achieving accurate integration of data from targeted protein assays
with datafromtranscriptome- and epigenome-level assays. The appli-
cability of MaxFuse is general. For strong linkage scenarios, MaxFuse
accuracy was comparable to scGLUE, astate-of-the-art method based
on deep learning, but at a considerably lower computational cost.
In addition, when joint embedding coordinates from other integra-
tion methods are available, these coordinates could serve as linked
features in MaxFuse. The light computation architecture and the
flexibility in incorporating domain knowledge and existing integra-
tionresults make the MaxFuse framework applicable to awide range
of cross-modal integration tasks.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods
The MaxFuse pipeline
Input preparation. Consider a pair of datasets, ¥ € R%*# and
Z € RN-*P:, from two modalities (termed Y-modality and Z-modality for
exposition convenience), with each row corresponding to a cell and
each column a feature. In the ensuing discussion, we treat Y as the
modality with a higher signal-to-noise ratio. For concreteness, one can
think of YasansnRNA-seq dataset and Zas a CODEX dataset. Suppose
there are two known functions, f, : R» - R® and f; : R?- > RS, such
that f,(y) predicts the values of f,(z) in a cell if the measured values
under Y-modality are y in that cell and those under Z-modality are z.
For any matrix A with p, columns, let f,(A) denote the matrix with s
columns and the same number of rows as A, obtained fromapplyingf,
on each row of A and stacking the outputs as row vectors. For any
matrix B with p, columns, f,(B) is analogously defined. We define
Yo =f£,(1) e RM*Sand Z° = £,(2) € RV, Inthe snRNA-seq versus CODEX
example, if one has a crude prediction for a subset S (with size |S| = s)
oftheproteins, then f,(z) = zgreturns the subvector indexed by Swhile
£,() = zspredicts the observed CODEX values for these proteins based
on transcriptomic information of a cell. In summary, we start with a
pair of original datasets (Y, Z) and a pair of datasets (¥°, z°), where the
columns of the latter have one-to-one correspondence based on
domainknowledge. The columns of Y°and z°canbelearned feature-wise
prediction functions, as described above, or learned coembedding
coordinates from some model trained on multi-omics data.
Meta-cell construction. To alleviate sparsity and to scale to large
datasets, we start by constructing meta-cells. Let n, be the desired
number of meta-cells. We first construct a nearest-neighbor graph of
the rows of ¥, apply Leiden clustering with an appropriate resolution
levelto obtain n, clusters and average over the rows within each cluster
to obtain the features for each meta-cell. Consequently, we obtain
Y, € Ry Using this clustering structure (induced by ¥), we can aver-
age feature vectors in ¥° to obtain ¥; € R»*S. When desired, the same
operation can be performed on the Z-modality to obtain Z, € R%*?-
and Z; e R"=*s, We recommend only constructing meta-cells for modali-
tiesthat allow cell state differentiation at fine granularity. For example,
if Y-modality contains snRNA-seq data and Z-modality contains CODEX
data, then we would usually recommend to construct meta-cells only
in Y-modality. The choices of meta-cell size for analyses reported in
thiswork are givenin Supplementary Table 2. In addition, in Extended
Data Figs. 3 and 4 and Supplementary Figs. 1and 2, we benchmarked
robustness of results with respect to meta-cell size. Meta-cell sizes of
2-3are optimal across the datasets we tested. After this curation step,
we have two pairs of datasets, (¥,,Z,) and (¥, Z;). The former pair can
have completely distinct feature sets, while the latter pair must have
matching feature sets with corresponding columns. In Fig. 1a, the
former correspond to the pair of all-feature matrices, and the latter
correspond to the pair of linked-feature matrices.

Fuzzy smoothing. Let Gy € {0,1}**™ be a nearest-neighbor graph of
Y, where eachrow iis connected to k! rows thatare closestinachosen
similarity measure, including itself. So row i of G, has k! entries equal
to one and others zeros. In addition, all its diagonal entries are equal
to one. Let Ay(Y,) = K;'GyY, and Ay(Y;) = K;'GyY; be locally averaged
versions of ¥, and ¥: over G,, respectively, where K, = diag(k’, ... ,kgy).
For a nearest-neighbor graph G, we define 4,(Z,) and A,(Z;) in an
analogous way. Finally, for any weight w € [0, 1]and any matrices A and
Bwithn,and n, rows, respectively, we define

Sy(A;w) = wA + (1 — w)Ay(A), o
S7(B;w) = wB + (1 — w)AzB).

In thisway, we define V2 = 8y(Y2; wo) and Z2, = SA(Z2; wo) with w, € [0, 1].
In Fig. 1a, these are matrices with smoothed Y-modality linked
features and smoothed Z-modality linked features, respectively.

See Supplementary Table 3 for alist of smoothing weights used in data
analyses reported in this work.

Initial matching via linear assignment. As the columnsin ¥ andin Z;
have correspondences, we can compute an n, x n, distance matrix D°
where Dj; measures the distance between the i-throw in ¥; and thej-th
rowin Z: after projecting to respective leading singular subspaces. We
obtain an initial matching fi° as the solution to the linear assignment
problem®*¢*;

minimize (I1,D°)

nyxn,

subjectto I € {0,1}
>y <LV, YM; <LV )
i J

Z I'l,j = Nuin-
LJ

Here, ny,, = min{n,, n,} and, for two matrices A and B of the same size,
(A, By=},A;B;denotes the trace inner product. The linear assignment
problem in equation (2) can be efficiently solved by relaxing the first
constraintto I € [0,1]*"™. The resulting linear program has the same
solutionas equation (2). The Pythonimplementation we used is based
onthe shortestaugmenting path approach summarizedinref. 65.The
estimator fi° provides arelatively crude matching using only the infor-
mation provided by the previous knowledge encapsulated in f, and f,
which link features in the two modalities. By definition, fi° gives npy,
pairs of matched rows between the two modalities, which we call initial
pivots.

Cross-modality joint embedding and iterative refinement. From
matched pairs tojoint embedding. An estimated matching flinducesa
cross-modality joint embedding of ¥, and Z,. Let ¥ € R»*"» and
Zr € R%=*" collect the leading principal components of all features
(thatis, ¥, and z,) in the two modalities, respectively. Here, the numbers
of principal components to retain, that is, r,and r,, are chosen based
on data. For any matrix A, let [A]; denote its i-th row. Suppose
{(ip,1,) = € =1,...,nyin}are the matched pairs specified by fi. We perform
CCA ondata pairs

{(ven,1zz1,) s €= Lo Riin}

toobtaintheleading r..loading vectors for either modality, collected
as the columns of C, = C,(fl) and C, = C,(f), respectively. The joint
embedding induced by Ml is then ¥ = ¥zC, e R® "« and Z* =
Z=C, € R"*"= the predicted canonical correlation (CC) scores of Yz and
Z:, respectively.

Iterativerefinement.Let [1© = fi°be theinitial matching obtained
fromequation (2). We fixaweightw, € [0, 1] and the embedding dimen-
sion re¢,and we refine the estimated matching by iterating the following
stepsfort=1,..., T:

(1) Computejoint embedding {¥:>©,z=>®}induced by fi¢-D;

(2) Apply fuzzy smoothing on joint embedding:

VO = 8120 wy), Z50 = 842570 wy);

(3) Calculate adistance matrix D® e R»*% where DE.[) measures the
distance between [V;**]; and [Z*(*],, and obtain a refined

matching fi® by solving equation (2) in which D is replaced

with D9,

Figure 1billustrates the foregoing refinement iteration.

Propagation of matching and postprocessing. For downstream
analyses, one would often like to find for each cellin Yamatchin Z, or
vice versa, and sometimes both ways. Inaddition, one often wants joint
embedding of cells across different modalities inacommon space. We
now describe how MaxFuse achieves these goals.
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Filtering and f naljointembedding. Upon obtaining the matched
pairs {(i, 1) : € =1,...,nyip} in fi™, we rank them in descending order
of Df? and only retain the top 100 x (1 - a)% pairs, where a is a
user- spec1f1ed filtering proportion (witha defaulta = 0). The retained
pairs are called refined pivots. Then, we fit a CCA using the refined
pivots and the corresponding rows in ¥, and Z, to get the associated
CCAloading matrices C; € R>*"and C; e R?>". Here the positive inte-
ger reisa user-specified dimension for final joint embedding. Finally,
the joint embedding of the full datasets is given by y* = Yﬁ; € RWxr
and ze = ZC: e R%*", respectively. In Fig. 1c, they correspond to
the Y-modality embedding and Z-modality embedding matrices.

Using pivots to propagate matching.For eachrowindexie{l, ..., n}
in Y-modality that does not have a match in Z-modality, MaxFuse
searches for the nearest neighbor of the i-th row in ¥, = 8,(Y,; wo)
that belongs to some refined pivot. Suppose the nearest neighbor is
thej-th row withamatch j;in Z-modality, then we call (i.j;) a matched
pair obtained via propagation. We can optionally filter out any matched
pair via propagation in which the nearest-neighbor distance between
[¥.].and [Ym]jl_,is aboveauser-specified threshold. The retained matched
pairs compose the Y-to-Zpropagated matching. This procedureis then
repeated with the roles of Y- and Z-modalities switched to obtain the
Z-to-Y propagated matching. Pooling all matched pairs from refined
pivots and propagated matching together, we obtain a matching
between meta-cells in Y-modality and those in Z-modality. Such a
meta-cell-level matching defines asingle-cell-level matching between
the original datasets Y and Z by declaring (i,i’) a matched pair for
1<i<N,, 1< <N,ifthemeta-cell thatibelongs tois matched to the
meta-cell that i’ belongs to.

Scoring and directional pruning of matching. For each single-cell-
level matched pair (i, i'), we compute Pearson correlation between the
i-throwof yeand the i-throw of z¢ (thatis, corresponding rowsin final
jointembedding) as its matching score. We use these matching scores
to prunesingle-cell-level matching, with the direction of pruning speci-
fied by the user. Suppose the user wants to find for each cellinZamatch
inY(forexample, Zisa CODEX dataset and Y snRNA-seq). Then for each
cellindex 1 < i <N,, we first list all refined pivots and propagated
matching pairs that contain i’. If the listisnonempty, we only retain the
pairwith the highest matching score. Otherwise, we declare no match
for cell i’ inZ-modality. If the directionis reversed, we apply the forego-
ing procedure with the roles of Y and Z switched. Furthermore, if no
directional pruningis desired, we just keep all refined pivots and post-
screening propagated matching pairsin the final single-cell matching.
In Extended Data Figs. 3 and 4 and Supplementary Figs. 1and 2, we
benchmarked how evaluation metrics change with different choices
of filtering proportions in propagation and in pruning. In Supplemen-
tary Table 4, we reported the filtering proportions used in the data
analysesreported in this work. After filtering, propagation and poten-
tial pruning, the final list of matched pairs corresponds to the final
matchinginFig. 1c.

Systematic benchmarking on ground-truth datasets

MaxFuse and other methods in comparison. MaxFuse was imple-
mentedinPython, and the four methods used for comparison, Seurat
V3, Harmony, Liger and BindSC, were implemented in R. All bench-
marking datasets were preprocessed in the same way for allmethods,
including filtering of low-quality cells, selection of highly variable
genes and protein features to be used in integration, feature linkage
scheme (forexample, proteinto their corresponding gene names) and
normalization of raw observed values (except for Liger which required
scaling without centering). We used the default tuning parameters in
eachmethod suggested by the respective tutorial, with the exception of
BindSC, for whichwe used the separate set of parameters suggested for
theintegration of protein-related data by its method tutorial website.
For MaxFuse, initial matching used features that are weakly linked (for
example, protein CD4 and RNA CD4) and are smoothed by all-feature

nearest-neighbor graphs. For refined matching, all features fromboth
modalities were used (for example, all proteins and RNAs that are highly
variable). For other methods in comparison, BindSC used both the
weakly linked features and all features, whereas others only used the
weakly linked features by design. The full details were recorded and can
bereproduced, with code deposited to https://github.com/shuxiaoc/
maxfuse/tree/main/Archive.

Evaluation metrics.

(1) Cell-type matching accuracy: To evaluate the matching perfor-
mance for Seurat V3, Liger, Harmony and BindSC, we used the
respective integration embedding vectors produced by each
method. For these methods, for each cell in one modality, we
regarded its nearest neighbor from the other modality under
Pearson correlation distance in the embedding space as its
match. For MaxFuse, we directly used matched pairs produced
inthe final result. For all methods, we use the same matching
direction (for example, for each cellin CODEX data finding a
matched cell in scRNA-seq data) for fair comparison. Accuracy of
the matchings was measured by fraction of matched pairs with
identical cell-type annotations. Details on cell-type annotation
are given below in the description of each benchmarking dataset.

(2) FOSCTTM: FOSCTTM was used to evaluate single-cell-level
alignment accuracy on datasets with ground-truth
single-cell-level pairing. The measure has been used previously
in cross-modality alignment benchmarking tasks'**%. For such
data, N,=N,=N, and FOSCTTM is defined as:

1
FOSCTTM = 3N (

where for each i.n{’ = |{j |d(y,.z) < d(y,,2)}| with d a distance
metric in the joint embeddmg spaceandfor/=1,...,N, y;and z;
are the embedded vectors of the I[-th cell with its measurements
in Y- and Z-modality, respectively. The counts n{,i =1,...,N, are
defined analogously. A lower value of FOSCTTM mdlcates better
integration performance.

(3) FOSKNN:FOSKNN was used to evaluate single-cell-level align-
ment accuracy on datasets with ground-truth single-cell-level
pairing. For such data, N,=N,=N. For any method in compari-
son, let{y:i=1, ..., N} be the coordinates of cells in the joint
embedding space from their Y-modality information, and let
{zzi=1, ..., N} be embedding coordinates from their Z-modality
mformatlon. Then

1
FOSKNN = 5 (Z 1P+ Zl(’) )

i=1

wherefori=1,...,N, 1(') is the indicator of whether the k closest
embedded vectors fromZ modality toy;includes z,. The quantity
1(’) is defined analogously. A higher value of FOSKNN indicates
better integration performance.

(4) Silhouette F1score: Silhouette F1score has been used to
simultaneously measure modality mixing and information pres-
ervation post integration process®"*. In brief, the F1 score was
calculated by 2 - slt_mix - slt_clust/(slt_mix + slt_clust), where
slt_mix is defined as one minus normalized Silhouette width
with the label being modality index (two modalities); slt_clust is
defined by the normalized Silhouette width with the label being
cell-type annotations (for example, ‘CD4 T', ‘CD8 T’, ‘B’ and so
on). All Silhouette widths were computed using the silhouette
function from R package cluster.

(5) ARIF1score: ARIF1score has been used to jointly measure
modality mixing and information preservation post integration
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process”*. The score was calculated in a similar way to Silhou-
ette F1score, while the ARl was used instead of the Silhouette
width. All ARI scores were computed using the function adjust-
edRandIndex in R package mclust.

CITE-seq PBMC dataset analysis. The CITE-seq data from human
PBMCs with antibody panel of 228 markers were retrieved from Hao
etal.*and cell-type annotations (level 1: 8 cell types; and level 2: 31 cell
types) were directly retrieved from the original annotationinref. 33. For
benchmarking purposes, five batches of cells, each with 10,000 cells,
were randomly sampled from the original dataset and used for bench-
marking. The first15components of the embedding vectors produced
by all methods were used for benchmarking metric calculation. The
UMAP visualization of the integration process was also calculated with
the first 15 components of the embedding vectors. For visualization
purposes, the 31 cell types of level 2 annotation were manually binned
into 20 cell types in the UMAP cell-type coloring.

For analyses with fewer antibodies, we ranked the importance of
each individual antibody in the panel in terms of phenotyping con-
tribution. The importance score was calculated by training arandom
forest model (function randomForest in R package randomForest,
with default parameters) using all antibodies to predict cell-type labels
(annotationlevel 2), then apermutation feature importance test (func-
tionvarlmp with default parametersin R package caret) was performed
onthetrained model to acquire theimportance scores. Then antibod-
ies were ranked by the importance scores, and four panels were used
for the antibody droppingtest: (1) full 228-antibody panel; (2) top 100
mostimportantantibodies; (3) top 50 mostimportant antibodies; (4)
top 30 mostimportant antibodies.

CITE-seq bone marrow cell dataset analysis. The CITE-seq healthy
human bone marrow cells (BMCs) data with an antibody panel of 25
markers were retrieved from the R package SeuratData ‘bmcite’; these
datawerealso reported by Hao et al.”*. A total 0f 20,000 cells were ran-
domly sampled from the original dataset and used for benchmarking.
The first 15 components of the embedding vectors produced by all
methods were used for benchmarking metric calculation. The UMAP
visualization of the integration process was also calculated with the
first 15 components of the embedding vectors. The original cell-type
annotation (Iv2) from the R package was binned into eight populations,
‘DC’, ‘progenitor’,‘monocyte’, ‘NK’,‘B’, ‘CD4 T’,‘CD8 T"and ‘Other T’,and
used for benchmarking.

Abseq BMC dataset analysis. The Abseq healthy human BMC data
with antibody panel of 97 markers and whole transcriptome sequenc-
ing wereretrieved from Triana etal.”. All cellsin the dataset (-13,000),
except cells belonging to cell types with insufficient numbers of cells
(<50cells,annotated as ‘Doublet and Triplets’, ‘Early GMP’,‘Gammadelta
T cells’, Immature B cells’, ‘Metaphase MPPs’, ‘Neutrophils’ in ref. 39),
were included for integration. The remaining 14 cell types were used
during benchmarking. The first 15 components of the embedding
vectors produced by all methods were used for benchmarking metric
calculation. The UMAP visualization of the integration process was
also calculated with the first 15 components of the embedding vectors.

TEA-seq PBMC dataset analysis. The TEA-seq neutrophil-depleted
human PBMC dataset was retrieved from Swanson etal.* (GSM4949911).
This dataset contains 46 antibodies and chromatin accessibility infor-
mation. Cell-type annotation was performed using R package Seurat
(v.4) WNN-multi-modal clustering pipeline: function FindMultiModal-
Neighborswas run onthe antibody-derived tags (ADT) assay principal
component analysis (PCA) output (first 25 components) and the ATAC
assay latent semantic indexing (LSI) output (first 2-50 components,
calculated by R package Archr*). Subsequently, the function FindClus-
ters was used to generate unsupervised clustering (with parameters

algorithm = 3, resolution = 0.2), followed by manual annotation. A total
of eight populations were identified (‘Naive CD4’, ‘Mem CD4’, ‘Mono-
cyte’,‘NK’, ‘Naive CD8’,‘Mem CD8’, ‘Effector CD8’,‘B’,'NK’), and the total
number of cells was -7,400. ADT expressions and gene activity scores
(calculated by R package Archr*?) were used as input for MaxFuse and
other methods. Additionally, during matching refinement, MaxFuse
used LSIreductions of the ATAC peaks (first 2-50 components) as fea-
tures for the ATAC modality. The first 15 components of theembedding
vectors produced by all methods were used for benchmarking metric
calculation. The UMAP visualization of the integration process was
also calculated with the first 15 components of the embedding vectors.

ASAP-seq PBMC dataset analysis. The ASAP-seq healthy human
PBMC data (CD28 and CD3 stim PBMC control group) with an anti-
body panel of 227 markers and chromatin accessibility information
were retrieved from Mimitou etal.*° (GSM4732109 and GSM4732110).
Cell-type annotation was performed using R package Seurat (v.4)
WNN-multi-modal clustering pipeline: the function FindMultiModal-
Neighbors was run on ADT PCA (first 18 components) and ATAC LSI
(2-40 components, calculated by R package Archr). Subsequently,
the function FindClusters was used to generate unsupervised clus-
tering (with parameters algorithm = 3, resolution = 0.3), followed by
manual annotation. A total of nine populations were identified (‘Naive
CD4’,‘Mem CD#4’, ‘Monocyte’, ‘NK’, ‘Naive CD8’, ‘Mem CD8’, ‘B’, ‘Other
T, dirt’), and ‘dirt’ was removed from subsequent analyses, resulting
in about 4,400 cells used. ADT expressions and gene activity scores
(calculated by R package Archr) were used as input for MaxFuse and
other methods. Additionally, during matching refinement, MaxFuse
used LSIreductions of the ATAC peaks (first 2-50 components) as fea-
tures for the ATAC modality. The first 15 components of the embedding
vectors produced by all methods were used for benchmarking metric
calculation. The UMAP visualization of the integration process was
also calculated with the first 15 components of the embedding vectors.

MaxFuse on spatial-omics matching
CODEX and scRNA-seq human tonsil dataset analysis. CODEX
multiplex imaging data of human tonsil tissues with a panel of 46
antibodies were retrieved from Kennedy-Darling et al.*’. Images from
tonsil-9338 (region X2-8, Y7-15) were used. Whole-cell segmentation
was performed with alocal implementation of Mesmer®®, with weights
downloaded from: https://deepcell-data.s3-us-west-l.amazonaws.com/
model-weights/Multiplex_Segmentation_20200908_2_head.h5.Inputs
of segmentation were DAPI (nuclear) and CD45 (membrane). Signals
from the images were capped at 99.7th percentile, with prediction
parameter model_mpp = 0.8. Cells smaller than 30 pixels or larger
than 800 pixels were excluded. Signals fromindividual cells were then
extracted, and scaled to the [0, 1] interval, with percentile cutoffs at
0.5% (floor) and 99.5% (ceiling). Cell-type annotation was performed
using R package Seurat clustering pipeline: the function FindNeighbors
was run on CODEX protein PCA (first 15 components). Subsequently,
the function FindClusters was used to generate unsupervised cluster-
ing (with parameter resolution =1), followed by manual annotation.
A total of ten populations were identified (‘B-CD22-CD40’, ‘B-Ki67’,
‘Plasma’, ‘CD4 T, ‘CD8 T’, ‘DC’, ‘Fibro/Epi’, ‘Vessel’, ‘Other’ and ‘Dirt’),
and six populations (-180,000 cells in total) were used in subsequent
analyses (‘B-CD22-CD40’, ‘B-Ki67’, ‘Plasma’, ‘CD4 T',‘CD8 T’ and ‘DC’).
scRNA-seq data of dissociated human tonsil cells were retrieved
fromKing et al.”. The preprocessing and cell typing steps were done
inthe R package Seurat, following the description presented inref. 50.
In brief, tonsil cells (‘t1, ‘t2’ and ‘t3’) were merged, then filtered by the
criterianFeature_RNA >200 & nFeature_RNA < 7500 & percent.mt < 20,
and subsequently values were normalized by the function SCTrans-
form. Harmony batch correction was performed for different tonsils
for clustering only, with the function RunHarmony. Unsupervised clus-
tering was performed by the function FindNeighbors with Harmony
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embedding (1-27 dimensions) and function FindClusters with resolu-
tion = 0.5. A total of eight populations were defined (‘B-CD22-CD40’,
‘B-Ki67’, ‘circulating B’, ‘Plasma’, ‘CD4 T, ‘CD8 T, ‘DC’, ‘Other’), and six
populations (13,000 cells in total) were used in subsequent analyses
(‘B-CD22-CD40’,‘B-Ki67’, ‘Plasma’, ‘CD4 T’,‘CD8 T"and ‘DC’).

Boundaries of GCs from the CODEX images were drawn manually,
and dilation and erosion from the boundary was performed with the
Python package skimage, with functions morphology.binary_dila-
tion and morphology.disk. Ten layers inward and ten layers outward
from the boundary (each layer = 30 pixels; resolution: 376 nm per
pixel) were performed, respectively. Cells were assigned to each layer
based onlocations of centroids. The RNA expression levels from each
layer, based on the averaged CODEX-matched scRNA-seq cells, were
plotted with the R package ggplot2. The UMAP visualization of the
integration process was calculated with the first 15 components of
the embedding vectors.

HUBMAP atlas: tri-modal human intestine dataset analysis. CODEX
multiplex imaging (48 markers), snRNA-seq and snATAC-seq data
of healthy human intestine cells were acquired from Hickey et al.*".
For CODEX, samples ‘BO05_SB’ and ‘BO06_CL’ were used, while for
snRNA-seq and snATAC-seq, single-ome sequencing data of four
donors (‘BO0T’,‘B004/,‘B005’, ‘B006’) from the study were used. Cells
annotated as ‘Bcells’, ‘T cells’, ‘Endothelial’, ‘Enteroendocrine’, ‘Goblet’,
‘Mono_Macrophages’, ‘Plasma’, ‘Smooth muscle’ and ‘Stroma’ were
selected for the integration process. Cell counts for each modality
used for MaxFuse were: CODEX ~100,000 (small bowel) and ~70,000
(colon); snRNA-seq ~32,000 (small bowel) and ~16,000 (colon);
snATAC-seq ~28,000 (small bowel) and ~-21,000 (colon). CODEX
protein expressions, SnRNA-seq RNA expressions, snATAC-seq gene
activity scores and LSIscores (calculated with R package Archr) were
used as MaxFuse input (RNA expressions, gene activity scores and LSI
scores were batch-corrected by Harmony?°, based on patient ID). The
matching and integration processes were done on colon and small
bowel samples, respectively.

Pairwise MaxFuse alignments of cells between protein (CODEX)
and RNA (snRNA-seq), and of cells between RNA (snRNA-seq) and ATAC
(snATAC-seq), were performed. Refined pivots from the two bimodal
alignments were chained together by using the pivot cells in the RNA
modality as the intermediary, resulting in a list of tri-modal pivots
linking all three modalities. Subsequently, we used these pivots to
calculate a tri-omicembedding viagCCA?"*. In particular, we used the
gCCA formulation and algorithm described in ref. 21.

The UMAP visualization of the tri-modal integration was calculated
withthefirst 15 components of the embedding vectors (gCCA scoresin
this case). Embeddings of CODEX cells were overlaid with their protein
expressions, or their matched cells’ RNA expressions, or gene activity
scores. Spatial locations of these expression values and scores were
plotted based on CODEX cells’ x-y centroid locations. Additionally, we
showed spatiallocations of transcription factor motif enrichment scores
(Z-score) of CODEX cells, based on their matched snRNA-seq cells, which
were calculated by the R package chromVAR®. All values were capped
between 5% and 95% quantiles for visualization purposes during plotting.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

All data used in this manuscript are publicly available. The links are
listed here: CITE-seq PBMC from Hao et al.*: https://atlas.fredhutch.
org/data/nygc/multimodal/pbmc_multimodal.h5seurat; CITE-seq
BMC from Hao et al.**: https://satijalab.org/seurat/articles/multi-
modal_reference_mapping.html (file: ‘bmcite’ with ‘SeuratData’);
Ab-seq BMC from Triana et al.*’: https://figshare.com/articles/dataset/

Expression_of 97 surface_markers_and_RNA_transcriptome_wide_
in_13165_cells_from_a_healthy_young bone_marrow_donor/13397987;
TEA-seq PBMC from Swanson et al.: ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSM4949911; ASAP-seq PBMC from Mimitou et al.*’:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE156473
(GSM4732109 and GSM4732110); CODEX tonsil from Kennedy et al.*:
https://onlinelibrary.wiley.com/doi/10.1002/eji.202048891; scRNA-seq
tonsil from King et al.’’: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE165860 (tonsil 1a, 1b, 2a, 2b, 3a, 3b); Multiome
(scRNA-seq and scATAC-seq) retina from Wang et al.*®; https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM5866073; Multiome
(scRNA-seq and scATAC-seq) PBMC from 10x Genomics datasets*®:
https://www.10xgenomics.com/resources/datasets (PBMC from a
Healthy Donor - Granulocytes Removed Through Cell Sorting (10k));
Multiome (scRNA-seq and scATAC-seq) mouse E18 from 10x Genom-
ics datasets*®: https://www.10xgenomics.com/resources/datasets
(Fresh Embryonic E18 Mouse Brain (5k)); Multiome (scRNA-seq and
SCATAC-seq) cerebral cortex from Trevino et al.*’”: https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE162170 (multiome samples).

Code availability
All code used in this study, including the MaxFuse software and the
analysis code, canbe found at https://github.com/shuxiaoc/maxfuse.
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A Benchmarking on Groundtruth CITE-seq (PBMC) data with full ADT panel (228 Antibodies)
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Extended Data Fig. 1| Benchmarking on ground-truth CITE-seq PBMC data with all 228 antibodies from Hao et al.>. (A) UMAP visualization of Liger, Harmony,

and BindSC integration results, colored by modality (upper panel) or level 2 cell types (lower panel). (B) Cell matching accuracy results (cell type level 1) of different
methods.
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A Benchmarking on Groundtruth CITE-seq (PBMC) data with smaller ADT panel (drop to 30 antibodies)
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B Cell matching evaluated by cell type (level-1) consistency (drop to 30 antibodies)
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Extended DataFig. 2| Benchmarking on ground-truth CITE-seq PBMC data with top 30 antibodies from Hao et al.”. (A) UMAP visualization of Liger, Harmony,

and BindSC integration results, colored by modality (upper panel) or level 2 cell types (lower panel). (B) Cell matching accuracy results (cell type level 1) of different
methods.
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A MaxFuse parameter test on CITE-seq PBMC dataset (228 antibodies): matching accuracy (cell type level 1)
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B MaxFuse parameter test on CITE-seq PBMC dataset (228 antibodies): matching accuracy (cell type level 2)
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Extended Data Fig. 3| Benchmarking of robustness to tuning parameters
in MaxFuse integration on CITE-seq PBMC with all 228 antibodies from Hao
etal.”, evaluated by matching accuracy at two levels. (A) Matching accuracy
(celltype level 1) versus a range of SVD components for different modalities,
smoothing weights duringinitialization and refinement, filtering percentages
on pivot and on full matching, number of iterations, final CCA embedding
dimensions, meta-cell size, and NN-graph neighborhood size. Line indicates

mean value and shadow indicates 95% Cl on both sides. (B) Matching accuracy
(cell type level 2) versus a range of SVD components for different modalities,
smoothing weights during initialization and refinement, filtering percentages
on pivot and on full matching, number of iterations, final CCA embedding
dimensions, meta-cell size, and NN-graph neighborhood size. Line indicates
mean value and shadow indicates 95% Cl on both sides.
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A MaxFuse parameter test on CITE-seq PBMC dataset (228 antibodies): FOSCTTM (smaller better)
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B MaxFuse parameter test on CITE-seq PBMC dataset (228 antibodies): FOSKNN
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Extended Data Fig. 4 | Benchmarking of robustness to tuning parameters NN-graph neighborhood size. Line indicates mean value and shadow indicates
in MaxFuse integration on CITE-seq PBMC with all 228 antibodies from Hao 95% Clonbothsides. (B) FOSKNN scores versus a range of SVD components for
etal.”, evaluated by FOSCTTM and FOSKNN. (A) FOSCTTM scores versus a different modalities, smoothing weights duringinitialization and refinement,
range of SVD components for different modalities, smoothing weights during filtering percentages on pivot and on full matching, number of iterations, final
initialization and refinement, filtering percentages on pivot and on fullmatching, = CCA embedding dimensions, meta-cell size, and NN-graph neighborhood size.
number of iterations, final CCA embedding dimensions, meta-cell size, and Lineindicates mean value and shadow indicates 95% Cl on both sides.
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Benchmarking on strongly linked modalities (scRNA/scATAC) against specialized methods
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Extended Data Fig. 5| Benchmarking of MaxFuse on ground-truth strongly
linked modalities against modality specialized methods. (A) Four ground-
truth scRNA/scATAC multiome datasets used for the benchmarking of MaxFuse
against specialized methods for scRNA/scATAC integration tasks (scGLUE,
scJointand Maestro). (B) Runtime benchmark on Retina data* with different
subsample sizes (2,500, 5,000,10,000, and 20,000 cells). Methods with

GPU option (scjJoint and scGLUE) were tested under both CPU-only and GPU
modes. MaxFuse, scJoint (CPU-only), and scGLUE (CPU-only) experiments were
performed on aMacBook Pro with M1 Max CPU. scJoint (GPU) and scGLUE (GPU)
experiments were performed on a Linux workstation with dual Intel i9-10980XE

CPUs and dual NVIDIA Quadro RTX 8000 GPUs. Due to M1 silicon incompatibility,
Maestro experiments were performed on a Linux workstation with dual Intel i9-
10980XE CPUs and dual NVIDIA Quadro RTX 8000 GPUs. The reported Maestro
runtimes were calibrated against scJoint runtimes on both computing platforms
to ensure fair comparison. Line indicates mean value and shadow indicates 95% CI
onbothssides. (C) Cell matching accuracy (cell type level) of different methods on
the four datasets. (D) FOSCTTM scores of different methods on the four datasets.
(E) FOSKNN scores of different methods on the four datasets. (F) Silhouette
F1scores (y axis) and ARI F1scores (x axis) of joint embeddings produced by
different methods on the four datasets.
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A Matching and integration of CODEX and scRNA-seq human tonsil cells
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Extended Data Fig. 6 | Benchmarking on human tonsil CODEX and scRNA-seq data from Kennedy-Darling et al.*’ and King et al.”. (A) UMAP visualization of
Seurat, Liger, Harmony, and BindSC integration results, colored by modality (upper panel) or cell types (lower panel). (B) Cell matching accuracy results (cell type level)

of different methods.
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Extended Data Fig. 7 | Experimental validation of MaxFuse predicted mRNA
spatial expression pattern. RNAscope was performed on fresh-frozen human
tonsil tissue to validate the spatial expression pattern of AICDA and CCR6. The
top row demonstrates MaxFuse predicted mRNA spatial expression patterns

of AICDA and CCR6 (taken from Fig. 4E). Three representative germinal centers

were shown in the second to the fourth row, with the red line indicating germinal
center boundary and the white line indicating CCR6 boundary. Within each row,
from left to right: nucleus (DAPI) channel, AICDA RNAscope channel, and CCR6
RNAscope channel. Only 3 representative GCs were shown in the figure due to the
limitation of space. The conclusion was made by validating > 20 individual GCs.
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A MaxFuse time and memory usage on large spatial proteomic datasets (Hubmap CODEX/snRNA-seq)
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Extended Data Fig. 8 | Benchmarking of MaxFuse run time and memory usage
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Extended Data Fig. 9 | Additional markers showing consistent expression
patterns across tri-modalities for Fig. 5. (A) Upper row: UMAP visualization of
CODEX cells based on the integration embedding, overlaid with MUC2 protein
expression (from CODEX cells themselves, left panel), MUC2RNA expression
(from matched snRNA-seq cells, middle panel), MUC2 gene activity score (from
matched snATAC-seq cells, right panel). Lower row: Spatial locations of CODEX
cells based on their centroids’ x-y positions, overlaid with the same expression

features asin the corresponding panels of the upper row. (B) Upper row: UMAP
visualization of CODEX cells based on the integration embedding, overlaid with
aSMA protein expression (from CODEX cells themselves, left panel), ACTA2ZRNA
expression (from matched snRNA-seq cells, middle panel), ACTA2 gene activity
score (from matched snATAC-seq cells, right panel). Lower row: Spatial locations
of CODEX cells based on their centroids’ x-y positions, overlaid with the same
expression features as in the corresponding panels of the upper row.
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Extended Data Fig. 10 | Tri-modal integration with MaxFuse on HUBMAP
small bowel data. (A) Representative cell type spatial locations on CODEX
HUBMAP small bowel tissue. (B) UMAP visualization of the tri-modal integration
embedding produced by MaxFuse, colored by modality: Protein, RNA and

ATAC (left panel) and colored by cell type (right panel). (C) Upper row: UMAP
visualization of CODEX cells based on the integration embedding, overlaid with
CD163 protein expression (from CODEX cells themselves, left panel), CD163

RNA expression (from matched snRNA-seq cells, middle panel), CD163 gene
activity score (from matched snATAC-seq cells, right panel). Lower row: Spatial
locations of CODEX cells based on their centroids’ x-y positions, overlaid with the
same expression features as in the corresponding panels of the upper row. (D)
Spatial locations of CODEX cells based on their centroids’ x-y positions, overlaid
with the transcription factor motif enrichment scores (Z-scores, calculated by
chromVAR®), based on their matched snATAC-seq cells.
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dataset, unless it exceeds certain computational resource limit. In that case, reduced sample size was created by random sub-sampling.

Data exclusions  No data exclusion was done in this manuscript for biology/clinical reasons.

Replication No replication was done in this manuscript for biology/clinical reasons. For benchmarking the algorithm, each test was performed 5 times
with random subsamples of the related dataset, to maintain the robustness of the conclusion.
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Randomization  relevant since such tasks were not pursued in this study. For benchmarking the algorithm, random sub-sampling of single cells were
performed to demonstrate the performance of the algorithm on a representative cell population composition.

Blinding No blinding was done in this manuscript for biology/clinical reasons. Blinding is not relevant for this study because the experiments were
aiming to validate technical performance.
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